JP2009302435A - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- JP2009302435A JP2009302435A JP2008157587A JP2008157587A JP2009302435A JP 2009302435 A JP2009302435 A JP 2009302435A JP 2008157587 A JP2008157587 A JP 2008157587A JP 2008157587 A JP2008157587 A JP 2008157587A JP 2009302435 A JP2009302435 A JP 2009302435A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- gate
- film
- dielectric constant
- hfet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 105
- 150000004767 nitrides Chemical class 0.000 claims abstract description 39
- 239000012212 insulator Substances 0.000 claims abstract description 21
- 229910003855 HfAlO Inorganic materials 0.000 claims abstract description 15
- 230000005669 field effect Effects 0.000 claims abstract description 8
- 229910004143 HfON Inorganic materials 0.000 claims abstract description 5
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 11
- 239000010408 film Substances 0.000 description 294
- 239000010410 layer Substances 0.000 description 113
- 230000004888 barrier function Effects 0.000 description 75
- 230000000694 effects Effects 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004549 pulsed laser deposition Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000002109 crystal growth method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/511—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
- H01L29/513—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
本発明は半導体装置に関し、特に、高温・高出力・高耐圧の超高周波化合物半導体電界効果トランジスタに関する。 The present invention relates to a semiconductor device, and more particularly, to an ultrahigh frequency compound semiconductor field effect transistor having high temperature, high output, and high breakdown voltage.
窒化物半導体を用いたヘテロ構造電界効果トランジスタ(Heterostructure Field Effect Transistor:HFET)(たとえばGaN系HFET)は、次世代の高温・高出力・高耐圧の超高周波トランジスタとして非常に有望であり、その実用化に向けて現在盛んに研究が行われている(たとえば下記非特許文献1参照)。
Heterostructure field effect transistors (HFETs) using nitride semiconductors (for example, GaN-based HFETs) are very promising as next-generation high-frequency, high-power, high-voltage ultrahigh-frequency transistors, and their practical use Currently, active research is being conducted toward the realization (see, for example, Non-Patent
しかし、GaN系HFETは、ゲートリーク電流が大きく、これを低減することが重要な課題となっている。この課題を解決するHFET構造として、ゲート電極の下方の障壁層窒化物半導体上に絶縁膜(ゲート絶縁膜)を積層した、いわゆる絶縁ゲート構造(MIS構造:Metal-Insulator-Semiconductor構造)のHFET(MIS構造HFET)が注目されており、MIS構造の採用によって、ゲートリーク電流の低減が可能となるとともに、一般に、ゲート耐圧も増大し、その結果として大きなゲート電圧の印加に際してのデバイス信頼性を向上することが可能となる。
MIS構造HFETのゲート絶縁膜としては、(1)誘電率が高い、(2)絶縁性が高い(バンドギャップが大きい)、また、(3)窒化物半導体と高品質の半導体/絶縁体界面の形成が可能、なる条件を満たす絶縁膜が望ましいが、これらすべての条件を同時に満たす絶縁膜が現在知られていないため、望ましい絶縁膜種や絶縁膜構造に関しての検討が現在進められている。 As the gate insulating film of the MIS structure HFET, (1) the dielectric constant is high, (2) the insulating property is high (the band gap is large), and (3) the nitride semiconductor and the high-quality semiconductor / insulator interface An insulating film that satisfies the conditions that can be formed is desirable, but since an insulating film that satisfies all these conditions is not known at present, studies are being made on desirable insulating film types and insulating film structures.
このような状況の中で、GaN系MIS構造HFETにおいて、ゲートリーク電流をより効果的に低減し、また、大きなゲート電圧の印加に際してのデバイス信頼性の向上も可能とする、MIS構造HFETを実現することが望まれていた。 Under such circumstances, in GaN-based MIS structure HFETs, MIS structure HFETs that reduce gate leakage current more effectively and improve device reliability when applying large gate voltages are realized. It was hoped to do.
