WO2019151277A1 - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2019151277A1
WO2019151277A1 PCT/JP2019/003060 JP2019003060W WO2019151277A1 WO 2019151277 A1 WO2019151277 A1 WO 2019151277A1 JP 2019003060 W JP2019003060 W JP 2019003060W WO 2019151277 A1 WO2019151277 A1 WO 2019151277A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor device
forming
interface
silicon oxide
Prior art date
Application number
PCT/JP2019/003060
Other languages
French (fr)
Japanese (ja)
Inventor
大悟 菊田
渡辺 行彦
朋彦 森
真一 星
泳信 陰
謙佑 畑
松木 英夫
大佑 栗田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019012930A external-priority patent/JP2019134164A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019151277A1 publication Critical patent/WO2019151277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present disclosure relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • Patent Document 1 discloses an insulated gate structure including a three-layer gate insulating film on a nitride semiconductor.
  • the gate insulating film is, in order from the bottom, a silicon oxide film (first film), an aluminum-rich amorphous aluminum oxide (second film), and a silicon oxide film (third film).
  • the film structure of the second film is amorphous.
  • Amorphous has a chemical composition that deviates from the stoichiometric composition as compared to a crystal, and therefore has more defects and impurities in the film than the crystal.
  • defects and impurities causing fluctuations in the amount of charge in the film, the controllability and reproducibility of the gate threshold voltage are degraded.
  • This disclosure is intended to provide a highly reliable semiconductor device.
  • a semiconductor device includes a first film stacked on a nitride semiconductor, a second film stacked on the first film, and a second film stacked on the second film.
  • An insulated gate structure is formed by the first film, the second film, the third film, and the gate electrode.
  • the first film is a film having few interface traps formed at the interface with the nitride semiconductor.
  • the second film is a polycrystalline body and has a resistance value of 1 ⁇ 10 9 ( ⁇ cm) or more.
  • the third film is an insulator having a breakdown electric field strength of 6 (MV / cm) or more.
  • the film structure of the second film is a polycrystalline body. Therefore, defects and impurities in the film can be reduced as compared with amorphous. As a result of suppressing the fluctuation of the charge amount in the film, the controllability and reproducibility of the gate threshold voltage can be improved.
  • a method for manufacturing a semiconductor device includes: forming a first film on a surface of a nitride semiconductor with few interface traps that can form an interface with the nitride semiconductor; Forming a second film having a resistance value of 1 ⁇ 10 9 ( ⁇ cm) or more on the surface, heat-treating the film at a temperature of 800 ° C. or more, and polycrystallizing the second film; Forming a third film as an insulator having a breakdown electric field strength of 6 (MV / cm) or more on the surface of the second film, and forming a gate electrode on the surface of the third film.
  • MV / cm breakdown electric field strength
  • the film structure of the second film is a polycrystalline body. Therefore, defects and impurities in the film can be reduced as compared with amorphous. As a result of suppressing the fluctuation of the charge amount in the film, the controllability and reproducibility of the gate threshold voltage can be improved.
  • the drawing The principal part sectional drawing of the semiconductor device of Example 1 is shown typically, It is a correlation diagram of on time and gate threshold voltage, It is a correlation diagram of the gate threshold voltage and the film thickness of the first film, It is a flowchart which shows the manufacturing method of the semiconductor device of Example 1, It is a figure which shows the manufacturing process of the semiconductor device of Example 1, It is a figure which shows the manufacturing process of the semiconductor device of Example 1, It is a figure which shows the equivalent circuit of the semiconductor device of Example 1, It is a figure which shows the comparative example of the semiconductor device of Example 1,
  • the principal part sectional drawing of the semiconductor device of Example 2 is shown typically, It is a comparison figure of the amount of interface traps of aluminum oxide and silicon oxide.
  • the semiconductor device 1 is a vertical MOSFET.
  • the semiconductor device 1 is a trench gate type.
  • the semiconductor device 1 has a structure in which a drain electrode 22, an n + -type drain region 11, an n ⁇ -type drift region 12, and a p-type body region 13 are stacked.
  • the drain region 11 is a GaN substrate.
  • the drift region 12 is an epitaxially grown layer of GaN and has a Si concentration of 1 ⁇ 10 16 cm ⁇ 3 .
  • the body region 13 is a GaN epi-growth layer and has an Mg concentration of 1 ⁇ 10 17 cm ⁇ 3 .
  • An n + type source region 15 is formed on a part of the surface of the body region 13.
  • the source region 15 is a region formed by implanting Si ions.
  • a trench-type insulated gate portion 30 is formed in the surface layer portion of the semiconductor device 1.
  • the insulated gate part 30 is provided in the trench 30T.
  • the trench 30T passes through the insulating layer 16, the source region 15, and the body region 13 of the silicon oxide film and reaches a part of the drift region 12.
  • the insulated gate unit 30 includes a gate insulating film 32 and a gate electrode 34.
  • the gate insulating film 32 has a structure in which the second film 32b is stacked above the first film 32a and the third film 32c is stacked above the second film 32b in the trench 30T. That is, the insulated gate portion 30 has a structure in which the first film 32a, the second film 32b, the third film 32c, and the gate electrode 34 are laminated in this order on the GaN surface such as the drift region 12 and the body region 13. Yes.
  • the first film 32a is a film with few interface traps (also referred to as interface states) formed at the interface between the first film 32a and GaN.
  • “there are few interface traps” means that the density of interface traps formed at the interface between the first film 32a and GaN is lower than the density of interface traps formed at the interface between aluminum oxide and GaN. Meaning.
  • Examples of the first film 32a having such characteristics include a silicon oxide film, a silicon nitride film, a gallium oxide film, a laminated film of a gallium oxide film and a silicon oxide film, an aluminum oxynitride, and a silicon nitride film.
  • the gallium oxide film in the “laminated film of gallium oxide film and silicon oxide film” is a reaction layer generated at the interface between the silicon oxide film and GaN when the first film 32a is a silicon oxide film. There may be.
  • the first film 32a is a silicon oxide film.
  • the thickness of the first film 32a is 4 nm or less.
  • the second film 32b is a polycrystal and is a film having a resistance value of 1 ⁇ 10 9 ( ⁇ cm) or more. If the resistance value is 1 ⁇ 10 9 ( ⁇ cm) or more, the leakage current flowing through the gate insulating film 32 can be prevented.
  • the second film 32b is a material having a crystal structure and a large band gap energy. Examples of such materials include aluminum oxide (Al 2 O 3 ), diamond, AlN, HfO 2 , GaO, and the like. In the present embodiment, the second film 32b is aluminum oxide.
  • the third film 32c is an insulator having a breakdown electric field strength of 6 (MV / cm) or more.
  • Examples of the third film 32c having such characteristics include a silicon oxide film and a silicon nitride film.
  • the third film 32c is a silicon oxide film.
  • a source electrode 24 is disposed on a part of the surface of the source region 15.
  • the source electrode 24 and the gate electrode 34 are insulated by the insulating layer 17.
  • the gate electrode 34 is polysilicon doped with boron.
  • the insulating layer 17 is a silicon oxide film.
  • Al wiring 25 is disposed on the surfaces of the gate electrode 34 and the source electrode 24.
  • a channel is formed in a region in the body region 13 and in the vicinity of the interface between the body region 13 and the gate insulating film 32.
  • a positive voltage equal to or higher than the gate threshold voltage is applied to the gate electrode 34, an inversion layer is formed in the channel, and the source electrode 24 and the drain electrode 22 become conductive. Therefore, the semiconductor device 1 is turned on.
  • amorphous aluminum oxide is used for the intermediate layer of the gate insulating layer. Since the chemical composition of amorphous aluminum oxide deviates from the stoichiometric composition, there are more defects and impurities in the film than in the crystal.
  • an energy level also referred to as a defect level or an impurity level
  • the trapped state of holes may be maintained even in a depletion state or an inversion state (also referred to as a positive fixed charge). That is, the amount of charge in the film varies. As a result, the depletion layer fluctuates or the charge amount of the inversion layer fluctuates to cancel the influence of the charge amount in the film. That is, the gate threshold voltage is lowered and the threshold reproducibility is lowered.
  • the second film 32b of the present embodiment is polycrystalline aluminum oxide.
  • Polycrystalline can bring the chemical composition closer to the stoichiometric composition compared to amorphous, so that defects and impurities in the film can be reduced compared to amorphous. Therefore, fluctuations in the charge amount in the film can be suppressed, so that the gate threshold voltage can be increased and the reproducibility of the threshold can be improved.
  • the second film 32b of this example is crystallized aluminum oxide.
  • Aluminum oxide can increase the dielectric constant by being crystallized. When the dielectric constant is large, the gate drive capability can be increased, and thus the channel resistance can be reduced. In addition, since the dielectric constant of the gate insulating film increases, the effective electric field strength in the gate insulating film can be lowered, and the breakdown voltage of the gate insulating film can be improved. (Effect of the first film 32a)
  • the interface state density at the interface between aluminum oxide and GaN is higher than the interface state density at the interface between silicon oxide and GaN. As the interface state density increases, carriers are easily trapped.
  • the gate threshold voltage fluctuates with respect to the on-time as shown in the graph G1 of FIG. Therefore, in the semiconductor device 1 of the present embodiment, the second film 32b is formed on the GaN surface via the first film 32a (silicon oxide). As a result, the interface state density in the vicinity of the GaN surface can be reduced, and as shown in the graph G2 of FIG.
  • the gate threshold voltage decreases due to diffusion of Ga into the silicon oxide film.
  • Al oxynitride having a low interface state density Ga diffusion can be suppressed, so that a reduction in gate threshold voltage can be suppressed.
  • FIG. 10 shows a comparison of the amount of interface trap at a position of 0.1 eV from the conduction band when the second film 32b (aluminum oxide) and the first film 32a (silicon oxide) are formed on GaN.
  • the interface trap amount becomes larger than 3.5 ⁇ 10 12 cm ⁇ 2 eV ⁇ 1 as shown in the graph G1 of FIG.
  • the interface trap amount is 0.9 ⁇ 10 as shown in the graph G2 of FIG. It can be seen that the voltage can be reduced to about 12 cm ⁇ 2 eV ⁇ 1 .
  • the amount of interface traps in the vicinity of the GaN surface can be reduced to 3.5 ⁇ 10 12 cm ⁇ 2 eV ⁇ 1 or less.
  • FIG. 3 shows the correlation between the gate threshold voltage and the film thickness of the first film 32a, which is a silicon oxide film.
