JP2011233695A - NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR - Google Patents

NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR Download PDF

Info

Publication number
JP2011233695A
JP2011233695A JP2010102217A JP2010102217A JP2011233695A JP 2011233695 A JP2011233695 A JP 2011233695A JP 2010102217 A JP2010102217 A JP 2010102217A JP 2010102217 A JP2010102217 A JP 2010102217A JP 2011233695 A JP2011233695 A JP 2011233695A
Authority
JP
Japan
Prior art keywords
layer
insulating film
gate
insulating layer
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010102217A
Other languages
Japanese (ja)
Inventor
Junichi Sato
純一 佐藤
Twynam John
トワイナム ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010102217A priority Critical patent/JP2011233695A/en
Publication of JP2011233695A publication Critical patent/JP2011233695A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a normally-off type GaN-based FET having high gate voltage resistance and reduced on-resistance.SOLUTION: A normally-off type GaN-based FET comprises: a channel layer 4 composed of a first type GaN-based semiconductor; a pair of electron supply layers 5 composed of a second type GaN-based semiconductor, which are separately formed of the channel layer each other; a gate insulating film 7 covering the channel layer between the electron supply layers; a source electrode and a drain electrode ohmically contacting the channel layer; and a gate electrode formed on the gate insulating film. The gate insulating film comprises a first and second insulating layers sequentially deposited on the channel layer. A first insulating layer 7a is composed of any of Si oxide, nitride, and oxynitride, and has a thickness of 5 nm or less. A second insulating layer 7b has a large ε×Ecompared with the first insulating layer, where ε represents a dielectric constant and Erepresents a breakdown electric field.

Description

本発明はGaN系電界効果トランジスタ(FET)に関し、特にノーマリオフ型GaN系FETの高いゲート耐電圧と低いオン抵抗の両立に関する。   The present invention relates to a GaN-based field effect transistor (FET), and more particularly, to both a high gate withstand voltage and a low on-resistance of a normally-off GaN-based FET.

窒化物半導体の典型例であるGaN系半導体を利用したFETは、その材料の持つ特性からAlGaN/GaN界面に発生する2次元電子ガスをチャネルとして利用することにより、Siを用いた従来のFETに比べて、高い耐電圧特性と大電流動作が可能なトランジスタとして有望視されている。なかでも、ノーマリオフ型のFETは、故障時の安全性の観点から、特に大電流を扱うパワーデバイス分野において高い需要がある。なお、ノーマリオフ型FETとは、ゲートに電圧が印加されていないとき(通常時)にオフ状態であって、ゲートに電圧が印加されたときにオン状態になるトランジスタをいう。   A FET using a GaN-based semiconductor, which is a typical example of a nitride semiconductor, uses a two-dimensional electron gas generated at the AlGaN / GaN interface as a channel due to the characteristics of the material, thereby making it a conventional FET using Si. In comparison, it is considered promising as a transistor capable of high withstand voltage characteristics and large current operation. Among these, normally-off type FETs are in high demand especially in the field of power devices that handle large currents from the viewpoint of safety at the time of failure. Note that a normally-off FET refers to a transistor that is off when no voltage is applied to the gate (normal time) and that is on when a voltage is applied to the gate.

図10の模式的断面図は、特許文献1の国際公開WO03/071607A1に開示されたノーマリオフ型FETを示している。なお、本願の図面において、長さ、幅、厚さなどの寸法関係は、図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表してはいない。   The schematic cross-sectional view of FIG. 10 shows a normally-off type FET disclosed in International Publication WO 03 / 071607A1 of Patent Document 1. In the drawings of the present application, dimensional relationships such as length, width, and thickness are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships.

図10のFETにおいては、基板11上にバッファ層12、GaNチャネル層13、および一対のAlGaN電子供給層14a、14bが順次積層されている。この場合に、GaNチャネル層13とAlGaN電子供給層14a、14bとのヘテロ界面において、図中の破線で表された2次元電子ガス6が生じる。一対のAlGaN電子供給層14a、14bの外側には、チャネル層13上にGaNコンタクト層16a、16bを介してソース電極Sとドレイン電極Dが形成されている。そして、一対のAlGaN電子供給層14a、14bの間のチャネル層13上には、絶縁膜15を介してゲート電極Gが形成されている。このようなFETでは、ゲート電極G下のチャネル層13には2次元電子ガス6が存在しておらず、ゲート電極Gに電圧が印加されていないときにはオフ状態を維持している。しかし、ゲート電極Gに電圧が印加されれば、ゲート電極G下のチャネル層13の上面に生じた反転層がAlGaN電子供給層14a、14b下の2次元電子ガスとつながって、FETのソース電極Sとドレイン電極Dとの間がオン状態になって通電し得る。   In the FET of FIG. 10, a buffer layer 12, a GaN channel layer 13, and a pair of AlGaN electron supply layers 14a and 14b are sequentially stacked on a substrate 11. In this case, a two-dimensional electron gas 6 represented by a broken line in the figure is generated at the heterointerface between the GaN channel layer 13 and the AlGaN electron supply layers 14a and 14b. A source electrode S and a drain electrode D are formed on the channel layer 13 via the GaN contact layers 16a and 16b outside the pair of AlGaN electron supply layers 14a and 14b. A gate electrode G is formed on the channel layer 13 between the pair of AlGaN electron supply layers 14 a and 14 b via an insulating film 15. In such an FET, the two-dimensional electron gas 6 does not exist in the channel layer 13 below the gate electrode G, and the off state is maintained when no voltage is applied to the gate electrode G. However, if a voltage is applied to the gate electrode G, the inversion layer generated on the upper surface of the channel layer 13 below the gate electrode G is connected to the two-dimensional electron gas below the AlGaN electron supply layers 14a and 14b, and the source electrode of the FET Between S and the drain electrode D can be turned on and can be energized.

国際公開WO03/071607A1International Publication WO03 / 071607A1

図10に示されているようなノーマリオフ型GaN系FETのゲート部Gに関連する特性を本発明者らが鋭意検討したところ、ゲート絶縁膜として一般的なSiOを用いた場合では、SiOの誘電率εと絶縁破壊電界Eとの積ε×Eの値が小さいために、GaN系FETの特性が充分に生かせないことが分かった。 When the inventors of the present invention related characteristics to the gate portion G 0 of the normally-off GaN-based FET as shown in Figure 10 was examined intensively, in case of using a general SiO 2 as a gate insulating film, SiO Since the value of the product ε × E c of the dielectric constant ε of 2 and the dielectric breakdown electric field E c is small, it has been found that the characteristics of the GaN-based FET cannot be fully utilized.