本発明は上記の要望に鑑みてなされたものであり、本発明が解決しようとする課題は、窒化物半導体を用いたMIS構造HFETにおいて、ゲートリーク電流をより効果的に低減し、また、大きなゲート電圧の印加に際してのデバイス信頼性の向上も可能とする、MIS構造HFETを実現することである。 The present invention has been made in view of the above-mentioned demands, and the problem to be solved by the present invention is that the gate leakage current is more effectively reduced and the MIS structure HFET using a nitride semiconductor is greatly reduced. An object of the present invention is to realize a MIS structure HFET that can improve device reliability when a gate voltage is applied.
本発明においては、上記課題を解決するために、請求項1に記載のように、
窒化物半導体とゲート電極との間にゲート絶縁膜を有するヘテロ構造電界効果トランジスタである半導体装置において、前記ゲート絶縁膜は、前記窒化物半導体に近い側の第1の絶縁膜と、前記ゲート電極に近い側の第2の絶縁膜とを構成要素とし、前記第1の絶縁膜が、HfO2、HfAlO、HfON、ZrO2を例とする、誘電率が20以上の絶縁物からなる厚さ4nm以上200nm以下の絶縁膜であり、前記第2の絶縁膜が、SiO2またはAl2O3からなる厚さ2nm以上かつ前記第1の絶縁膜の膜厚以下の絶縁膜であることを特徴とする半導体装置を構成する。
In the present invention, in order to solve the above problem, as described in
In the semiconductor device which is a heterostructure field effect transistor having a gate insulating film between a nitride semiconductor and a gate electrode, the gate insulating film includes a first insulating film on a side close to the nitride semiconductor, and the gate electrode The first insulating film is made of an insulator having a dielectric constant of 20 or more, for example, HfO 2 , HfAlO, HfON, ZrO 2. It is an insulating film having a thickness of 200 nm or less, and the second insulating film is an insulating film made of SiO 2 or Al 2 O 3 and having a thickness of 2 nm or more and not more than the thickness of the first insulating film. A semiconductor device is configured.
また、本発明においては、請求項2に記載のように、
請求項1に記載の半導体装置において、前記ゲート絶縁膜は、前記窒化物半導体と前記第1の絶縁膜との間に挿入された第3の絶縁膜を構成要素とし、前記第3の絶縁膜が、Si3N4からなる厚さ0.5nm以上2.0nm以下の薄層であることを特徴とする半導体装置を構成する。
In the present invention, as described in claim 2,
2. The semiconductor device according to
窒化物半導体のヘテロ構造電界効果トランジスタ(Heterostructure Field Effect Transistor:HFET)の一形態である、絶縁ゲート構造のHFET(MIS構造HFET)において、主要なゲート絶縁膜として、高誘電率膜であるHfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物の厚膜が積層され、かつ、前記の高誘電率膜の上に、高障壁を有する(すなわちバンドギャップの大きい)SiO2あるいはAl2O3の薄層膜が積層されていることを特徴とする、2層絶縁ゲート構造を有するMIS構造HFETを構成することによって、ゲートリーク電流をより効果的に低減し、また、大きなゲート電圧の印加に際してのデバイス信頼性の向上も可能とする、MIS構造HFETが実現する。 In an HFET having an insulated gate structure (MIS structure HFET), which is a form of a heterostructure field effect transistor (HFET) of a nitride semiconductor, HfO 2 that is a high dielectric constant film is used as a main gate insulating film. SiO 2 or Al 2 having a high barrier (that is, having a large band gap) on which a thick film of an insulator having a dielectric constant of 20 or more such as HfAlO or ZrO 2 is laminated. By forming a MIS structure HFET having a two-layer insulated gate structure, characterized in that a thin layer film of O 3 is laminated, the gate leakage current can be more effectively reduced and a large gate voltage can be obtained. An MIS structure HFET that can improve device reliability upon application is realized.