  • the gate threshold voltage is proportional to the thickness of the first film 32a. That is, the thinner the first film 32a, the higher the gate threshold voltage. This is due to the following reason.
  • the first film 32a of the silicon oxide film is formed on GaN, a positive fixed charge of 2.5 ⁇ 10 12 cm ⁇ 2 is generated at the interface due to the interface reaction. This positive fixed charge lowers the gate threshold voltage.
  • the thinner the first film 32a the more the influence of the positive fixed charge amount in the film can be suppressed.
  • the semiconductor device 1 is mounted on an in-vehicle device.
  • In-vehicle devices generally require a gate threshold voltage of 1 V or higher. Then, as shown in FIG. 3, it is understood that the thickness of the first film 32a is preferably 4 nm or less.
  • the second film 32b of this example is crystallized aluminum oxide.
  • the crystallized aluminum oxide film has a lower dielectric breakdown voltage than the amorphous aluminum oxide film. This is considered because the crystal grain boundary of the crystallized aluminum oxide functions as a conductive path. Therefore, in the semiconductor device 1 of the present embodiment, the third film 32c of silicon oxide is disposed between the second film 32b and the gate electrode 34. Thereby, it becomes possible to maintain a dielectric breakdown voltage.
  • step S1 of the flowchart of FIG. 4 a source region forming step is performed. Specifically, a substrate on which the drain region 11, the drift region 12, and the body region 13 are stacked is prepared.
  • a mask in which the source region 15 is opened is processed using a well-known photolithography technique and dry etching. By implanting Si ions through the mask, an n + type source region 15 is formed.
  • step S2 an insulating layer 16 of about 200 nm is formed on the surface of the source region 15 and the body region 13.
  • a trench 30T that penetrates the insulating layer 16, the source region 15, and the body region 13 and reaches the drift region 12 is processed by a known photolithography technique and dry etching. Thereby, the structure shown in FIG. 5 is formed.
  • a first film 32a (silicon oxide film) is formed in the trench 30T and on the surface of the insulating layer 16.
  • the first film 32a is formed by LP-CVD (low pressure CVD) or PE-CVD (plasma-enhanced CVD).
  • LP-CVD low pressure CVD
  • PE-CVD plasma-enhanced CVD
  • a film is formed in the vicinity of 800 ° C. using SiH 4 and N 2 O source gases.
  • the film is formed at around 400 ° C. using TEOS (tetraethoxysilane) source gas and O 2 plasma.
  • aluminum nitride and aluminum oxide are alternately formed by ALD (Atomic Layer Deposition).
  • ALD Atomic Layer Deposition
  • TMA Trimethylaluminum
  • a second film 32b having a resistance value of 1 ⁇ 10 9 ( ⁇ cm) or more is formed on the surface of the first film 32a.
  • the second film 32b is amorphous aluminum oxide.
  • Aluminum oxide can be formed using an ALD (Atomic Layer Deposition) method.
  • TMA Trimethylaluminum
  • a film can be formed in the vicinity of 300 ° C. using any of O 2 plasma, H 2 O, and O 3 .
  • step S5 heat treatment is performed at a temperature of 800 ° C. or higher in nitrogen.
  • the heat treatment is performed at a temperature of 950 ° C. or higher.
  • step S6 a third film 32c (silicon oxide film) which is an insulator having a breakdown electric field strength of 6 (MV / cm) or more is formed on the surface of the polycrystalline second film 32b. Thereby, the structure shown in FIG. 6 is formed.
  • a third film 32c silicon oxide film which is an insulator having a breakdown electric field strength of 6 (MV / cm) or more is formed on the surface of the polycrystalline second film 32b.
  • the heat treatment step (step S5) is performed between the step of forming the second film 32b (step S4) and the step of forming the third film 32c (step S6).
  • the heat treatment can be performed in a state where the second film 32b is exposed, the crystallization of the second film 32b can be promoted.
  • the gate electrode 34 is formed on the surface of the third film 32c.
  • polysilicon doped with boron is formed by LP-CVD.
  • the film thickness of the polysilicon may be such that the trench 30T is sufficiently filled.
  • a heat treatment of 900 ° C. or more may be performed in nitrogen.
  • the polysilicon around the trench 30T is removed using a well-known photolithography technique and dry etching. Thereby, the structure shown in FIG. 7 is formed.
  • step S8 the source electrode 24 is formed. Specifically, the insulating layer 16 and the gate insulating film 32 in the region where the source electrode 24 is to be formed are removed using a well-known photolithography technique and dry etching. Next, a laminated film of a 20 nm Ti layer and a 200 nm Al layer is formed. The Ti layer and the Al layer are processed into the source electrode 24 using a well-known photolithography technique and dry etching processing. A heat treatment of 650 ° C. may be performed in nitrogen for ohmic source formation. Thereby, the structure shown in FIG. 8 is formed.
  • step S9 an Al wiring is formed. Specifically, the insulating layer 17 is formed using a well-known photolithography technique and dry etching. Next, an Al layer is laminated by 2 micrometers. The Al layer is processed into the Al wiring 25 by using a well-known photolithography technique and dry etching.
  • step S10 the drain electrode 22 is formed. Specifically, a 20 nm Ti layer and a 200 nm Al layer are formed on the back surface of the GaN substrate on which the drain region 11 is to be formed. Thereafter, heat treatment is performed at 400 ° C. in nitrogen. Thereby, the semiconductor device 1 shown in FIG. 1 is completed.
  • FIG. 9 is a cross-sectional view of main parts of the semiconductor device 100 according to the second embodiment.
  • the semiconductor device 100 according to Example 2 is a lateral GaN device. Specifically, it is HEMT (High Electron Mobility Transistor).
  • the semiconductor device 100 has a structure in which a back electrode 122, a Si substrate 111, a GaN buffer layer 112, a high resistance GaN layer 141, an undoped GaN layer 142, and an AlGaN layer 143 are stacked.
  • the surface of the Si substrate 111 is a (111) plane.
  • the high resistance GaN layer 141 has a carbon doping concentration of 1 ⁇ 10 19 cm ⁇ 3 .
  • the AlGaN layer 143 has an Al ratio of 25% and a thickness of about 25 nm.
  • a trench-type insulated gate portion 130 is formed in the surface layer portion of the semiconductor device 100.
  • the insulated gate part 130 is provided in the trench 130T.
  • the trench 130T penetrates the insulating layer 116 of the silicon nitride film and the AlGaN layer 143 and reaches a part of the undoped GaN layer 142.
  • the insulated gate portion 130 has a gate insulating film 132 and a gate electrode 134.
  • the gate electrode 134 is polysilicon doped with boron.
  • the gate insulating film 132 has a structure in which the second film 132b is stacked above the first film 132a and the third film 132c is stacked above the second film 132b in the trench 130T.
  • the first film 132a, the second film 132b, and the third film 132c of Example 2 are the same as the first film 32a, the second film 32b, and the third film of Example 1 described above. Since it is the same as each of 32c, explanation is omitted.
  • a source electrode 124 and a drain electrode 144 are arranged on a part of the surface of the AlGaN layer 143.
  • the source electrode 124, the drain electrode 144, and the gate electrode 134 are insulated from each other by an insulating layer 117 of a silicon oxide film.
  • Al wiring 125 is disposed on the surfaces of the source electrode 124, the drain electrode 144, and the gate electrode 134.
  • a substrate on which a Si substrate 111, a GaN buffer layer 112, a high-resistance GaN layer 141, an undoped GaN layer 142, an AlGaN layer 143, and an insulating layer 116 are stacked is prepared.
  • the source region forming step (step S1) in the flowchart of FIG. 4 is skipped, and the process proceeds to the trench forming step of step S2.
  • the trench 130T that penetrates the insulating layer 116 and the AlGaN layer 143 and reaches the undoped GaN layer 142 is processed by a known photolithography technique and dry etching. Since the processing contents of the subsequent steps S3 to S10 are the same as those in the first embodiment, description thereof is omitted.
  • the effects of the semiconductor device 100 according to the second embodiment are the same as those of the semiconductor device 1 according to the first embodiment described above.
  • the first film 32a is a silicon oxide film
  • the present invention is not limited to this form.
  • the first film 32a may be aluminum oxynitride.
  • Aluminum oxynitride is a film that can make the interface state density at the interface with GaN as low as that of a silicon oxide film. The effect additionally obtained by making the 1st film
  • a silicon oxide film is used for the first film 32a, if a high temperature heat treatment at 850 ° C. or higher is performed in a state where GaN and the silicon oxide film are in contact with each other, a Ga oxide is formed into the silicon oxide film as the first film 32a.
  • the gate threshold may decrease.
  • Ga diffusion into the aluminum oxynitride film, which is the first film 32a can be suppressed even when high-temperature heat treatment at 850 ° C. or higher is performed. This is because the aluminum oxynitride film can be denser than the silicon oxide film.
  • an aluminum nitride film and an aluminum oxide film may be alternately formed using an ALD (Atomic Layer Deposition) method in step S3 of FIG.
  • NH 3 can be used as the nitrogen source of aluminum nitride
  • TMA Trimethylaluminum
  • H 2 O or O 3 can be used as the oxygen source of aluminum oxide
  • TMA can be used as the aluminum source.
  • the film forming temperature can be 400 to 500 ° C.
  • the ratio of stacking the aluminum nitride film and the aluminum oxide film is not limited to 1: 1. It is possible to freely set the lamination ratio so that the ratio of oxygen atoms to nitrogen atoms in aluminum oxynitride becomes a desired ratio.
  • the first film 32a may be a silicon nitride film.
  • the silicon nitride film is a film whose interface state density at the interface with GaN is as low as that of the silicon oxide film.
  • the silicon nitride film is a dense film as compared with the silicon oxide film. Therefore, it is possible to suppress a decrease in the gate threshold value by making the first film 32a a silicon nitride film.
  • the timing for executing the heat treatment step (step S5) in FIG. 4 is not limited to between steps S4 and S6.
  • the heat treatment process may be performed at any stage as long as it is between the process of forming the second film 32b (step S4) and the gate electrode formation process (step S7).
  • the method for forming aluminum oxynitride in step S3, the method for forming aluminum oxynitride in step S4, and the method for forming aluminum oxide are not limited to the ALD method.
  • An MOCVD method, a sputtering method, or the like may be used.
  • the second films 32b and 132b are not limited to aluminum oxide as long as they are polycrystalline and have a resistance value of 1 ⁇ 10 9 ( ⁇ cm) or more.