そこで、本発明者らは、一般にHigh−k膜とも称される高誘電体膜をゲート絶縁膜として用いることを検討した。その結果、図10に示されているようなGaN系FETにおいてSiOゲート絶縁膜に替えてHigh−kゲート絶縁膜を用いた場合には、誘電率と絶縁破壊電界の積ε×Eの値が充分であることがわかった。しかし、ゲート絶縁膜15はGaNチャネル層13に直接接して形成されるので、GaN層とHigh−k絶縁膜との界面のチャネルにおける電子移動度が低くなることが判明した。すなわち、High−kゲート絶縁膜を用いた場合には、GaN系FETが有する大電流動作可能な特性を充分に生かせないことが分かった。 In view of this, the present inventors examined the use of a high dielectric film, which is generally called a high-k film, as the gate insulating film. As a result, when a high-k gate insulating film is used instead of the SiO 2 gate insulating film in the GaN-based FET as shown in FIG. 10, the product ε × E c of the dielectric constant and the breakdown electric field is The value was found to be sufficient. However, since the gate insulating film 15 is formed in direct contact with the GaN channel layer 13, it has been found that the electron mobility in the channel at the interface between the GaN layer and the High-k insulating film is lowered. In other words, it has been found that when a high-k gate insulating film is used, the characteristics of the GaN-based FET that can operate at a large current cannot be fully utilized.

上述のようなゲート絶縁膜に関連する課題について、図11と図12を参照しつつより詳細に説明する。図11(A)はGaNチャネル層13上にSiO絶縁膜15aとゲート電極Gが順次積層された断面構造を示しており、図11(B)はこのゲート電極Gにオン電圧を印加しているときの電子エネルギバンド図を示している。すなわち、図11(B)において、縦方向はエネルギレベルを表し、横方向は図11(A)の積層構造の厚さ方向を表している。また、図中の曲線eは、電子濃度分布を模式的に表している。なお、この図11(B)の例では、GaNチャネル層13下にAl0.05Ga0.95N層が設けられている。図12は図11に類似しているが、SiO絶縁膜15aがHigh−k絶縁膜15bに変更されてことのみにおいて異なっている。なお、このHigh−k絶縁膜15bとしては、Hf0.7Al0.3が用いられている。 Problems related to the gate insulating film as described above will be described in more detail with reference to FIGS. FIG. 11A shows a cross-sectional structure in which the SiO 2 insulating film 15a and the gate electrode G are sequentially stacked on the GaN channel layer 13, and FIG. 11B shows a case where an ON voltage is applied to the gate electrode G. The electron energy band figure when there is is shown. That is, in FIG. 11B, the vertical direction represents the energy level, and the horizontal direction represents the thickness direction of the stacked structure in FIG. A curve e in the figure schematically represents the electron concentration distribution. In the example of FIG. 11B, an Al 0.05 Ga 0.95 N layer is provided under the GaN channel layer 13. FIG. 12 is similar to FIG. 11 except that the SiO 2 insulating film 15a is changed to the High-k insulating film 15b. Note that Hf 0.7 Al 0.3 O x is used as the high-k insulating film 15b.

図11と図12のいずれの場合にも、ゲート電極Gにオン電圧を印加したときには、GaNチャネル層13とゲート絶縁膜15a、15bとの界面において、電子濃度分布を表す曲線eで示されているように反転層が形成される。しかし、SiOゲート絶縁膜15aを用いた場合に比べて、High−kゲート絶縁膜を用いた場合の方が、GaNチャネル層とゲート絶縁膜との界面における電子濃度が高くなる。この電子濃度が高いことは、FETがより大きな電流を流し得ることを意味する。 In both cases of FIGS. 11 and 12, when an on-voltage is applied to the gate electrode G, it is indicated by a curve e representing the electron concentration distribution at the interface between the GaN channel layer 13 and the gate insulating films 15a and 15b. As a result, an inversion layer is formed. However, the electron concentration at the interface between the GaN channel layer and the gate insulating film is higher when the High-k gate insulating film is used than when the SiO 2 gate insulating film 15a is used. A high electron concentration means that the FET can pass a larger current.

また、発明者らが実測したところ、SiOゲート絶縁膜においては比誘電率εが4であって絶縁破壊電界Eが10MV/cmであり、Hf0.7Al0.3ゲート絶縁膜では比誘電率が18であって絶縁破壊電界Eが5MV/cmであった。したがって、ゲート絶縁膜下で同じ電子濃度を得ようとする場合には、SiOゲート絶縁膜を用いたFETのゲート電極にはHf0.7Al0.3ゲート絶縁膜を用いた場合に比べて4.5倍の高いゲート電圧を印加しなければならないが、2倍程度のゲート電圧でSiOゲート絶縁膜がブレイクダウンすることになる。 Further, the inventors have actually measured that the SiO 2 gate insulating film has a relative dielectric constant ε r of 4 and a dielectric breakdown electric field E c of 10 MV / cm, and an Hf 0.7 Al 0.3 O x gate. the insulating film relative dielectric constant of 18 at a dielectric breakdown electric field E c was 5 MV / cm. Therefore, when the same electron concentration is to be obtained under the gate insulating film, the Hf 0.7 Al 0.3 O x gate insulating film is used as the gate electrode of the FET using the SiO 2 gate insulating film. A gate voltage that is 4.5 times higher than that of must be applied, but the SiO 2 gate insulating film is broken down at a gate voltage that is about twice as high.

他方、本発明者らの測定によれば、SiOゲート絶縁膜とGaNチャネル層との界面における電子移動度は約100cm−1−1であるが、HfAlOゲート絶縁膜とGaNチャネル層との界面における電子移動度は約20cm−1−1にしかならない。この場合に、図10に示されているようにGaNチャネル層上に接してゲート絶縁膜を形成する構造のノーマリオフ型FETでは、ゲート電極下において2次元電子ガスを生じるヘテロ界面が存在しないので、ゲート絶縁膜下における電子移動度の低下はFETの特性を大きく損なうことになる。 On the other hand, according to the measurement by the present inventors, the electron mobility at the interface between the SiO 2 gate insulating film and the GaN channel layer is about 100 cm 2 V −1 s −1 , but the HfAlO gate insulating film and the GaN channel layer are The electron mobility at the interface with is only about 20 cm 2 V −1 s −1 . In this case, as shown in FIG. 10, in the normally-off type FET having a structure in which the gate insulating film is formed in contact with the GaN channel layer, there is no heterointerface that generates a two-dimensional electron gas under the gate electrode. A decrease in electron mobility under the gate insulating film greatly impairs the characteristics of the FET.

そこで、本発明は、ゲート絶縁膜の高い絶縁破壊耐圧を有しかつチャネル抵抗が抑制されて低いオン抵抗を有するノーマリオフ型GaN系FETを提供することを目的としている。   Accordingly, an object of the present invention is to provide a normally-off GaN-based FET having a high breakdown voltage of a gate insulating film and a low on-resistance with reduced channel resistance.

本発明によるノーマリオフ型GaN系FETは、第1種GaN系半導体からなるチャネル層と、このチャネル層上で互いに離間されて設けられた第2種GaN系半導体からなる一対の電子供給層と、これら一対の電子供給層の間でチャネル層を覆うゲート絶縁膜と、一対の電子供給層の外側でチャネル層にオーミックコンタクトしているソース電極およびドレイン電極と、ゲート絶縁膜上に形成されているゲート電極とを備え、ゲート絶縁膜はチャネル層上に順次堆積された第1と第2の絶縁層を含み、第1の絶縁層はSiの酸化物、窒化物および酸窒化物のいずれかからなりかつ5nm以下の厚さを有し、第2の絶縁層は第1の絶縁層に比べて大きなε×Eを有し、ここでεは誘電率を表し、Eは絶縁破壊電界を表すことを特徴としている。 A normally-off type GaN-based FET according to the present invention includes a channel layer made of a first-type GaN-based semiconductor, a pair of electron supply layers made of a second-type GaN-based semiconductor that are spaced apart from each other on the channel layer, and these A gate insulating film covering the channel layer between the pair of electron supply layers; a source electrode and a drain electrode that are in ohmic contact with the channel layer outside the pair of electron supply layers; and a gate formed on the gate insulating film The gate insulating film includes first and second insulating layers sequentially deposited on the channel layer, and the first insulating layer is made of any one of an oxide, a nitride, and an oxynitride of Si. And the second insulating layer has a larger ε × E c than the first insulating layer, where ε represents a dielectric constant, and E c represents a breakdown electric field. As a feature That.