また、さらに、上記のMIS構造HFETにおいて、主要なゲート絶縁膜である高誘電率膜(HfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物)と、窒化物半導体との間に、高品質の半導体/絶縁体界面を形成するためのSi3N4の極薄層膜が挿入されていることを特徴とする、3層絶縁ゲート構造を有するMIS構造HFETを用いることによって、ゲートリーク電流をより効果的に低減し、また、大きなゲート電圧の印加に際してのデバイス信頼性の向上も可能とすることに加えて、いわゆる電流コラプス現象(大きな負のゲート電圧や大きなドレイン電圧を印加した際、それらが大きくない場合に比べて、ドレイン電流が大きく低減してしまう、望ましくない現象)をほぼ消失させることを可能とする、MIS構造HFETが実現する。 Furthermore, in the MIS structure HFET, a high dielectric constant film (an insulator having a dielectric constant of 20 or more, such as HfO 2 , HfAlO, or ZrO 2 ), which is a main gate insulating film, and a nitride semiconductor By using a MIS structure HFET having a three-layer insulated gate structure, characterized in that an ultrathin layer film of Si 3 N 4 for forming a high quality semiconductor / insulator interface is inserted In addition to reducing leakage current more effectively and improving device reliability when a large gate voltage is applied, a so-called current collapse phenomenon (a large negative gate voltage or a large drain voltage is applied) It is possible to substantially eliminate the undesirable phenomenon that the drain current is greatly reduced compared to the case where they are not large. IS structure HFET is realized.
本発明においては、窒化物半導体を用いたMIS構造HFETにおいて、窒化物半導体上に、ゲート絶縁膜の主要な構成要素である第1の絶縁膜として、高誘電率膜であるHfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物の厚膜が形成され、かつ、前記第1の絶縁膜の上に、ゲート絶縁膜の構成要素である第2の絶縁膜として、高障壁を有する(すなわちバンドギャップの大きい)SiO2あるいはAl2O3の薄層膜が積層されていることを特徴とする、2層絶縁ゲート構造を有するMIS構造HFETを構成する。 In the present invention, in a MIS structure HFET using a nitride semiconductor, a high dielectric constant film such as HfO 2 , HfAlO, or the like is used as the first insulating film which is a main component of the gate insulating film on the nitride semiconductor. A thick film of an insulator having a dielectric constant of 20 or more such as ZrO 2 is formed, and a high barrier is provided on the first insulating film as a second insulating film that is a component of the gate insulating film A MIS structure HFET having a two-layer insulated gate structure, characterized in that a thin layer film of SiO 2 or Al 2 O 3 (that is, a large band gap) is laminated.
また、さらに、上記のMIS構造HFETにおいて、第1の絶縁膜(HfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物)と窒化物半導体との間に、ゲート絶縁膜の構成要素である第3の絶縁膜として、高品質の半導体/絶縁体界面を形成するための、Si3N4の極薄層膜が挿入されていることを特徴とする、3層絶縁ゲート構造を有するMIS構造HFETを構成する。 Further, in the MIS structure HFET, a component of the gate insulating film is provided between the first insulating film (an insulator having a dielectric constant of 20 or more, such as HfO 2 , HfAlO, or ZrO 2 ) and the nitride semiconductor. As the third insulating film, an Si 3 N 4 ultrathin layer film for forming a high-quality semiconductor / insulator interface is inserted. A MIS structure HFET is formed.
本発明による作用を、図を用いて説明する。 The effect | action by this invention is demonstrated using figures.
図9は、GaN系HFETの層構造および電極配置を模式的に示したものである。図において、障壁層半導体とチャネル層障壁層とからなるる障壁層半導体/チャネル層半導体ヘテロ構造(窒化物半導体1)上に、ソース電極2、ゲート電極3、ドレイン電極4が配置され、電界効果トランジスタが構成されている様子が示されている。 FIG. 9 schematically shows the layer structure and electrode arrangement of a GaN-based HFET. In the figure, a source electrode 2, a gate electrode 3, and a drain electrode 4 are arranged on a barrier layer semiconductor / channel layer semiconductor heterostructure (nitride semiconductor 1) composed of a barrier layer semiconductor and a channel layer barrier layer. A state in which the transistor is configured is shown.