  • the second films 32b and 132b may be diamond, AlN, HfO 2 , BN, or the like.
  • Diamond may be formed by a microwave plasma CVD method. Methane may be used as a raw material.
  • AlN may be formed by an ALD method.
  • TMA may be used as a source gas, and NH 3 plasma may be used to form a film near 300 ° C.
  • HfO 2 may be formed by ALD.
  • TEMAH tetrakis (ethylmethylamino) hafnium
  • TEMAH tetrakis (ethylmethylamino) hafnium
  • the film may be formed in the vicinity of 300 ° C. using any of O 2 plasma, H 2 O, and O 3 .
  • BN may be formed by a microwave plasma CVD method.
  • TMB Trimethyl Borate
  • a film may be formed using N 2 plasma.
  • the gate insulating film 32 is not limited to the structure described in this specification. For example, a stacked structure of four or more layers may be used, such as further including a fourth film. Further, a structure in which another film is interposed at any position between the first film and the third film may be employed.
  • a film that has already been crystallized may be formed by a CVD method or a sputtering method. In this case, the heat treatment for crystallization of the second film can be eliminated.
  • the material of the semiconductor devices 1 and 100 is not limited to GaN.
  • a material such as SiC, Si, or GaAs may be used.
  • a first film is stacked above the nitride semiconductor, a second film is stacked above the first film, and a first film is stacked above the second film.
  • the first film is a film with few interface traps formed at the interface with the nitride semiconductor.
  • the second film is a polycrystal and has a resistance value of 1 ⁇ 10 9 ( ⁇ cm) or more.
  • the third film is an insulator having a breakdown electric field strength of 6 (MV / cm) or more.
  • the film structure of the second film is a polycrystalline body. Therefore, defects and impurities in the film can be reduced as compared with amorphous. As a result of suppressing the fluctuation of the charge amount in the film, the controllability and reproducibility of the gate threshold voltage can be improved.
  • the first film may be a film having an interface trap amount of 3.5 ⁇ 10 12 cm ⁇ 2 eV ⁇ 1 or less. Details of the effect will be described in the above embodiment.
  • the first film may be a silicon oxide film, a gallium oxide film, or a laminated film of a gallium oxide film and a silicon oxide film. Details of the effect will be described in the above embodiment.
  • the thickness of the first film may be 4 nm or less. Details of the effect will be described in the above embodiment.
  • the second film may be aluminum oxide. Details of the effect will be described in the above embodiment.
  • the third film may be a silicon oxide film. Details of the effect will be described in the above embodiment.
  • the method for manufacturing a semiconductor device disclosed in the above embodiment includes a step of forming a first film on the surface of a nitride semiconductor with few interface traps formed at the interface with the nitride semiconductor. Forming a second film having a resistance value of 1 ⁇ 10 9 ( ⁇ cm) or more on the surface of the first film; A heat treatment step for polycrystallizing the second film by performing heat treatment at a temperature of 800 ° C. or higher is provided. Forming a third film which is an insulator having a breakdown electric field strength of 6 (MV / cm) or more on the surface of the polycrystallized second film; Forming a gate electrode on the surface of the third film; Details of the effect will be described in the above embodiment.
  • the heat treatment step may be performed between the step of forming the second film and the step of forming the third film.
  • the third film may be formed on the surface of the polycrystalline second film. Details of the effect will be described in the above embodiment.
  • the heat treatment step may be performed between the step of forming the second film and the step of forming the gate electrode.

Abstract

This semiconductor device comprises: a first film (32a, 132a) laminated over a nitride semiconductor; a second film (32b, 132b) laminated over the first film; a third film (32c, 132c) laminated over the second film; and a gate electrode (34, 134) laminated over the third film. The first film, the second film, the third film and the gate electrode constitute an insulated gate structure. The interface trap formed in the interface between the first film and the nitride semiconductor is small. The second film is a polycrystal, having a resistance of 1 × 109 (Ωcm) or greater. The third film is an insulator having a breakdown field strength of 6 (MV/cm) or greater.

Description

半導体装置および半導体装置の製造方法Semiconductor device and manufacturing method of semiconductor device 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年1月31日に出願された日本特許出願番号2018-15538号および2019年1月29日に出願された日本特許出願番号2019-12930号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-15538 filed on Jan. 31, 2018 and Japanese Patent Application No. 2019-12930 filed on Jan. 29, 2019. Incorporate content.
 本開示は、半導体装置および半導体装置の製造方法に関するものである。 The present disclosure relates to a semiconductor device and a method for manufacturing the semiconductor device.
 特許文献1には、窒化物半導体上に3層構造のゲート絶縁膜を備えた絶縁ゲート構造が開示されている。ゲート絶縁膜は、下から順に、シリコン酸化膜(第1膜)、アルミニウムリッチなアモルファスの酸化アルミニウム(第2膜)、シリコン酸化膜(第3膜)、である。 Patent Document 1 discloses an insulated gate structure including a three-layer gate insulating film on a nitride semiconductor. The gate insulating film is, in order from the bottom, a silicon oxide film (first film), an aluminum-rich amorphous aluminum oxide (second film), and a silicon oxide film (third film).
 特許文献1の技術では、第2膜の膜構造は、アモルファスである。アモルファスは、結晶体に比して、化学組成が化学量論的組成からずれているため、膜中の欠陥や不純物が結晶体に比して多い。欠陥や不純物が膜中電荷量の変動を引き起こしてしまう結果、ゲートしきい値電圧の制御性や再現性が低下してしまう。 In the technique of Patent Document 1, the film structure of the second film is amorphous. Amorphous has a chemical composition that deviates from the stoichiometric composition as compared to a crystal, and therefore has more defects and impurities in the film than the crystal. As a result of defects and impurities causing fluctuations in the amount of charge in the film, the controllability and reproducibility of the gate threshold voltage are degraded.
特開2016-66641号公報JP 2016-66641 A
 本開示は、信頼性の高い半導体装置を提供することを目的とする。 This disclosure is intended to provide a highly reliable semiconductor device.
 本開示のある態様にしたがって、半導体装置は、窒化物半導体の上側に積層された第1膜と、前記第1膜の上側に積層された第2膜と、前記第2膜の上側に積層された第3膜と、前記第3膜の上側に積層されたゲート電極とからなる。第1膜と第2膜と第3膜とゲート電極により絶縁ゲート構造を形成する。前記第1膜は、前記窒化物半導体との界面にできる界面トラップが少ない膜である。前記第2膜は、多結晶体であり、抵抗値が1×10(Ωcm)以上である。前記第3膜は、破壊電界強度が6(MV/cm)以上の絶縁体である。 In accordance with an aspect of the present disclosure, a semiconductor device includes a first film stacked on a nitride semiconductor, a second film stacked on the first film, and a second film stacked on the second film. A third film and a gate electrode stacked on the third film. An insulated gate structure is formed by the first film, the second film, the third film, and the gate electrode. The first film is a film having few interface traps formed at the interface with the nitride semiconductor. The second film is a polycrystalline body and has a resistance value of 1 × 10 9 (Ωcm) or more. The third film is an insulator having a breakdown electric field strength of 6 (MV / cm) or more.
 上記の半導体装置では、第2膜の膜構造は、多結晶体である。よって、アモルファスに比して、膜中の欠陥や不純物を低減することができる。膜中電荷量の変動が抑制できる結果、ゲートしきい値電圧の制御性や再現性を高めることが可能となる。 In the above semiconductor device, the film structure of the second film is a polycrystalline body. Therefore, defects and impurities in the film can be reduced as compared with amorphous. As a result of suppressing the fluctuation of the charge amount in the film, the controllability and reproducibility of the gate threshold voltage can be improved.
 本開示の他の態様にしたがって、半導体装置の製造方法は、窒化物半導体の表面に、前記窒化物半導体との界面にできる界面トラップが少ない第1膜を形成することと、前記第1膜の表面に、抵抗値が1×10(Ωcm)以上の第2膜を形成することと、800℃以上の温度で熱処理することで、前記第2膜を多結晶化することと、多結晶化した前記第2膜の表面に、破壊電界強度が6(MV/cm)以上の絶縁体である第3膜を形成することと、前記第3膜の表面にゲート電極を形成することと、を備える。 According to another aspect of the present disclosure, a method for manufacturing a semiconductor device includes: forming a first film on a surface of a nitride semiconductor with few interface traps that can form an interface with the nitride semiconductor; Forming a second film having a resistance value of 1 × 10 9 (Ωcm) or more on the surface, heat-treating the film at a temperature of 800 ° C. or more, and polycrystallizing the second film; Forming a third film as an insulator having a breakdown electric field strength of 6 (MV / cm) or more on the surface of the second film, and forming a gate electrode on the surface of the third film. Prepare.
 上記の半導体装置の製造方法では、第2膜の膜構造は、多結晶体である。よって、アモルファスに比して、膜中の欠陥や不純物を低減することができる。膜中電荷量の変動が抑制できる結果、ゲートしきい値電圧の制御性や再現性を高めることが可能となる。 In the semiconductor device manufacturing method, the film structure of the second film is a polycrystalline body. Therefore, defects and impurities in the film can be reduced as compared with amorphous. As a result of suppressing the fluctuation of the charge amount in the film, the controllability and reproducibility of the gate threshold voltage can be improved.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
実施例1の半導体装置の要部断面図を模式的に示し、 オン時間とゲートしきい値電圧の相関図であり、 ゲートしきい値電圧と第1膜の膜厚の相関図であり、 実施例1の半導体装置の製造方法を示すフローチャートであり、 実施例1の半導体装置の製造工程を示す図であり、 実施例1の半導体装置の製造工程を示す図であり、 実施例1の半導体装置の等価回路を示す図であり、 実施例1の半導体装置の比較例を示す図であり、 実施例2の半導体装置の要部断面図を模式的に示し、 酸化アルミニウムおよび酸化シリコンの界面トラップ量の比較図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
The principal part sectional drawing of the semiconductor device of Example 1 is shown typically, It is a correlation diagram of on time and gate threshold voltage, It is a correlation diagram of the gate threshold voltage and the film thickness of the first film, It is a flowchart which shows the manufacturing method of the semiconductor device of Example 1, It is a figure which shows the manufacturing process of the semiconductor device of Example 1, It is a figure which shows the manufacturing process of the semiconductor device of Example 1, It is a figure which shows the equivalent circuit of the semiconductor device of Example 1, It is a figure which shows the comparative example of the semiconductor device of Example 1, The principal part sectional drawing of the semiconductor device of Example 2 is shown typically, It is a comparison figure of the amount of interface traps of aluminum oxide and silicon oxide.