なお、第2の絶縁層は、Hf、Zr、Ta、Al、Ti、Pr、およびSiの1種以上を含む酸化物、窒化物または酸窒化物で形成され得る。ゲート絶縁膜は第2の絶縁層上に堆積された第3の絶縁層をさらに含んでもよく、この第3の絶縁層も第1の絶縁層と同様にSiの酸化物、窒化物および酸窒化物のいずれかからなりかつ5nm以下の厚さを有していることが好ましい。第1と第3の絶縁層の厚さは、3nm以下であることがより好ましい。チャネル層はGaNからなることが好ましく、電子供給層はAlGaNからなることが好ましい。   Note that the second insulating layer can be formed using an oxide, nitride, or oxynitride containing one or more of Hf, Zr, Ta, Al, Ti, Pr, and Si. The gate insulating film may further include a third insulating layer deposited on the second insulating layer, and the third insulating layer, like the first insulating layer, is also an oxide, nitride and oxynitride of Si. It is preferably made of any one of the materials and has a thickness of 5 nm or less. The thickness of the first and third insulating layers is more preferably 3 nm or less. The channel layer is preferably made of GaN, and the electron supply layer is preferably made of AlGaN.

以上のような本発明によるノーマリオフ型GaN系FETにおいては、ゲート絶縁膜の高い絶縁破壊耐圧が得られるとともに、チャネル抵抗が抑制されて低いオン抵抗を得ることが可能となる。   In the normally-off GaN-based FET according to the present invention as described above, a high breakdown voltage of the gate insulating film can be obtained, and the channel resistance can be suppressed to obtain a low on-resistance.

(A)は本発明によるノーマリオフ型GaN系FETにおけるゲート構造を示す模式的断面図であり、(B)はそのFETのオン状態時におけるゲート構造の電子エネルギバンド図である。(A) is a schematic cross-sectional view showing a gate structure in a normally-off GaN-based FET according to the present invention, and (B) is an electron energy band diagram of the gate structure when the FET is in an ON state. 本発明によるノーマリオフ型GaN系FETの製造過程の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the manufacturing process of normally-off type GaN-type FET by this invention. 図2に続く製造過程を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a manufacturing process following FIG. 2. 図3に続く製造過程を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing the manufacturing process following FIG. 3. 図4に続く製造過程を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing the manufacturing process following FIG. 4. 図5に続く製造過程を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing the manufacturing process following FIG. 5. 図6に続く製造過程を示す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing the manufacturing process following FIG. 6. (A)は本発明によるノーマリオフ型GaN系FETにおけるゲート構造を示す模式的断面図であり、(B)はそのFETのゲート構造に逆バイアス電界を印加したときのエネルギバンド図である。(A) is a schematic cross-sectional view showing a gate structure in a normally-off type GaN-based FET according to the present invention, and (B) is an energy band diagram when a reverse bias electric field is applied to the gate structure of the FET. (A)は本発明によるノーマリオフ型GaN系FETにおけるゲート構造のもう1つの例を示す模式的断面図であり、(B)はそのFETのゲート構造に逆バイアス電界を印加したときのエネルギバンド図である。(A) is a schematic cross-sectional view showing another example of a gate structure in a normally-off GaN-based FET according to the present invention, and (B) is an energy band diagram when a reverse bias electric field is applied to the gate structure of the FET. It is. 先行技術によるノーマリオフ型GaN系FETを示す模式的断面図である。It is typical sectional drawing which shows the normally-off type GaN-type FET by a prior art. (A)はSiOゲート絶縁膜を含む従来のノーマリオフ型GaN系FETにおけるゲート構造を示す模式的断面図であり、(B)はそのFETのゲート構造に逆バイアス電界を印加したときのエネルギバンド図である。(A) is a schematic cross-sectional view showing a gate structure in a conventional normally-off GaN-based FET including a SiO 2 gate insulating film, and (B) is an energy band when a reverse bias electric field is applied to the gate structure of the FET. FIG. (A)はHfAlOゲート絶縁膜を含む従来のノーマリオフ型GaN系FETにおけるゲート構造を示す模式的断面図であり、(B)はそのFETのゲート構造に逆バイアス電界を印加したときのエネルギバンド図である。(A) is a schematic cross-sectional view showing a gate structure in a conventional normally-off GaN-based FET including an HfAlO gate insulating film, and (B) is an energy band diagram when a reverse bias electric field is applied to the gate structure of the FET. It is.

ノーマリオフ型GaN系FETにおいて、低いオン抵抗を実現するためには、そのFETに含まれるチャネルのシート伝導率が高いことが望まれる。チャネルにおける最高のシート伝導率σは、ゲート絶縁膜の誘電率がε、ゲート絶縁膜の絶縁破壊電界がE、そしてゲート絶縁膜下のチャネルにおける電子の移動度がμであるとした場合に、周知の近似式(1)を用いて表すことができる。 In a normally-off GaN-based FET, in order to realize a low on-resistance, it is desired that the sheet conductivity of the channel included in the FET is high. The highest sheet conductivity σ s in the channel is when the dielectric constant of the gate insulating film is ε, the breakdown electric field of the gate insulating film is E c , and the electron mobility in the channel under the gate insulating film is μ In addition, it can be expressed using a well-known approximate expression (1).

σ=ε×E×μ (1)
この近似式は、σ=Q×μ=C×(V−Vth)×μ=(ε/t)×(V−Vth)×μ≒(ε/t)×V×μ=ε×(V/t)×μ=ε×E×μによって導出される。なお、Qはチャネル電荷、Cはゲート静電容量、Vはゲート電圧、VthはFETの閾値電圧、そしてtは絶縁膜の厚さを表している。なお、この導出式において、最高のシート伝導率σが得られるときの条件としてVg≫Vthが仮定されて、(V−Vth)≒Vの近似が行われている。
σ s = ε × E c × μ (1)
This approximate expression is σ s = Q s × μ = C g × (V g −V th ) × μ = (ε / t) × (V g −V th ) × μ≈ (ε / t) × V g Xμ = ε × (V g / t) × μ = ε × E c × μ. Note that Q s represents channel charge, C g represents gate capacitance, V g represents gate voltage, V th represents the threshold voltage of the FET, and t represents the thickness of the insulating film. Note that in this derivation, Vg»V th as a condition when the maximum sheet conductivity sigma s is obtained is assumed, has been carried out approximation of (V g -V th) ≒ V g.