図10は、GaN系MIS構造HFETの層構造および電極配置を模式的に示したものであり、窒化物半導体1の障壁層半導体上に絶縁膜5が積層され、ゲート電極3下の絶縁膜5が、ゲート絶縁膜としての役割を担う様子が示されている。なお、図10においては、ソース・ゲート電極間およびゲート・ドレイン電極間にも、ゲート電極3下と同じ絶縁膜5が積層されているが、前記電極間領域における絶縁膜5は、ゲート絶縁膜としてではなく、表面パッシベーション膜としての役割を担っている。
FIG. 10 schematically shows the layer structure and electrode arrangement of a GaN-based MIS structure HFET. An insulating film 5 is stacked on the barrier layer semiconductor of the
図11は、HFETとMIS構造HFETのゲートリーク電流特性(ゲートリーク電流のゲート電圧依存性)を模式的に示して比較したものであり、MIS構造においては、ゲート電極と障壁層半導体の間に絶縁膜(ゲート絶縁膜)が挿入されている結果、逆方向(負)電圧および正方向(正)電圧のゲートリーク電流が低減するとともに、正方向のゲート耐圧(印加可能なゲート電圧)が増大する様子が示されている。このように、GaN系HFETにおいては、MIS構造を採用することによって、ゲートリーク電流およびゲート耐圧の点で、大きく特性を向上させることが可能となる。 FIG. 11 schematically shows and compares the gate leakage current characteristics (the gate voltage dependency of the gate leakage current) of the HFET and the MIS structure HFET. In the MIS structure, the gate electrode and the barrier layer semiconductor have a comparison. As a result of inserting the insulating film (gate insulating film), the gate leakage current of the reverse direction (negative) voltage and the positive direction (positive) voltage is reduced and the gate breakdown voltage (applicable gate voltage) in the positive direction is increased. The state of doing is shown. Thus, in the GaN-based HFET, by adopting the MIS structure, it is possible to greatly improve the characteristics in terms of gate leakage current and gate breakdown voltage.
表1は、窒化物半導体および絶縁膜のバンドギャップEgおよび誘電率ε(比誘電率)の値を、窒化物半導体GaN、AlN、およびInN、ゲート絶縁膜の侯補である絶縁膜Si3N4、SiO2、Al2O3、ZrO2、HfO2に対して示したものであり、特徴による分類がなされている。最も一般的なゲート絶縁膜は、窒化物半導体との間に高品質の半導体/絶縁体界面が形成可能なSi3N4であるが、バンドギャップが表1の絶縁膜の中で最も小さく(したがって絶縁性が低く)、誘電率も窒化物半導体よりも小さい。また、SiO2およびAl2O3はバンドギャップが大きい絶縁膜、ZrO2およびHfO2は誘電率の高い絶縁膜、という特徴を有する。 Table 1 shows the values of the band gap E g and the dielectric constant ε (relative dielectric constant) of the nitride semiconductor and the insulating film, and the insulating film Si 3 that compensates for the nitride semiconductors GaN, AlN, and InN, and the gate insulating film. These are shown for N 4 , SiO 2 , Al 2 O 3 , ZrO 2 , and HfO 2 , and are classified according to characteristics. The most common gate insulating film is Si 3 N 4 capable of forming a high-quality semiconductor / insulator interface with a nitride semiconductor, but the band gap is the smallest among the insulating films in Table 1 ( Therefore, the insulating property is low) and the dielectric constant is smaller than that of the nitride semiconductor. Further, SiO 2 and Al 2 O 3 are characterized by an insulating film having a large band gap, and ZrO 2 and HfO 2 are characterized by an insulating film having a high dielectric constant.
以下に、本発明において採用された絶縁膜種および絶縁膜構造と、その効果について説明する。 Hereinafter, the insulating film type and insulating film structure employed in the present invention and the effects thereof will be described.
まず、MIS構造において高誘電率絶縁膜を用いることによって可能となる、膜厚の大きい絶縁ゲート膜を有するMIS構造の利点を説明する。 First, an advantage of the MIS structure having an insulating gate film having a large thickness, which is made possible by using a high dielectric constant insulating film in the MIS structure, will be described.