(半導体装置1の構造)
 図1の要部断面図に示されるように、半導体装置1は、縦型のMOSFETである。半導体装置1は、トレンチゲート型である。半導体装置1は、ドレイン電極22、n+型のドレイン領域11、n-型のドリフト領域12、p型のボディ領域13が積層している構造を備える。ドレイン領域11は、GaN基板である。ドリフト領域12は、GaNのエピ成長層であり、Si濃度が1×1016cm-3である。ボディ領域13は、GaNのエピ成長層であり、Mg濃度が1×1017cm-3である。ボディ領域13の表面の一部には、n+型のソース領域15が形成されている。ソース領域15は、Siイオンを注入することで形成された領域である。
(Structure of the semiconductor device 1)
As shown in the cross-sectional view of the main part in FIG. 1, the semiconductor device 1 is a vertical MOSFET. The semiconductor device 1 is a trench gate type. The semiconductor device 1 has a structure in which a drain electrode 22, an n + -type drain region 11, an n − -type drift region 12, and a p-type body region 13 are stacked. The drain region 11 is a GaN substrate. The drift region 12 is an epitaxially grown layer of GaN and has a Si concentration of 1 × 10 16 cm −3 . The body region 13 is a GaN epi-growth layer and has an Mg concentration of 1 × 10 17 cm −3 . An n + type source region 15 is formed on a part of the surface of the body region 13. The source region 15 is a region formed by implanting Si ions.
 半導体装置1の表層部には、トレンチ型の絶縁ゲート部30が形成されている。絶縁ゲート部30は、トレンチ30T内に設けられている。トレンチ30Tは、シリコン酸化膜の絶縁層16、ソース領域15、およびボディ領域13を貫通してドリフト領域12の一部に到達している。絶縁ゲート部30は、ゲート絶縁膜32およびゲート電極34を有する。 In the surface layer portion of the semiconductor device 1, a trench-type insulated gate portion 30 is formed. The insulated gate part 30 is provided in the trench 30T. The trench 30T passes through the insulating layer 16, the source region 15, and the body region 13 of the silicon oxide film and reaches a part of the drift region 12. The insulated gate unit 30 includes a gate insulating film 32 and a gate electrode 34.
 ゲート絶縁膜32は、トレンチ30T内において、第1膜32aの上側に第2膜32bが積層され、第2膜32bの上側に第3膜32cが積層された構造を有する。すなわち、絶縁ゲート部30は、ドリフト領域12やボディ領域13などのGaN表面に、第1膜32a、第2膜32b、第3膜32c、ゲート電極34がこの順に積層されている構造を備えている。 The gate insulating film 32 has a structure in which the second film 32b is stacked above the first film 32a and the third film 32c is stacked above the second film 32b in the trench 30T. That is, the insulated gate portion 30 has a structure in which the first film 32a, the second film 32b, the third film 32c, and the gate electrode 34 are laminated in this order on the GaN surface such as the drift region 12 and the body region 13. Yes.
 第1膜32aは、第1膜32aとGaNとの界面に形成される界面トラップ(界面準位ともいう)が少ない膜である。ここで「界面トラップが少ない」とは、酸化アルミニウムとGaNとの界面に形成される界面トラップの密度よりも、第1膜32aとGaNとの界面に形成される界面トラップの密度が低い、という意味である。このような特性を有する第1膜32aの一例としては、シリコン酸化膜、シリコン窒化膜、ガリウム酸化膜、酸化ガリウム膜とシリコン酸化膜の積層膜、酸窒化アルミニウム、シリコン窒化膜などが挙げられる。ここで、「酸化ガリウム膜とシリコン酸化膜の積層膜」における酸化ガリウム膜は、第1膜32aがシリコン酸化膜である場合に、当該シリコン酸化膜とGaNとの界面に生成された反応層であってもよい。本実施例では、第1膜32aはシリコン酸化膜である。また、第1膜32aの厚さは4nm以下である。 The first film 32a is a film with few interface traps (also referred to as interface states) formed at the interface between the first film 32a and GaN. Here, “there are few interface traps” means that the density of interface traps formed at the interface between the first film 32a and GaN is lower than the density of interface traps formed at the interface between aluminum oxide and GaN. Meaning. Examples of the first film 32a having such characteristics include a silicon oxide film, a silicon nitride film, a gallium oxide film, a laminated film of a gallium oxide film and a silicon oxide film, an aluminum oxynitride, and a silicon nitride film. Here, the gallium oxide film in the “laminated film of gallium oxide film and silicon oxide film” is a reaction layer generated at the interface between the silicon oxide film and GaN when the first film 32a is a silicon oxide film. There may be. In the present embodiment, the first film 32a is a silicon oxide film. The thickness of the first film 32a is 4 nm or less.
 第2膜32bは、多結晶体であり、抵抗値が1×10(Ωcm)以上の膜である。抵抗値が1×10(Ωcm)以上あれば、ゲート絶縁膜32を流れるリーク電流を防ぐことができる。換言すると、第2膜32bは、結晶構造を有し、かつバンドギャップエネルギーが大きい材料である。このような材料の一例としては、酸化アルミニウム(Al)、ダイヤモンド、AlN、HfO、GaO、などが挙げられる。本実施例では、第2膜32bは酸化アルミニウムである。 The second film 32b is a polycrystal and is a film having a resistance value of 1 × 10 9 (Ωcm) or more. If the resistance value is 1 × 10 9 (Ωcm) or more, the leakage current flowing through the gate insulating film 32 can be prevented. In other words, the second film 32b is a material having a crystal structure and a large band gap energy. Examples of such materials include aluminum oxide (Al 2 O 3 ), diamond, AlN, HfO 2 , GaO, and the like. In the present embodiment, the second film 32b is aluminum oxide.
 第3膜32cは、破壊電界強度が6(MV/cm)以上の絶縁体である。このような特性を有する第3膜32cの一例としては、シリコン酸化膜やシリコン窒化膜が挙げられる。本実施例では、第3膜32cはシリコン酸化膜である。 The third film 32c is an insulator having a breakdown electric field strength of 6 (MV / cm) or more. Examples of the third film 32c having such characteristics include a silicon oxide film and a silicon nitride film. In the present embodiment, the third film 32c is a silicon oxide film.
 ソース領域15の表面の一部には、ソース電極24が配置されている。ソース電極24とゲート電極34とは、絶縁層17によって絶縁されている。ゲート電極34は、ボロンがドープされたポリシリコンである。絶縁層17はシリコン酸化膜である。ゲート電極34およびソース電極24の表面には、Al配線25が配置されている。 A source electrode 24 is disposed on a part of the surface of the source region 15. The source electrode 24 and the gate electrode 34 are insulated by the insulating layer 17. The gate electrode 34 is polysilicon doped with boron. The insulating layer 17 is a silicon oxide film. Al wiring 25 is disposed on the surfaces of the gate electrode 34 and the source electrode 24.
 ボディ領域13内の領域であって、ボディ領域13とゲート絶縁膜32との界面の近傍の領域には、チャネルが形成されている。ゲート電極34にゲートしきい値電圧以上の正電圧が印加されると、チャネルには反転層が形成され、ソース電極24とドレイン電極22とが導通する。よって半導体装置1はオン状態になる。
(第2膜32bの効果)
 前述した特許文献1では、アモルファスの酸化アルミニウムをゲート絶縁層の中間層に用いている。アモルファスの酸化アルミニウムの化学組成は、化学量論的組成からずれているため、膜中の欠陥や不純物が結晶体に比して多い。そのため、キャリアが捕獲されてしまうエネルギー準位(欠陥準位、不純物準位ともいう)が形成されてしまう。準位に正孔がトラップされた場合、空乏状態や反転状態になっても正孔がトラップされた状態が維持されてしまう場合がある(正固定電荷ともいう)。すなわち、膜中電荷量が変動してしまう。これにより、膜中電荷量の影響を打ち消すために空乏層が変動したり、反転層の電荷量が変動してしまう。すなわち、ゲートしきい値電圧が低下したり、しきい値の再現性が低下してしまう。一方、本実施例の第2膜32bは、多結晶の酸化アルミニウムである。多結晶は、アモルファスに比して、化学組成を化学量論的組成に近づけることができるため、膜中の欠陥や不純物をアモルファスに比して低減することができる。よって、膜中電荷量の変動を抑制できるため、ゲートしきい値電圧を高くすることや、しきい値の再現性を向上させることが可能となる。
A channel is formed in a region in the body region 13 and in the vicinity of the interface between the body region 13 and the gate insulating film 32. When a positive voltage equal to or higher than the gate threshold voltage is applied to the gate electrode 34, an inversion layer is formed in the channel, and the source electrode 24 and the drain electrode 22 become conductive. Therefore, the semiconductor device 1 is turned on.
(Effect of the second film 32b)
In Patent Document 1 described above, amorphous aluminum oxide is used for the intermediate layer of the gate insulating layer. Since the chemical composition of amorphous aluminum oxide deviates from the stoichiometric composition, there are more defects and impurities in the film than in the crystal. Therefore, an energy level (also referred to as a defect level or an impurity level) in which carriers are trapped is formed. When holes are trapped at a level, the trapped state of holes may be maintained even in a depletion state or an inversion state (also referred to as a positive fixed charge). That is, the amount of charge in the film varies. As a result, the depletion layer fluctuates or the charge amount of the inversion layer fluctuates to cancel the influence of the charge amount in the film. That is, the gate threshold voltage is lowered and the threshold reproducibility is lowered. On the other hand, the second film 32b of the present embodiment is polycrystalline aluminum oxide. Polycrystalline can bring the chemical composition closer to the stoichiometric composition compared to amorphous, so that defects and impurities in the film can be reduced compared to amorphous. Therefore, fluctuations in the charge amount in the film can be suppressed, so that the gate threshold voltage can be increased and the reproducibility of the threshold can be improved.