ここで、図11のゲート構造における最高のシート伝導率σを求めれば、本発明者らの測定によるSiOゲート絶縁膜15aの比誘電率εが4であり、絶縁破壊電界Eが10MV/cmであり、そしてチャネルにおける電子の移動度μが約100cm−1−1であるので、σ=ε×E×μ=3.54×10−4Sとなる。なお、誘電率はε=ε×εで表され、εは真空の誘電率を表す。また、図12のゲート構造における最高のシート伝導率σを求めれば、発明者らの測定によるHf0.7Al0.3ゲート絶縁膜15aの比誘電率εが18であり、絶縁破壊電界Eが5MV/cmであり、そしてチャネルにおける電子の移動度μが約20cm−1−1であるので、σ=ε×E×μ=1.59×10−4Sとなる。このことから、シート伝導率σの観点からは、ゲート電極としてHf0.7Al0.3膜を用いるよりもSiO膜を用いる方が好ましいことが分かる。 Here, when the maximum sheet conductivity σ s in the gate structure of FIG. 11 is obtained, the relative dielectric constant ε r of the SiO 2 gate insulating film 15a measured by the inventors is 4, and the dielectric breakdown electric field E c is Since it is 10 MV / cm and the electron mobility μ in the channel is about 100 cm 2 V −1 s −1 , σ s = ε × E c × μ = 3.54 × 10 −4 S. The dielectric constant is represented by ε = ε r × ε 0 , and ε 0 represents the dielectric constant of vacuum. Further, when the highest sheet conductivity σ s in the gate structure of FIG. 12 is obtained, the relative dielectric constant ε r of the Hf 0.7 Al 0.3 O x gate insulating film 15a measured by the inventors is 18, Since the breakdown electric field E c is 5 MV / cm and the electron mobility μ in the channel is about 20 cm 2 V −1 s −1 σ s = ε × E c × μ = 1.59 × 10 − 4 S. From this, it can be seen that it is more preferable to use the SiO 2 film than the Hf 0.7 Al 0.3 O x film as the gate electrode from the viewpoint of the sheet conductivity σ s .

しかしながら、前述のように、SiOゲート絶縁膜においては比誘電率εが4であって絶縁破壊電界Eが10MV/cmであり、Hf0.7Al0.3ゲート絶縁膜では比誘電率が18であって絶縁破壊電界Eが5MV/cmであるので、ゲート絶縁膜下で同じ電子濃度を得ようとする場合には、SiOゲート絶縁膜を用いたFETのゲート電極にはHf0.7Al0.3ゲート絶縁膜を用いた場合に比べて4.5倍の高いゲート電圧を印加しなければならないが、2倍程度のゲート電圧でSiOゲート絶縁膜がブレイクダウンすることになる。 However, as described above, in the SiO 2 gate insulating film, the relative dielectric constant ε r is 4, the dielectric breakdown electric field E c is 10 MV / cm, and in the Hf 0.7 Al 0.3 O x gate insulating film, since the dielectric constant is 18 in a dielectric breakdown electric field E c is at 5 MV / cm, in order to obtain a same electron concentration under the gate insulating film, a gate electrode of the FET using SiO 2 gate insulating film It is necessary to apply a gate voltage 4.5 times higher than that in the case of using the Hf 0.7 Al 0.3 O x gate insulating film, but the SiO 2 gate insulating film has a gate voltage about twice as high. Will be broken down.

以上のような状況に鑑み、本発明者らは図1に示されているようなゲート構造を創案した。すなわち、図1(A)は本発明の一実施形態によるノーマリオフ型GaN系FETに含まれるゲート構造を模式的に示しており、(B)はそのFETのオン状態時におけるゲート構造の電子エネルギバンドを模式的に示している。より具体的には、GaNチャネル層4上に、ゲート絶縁膜7、およびゲート電極Gが順次積層されている。ただし、このゲート絶縁膜7においては、厚さ約3nmの極めて薄いSiO層7aと厚さ約50nm程度のHf0.7Al0.3のHigh−k層7bとがこの順に積層されている。なお、GaNチャネル層4下にはAl0.05Ga0.95N層が設けられている。 In view of the above situation, the present inventors have devised a gate structure as shown in FIG. 1A schematically shows a gate structure included in a normally-off GaN-based FET according to an embodiment of the present invention, and FIG. 1B shows an electron energy band of the gate structure when the FET is on. Is schematically shown. More specifically, the gate insulating film 7 and the gate electrode G are sequentially stacked on the GaN channel layer 4. However, in this gate insulating film 7, a very thin SiO 2 layer 7a having a thickness of about 3 nm and a high-k layer 7b of Hf 0.7 Al 0.3 O x having a thickness of about 50 nm are stacked in this order. ing. An Al 0.05 Ga 0.95 N layer is provided under the GaN channel layer 4.

図1のゲート構造に関しては、ゲート絶縁膜7の厚さの大部分をHf0.7Al0.3層7bが占めているので、上述の近似式(1)において、誘電率εと絶縁破壊電界Eに関してはHf0.7Al0.3層7bの比誘電率ε=18と絶縁破壊電界E=5MV/cmの値を用いることができる。他方、ゲート絶縁膜7下のチャネル層における電子移動度μの値としては、SiO層7aに関するμ≒100cm−1−1値を用いることができる。これらの値を用いて式(1)を計算すれば、図1のゲート構造に関してチャネルの最高のシート伝導率としてσ=ε×E×μ=7.97×10−4Sの値が得られる。すなわち、図11のゲート構造におけるσ=3.54×10−4Sおよび図12におけるゲート構造におけるσ=1.59×10−4Sに比べて、図1のゲート構造においては遥かに高いシート伝導率が得られることが分かる。このことによって、図1のゲート構造を含むノーマリオフ型GaN系FETにおいて、オン抵抗を顕著に低減することができる。 With respect to the gate structure of FIG. 1, since the Hf 0.7 Al 0.3 O x layer 7b occupies most of the thickness of the gate insulating film 7, in the above approximate expression (1), the dielectric constant ε and Regarding the dielectric breakdown electric field E c , values of the relative dielectric constant ε r = 18 of the Hf 0.7 Al 0.3 O x layer 7b and the dielectric breakdown electric field E c = 5 MV / cm can be used. On the other hand, as the value of the electron mobility μ in the channel layer under the gate insulating film 7, μ≈100 cm 2 V −1 s −1 value related to the SiO 2 layer 7a can be used. If Equation (1) is calculated using these values, the value of σ s = ε × E c × μ = 7.97 × 10 −4 S is obtained as the highest sheet conductivity of the channel with respect to the gate structure of FIG. can get. That is, compared with σ s = 3.54 × 10 −4 S in the gate structure in FIG. 11 and σ s = 1.59 × 10 −4 S in the gate structure in FIG. 12, the gate structure in FIG. It can be seen that high sheet conductivity is obtained. As a result, the on-resistance can be significantly reduced in the normally-off GaN-based FET including the gate structure of FIG.