図1は、低誘電率・大バンドギャップ(高障壁)のゲート絶縁膜(誘電率εlow、膜厚dlowk、たとえばSiO2膜)を有するMIS構造HFET(高障壁絶縁膜MIS構造HFET、図1の上部に示す)と、高誘電率・小バンドギャップのゲート絶縁膜(誘電率εhigh、膜厚dhighk、たとえば厚膜HfO2膜)を有するMIS構造HFET(高誘電率膜MIS構造HFET、図1の下部に示す)のポテンシャル形状を模式的に比較したものであり、ここでは、両構造における真性の利得(相互コンダクタンス)が等しいという条件のもとでの比較とするために、両構造の誘電率と膜厚との間には、dlowk/εlow=dhighk/εhighなる関係が成り立っているものとする(ゲート絶縁膜に対応する絶縁膜容量(d/εに反比例)が利得を決定、容量が大きい方が利得大)。 FIG. 1 shows a MIS structure HFET (high barrier insulating film MIS structure HFET) having a low dielectric constant / large band gap (high barrier) gate insulating film (dielectric constant ε low , film thickness d lowk , eg, SiO 2 film). MIS structure HFET (high dielectric constant film MIS structure HFET) having a high dielectric constant and small band gap gate insulating film (dielectric constant ε high , film thickness d highk , for example, thick film HfO 2 film) ) (Shown in the lower part of FIG. 1), and in order to make a comparison under the condition that the intrinsic gain (transconductance) in both structures is equal, between the dielectric constant and thickness of the structure, corresponding to (the gate insulating film is assumed that d lowk / ε low = d highk / ε high the relationship is made up absolute Membrane capacitance (inversely proportional to d / epsilon) is determined gain, high gain better capacity is large).
このように、利得が同じという条件で比較すると、図1に示されているように、高誘電率絶縁膜MIS構造は高障壁絶縁膜MIS構造に比べて、ゲート絶縁膜の障壁層の高さは低くなるものの、ゲート絶縁膜の膜厚は大きくなる(dhighk>dlowk)、というトレードオフ関係が存在する。ゲート絶縁膜の効果、すわなち、ゲートリーク電流の抑制効果およびゲート耐圧の増大効果は、絶縁膜の障壁層が高く膜厚が大きいほど大きくなるので、前述のトレードオフ関係の結果、ゲート絶縁膜の効果の、両MIS構造の真性の絶縁膜物性に依存する相異は、一般に小さくなる。 Thus, when compared under the condition that the gain is the same, as shown in FIG. 1, the high dielectric constant insulating film MIS structure is higher in the height of the barrier layer of the gate insulating film than the high barrier insulating film MIS structure. However, there is a trade-off relationship that the thickness of the gate insulating film is increased (d highk > d lowk ). The effect of the gate insulating film, that is, the effect of suppressing the gate leakage current and the effect of increasing the gate withstand voltage increases as the barrier layer of the insulating film increases and the film thickness increases. The difference in film effects depending on the intrinsic insulating film physical properties of both MIS structures is generally small.
そこで、両MIS構造の優劣を考える際には、真性の絶縁膜物性の相異よりも、窒化物半導体が、現状においては転位や点欠陥などの結晶欠陥を非常に多く含んでいる材料であることを考慮することが重要になってくる。すなわち、窒化物半導体においては、障壁層半導体表面に欠陥が存在する結果、その上に積層する絶縁膜も前記の欠陥の影響を受けることとなり、絶縁膜の膜質は、たとえばSi上のような完全性の高い結晶表面上に積層する場合とは異なってくる。このような状況は、たとえば代表的な窒化物半導体障壁層であるAlGaNにおいて、Al組成が大きくなると、さらに著しくなる。その結果、窒化物半導体上のゲート絶縁膜は、絶縁膜形成の初期において、窒化物半導体上の結晶欠陥の影響を受け、真性の絶縁膜物性が必ずしも反映されない領域が部分的に生じ、このような領域が、ゲートリーク電流の電流リーク経路あるいはゲート耐圧の本来の増大の妨げとなるような状況が生じる。しかし、ゲート絶縁膜の膜厚が小さい時に顕著なこのような状況は、一般に、ゲート絶縁膜の膜厚の増大によって大きく緩和することが可能である。 Therefore, when considering the superiority or inferiority of both MIS structures, nitride semiconductors are materials that contain a large amount of crystal defects such as dislocations and point defects at present, rather than differences in intrinsic insulating film properties. It is important to consider this. In other words, in a nitride semiconductor, defects exist on the surface of the barrier layer semiconductor. As a result, the insulating film laminated thereon is also affected by the defects, and the film quality of the insulating film is, for example, perfect as on Si. This is different from the case of stacking on a highly crystalline surface. Such a situation becomes more remarkable when the Al composition is increased in AlGaN, which is a typical nitride semiconductor barrier layer, for example. As a result, the gate insulating film on the nitride semiconductor is affected by crystal defects on the nitride semiconductor in the initial stage of forming the insulating film, and a region where the intrinsic insulating film properties are not necessarily reflected is partially generated. A situation occurs in which such a region hinders the inherent increase in the current leakage path of the gate leakage current or the gate breakdown voltage. However, such a conspicuous situation when the thickness of the gate insulating film is small can generally be relieved greatly by increasing the thickness of the gate insulating film.