 本実施例の第2膜32bは、結晶化した酸化アルミニウムである。酸化アルミニウムは、結晶化させることで、誘電率を上昇させることができる。誘電率が大きいと、ゲート駆動能力を大きくすることができるため、チャネル抵抗を低減することが可能となる。加えて、ゲート絶縁膜の誘電率が大きくなることで、ゲート絶縁膜中の実効電界強度を低くすることができ、ゲート絶縁膜の破壊電圧を向上させることが可能になる。
(第1膜32aの効果)
 酸化アルミニウムとGaNの界面の界面準位密度は、酸化シリコンとGaNの界面の界面準位密度よりも高い。界面準位密度が高くなると、キャリアがトラップされやすくなる。よって例えば、第2膜32b(酸化アルミニウム)をGaN表面に直接形成すると、図2のグラフG1に示すように、オン時間に対するゲートしきい値電圧の変動が大きくなってしまう。そこで本実施例の半導体装置1では、第1膜32a(酸化シリコン)を介して第2膜32bをGaN表面に形成している。これにより、GaN表面近傍の界面準位密度を低減できるため、図2のグラフG2に示すように、オン時間に対するゲートしきい値電圧の変動を抑制することが可能となる。
The second film 32b of this example is crystallized aluminum oxide. Aluminum oxide can increase the dielectric constant by being crystallized. When the dielectric constant is large, the gate drive capability can be increased, and thus the channel resistance can be reduced. In addition, since the dielectric constant of the gate insulating film increases, the effective electric field strength in the gate insulating film can be lowered, and the breakdown voltage of the gate insulating film can be improved.
(Effect of the first film 32a)
The interface state density at the interface between aluminum oxide and GaN is higher than the interface state density at the interface between silicon oxide and GaN. As the interface state density increases, carriers are easily trapped. Therefore, for example, when the second film 32b (aluminum oxide) is formed directly on the GaN surface, the gate threshold voltage fluctuates with respect to the on-time as shown in the graph G1 of FIG. Therefore, in the semiconductor device 1 of the present embodiment, the second film 32b is formed on the GaN surface via the first film 32a (silicon oxide). As a result, the interface state density in the vicinity of the GaN surface can be reduced, and as shown in the graph G2 of FIG.
 また、GaNと酸化シリコンが接触した状態で850oC以上の高温熱処理を実施すると、Gaの酸化シリコン膜中への拡散によってゲートしきい値電圧が低下してしまうが、第1膜として酸化シリコンと同様に界面準位密度の小さい酸窒化アルミニウムをすることにより、Gaの拡散が抑制できるため、ゲートしきい値電圧の低下を抑制することが可能となる。 In addition, when high-temperature heat treatment at 850 ° C. or more is performed in a state where GaN and silicon oxide are in contact with each other, the gate threshold voltage decreases due to diffusion of Ga into the silicon oxide film. In the same manner as described above, by using aluminum oxynitride having a low interface state density, Ga diffusion can be suppressed, so that a reduction in gate threshold voltage can be suppressed.
 図10に、GaN上に第2膜32b(酸化アルミニウム)および第1膜32a(酸化シリコン)を成膜した場合における、伝導帯から0.1eVの位置にある界面トラップ量の比較を示す。第2膜32b(酸化アルミニウム)をGaN表面に直接形成すると、図10のグラフG1に示すように、界面トラップ量が3.5×1012cm-2eV-1よりも大きくなることが分かる。一方、本実施例の半導体装置1のように、第1膜32a(酸化シリコン)をGaN表面に形成した場合には、図10のグラフG2に示すように、界面トラップ量を0.9×1012cm-2eV-1程度まで低減することができることが分かる。換言すると、酸化シリコンを介して酸化アルミニウムをGaN表面に形成することで、GaN表面近傍の界面トラップの量を3.5×1012cm-2eV-1以下に低減することができる。 FIG. 10 shows a comparison of the amount of interface trap at a position of 0.1 eV from the conduction band when the second film 32b (aluminum oxide) and the first film 32a (silicon oxide) are formed on GaN. When the second film 32b (aluminum oxide) is directly formed on the GaN surface, the interface trap amount becomes larger than 3.5 × 10 12 cm −2 eV −1 as shown in the graph G1 of FIG. On the other hand, when the first film 32a (silicon oxide) is formed on the GaN surface as in the semiconductor device 1 of the present embodiment, the interface trap amount is 0.9 × 10 as shown in the graph G2 of FIG. It can be seen that the voltage can be reduced to about 12 cm −2 eV −1 . In other words, by forming aluminum oxide on the GaN surface via silicon oxide, the amount of interface traps in the vicinity of the GaN surface can be reduced to 3.5 × 10 12 cm −2 eV −1 or less.
 図3に、ゲートしきい値電圧と、シリコン酸化膜である第1膜32aの膜厚との相関を示す。図3に示すように、ゲートしきい値電圧は第1膜32aの厚さに比例している。すなわち、第1膜32aが薄くなるほど、ゲートしきい値電圧が高くなる。これは以下の理由による。GaN上にシリコン酸化膜の第1膜32aを形成した場合、界面反応によって、界面に2.5×1012cm-2の正の固定電荷が発生する。この正の固定電荷により、ゲートしきい値電圧が低下してしまう。一方、第1膜32aを薄くするほど、膜中の正の固定電荷量の影響を抑制できるためである。ここで、半導体装置1を車載用デバイスに搭載する場合を考える。車載用デバイスでは、一般に、1V以上のゲートしきい値電圧が要求される。すると、図3に示すように、第1膜32aの厚さは4nm以下であることが好ましいことが分かる。
(第3膜32cの効果)
 本実施例の第2膜32bは、結晶化した酸化アルミニウムである。結晶化した酸化アルミニウム膜は、アモルファスの酸化アルミニウム膜に比して、絶縁破壊電圧が低下する。これは、結晶化した酸化アルミニウムの結晶粒界が、導電性のパスとして機能するためと考えられる。そこで本実施例の半導体装置1では、第2膜32bとゲート電極34の間に、酸化シリコンの第3膜32cを配置している。これにより、絶縁破壊電圧を維持することが可能となる。
(半導体装置1の製造方法)
 図4~図8を参照して、半導体装置1の製造方法について説明する。図4のフローチャートのステップS1において、ソース領域形成工程が行われる。具体的には、ドレイン領域11、ドリフト領域12、ボディ領域13が積層している基板を用意する。
FIG. 3 shows the correlation between the gate threshold voltage and the film thickness of the first film 32a, which is a silicon oxide film. As shown in FIG. 3, the gate threshold voltage is proportional to the thickness of the first film 32a. That is, the thinner the first film 32a, the higher the gate threshold voltage. This is due to the following reason. When the first film 32a of the silicon oxide film is formed on GaN, a positive fixed charge of 2.5 × 10 12 cm −2 is generated at the interface due to the interface reaction. This positive fixed charge lowers the gate threshold voltage. On the other hand, the thinner the first film 32a, the more the influence of the positive fixed charge amount in the film can be suppressed. Here, consider a case where the semiconductor device 1 is mounted on an in-vehicle device. In-vehicle devices generally require a gate threshold voltage of 1 V or higher. Then, as shown in FIG. 3, it is understood that the thickness of the first film 32a is preferably 4 nm or less.
(Effect of the third film 32c)
The second film 32b of this example is crystallized aluminum oxide. The crystallized aluminum oxide film has a lower dielectric breakdown voltage than the amorphous aluminum oxide film. This is considered because the crystal grain boundary of the crystallized aluminum oxide functions as a conductive path. Therefore, in the semiconductor device 1 of the present embodiment, the third film 32c of silicon oxide is disposed between the second film 32b and the gate electrode 34. Thereby, it becomes possible to maintain a dielectric breakdown voltage.
(Manufacturing method of the semiconductor device 1)
A method for manufacturing the semiconductor device 1 will be described with reference to FIGS. In step S1 of the flowchart of FIG. 4, a source region forming step is performed. Specifically, a substrate on which the drain region 11, the drift region 12, and the body region 13 are stacked is prepared.
 周知のフォトリソグラフィー技術およびドライエッチング加工を用いて、ソース領域15が開口しているマスクを加工する。マスクを介してSiイオンを注入することで、n+型のソース領域15を形成する。 A mask in which the source region 15 is opened is processed using a well-known photolithography technique and dry etching. By implanting Si ions through the mask, an n + type source region 15 is formed.
 ステップS2において、ソース領域15およびボディ領域13の表面に、200nm程度の絶縁層16を成膜する。周知のフォトリソグラフィー技術およびドライエッチング加工により、絶縁層16、ソース領域15、ボディ領域13を突き抜けてドリフト領域12に到達するトレンチ30Tを加工する。これにより、図5に示す構造が形成される。 In step S2, an insulating layer 16 of about 200 nm is formed on the surface of the source region 15 and the body region 13. A trench 30T that penetrates the insulating layer 16, the source region 15, and the body region 13 and reaches the drift region 12 is processed by a known photolithography technique and dry etching. Thereby, the structure shown in FIG. 5 is formed.
 ステップS3において、トレンチ30T内および絶縁層16の表面に、第1膜32a(シリコン酸化膜)を形成する。第1膜32aは、LP-CVD(low pressure CVD)法やPE-CVD(plasma-enhanced CVD)法で成膜する。LP-CVD法では、例えば、SiH4とN2Oの原料ガスを用いて、800oC付近で成膜する。PE-CVD法では、例えば、TEOS(tetraethoxysilane)の原料ガスとO2プラズマを用いて、400oC付近で成膜する。 In step S3, a first film 32a (silicon oxide film) is formed in the trench 30T and on the surface of the insulating layer 16. The first film 32a is formed by LP-CVD (low pressure CVD) or PE-CVD (plasma-enhanced CVD). In the LP-CVD method, for example, a film is formed in the vicinity of 800 ° C. using SiH 4 and N 2 O source gases. In the PE-CVD method, for example, the film is formed at around 400 ° C. using TEOS (tetraethoxysilane) source gas and O 2 plasma.
 第1膜32aとして酸窒化アルミニウムを形成する場合は、ALD(Atomic Layer Deposition)で窒化アルミニウムと酸化アルミニウムを交互に成膜する。例えば、窒化アルミニウムの窒素源としてはNH、アルミニウム源としてはTMA(Trimethylaluminum)を、酸化アルミニウムの酸素源としてはH0もしくはO、アルミニウム源としてはTMAを使用して400~500oCで成膜する。 When aluminum oxynitride is formed as the first film 32a, aluminum nitride and aluminum oxide are alternately formed by ALD (Atomic Layer Deposition). For example, NH 3 as a nitrogen source of aluminum nitride, as the aluminum source TMA (Trimethylaluminum), as the oxygen source of the aluminum oxide H 2 0 or O 3, 400 ~ 500 by using TMA as the aluminum source o C The film is formed.