ところで、SiO層7aとHf0.7Al0.3層7bとを含むゲート絶縁膜7において、SiO層7aが絶縁破壊しないかが危惧される。これに関して、以下において検討する。HfAlO層(比誘電率ε=18)とSiO層(比誘電率ε=4)を含む2層絶縁膜に電圧Vを印加し、その絶縁膜にE=22MV/cmの電界が発生している状態を考える。この場合、絶縁膜に含まれる各誘電体層に生じる電界は比誘電率に反比例し、HfAlO層には22×4/(18+4)=4MV/cmの電界が発生し、SiO層には22×18/(18+4)=18MV/cmの電界が発生する。したがって、前述のようにHfAlO層の破壊電界は約5MV/cmであるのに対して、ゲート絶縁膜として通常厚さのSiO層の絶縁破壊電界は約10MV/cmであるので、SiO層が絶縁破壊することになる。そしてSiO層が絶縁破壊すればHfAlO層も絶縁破壊し、FET全体もブレークダウンすることになる。 By the way, in the gate insulating film 7 including the SiO 2 layer 7a and the Hf 0.7 Al 0.3 O x layer 7b, there is a concern whether the SiO 2 layer 7a does not break down. This will be discussed below. A voltage V is applied to the two-layer insulating film including the HfAlO layer (relative permittivity ε r = 18) and the SiO 2 layer (relative permittivity ε r = 4), and an electric field of E = 22 MV / cm is generated in the insulating film. Think about what you are doing. In this case, the electric field generated in each dielectric layer included in the insulating film is inversely proportional to the relative dielectric constant, an electric field of 22 × 4 / (18 + 4) = 4 MV / cm is generated in the HfAlO layer, and 22 in the SiO 2 layer. An electric field of x18 / (18 + 4) = 18 MV / cm is generated. Thus, while the breakdown electric field of HfAlO layer as described above is about 5 MV / cm, usually because the breakdown electric field of thick SiO 2 layer is about 10 MV / cm as a gate insulating film, the SiO 2 layer Will break down. If the SiO 2 layer breaks down, the HfAlO layer breaks down and the entire FET breaks down.

しかし、誘電体層の厚さが極めて薄くなった場合に、その誘電体層の絶縁破壊電界Eが高くなることが経験的に一般に知られている。これは、以下のように考えることができる。すなわち、誘電体層に高電圧が印加された時に電子が加速されながら移動し、その速度が或る限界を超えたときに雪崩れ的(アバレンチェ的)に電子が流れ、これによって絶縁破壊が生じると考えられる。しかし、誘電体層が極めて薄い場合には、電子が十分に加速される前にその誘電体層を通り抜け、雪崩れ的な電子の流れが生じないと考えられる。このように誘電体層の厚さが極めて薄くなった場合に絶縁破壊電界Eが高くなるという経験的事実を考慮すれば、厚さ5nm以下でより確実には厚さ3nm以下のSiO層の絶縁破壊電界が18MV/cm以上になり得る。そして、ゲート絶縁膜7全体として、上述の例におけるE=22MV/cmの電界に耐えることができ、高いシート伝導率σ=εEμを実現することが可能となり、チャネル抵抗を低下させることができる。なお、ゲート電極に印加される電圧Vは、V=(HfAlO層に生じる電界E)×(HfAlO層の厚さ)+(SiO層に生じる電界E)×(SiO層の厚さ)として表される。 However, when the thickness of the dielectric layer becomes very thin, the breakdown electric field E c of the dielectric layer that increases known empirically general. This can be considered as follows. That is, when a high voltage is applied to the dielectric layer, the electrons move while being accelerated, and when the speed exceeds a certain limit, the electrons flow in an avalanche-like manner, thereby causing dielectric breakdown. it is conceivable that. However, when the dielectric layer is extremely thin, it is considered that electrons do not pass through the dielectric layer before being sufficiently accelerated, and an avalanche of electron flow does not occur. Thus considering empirical fact that breakdown electric field E c when the thickness of the dielectric layer becomes very thin increases, SiO 2 layer thickness of less than or equal to 3nm and more reliably below a thickness of 5nm The breakdown electric field of can be 18 MV / cm or more. As a whole, the gate insulating film 7 can withstand the electric field of E c = 22 MV / cm in the above-described example, can achieve a high sheet conductivity σ s = εEμ, and can reduce the channel resistance. it can. The voltage V applied to the gate electrode is V = (electric field E generated in the HfAlO layer) × (thickness of the HfAlO layer) + (electric field E generated in the SiO 2 layer) × (thickness of the SiO 2 layer). expressed.

図2から図7の模式的断面図は、図1に示されているようなゲート構造を含むノーマリオフ型GaN系FETの作製過程の一例を示している。   The schematic cross-sectional views of FIGS. 2 to 7 show an example of the manufacturing process of a normally-off GaN-based FET including a gate structure as shown in FIG.

まず、図2において、Si、Al、SiC、またはAlNなどの基板1上にバッファ層2、厚さ1000nmのAl0.05Ga0.95N層3、厚さ40nmのGaNチャネル層4、およびAl0.25Ga0.75N電子供給層5が、例えば周知のMOCVD(有機金属気相堆積)またはMBE(分子ビームエピタキシ)などを利用して順次に積層される。このようにGaNチャネル層4上にAlGaN電子供給層5を積層した場合に、自発分極とピエゾ分極との両作用によってヘテロ界面に2次元電子ガス6が生じる。 First, in FIG. 2, a buffer layer 2, an Al 0.05 Ga 0.95 N layer 3 having a thickness of 1000 nm, and a GaN channel layer having a thickness of 40 nm on a substrate 1 such as Si, Al 2 O 3 , SiC, or AlN. 4 and Al 0.25 Ga 0.75 N electron supply layer 5 are sequentially stacked using, for example, the well-known MOCVD (metal organic chemical vapor deposition) or MBE (molecular beam epitaxy). When the AlGaN electron supply layer 5 is laminated on the GaN channel layer 4 in this way, a two-dimensional electron gas 6 is generated at the heterointerface due to both actions of spontaneous polarization and piezoelectric polarization.

次に、図3において、ゲート領域を形成するために、RIE(反応性イオンエッチング)またはICP(高周波誘導結合プラズマ)などを利用して電子供給層5の一部を除去し、GaNチャネル層4の上面の一部領域を露出させる。この結果、GaNチャネル層4とAlGaN電子供給層5との間に生じた2次元電子ガス6は、GaNチャネル層4の露出された領域において途絶えることになる。   Next, in FIG. 3, in order to form a gate region, a part of the electron supply layer 5 is removed using RIE (reactive ion etching) or ICP (high frequency inductively coupled plasma), and the GaN channel layer 4 A part of the upper surface of the substrate is exposed. As a result, the two-dimensional electron gas 6 generated between the GaN channel layer 4 and the AlGaN electron supply layer 5 stops in the exposed region of the GaN channel layer 4.

図4においては、スパッタリングによって厚さ5nm以下で好ましくは3nm以下のSiO絶縁層7aおよび例えば厚さ50nmのHf0.7Al0.3絶縁層7bを堆積し、さらにそれらの絶縁層の不要領域をエッチングによって除去することによって、ゲート絶縁膜7が形成される。 In FIG. 4, a SiO 2 insulating layer 7a having a thickness of 5 nm or less, preferably 3 nm or less and a Hf 0.7 Al 0.3 O x insulating layer 7b having a thickness of 50 nm, for example, are deposited by sputtering, and these insulating layers are further deposited. The unnecessary region is removed by etching, whereby the gate insulating film 7 is formed.