したがって、GaN系MIS構造HFETにおいては、MIS構造において高誘電率絶縁膜を用いることによって可能となる、膜厚の大きい絶縁ゲート膜を有するMIS構造、すなわち、高誘電率絶縁膜MIS構造が、高障壁絶縁膜MIS構造に比べて、大きな優位性を有することになる。 Therefore, in the GaN-based MIS structure HFET, a MIS structure having an insulating gate film with a large thickness, that is, a high dielectric constant insulating film MIS structure, which can be achieved by using a high dielectric constant insulating film in the MIS structure, Compared with the barrier insulating film MIS structure, it has a great advantage.
図2は、図1に示された高障壁絶縁膜MIS構造HFETおよび高誘電率絶縁膜MIS構造HFET(図の下部)の、それぞれ複数のデバイスにおける、ゲートリーク電流特性を模式的に比較したものである。図中、実線と点線に挟まれた領域がばらつきの範囲を示している。 FIG. 2 is a schematic comparison of gate leakage current characteristics in a plurality of devices of the high barrier insulating film MIS structure HFET and the high dielectric constant insulating film MIS structure HFET (lower part of the figure) shown in FIG. It is. In the figure, the region between the solid line and the dotted line indicates the range of variation.
高障壁絶縁膜MIS構造HFETにおいては、絶縁膜の膜厚が小さいために、窒化物半導体の結晶欠陥の影響が露に特性に現れ、ゲート耐圧が本来よりも低下しているデバイスも無視できない割合で存在する(図の上部)のに対して、高誘電率絶縁膜MIS構造HFETにおいては、絶縁膜の膜厚が大きいために、前記のような欠点が大きく緩和され、その結果、デバイスによるゲート耐圧のばらつきが消失し、換言すれば、大きなゲート電圧の印加に際してのデバイス信頼性が向上している様子(図の下部)が示されている。 In the high barrier insulating film MIS structure HFET, since the film thickness of the insulating film is small, the influence of the crystal defects of the nitride semiconductor appears in the characteristics, and the device whose gate withstand voltage is lower than the original cannot be ignored In the high dielectric constant insulating film MIS structure HFET, since the insulating film thickness is large, the above-described drawbacks are greatly relieved. This shows that the variation in breakdown voltage disappears, in other words, the device reliability is improved when a large gate voltage is applied (lower part of the figure).