 ステップS4において、第1膜32aの表面に、抵抗値が1×10(Ωcm)以上の第2膜32bを形成する。本実施例では、第2膜32bは、アモルファスの酸化アルミニウムである。酸化アルミニウムは、ALD(Atomic Layer Deposition)法を用いて成膜できる。原料ガスには、TMA(Trimethylaluminum)を用いることができる。Oプラズマ、HO、Oの何れかを用いて、300oC付近で成膜することができる。 In step S4, a second film 32b having a resistance value of 1 × 10 9 (Ωcm) or more is formed on the surface of the first film 32a. In the present embodiment, the second film 32b is amorphous aluminum oxide. Aluminum oxide can be formed using an ALD (Atomic Layer Deposition) method. TMA (Trimethylaluminum) can be used as the source gas. A film can be formed in the vicinity of 300 ° C. using any of O 2 plasma, H 2 O, and O 3 .
 ステップS5において、窒素中で800oC以上の温度で熱処理する。好ましくは、950oC以上の温度で熱処理する。これにより、アモルファスの第2膜32bを多結晶化することができる。 In step S5, heat treatment is performed at a temperature of 800 ° C. or higher in nitrogen. Preferably, the heat treatment is performed at a temperature of 950 ° C. or higher. Thereby, the amorphous second film 32b can be polycrystallized.
 ステップS6において、多結晶化した第2膜32bの表面に、破壊電界強度が6(MV/cm)以上の絶縁体である第3膜32c(シリコン酸化膜)を形成する。これにより、図6に示す構造が形成される。 In step S6, a third film 32c (silicon oxide film) which is an insulator having a breakdown electric field strength of 6 (MV / cm) or more is formed on the surface of the polycrystalline second film 32b. Thereby, the structure shown in FIG. 6 is formed.
 すなわち、熱処理工程(ステップS5)は、第2膜32bを形成する工程(ステップS4)と、第3膜32cを形成する工程(ステップS6)の間に行われる。これにより、第2膜32bが露出している状態で熱処理を行うことができるため、第2膜32bの多結晶化を促進することが可能となる。 That is, the heat treatment step (step S5) is performed between the step of forming the second film 32b (step S4) and the step of forming the third film 32c (step S6). Thereby, since the heat treatment can be performed in a state where the second film 32b is exposed, the crystallization of the second film 32b can be promoted.
 ステップS7において、第3膜32cの表面にゲート電極34を形成する。具体的には、ボロンをドープしたポリシリコンをLP-CVD法で成膜する。ポリシリコンの膜厚は、トレンチ30Tが十分に埋まる程度であればよい。ボロン活性化のために、窒素中で900oC以上の熱処理を行ってもよい。周知のフォトリソグラフィー技術およびドライエッチング加工を用いて、トレンチ30T周囲のポリシリコンを除去する。これにより、図7に示す構造が形成される。 In step S7, the gate electrode 34 is formed on the surface of the third film 32c. Specifically, polysilicon doped with boron is formed by LP-CVD. The film thickness of the polysilicon may be such that the trench 30T is sufficiently filled. In order to activate boron, a heat treatment of 900 ° C. or more may be performed in nitrogen. The polysilicon around the trench 30T is removed using a well-known photolithography technique and dry etching. Thereby, the structure shown in FIG. 7 is formed.
 ステップS8において、ソース電極24を形成する。具体的には、周知のフォトリソグラフィー技術およびドライエッチング加工を用いて、ソース電極24を形成する領域の絶縁層16およびゲート絶縁膜32を除去する。次に、20nmのTi層および200nmのAl層の積層膜を成膜する。周知のフォトリソグラフィー技術およびドライエッチング加工を用いて、Ti層およびAl層を、ソース電極24に加工する。ソースのオーミック化のために、窒素中で650oCの熱処理を行ってもよい。これにより、図8に示す構造が形成される。 In step S8, the source electrode 24 is formed. Specifically, the insulating layer 16 and the gate insulating film 32 in the region where the source electrode 24 is to be formed are removed using a well-known photolithography technique and dry etching. Next, a laminated film of a 20 nm Ti layer and a 200 nm Al layer is formed. The Ti layer and the Al layer are processed into the source electrode 24 using a well-known photolithography technique and dry etching processing. A heat treatment of 650 ° C. may be performed in nitrogen for ohmic source formation. Thereby, the structure shown in FIG. 8 is formed.
 ステップS9において、Al配線を形成する。具体的には、周知のフォトリソグラフィー技術およびドライエッチング加工を用いて、絶縁層17を形成する。次に、Al層を2マイクロメートル積層する。周知のフォトリソグラフィー技術およびドライエッチング加工を用いて、Al層をAl配線25に加工する。ステップS10において、ドレイン電極22を形成する。具体的には、ドレイン領域11を形成するGaN基板の裏面に、20nmのTi層および200nmのAl層を成膜する。その後、窒素中で400oCの熱処理を行う。これにより、図1に示す半導体装置1が完成する。 In step S9, an Al wiring is formed. Specifically, the insulating layer 17 is formed using a well-known photolithography technique and dry etching. Next, an Al layer is laminated by 2 micrometers. The Al layer is processed into the Al wiring 25 by using a well-known photolithography technique and dry etching. In step S10, the drain electrode 22 is formed. Specifically, a 20 nm Ti layer and a 200 nm Al layer are formed on the back surface of the GaN substrate on which the drain region 11 is to be formed. Thereafter, heat treatment is performed at 400 ° C. in nitrogen. Thereby, the semiconductor device 1 shown in FIG. 1 is completed.
 図9に、実施例2に係る半導体装置100の要部断面図を示す。実施例2に係る半導体装置100は、横型のGaNデバイスである。具体的には、HEMT(High Electron Mobility Transistor)である。半導体装置100は、裏面電極122、Si基板111、GaNバッファ層112、高抵抗GaN層141、アンドープGaN層142、AlGaN層143が積層している構造を備える。Si基板111は、表面が(111)面である。高抵抗GaN層141は、炭素のドープ濃度が1×1019cm-3である。AlGaN層143は、Al比が25%であり、厚さが25nm程度である。 FIG. 9 is a cross-sectional view of main parts of the semiconductor device 100 according to the second embodiment. The semiconductor device 100 according to Example 2 is a lateral GaN device. Specifically, it is HEMT (High Electron Mobility Transistor). The semiconductor device 100 has a structure in which a back electrode 122, a Si substrate 111, a GaN buffer layer 112, a high resistance GaN layer 141, an undoped GaN layer 142, and an AlGaN layer 143 are stacked. The surface of the Si substrate 111 is a (111) plane. The high resistance GaN layer 141 has a carbon doping concentration of 1 × 10 19 cm −3 . The AlGaN layer 143 has an Al ratio of 25% and a thickness of about 25 nm.
 半導体装置100の表層部には、トレンチ型の絶縁ゲート部130が形成されている。絶縁ゲート部130は、トレンチ130T内に設けられている。トレンチ130Tは、シリコン窒化膜の絶縁層116およびAlGaN層143を貫通してアンドープGaN層142の一部に到達している。絶縁ゲート部130は、ゲート絶縁膜132およびゲート電極134を有する。ゲート電極134は、ボロンがドープされたポリシリコンである。 In the surface layer portion of the semiconductor device 100, a trench-type insulated gate portion 130 is formed. The insulated gate part 130 is provided in the trench 130T. The trench 130T penetrates the insulating layer 116 of the silicon nitride film and the AlGaN layer 143 and reaches a part of the undoped GaN layer 142. The insulated gate portion 130 has a gate insulating film 132 and a gate electrode 134. The gate electrode 134 is polysilicon doped with boron.
 ゲート絶縁膜132は、トレンチ130T内において、第1膜132aの上側に第2膜132bが積層され、第2膜132bの上側に第3膜132cが積層された構造を有する。なお、実施例2の第1膜132a、第2膜132b、第3膜132cの膜種類、機能および膜厚などは、前述した実施例1の第1膜32a、第2膜32b、第3膜32cの各々と同様であるため、説明を省略する。 The gate insulating film 132 has a structure in which the second film 132b is stacked above the first film 132a and the third film 132c is stacked above the second film 132b in the trench 130T. The first film 132a, the second film 132b, and the third film 132c of Example 2 are the same as the first film 32a, the second film 32b, and the third film of Example 1 described above. Since it is the same as each of 32c, explanation is omitted.
 AlGaN層143の表面の一部には、ソース電極124およびドレイン電極144が配置されている。ソース電極124、ドレイン電極144、ゲート電極134は、シリコン酸化膜の絶縁層117によって互いに絶縁されている。ソース電極124、ドレイン電極144、ゲート電極134の表面には、Al配線125が配置されている。
(半導体装置100の製造方法)
 実施例2の半導体装置100の製造方法を、図4のフローチャートを用いて説明する。図4のフローチャートにおいて、実施例2の半導体装置100を製造するために改変が必要な部分を説明する。実施例1の半導体装置1の製造方法と共通する部分については、説明を省略する。
A source electrode 124 and a drain electrode 144 are arranged on a part of the surface of the AlGaN layer 143. The source electrode 124, the drain electrode 144, and the gate electrode 134 are insulated from each other by an insulating layer 117 of a silicon oxide film. Al wiring 125 is disposed on the surfaces of the source electrode 124, the drain electrode 144, and the gate electrode 134.
(Method for Manufacturing Semiconductor Device 100)
A method for manufacturing the semiconductor device 100 according to the second embodiment will be described with reference to the flowchart of FIG. In the flowchart of FIG. 4, portions that need to be modified in order to manufacture the semiconductor device 100 of the second embodiment will be described. Description of parts common to the method for manufacturing the semiconductor device 1 of the first embodiment is omitted.
 まず、Si基板111、GaNバッファ層112、高抵抗GaN層141、アンドープGaN層142、AlGaN層143、絶縁層116が積層している基板を用意する。図4のフローチャートのソース領域形成工程(ステップS1)はスキップし、ステップS2のトレンチ形成工程へ進む。ステップS2では、周知のフォトリソグラフィー技術およびドライエッチング加工により、絶縁層116およびAlGaN層143を貫通してアンドープGaN層142に到達するトレンチ130Tを加工する。以後のステップS3~S10の処理内容は、実施例1と同様であるため、説明を省略する。また、実施例2に係る半導体装置100の効果は、前述した実施例1に係る半導体装置1と同様である。 First, a substrate on which a Si substrate 111, a GaN buffer layer 112, a high-resistance GaN layer 141, an undoped GaN layer 142, an AlGaN layer 143, and an insulating layer 116 are stacked is prepared. The source region forming step (step S1) in the flowchart of FIG. 4 is skipped, and the process proceeds to the trench forming step of step S2. In step S2, the trench 130T that penetrates the insulating layer 116 and the AlGaN layer 143 and reaches the undoped GaN layer 142 is processed by a known photolithography technique and dry etching. Since the processing contents of the subsequent steps S3 to S10 are the same as those in the first embodiment, description thereof is omitted. The effects of the semiconductor device 100 according to the second embodiment are the same as those of the semiconductor device 1 according to the first embodiment described above.