図5においては、ゲート絶縁膜7によって覆われていない領域において、電子供給層5がRIEまたはICPなどを利用してエッチング除去される。これによって、一対の電子供給層5の外側において、GaNチャネル層4の上面が露出される。   In FIG. 5, the electron supply layer 5 is removed by etching using RIE or ICP in a region not covered with the gate insulating film 7. Thereby, the upper surface of the GaN channel layer 4 is exposed outside the pair of electron supply layers 5.

図6においては、一対の電子供給層5の外側において露出されたGaNチャネル層4上に、ソース電極Sとドレイン電極Dが堆積され、オーミック接合のためのアニール処理が行なわれる。なお、図5における電子供給層5のエッチングは、図6におけるソース電極Sとドレイン電極Dのオーミック接合をより確実に行うための方法の一例である。その他のオーミック接合形成方法としては、図5における電子供給層5のエッチングを行う代わりに、例えば同領域にイオン注入を行ってオーミック接合を容易化する方法などがある。   In FIG. 6, the source electrode S and the drain electrode D are deposited on the GaN channel layer 4 exposed outside the pair of electron supply layers 5, and an annealing process for ohmic junction is performed. Note that the etching of the electron supply layer 5 in FIG. 5 is an example of a method for more reliably performing ohmic contact between the source electrode S and the drain electrode D in FIG. As another ohmic junction forming method, there is, for example, a method of facilitating the ohmic junction by performing ion implantation in the same region instead of etching the electron supply layer 5 in FIG.

最後に、図7において、ゲート絶縁膜7上にゲート電極Gが形成され、これによってノーマリオフ型GaN系FETが完成する。その結果、こうして得られたノーマリオフ型GaN系FETにおいては、ゲート電極の高い耐電圧とチャネル層の低いオン抵抗を両立させることができる。   Finally, in FIG. 7, a gate electrode G is formed on the gate insulating film 7, thereby completing a normally-off type GaN-based FET. As a result, the normally-off GaN-based FET thus obtained can achieve both a high withstand voltage of the gate electrode and a low on-resistance of the channel layer.

次に、ゲート絶縁膜7に逆バイアス電界が生じた場合において、電子の逆バイアスリークに対するゲート絶縁膜7の効果について検討する。   Next, the effect of the gate insulating film 7 on reverse bias leakage of electrons when a reverse bias electric field is generated in the gate insulating film 7 will be examined.

図8(A)は、図1(A)と同様に、ゲート絶縁膜7を含むゲート構造を示している。しかし、図8(B)は、図1(B)と異なって、図8(A)のゲート構造において逆バイアス電界が生じた時のエネルギバンド図を表している。この場合に、逆バイアスリークに対する主要な障壁をして作用するのは、ゲート電極GとHf0.7Al0.3絶縁層7との間の電子エネルギ差による障壁である。しかし、このエネルギ障壁は、逆バイアスリークのより確実な防止の観点からは十分ではない場合も生じ得ることが危惧される。 FIG. 8A shows a gate structure including the gate insulating film 7 as in FIG. However, unlike FIG. 1B, FIG. 8B shows an energy band diagram when a reverse bias electric field is generated in the gate structure of FIG. 8A. In this case, what acts as a main barrier against reverse bias leakage is a barrier due to a difference in electron energy between the gate electrode G and the Hf 0.7 Al 0.3 O x insulating layer 7. However, there is a concern that this energy barrier may occur in some cases from the viewpoint of more reliable prevention of reverse bias leakage.

図9は、このような逆バイアスリークに関する危惧を解消するためのゲート構造の一例を示している。図9(A)は図8(A)に類似したゲート構造を示しているが、ゲート電極GとHf0.7Al0.3絶縁層7bとの間にSiO絶縁層7cを付加的に含んでいることにおいて異なっている。図9(A)中のゲート絶縁膜7Aに含まれるこのSiO絶縁層7cの厚さも、絶縁破壊電界の観点から、SiO絶縁層7aと同様に5nm以下の厚さを有し、好ましくは3nm以下の厚さを有している。 FIG. 9 shows an example of a gate structure for eliminating the concern about such reverse bias leakage. FIG. 9A shows a gate structure similar to FIG. 8A, but an SiO 2 insulating layer 7c is added between the gate electrode G and the Hf 0.7 Al 0.3 O x insulating layer 7b. In terms of inclusion. The thickness of the SiO 2 insulating layer 7c included in the gate insulating film 7A in FIG. 9A also has a thickness of 5 nm or less like the SiO 2 insulating layer 7a from the viewpoint of the dielectric breakdown electric field, It has a thickness of 3 nm or less.

図9(B)は、図9(A)のゲート構造において逆バイアス電界が生じた時のエネルギバンド図を表している。この図9(B)と図8(B)との対比から明らかなように、ゲート電極GとHf0.7Al0.3絶縁層7bとの界面におけるエネルギ障壁に比べて、ゲート電極GとSiO絶縁層7cとの界面におけるエネルギ障壁が高く、逆バイアスリークを確実に防止するように作用し得ることが分かる。 FIG. 9B shows an energy band diagram when a reverse bias electric field is generated in the gate structure of FIG. 9A. As apparent from the comparison between FIG. 9B and FIG. 8B, the gate electrode is larger than the energy barrier at the interface between the gate electrode G and the Hf 0.7 Al 0.3 O x insulating layer 7b. It can be seen that the energy barrier at the interface between G and the SiO 2 insulating layer 7c is high and can act to reliably prevent reverse bias leakage.

なお、以上の本発明の実施形態ではGaNチャネル層に接する絶縁層として約100cm−1−1の電子移動度μを可能にするSiO層を利用する例が示されたが、本発明者らの測定ではSiN層も約120cm−1−1の高い電子移動度を可能にするので、GaNチャネル層に接する絶縁層としてSiN層を用いてもよいことが明らかであり、その中間的な物質であるSi酸窒化物の絶縁層を用いてもよいことも明らかであろう。 In the above embodiment of the present invention, an example in which an SiO 2 layer enabling an electron mobility μ of about 100 cm 2 V −1 s −1 is used as an insulating layer in contact with the GaN channel layer has been shown. In our measurements, the SiN x layer also allows a high electron mobility of about 120 cm 2 V −1 s −1 , so it is clear that the SiN x layer may be used as an insulating layer in contact with the GaN channel layer. It will be apparent that an insulating layer of Si oxynitride, which is an intermediate material, may be used.