 (変形例)
 本実施例では、第1膜32aがシリコン酸化膜である場合を説明したが、この形態に限られない。例えば、第1膜32aは酸窒化アルミニウムであってもよい。酸窒化アルミニウムは、GaNとの界面の界面準位密度を、シリコン酸化膜と同程度に低くすることができる膜である。第1膜32aを酸窒化アルミニウムにすることで追加的に得られる効果を説明する。例えば、第1膜32aにシリコン酸化膜を用いた場合には、GaNとシリコン酸化膜とが接触した状態で850℃以上の高温熱処理を実施すると、第1膜32aであるシリコン酸化膜中へGaが拡散してしまい、その結果ゲートしきい値が低下してしまう場合がある。一方、第1膜32aに酸窒化アルミニウムを用いると、850℃以上の高温熱処理を実施しても、第1膜32aである酸窒化アルミニウム膜中へのGa拡散を抑制することができる。これは、シリコン酸化膜に比して酸窒化アルミニウム膜の方が膜を緻密にすることができるためである。第1膜32aを酸窒化アルミニウムにすることで、ゲートしきい値の低下を抑制することが可能となる。
(Modification)
In the present embodiment, the case where the first film 32a is a silicon oxide film has been described, but the present invention is not limited to this form. For example, the first film 32a may be aluminum oxynitride. Aluminum oxynitride is a film that can make the interface state density at the interface with GaN as low as that of a silicon oxide film. The effect additionally obtained by making the 1st film | membrane 32a into aluminum oxynitride is demonstrated. For example, when a silicon oxide film is used for the first film 32a, if a high temperature heat treatment at 850 ° C. or higher is performed in a state where GaN and the silicon oxide film are in contact with each other, a Ga oxide is formed into the silicon oxide film as the first film 32a. May diffuse and as a result, the gate threshold may decrease. On the other hand, when aluminum oxynitride is used for the first film 32a, Ga diffusion into the aluminum oxynitride film, which is the first film 32a, can be suppressed even when high-temperature heat treatment at 850 ° C. or higher is performed. This is because the aluminum oxynitride film can be denser than the silicon oxide film. By making the first film 32a aluminum oxynitride, it is possible to suppress a decrease in the gate threshold value.
 第1膜32aとして酸窒化アルミニウムを形成する場合には、図4のステップS3において、ALD(Atomic Layer Deposition)法を用いて窒化アルミニウム膜と酸化アルミニウム膜とを交互に成膜すればよい。窒化アルミニウムの窒素源としてはNHを用いることができ、アルミニウム源としてはTMA(Trimethylaluminum)を用いることができる。酸化アルミニウムの酸素源としてはHOまたはOを用いることができ、アルミニウム源としてはTMAを用いることができる。また成膜温度は400~500℃を用いることができる。窒化アルミニウム膜と酸化アルミニウム膜とを積層する割合は、1:1に限られない。酸窒化アルミニウム中の酸素原子と窒素原子との比率が所望の比率となるように、積層の割合を自由に設定することが可能である。 In the case where aluminum oxynitride is formed as the first film 32a, an aluminum nitride film and an aluminum oxide film may be alternately formed using an ALD (Atomic Layer Deposition) method in step S3 of FIG. NH 3 can be used as the nitrogen source of aluminum nitride, and TMA (Trimethylaluminum) can be used as the aluminum source. H 2 O or O 3 can be used as the oxygen source of aluminum oxide, and TMA can be used as the aluminum source. The film forming temperature can be 400 to 500 ° C. The ratio of stacking the aluminum nitride film and the aluminum oxide film is not limited to 1: 1. It is possible to freely set the lamination ratio so that the ratio of oxygen atoms to nitrogen atoms in aluminum oxynitride becomes a desired ratio.
 第1膜32aは、シリコン窒化膜であってもよい。シリコン窒化膜は、GaNとの界面の界面準位密度が、シリコン酸化膜と同程度に低い膜である。またシリコン窒化膜は、シリコン酸化膜に比して緻密な膜である。従って、第1膜32aをシリコン窒化膜にすることによっても、ゲートしきい値の低下を抑制することが可能となる。 The first film 32a may be a silicon nitride film. The silicon nitride film is a film whose interface state density at the interface with GaN is as low as that of the silicon oxide film. The silicon nitride film is a dense film as compared with the silicon oxide film. Therefore, it is possible to suppress a decrease in the gate threshold value by making the first film 32a a silicon nitride film.
 図4の熱処理工程(ステップS5)を実行するタイミングは、ステップS4とS6の間に限られない。第2膜32bを形成する工程(ステップS4)と、ゲート電極形成工程(ステップS7)の間であれば、どの段階で熱処理工程を行ってもよい。 The timing for executing the heat treatment step (step S5) in FIG. 4 is not limited to between steps S4 and S6. The heat treatment process may be performed at any stage as long as it is between the process of forming the second film 32b (step S4) and the gate electrode formation process (step S7).
 ステップS3において酸窒化アルミニウムを成膜する方法や、ステップS4において、酸窒化アルミニウムを成膜する方法、酸化アルミニウムを成膜する方法は、ALD法に限られない。MOCVD法、スパッタリング法などを用いてもよい。 The method for forming aluminum oxynitride in step S3, the method for forming aluminum oxynitride in step S4, and the method for forming aluminum oxide are not limited to the ALD method. An MOCVD method, a sputtering method, or the like may be used.
 第2膜32bおよび132bは、多結晶体であって抵抗値が1×10(Ωcm)以上の膜であればよく、酸化アルミニウムに限られない。例えば、第2膜32bおよび132bは、ダイヤモンド、AlN、HfO、BNなどであってもよい。ダイヤモンドは、マイクロ波プラズマCVD法により成膜してもよい。原料にメタンを用いてもよい。AlNは、ALD法で成膜してもよい。原料ガスにTMAを用い、NHプラズマを用いて300oC付近で成膜してもよい。HfOは、ALD法で成膜してもよい。原料ガスにTEMAH(tetrakis(ethylmethylamino)hafnium)を用いてもよい。Oプラズマ、HO、Oの何れかを用いて、300oC付近で成膜してもよい。BNはマイクロ波プラズマCVD法で成膜してもよい。原料ガスにTMB(Trimethyl Borate)を用い、Nプラズマを用いて成膜してもよい。 The second films 32b and 132b are not limited to aluminum oxide as long as they are polycrystalline and have a resistance value of 1 × 10 9 (Ωcm) or more. For example, the second films 32b and 132b may be diamond, AlN, HfO 2 , BN, or the like. Diamond may be formed by a microwave plasma CVD method. Methane may be used as a raw material. AlN may be formed by an ALD method. TMA may be used as a source gas, and NH 3 plasma may be used to form a film near 300 ° C. HfO 2 may be formed by ALD. TEMAH (tetrakis (ethylmethylamino) hafnium) may be used as the source gas. The film may be formed in the vicinity of 300 ° C. using any of O 2 plasma, H 2 O, and O 3 . BN may be formed by a microwave plasma CVD method. Alternatively, TMB (Trimethyl Borate) may be used as a source gas and a film may be formed using N 2 plasma.
 ゲート絶縁膜32は、本明細書に記載の構造に限定されない。例えば、第4膜をさらに備えるなど、4層以上の積層構造でもよい。また、第1膜から第3膜の間の何れかの位置に、他の膜が介在している構造であってもよい。 The gate insulating film 32 is not limited to the structure described in this specification. For example, a stacked structure of four or more layers may be used, such as further including a fourth film. Further, a structure in which another film is interposed at any position between the first film and the third film may be employed.
 第2膜32bおよび132bに用いる酸化アルミニウム、AlN、ダイヤモンド、BNなどは、すでに結晶化している膜を、CVD法やスパッタリング法で成膜してもよい。この場合、第2膜の結晶化のための熱処理を不要にすることができる。 As the aluminum oxide, AlN, diamond, BN and the like used for the second films 32b and 132b, a film that has already been crystallized may be formed by a CVD method or a sputtering method. In this case, the heat treatment for crystallization of the second film can be eliminated.
 半導体装置1および100の材料は、GaNに限られない。SiC、Si、GaAsなどの材料であってもよい。 The material of the semiconductor devices 1 and 100 is not limited to GaN. A material such as SiC, Si, or GaAs may be used.
 上記の実施例で開示する半導体装置の一実施形態は、窒化物半導体の上側に第1膜が積層され、前記第1膜の上側に第2膜が積層され、前記第2膜の上側に第3膜が積層され、前記第3膜の上側にゲート電極が積層されている絶縁ゲート構造を備えた半導体装置である。 In one embodiment of the semiconductor device disclosed in the above example, a first film is stacked above the nitride semiconductor, a second film is stacked above the first film, and a first film is stacked above the second film. A semiconductor device having an insulated gate structure in which three films are stacked and a gate electrode is stacked above the third film.
 第1膜は、窒化物半導体との界面にできる界面トラップが少ない膜である。第2膜は、多結晶体であり、抵抗値が1×10(Ωcm)以上である。第3膜は、破壊電界強度が6(MV/cm)以上の絶縁体である。 The first film is a film with few interface traps formed at the interface with the nitride semiconductor. The second film is a polycrystal and has a resistance value of 1 × 10 9 (Ωcm) or more. The third film is an insulator having a breakdown electric field strength of 6 (MV / cm) or more.
 上記実施形態の半導体装置では、第2膜の膜構造は、多結晶体である。よって、アモルファスに比して、膜中の欠陥や不純物を低減することができる。膜中電荷量の変動が抑制できる結果、ゲートしきい値電圧の制御性や再現性を高めることが可能となる。 In the semiconductor device of the above embodiment, the film structure of the second film is a polycrystalline body. Therefore, defects and impurities in the film can be reduced as compared with amorphous. As a result of suppressing the fluctuation of the charge amount in the film, the controllability and reproducibility of the gate threshold voltage can be improved.