また、以上の本発明の実施形態ではGaNチャネル層に接する絶縁層上に積層されるHigh−k絶縁膜としてHfAlOを利用する例が示されたが、このようなHigh−k絶縁膜はGaNチャネル層に接する絶縁層に比べて大きなε×Eを有しればよく、そのようなHigh−k絶縁膜としてHf、Zr、Ta、Al、Ti、Pr、およびSiの1種以上を含む酸化物、窒化物または酸窒化物からなる絶縁膜を利用することができる。特に、HfとZrの少なくとも一方およびAlとSiの少なくとも一方を含む複合的な酸化物、窒化物、または酸窒化物は、ε×Ecが特に大きくかつ耐熱性にも優れることから、本発明におけるHigh−k膜として好ましい。 Further, in the above embodiment of the present invention, an example in which HfAlO is used as the High-k insulating film stacked on the insulating layer in contact with the GaN channel layer has been shown. However, such a High-k insulating film is a GaN channel. may be Re has a large epsilon × E c as compared to the insulating layer in contact with the layer, an oxide containing Hf, Zr, Ta, Al, Ti, Pr, and Si and one or more as such High-k dielectric film An insulating film made of nitride or oxynitride can be used. In particular, a complex oxide, nitride, or oxynitride containing at least one of Hf and Zr and at least one of Al and Si has a particularly large ε × Ec and excellent heat resistance. Preferred as a high-k film.

以上のように、本発明によれば、ゲート絶縁膜の高い絶縁破壊耐圧を有しかつチャネル抵抗が抑制されて低いオン抵抗を有するノーマリオフ型GaN系FETを提供することができる。   As described above, according to the present invention, it is possible to provide a normally-off GaN-based FET having a high breakdown voltage of the gate insulating film and a low on-resistance with a suppressed channel resistance.

1 基板、2 バッファ層、3 AlGaN層、4 GaNチャネル層、5 AlGaN電子供給層、6 2次元電子ガス、7 ゲート絶縁膜、7a SiO絶縁層、7b HfAlO絶縁層、7c SiO絶縁層、7A ゲート絶縁膜、S ソース電極、G ゲート電極、D ドレイン電極。 1 substrate, 2 buffer layer, 3 AlGaN layer, 4 GaN channel layer, 5 AlGaN electron supply layer, 6 two-dimensional electron gas, 7 gate insulating film, 7a SiO 2 insulating layer, 7b HfAlO insulating layer, 7c SiO 2 insulating layer, 7A Gate insulating film, S source electrode, G gate electrode, D drain electrode.

Claims (7)

ノーマリオフ型GaN系電界効果トランジスタであって、
第1種GaN系半導体からなるチャネル層と、
前記チャネル層上で互いに離間されて設けられた第2種GaN系半導体からなる一対の電子供給層と、
前記一対の電子供給層の間で前記チャネル層を覆うゲート絶縁膜と、
前記チャネル層にオーミックコンタクトしているソース電極およびドレイン電極と、
前記ゲート絶縁膜上に形成されているゲート電極とを備え、
前記ゲート絶縁膜は前記チャネル層上に順次堆積された第1と第2の絶縁層を含み、
前記第1の絶縁層はSiの酸化物、窒化物および酸窒化物のいずれかからなりかつ5nm以下の厚さを有し、
前記第2の絶縁層は前記第1の絶縁層に比べて大きなε×Eを有し、ここでεは誘電率を表し、Eは絶縁破壊電界を表すことを特徴とするトランジスタ。
A normally-off GaN-based field effect transistor,
A channel layer made of a first-type GaN-based semiconductor;
A pair of electron supply layers made of a second-type GaN-based semiconductor provided apart from each other on the channel layer;
A gate insulating film covering the channel layer between the pair of electron supply layers;
A source electrode and a drain electrode that are in ohmic contact with the channel layer;
A gate electrode formed on the gate insulating film,
The gate insulating layer includes first and second insulating layers sequentially deposited on the channel layer;
The first insulating layer is made of any one of Si oxide, nitride and oxynitride and has a thickness of 5 nm or less,
The second insulating layer has a larger ε × E c than the first insulating layer, where ε represents a dielectric constant and E c represents a breakdown electric field.
前記第2の絶縁層はHf、Zr、Ta、Al、Ti、Pr、およびSiの1種以上を含む酸化物、窒化物または酸窒化物からなることを特徴とする請求項1に記載のトランジスタ。   2. The transistor according to claim 1, wherein the second insulating layer is made of an oxide, nitride, or oxynitride containing one or more of Hf, Zr, Ta, Al, Ti, Pr, and Si. . 前記第1の絶縁層の厚さが3nm以下であることを特徴とする請求項1または2に記載のトランジスタ。   3. The transistor according to claim 1, wherein the first insulating layer has a thickness of 3 nm or less. 前記ゲート絶縁膜は前記第2の絶縁層上に堆積された第3の絶縁層をさらに含み、この第3の絶縁層も前記第1の絶縁層と同様にSiの酸化物、窒化物および酸窒化物のいずれかからなりかつ5nm以下の厚さを有していることを特徴とする請求項1から3のいずれかに記載のトランジスタ。   The gate insulating film further includes a third insulating layer deposited on the second insulating layer, and the third insulating layer is formed of an Si oxide, a nitride and an acid in the same manner as the first insulating layer. 4. The transistor according to claim 1, wherein the transistor is made of any one of nitrides and has a thickness of 5 nm or less. 前記第3の絶縁層の厚さが3nm以下であることを特徴とする請求項4に記載のトランジスタ。   The transistor according to claim 4, wherein the third insulating layer has a thickness of 3 nm or less. 前記第2の絶縁層はHf、Zr、Ta、Al、Ti、Pr、およびSiの2種以上を含む酸化物、窒化物または酸窒化物からなることを特徴とする請求項1に記載のトランジスタ。   2. The transistor according to claim 1, wherein the second insulating layer is made of an oxide, nitride, or oxynitride containing two or more of Hf, Zr, Ta, Al, Ti, Pr, and Si. . 前記チャネル層はGaNからなり、前記電子供給層はAlGaNからなることを特徴とする請求項1から6のいずれかに記載のトランジスタ。   The transistor according to claim 1, wherein the channel layer is made of GaN, and the electron supply layer is made of AlGaN.
JP2010102217A 2010-04-27 2010-04-27 NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR Pending JP2011233695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102217A JP2011233695A (en) 2010-04-27 2010-04-27 NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102217A JP2011233695A (en) 2010-04-27 2010-04-27 NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR

Publications (1)

Publication Number Publication Date
JP2011233695A true JP2011233695A (en) 2011-11-17

Family

ID=45322734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102217A Pending JP2011233695A (en) 2010-04-27 2010-04-27 NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR

Country Status (1)

Country Link
JP (1) JP2011233695A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168433A (en) * 2012-02-14 2013-08-29 Toshiba Corp Nitride semiconductor device and method of manufacturing nitride semiconductor device
JP2014183125A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Semiconductor device
CN104078505A (en) * 2013-03-28 2014-10-01 丰田合成株式会社 Semiconductor device
US9231093B2 (en) 2012-07-20 2016-01-05 Samsung Electronics Co., Ltd. High electron mobility transistor and method of manufacturing the same
JP2017073500A (en) * 2015-10-08 2017-04-13 ローム株式会社 Nitride semiconductor device and method for manufacturing the same
WO2019151277A1 (en) * 2018-01-31 2019-08-08 株式会社デンソー Semiconductor device and method for manufacturing semiconductor device
CN110491939A (en) * 2019-08-15 2019-11-22 捷捷半导体有限公司 A kind of composite dielectric structure and preparation method of gallium nitride electronic device
JP2019534583A (en) * 2017-03-03 2019-11-28 上海新傲科技股▲ふん▼有限公司Shanghai Simgui Technology Co.,Ltd. High breakdown voltage gallium nitride high electron mobility transistor and method for forming the same
JP2020181996A (en) * 2020-07-22 2020-11-05 ローム株式会社 Nitride semiconductor device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524860A (en) * 1998-08-28 2002-08-06 クリー インコーポレイテッド Stacked dielectric in silicon carbide semiconductor structure
JP2002324813A (en) * 2001-02-21 2002-11-08 Nippon Telegr & Teleph Corp <Ntt> Heterostructure field-effect transistor
WO2003071607A1 (en) * 2002-02-21 2003-08-28 The Furukawa Electric Co., Ltd. GaN FIELD-EFFECT TRANSISTOR
JP2003309118A (en) * 2001-12-31 2003-10-31 Memscap Multi-layer structure used particularly as substance with high relative permittivity
JP2006222414A (en) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd Semiconductor apparatus
JP2007250950A (en) * 2006-03-17 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Heterostructure field effect transistor using nitride semiconductor
JP2007281453A (en) * 2006-03-17 2007-10-25 Sumitomo Chemical Co Ltd Semiconductor field effect transistor, and method for manufacturing same
JP2008288405A (en) * 2007-05-18 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> Hetero structure field effect transistor
JP2009200096A (en) * 2008-02-19 2009-09-03 Sharp Corp Nitride semiconductor device and power conversion apparatus including the same
JP2009302435A (en) * 2008-06-17 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
WO2010014128A2 (en) * 2008-07-31 2010-02-04 Cree, Inc. Normally-off semiconductor devices and methods of fabricating the same
JP2011071206A (en) * 2009-09-24 2011-04-07 Toyoda Gosei Co Ltd Semiconductor device comprising group iii nitride semiconductor, production method therefor, and power converter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524860A (en) * 1998-08-28 2002-08-06 クリー インコーポレイテッド Stacked dielectric in silicon carbide semiconductor structure
JP2002324813A (en) * 2001-02-21 2002-11-08 Nippon Telegr & Teleph Corp <Ntt> Heterostructure field-effect transistor
JP2003309118A (en) * 2001-12-31 2003-10-31 Memscap Multi-layer structure used particularly as substance with high relative permittivity
WO2003071607A1 (en) * 2002-02-21 2003-08-28 The Furukawa Electric Co., Ltd. GaN FIELD-EFFECT TRANSISTOR
JP2006222414A (en) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd Semiconductor apparatus
JP2007281453A (en) * 2006-03-17 2007-10-25 Sumitomo Chemical Co Ltd Semiconductor field effect transistor, and method for manufacturing same
JP2007250950A (en) * 2006-03-17 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Heterostructure field effect transistor using nitride semiconductor
JP2008288405A (en) * 2007-05-18 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> Hetero structure field effect transistor
JP2009200096A (en) * 2008-02-19 2009-09-03 Sharp Corp Nitride semiconductor device and power conversion apparatus including the same
JP2009302435A (en) * 2008-06-17 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
WO2010014128A2 (en) * 2008-07-31 2010-02-04 Cree, Inc. Normally-off semiconductor devices and methods of fabricating the same
JP2011529639A (en) * 2008-07-31 2011-12-08 クリー インコーポレイテッド Always-off semiconductor device and manufacturing method thereof
JP2011071206A (en) * 2009-09-24 2011-04-07 Toyoda Gosei Co Ltd Semiconductor device comprising group iii nitride semiconductor, production method therefor, and power converter

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168433A (en) * 2012-02-14 2013-08-29 Toshiba Corp Nitride semiconductor device and method of manufacturing nitride semiconductor device
US9231093B2 (en) 2012-07-20 2016-01-05 Samsung Electronics Co., Ltd. High electron mobility transistor and method of manufacturing the same
JP2014183125A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Semiconductor device
US10074728B2 (en) 2013-03-28 2018-09-11 Toyoda Gosei Co., Ltd. Semiconductor device
CN104078505A (en) * 2013-03-28 2014-10-01 丰田合成株式会社 Semiconductor device
US20140291775A1 (en) * 2013-03-28 2014-10-02 Toyoda Gosei Co., Ltd. Semiconductor device
JP2014192493A (en) * 2013-03-28 2014-10-06 Toyoda Gosei Co Ltd Semiconductor device
US9508822B2 (en) 2013-03-28 2016-11-29 Toyoda Gosei Co., Ltd. Semiconductor device
US20170025515A1 (en) * 2013-03-28 2017-01-26 Toyoda Gosei Co., Ltd. Semiconductor device
JP2017073500A (en) * 2015-10-08 2017-04-13 ローム株式会社 Nitride semiconductor device and method for manufacturing the same
US10727312B2 (en) 2015-10-08 2020-07-28 Rohm Co., Ltd. Nitride semiconductor device and method for manufacturing the same
JP2019534583A (en) * 2017-03-03 2019-11-28 上海新傲科技股▲ふん▼有限公司Shanghai Simgui Technology Co.,Ltd. High breakdown voltage gallium nitride high electron mobility transistor and method for forming the same
WO2019151277A1 (en) * 2018-01-31 2019-08-08 株式会社デンソー Semiconductor device and method for manufacturing semiconductor device
CN110491939A (en) * 2019-08-15 2019-11-22 捷捷半导体有限公司 A kind of composite dielectric structure and preparation method of gallium nitride electronic device
JP2020181996A (en) * 2020-07-22 2020-11-05 ローム株式会社 Nitride semiconductor device
JP7038765B2 (en) 2020-07-22 2022-03-18 ローム株式会社 Nitride semiconductor equipment

Similar Documents

Publication Publication Date Title
JP2011233695A (en) NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR
JP6591168B2 (en) Semiconductor device and manufacturing method thereof
JP5348364B2 (en) Heterojunction field effect semiconductor device
JP5487615B2 (en) Field effect semiconductor device and manufacturing method thereof
TWI431770B (en) Semiconductor device and method for manufacturing the same
US8643025B2 (en) Semiconductor device and method of manufacturing same
US8884334B2 (en) Composite layer stacking for enhancement mode transistor
JP5534661B2 (en) Semiconductor device
JP2017073506A (en) Nitride semiconductor device and method for manufacturing the same
JP2009076845A (en) Field-effect semiconductor device and manufacturing method therefor
JP6591169B2 (en) Semiconductor device and manufacturing method thereof
JP6272557B2 (en) Nitride semiconductor field effect transistor
JP5582378B2 (en) Field effect semiconductor device and manufacturing method thereof
JP2014078537A (en) Lateral semiconductor device
JP2010045073A (en) Field effect transistor and method of manufacturing field effect transistor
JP2013065612A (en) Nitride semiconductor device and manufacturing method of the same
US20210359123A1 (en) Semiconductor power device
US11227943B2 (en) High electron mobility transistors and methods for fabricating the same
JP2008218846A (en) Nitride semiconductor element and manufacturing method of nitride semiconductor element
JP2019134041A (en) Nitride semiconductor device
JP2010153748A (en) Method of manufacturing field effect semiconductor device
JP6530210B2 (en) Semiconductor device and method of manufacturing the same
JP7308593B2 (en) Nitride semiconductor device
WO2014129245A1 (en) Nitride semiconductor device
WO2020217735A1 (en) Nitride semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915