 第1膜は、界面トラップの量が3.5×1012cm-2eV-1以下の膜であってもよい。効果の詳細は上記実施例で説明する。 The first film may be a film having an interface trap amount of 3.5 × 10 12 cm −2 eV −1 or less. Details of the effect will be described in the above embodiment.
 第1膜はシリコン酸化膜または酸化ガリウム膜または酸化ガリウム膜とシリコン酸化膜の積層膜であってもよい。効果の詳細は上記実施例で説明する。 The first film may be a silicon oxide film, a gallium oxide film, or a laminated film of a gallium oxide film and a silicon oxide film. Details of the effect will be described in the above embodiment.
 第1膜の厚さは4nm以下であってもよい。効果の詳細は上記実施例で説明する。 The thickness of the first film may be 4 nm or less. Details of the effect will be described in the above embodiment.
 第2膜は酸化アルミニウムであってもよい。効果の詳細は上記実施例で説明する。 The second film may be aluminum oxide. Details of the effect will be described in the above embodiment.
 第3膜はシリコン酸化膜であってもよい。効果の詳細は上記実施例で説明する。 The third film may be a silicon oxide film. Details of the effect will be described in the above embodiment.
 上記実施形態が開示する半導体装置の製造方法は、窒化物半導体の表面に、窒化物半導体との界面にできる界面トラップが少ない第1膜を形成する工程を備える。第1膜の表面に、抵抗値が1×10(Ωcm)以上の第2膜を形成する工程を備える。800oC以上の温度で熱処理することで、第2膜を多結晶化する熱処理工程を備える。多結晶化した第2膜の表面に、破壊電界強度が6(MV/cm)以上の絶縁体である第3膜を形成する工程を備える。第3膜の表面にゲート電極を形成する工程を備える。効果の詳細は上記実施例で説明する。 The method for manufacturing a semiconductor device disclosed in the above embodiment includes a step of forming a first film on the surface of a nitride semiconductor with few interface traps formed at the interface with the nitride semiconductor. Forming a second film having a resistance value of 1 × 10 9 (Ωcm) or more on the surface of the first film; A heat treatment step for polycrystallizing the second film by performing heat treatment at a temperature of 800 ° C. or higher is provided. Forming a third film which is an insulator having a breakdown electric field strength of 6 (MV / cm) or more on the surface of the polycrystallized second film; Forming a gate electrode on the surface of the third film; Details of the effect will be described in the above embodiment.
 熱処理工程は、第2膜を形成する工程と第3膜を形成する工程の間に行われてもよい。第3膜を形成する工程では、多結晶化した第2膜の表面に、第3膜を形成してもよい。効果の詳細は上記実施例で説明する。 The heat treatment step may be performed between the step of forming the second film and the step of forming the third film. In the step of forming the third film, the third film may be formed on the surface of the polycrystalline second film. Details of the effect will be described in the above embodiment.
 熱処理工程は、第2膜を形成する工程とゲート電極を形成する工程の間に行われてもよい。 The heat treatment step may be performed between the step of forming the second film and the step of forming the gate electrode.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (9)

  1.  窒化物半導体の上側に積層された第1膜(32a、132a)と、
     前記第1膜の上側に積層された第2膜(32b、132b)と、
     前記第2膜の上側に積層された第3膜(32c、132c)と、
     前記第3膜の上側に積層されたゲート電極(34、134)とからなる半導体装置であって、
     第1膜と第2膜と第3膜とゲート電極により絶縁ゲート構造を形成し、
     前記第1膜は、前記窒化物半導体との界面にできる界面トラップが少ない膜であり、
     前記第2膜は、多結晶体であり、抵抗値が1×10(Ωcm)以上であり、
     前記第3膜は、破壊電界強度が6(MV/cm)以上の絶縁体である、半導体装置。
    A first film (32a, 132a) stacked on the upper side of the nitride semiconductor;
    A second film (32b, 132b) stacked above the first film;
    A third film (32c, 132c) laminated on the second film;
    A semiconductor device comprising a gate electrode (34, 134) stacked above the third film,
    Forming an insulated gate structure by the first film, the second film, the third film and the gate electrode;
    The first film is a film having few interface traps formed at the interface with the nitride semiconductor,
    The second film is polycrystalline and has a resistance value of 1 × 10 9 (Ωcm) or more,
    The third film is a semiconductor device which is an insulator having a breakdown electric field strength of 6 (MV / cm) or more.
  2.  前記第1膜は、前記界面トラップの量が3.5×1012cm-2eV-1以下の膜である、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the first film is a film having an amount of the interface trap of 3.5 × 10 12 cm −2 eV −1 or less.
  3.  前記第1膜は、シリコン酸化膜、または、酸化ガリウム膜、または、酸化ガリウム膜とシリコン酸化膜の積層膜、または、酸窒化アルミニウム、または、シリコン窒化膜である、請求項1または2に記載の半導体装置。 3. The first film according to claim 1, wherein the first film is a silicon oxide film, a gallium oxide film, a laminated film of a gallium oxide film and a silicon oxide film, an aluminum oxynitride, or a silicon nitride film. Semiconductor device.
  4.  前記第1膜の厚さは4nm以下である、請求項3に記載の半導体装置。 The semiconductor device according to claim 3, wherein a thickness of the first film is 4 nm or less.
  5.  前記第2膜は酸化アルミニウムである、請求項1~4の何れか1項に記載の半導体装置。 5. The semiconductor device according to claim 1, wherein the second film is aluminum oxide.
  6.  前記第3膜はシリコン酸化膜である、請求項1~5の何れか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 5, wherein the third film is a silicon oxide film.
  7.  窒化物半導体の表面に、前記窒化物半導体との界面にできる界面トラップが少ない第1膜を形成することと、
     前記第1膜の表面に、抵抗値が1×10(Ωcm)以上の第2膜を形成することと、
     800℃以上の温度で熱処理することで、前記第2膜を多結晶化することと、
     多結晶化した前記第2膜の表面に、破壊電界強度が6(MV/cm)以上の絶縁体である第3膜を形成することと、
     前記第3膜の表面にゲート電極を形成することと、
     を備える、半導体装置の製造方法。
    Forming a first film on the surface of the nitride semiconductor with few interface traps formed at the interface with the nitride semiconductor;
    Forming a second film having a resistance value of 1 × 10 9 (Ωcm) or more on the surface of the first film;
    Polycrystallizing the second film by heat treatment at a temperature of 800 ° C. or higher;
    Forming a third film which is an insulator having a breakdown electric field strength of 6 (MV / cm) or more on the surface of the polycrystalline second film;
    Forming a gate electrode on the surface of the third film;
    A method for manufacturing a semiconductor device.
  8.  前記熱処することは、前記第2膜を形成することと前記第3膜を形成することとの間に行われ、
     前記第3膜を形成することでは、多結晶化した前記第2膜の表面に、前記第3膜を形成する、請求項7に記載の半導体装置の製造方法。
    The heat treatment is performed between forming the second film and forming the third film,
    The method of manufacturing a semiconductor device according to claim 7, wherein the third film is formed on the surface of the polycrystallized second film by forming the third film.
  9.  前記熱処理することは、前記第2膜を形成することと前記ゲート電極を形成することとの間に行われる、請求項7に記載の半導体装置の製造方法。
     
     
     
    The method of manufacturing a semiconductor device according to claim 7, wherein the heat treatment is performed between forming the second film and forming the gate electrode.


PCT/JP2019/003060 2018-01-31 2019-01-30 Semiconductor device and method for manufacturing semiconductor device WO2019151277A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018015538 2018-01-31
JP2018-015538 2018-07-13
JP2019012930A JP2019134164A (en) 2018-01-31 2019-01-29 Semiconductor device and manufacturing method of semiconductor device
JP2019-012930 2019-01-29

Publications (1)

Publication Number Publication Date
WO2019151277A1 true WO2019151277A1 (en) 2019-08-08

Family

ID=67479733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003060 WO2019151277A1 (en) 2018-01-31 2019-01-30 Semiconductor device and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2019151277A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179051A (en) * 2001-12-11 2003-06-27 Matsushita Electric Ind Co Ltd Method of forming insulation film, semiconductor device, and manufacturing method thereof
JP2011233695A (en) * 2010-04-27 2011-11-17 Sharp Corp NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR
JP2012060063A (en) * 2010-09-13 2012-03-22 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2014192493A (en) * 2013-03-28 2014-10-06 Toyoda Gosei Co Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179051A (en) * 2001-12-11 2003-06-27 Matsushita Electric Ind Co Ltd Method of forming insulation film, semiconductor device, and manufacturing method thereof
JP2011233695A (en) * 2010-04-27 2011-11-17 Sharp Corp NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR
JP2012060063A (en) * 2010-09-13 2012-03-22 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2014192493A (en) * 2013-03-28 2014-10-06 Toyoda Gosei Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US10084077B2 (en) Semiconductor device and method of manufacturing semiconductor device
US10074728B2 (en) Semiconductor device
US11594413B2 (en) Semiconductor structure having sets of III-V compound layers and method of forming
US8072002B2 (en) Field effect transistor
US8643025B2 (en) Semiconductor device and method of manufacturing same
US10084052B2 (en) Semiconductor device and method for manufacturing the same
US20090090919A1 (en) Semiconductor device and method of producing the same
WO2009081584A1 (en) Semiconductor device
JPWO2008123352A1 (en) Semiconductor device
JP2017123378A (en) Mosfet
JP2016192460A (en) Semiconductor device and manufacturing method for semiconductor device
JP2017183482A (en) Semiconductor device and semiconductor device manufacturing method
JP2017157589A (en) Semiconductor device and semiconductor device manufacturing method
JP6560117B2 (en) Manufacturing method of semiconductor device
JP2014241350A (en) Field effect transistor and manufacturing method thereof
JP2019134164A (en) Semiconductor device and manufacturing method of semiconductor device
US9570601B2 (en) Semiconductor device and method of manufacturing the same
JP2018200932A (en) Manufacturing method for semiconductor device and semiconductor device
JP7165328B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP6485299B2 (en) Semiconductor device, method for manufacturing the same, and power conversion device
WO2019151277A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2013149959A (en) Nitride-based semiconductor device
JP2021009989A (en) Nitride semiconductor device
JP6270667B2 (en) Semiconductor device and manufacturing method thereof
US20230246086A1 (en) Wide band gap transistor with nanolaminated insulating gate structure and process for manufacturing a wide band gap transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747884

Country of ref document: EP

Kind code of ref document: A1