図3は、本発明による、高誘電率高障壁2層絶縁ゲート構造の層構造を模式的に示したものである。図において、ゲートリーク電流をさらに低減するために、図1における高誘電率絶縁膜MIS構造HFETにおいて、第1の絶縁膜6である高誘電率絶縁膜の一部が、第2の絶縁膜7である膜厚の小さい高障壁絶縁膜で置き換えられた、2層絶縁ゲート構造の層構造が示されている。
FIG. 3 schematically shows a layer structure of a high dielectric constant high barrier two-layer insulated gate structure according to the present invention. In the drawing, in order to further reduce the gate leakage current, in the high dielectric constant insulating film MIS structure HFET in FIG. 1, a part of the high dielectric constant insulating film which is the first insulating
ここで、図3に示された層構造を有するMIS構造HFETにおいては、その真性の利得が、図1における高誘電率絶縁膜MIS構造HFETの真性の利得と等しくなるように、高障壁層絶縁膜(誘電率εlow)の膜厚(dthin)を与えた場合、その下に積層されている、主要なゲート絶縁膜としての高誘電率絶縁膜(誘電率εhigh)の膜厚(dthick)は、
dthick=dhighk− (εhigh/εlow)dthin
なる関係で与えられているものとする。すなわち、前記の関係が成り立つ時には、図3における2層絶縁膜(高障壁絶縁膜(誘電率εlow、膜厚dthin)/高誘電率絶縁膜(誘電率εhigh、膜厚dthick))は、図1における単層の高誘電率絶縁膜(誘電率εhigh、膜厚dhighk)と、絶縁膜容量が等しくなり、MIS構造HFETの真性の利得は等しくなる。
Here, in the MIS structure HFET having the layer structure shown in FIG. 3, the high barrier layer insulation is set so that the intrinsic gain becomes equal to the intrinsic gain of the high dielectric constant insulating film MIS structure HFET in FIG. When the film thickness (d thin ) of the film (dielectric constant ε low ) is given, the film thickness (d of the high dielectric constant insulating film (dielectric constant ε high ) as the main gate insulating film laminated below the film (d thin ) thick ))
d thick = d highk − (ε high / ε low ) d thin
Is given by the relationship. That is, when the above relationship is established, the two-layer insulating film in FIG. 3 (high barrier insulating film (dielectric constant ε low , film thickness d thin ) / high dielectric constant insulating film (dielectric constant ε high , film thickness d thick )) 1 is equal to the single-layer high-dielectric-constant insulating film (dielectric constant ε high , film thickness d highk ) in FIG. 1, and the intrinsic gain of the MIS structure HFET is equal.
また、主要なゲート絶縁膜としての高誘電率絶縁膜(第1の絶縁膜6)を用いることによる、膜厚の条件として、
dthick≧dthin
なる条件が、本発明の特徴となる。この時、
dthin≦{(εlow/(εhigh + εlow)}dhighk
であり、εhigh〜20とすると、高障壁層絶縁膜がSiO2、Al2O3の時、dthinはdhighkのそれぞれ1/6、1/3以下となる。
In addition, as a condition of film thickness by using a high dielectric constant insulating film (first insulating film 6) as a main gate insulating film,
d thick ≧ d thin
This condition is a feature of the present invention. At this time,
d thin ≦ {(ε low / (ε high + ε low )} d highk
Assuming that ε high ˜20, when the high barrier layer insulating film is SiO 2 or Al 2 O 3 , d thin is 1/6 or 1/3 or less of d highk , respectively.
図4は、図3に層構造が示されている本発明による高誘電率高障壁2層ゲート絶縁膜のポテンシャル形状を模式的に示したものであり、主要なゲート絶縁膜である高誘電率絶縁膜の上に、膜厚の小さい高障壁絶縁膜(大バンドギャップ絶縁膜)が積層されている様子が示されている。 FIG. 4 schematically shows the potential shape of the high dielectric constant high barrier two-layer gate insulating film according to the present invention whose layer structure is shown in FIG. 3, and the high dielectric constant which is the main gate insulating film. A state in which a high barrier insulating film (large band gap insulating film) having a small film thickness is stacked on the insulating film is shown.
高誘電率絶縁膜において、窒化物半導体表面の欠陥による絶縁膜の膜質への悪影響を厚膜化により軽減した状況においては、高誘電率絶縁膜の膜厚をさらに増大させるよりも、膜厚が小さくても高障壁絶縁膜を積層することにより、ゲートリーク電流をより有効に低減することが可能となる。これは、高誘電率絶縁膜に残存する、定常状態に近づきつつある不完全な構造の影響が、絶縁膜の2層化により新たに形成される絶縁膜界面の存在、および、より高い障壁層の設置によって、有効に断ち切られるためであると考えられる。 In a high dielectric constant insulating film, in a situation where the adverse effect on the film quality of the insulating film due to defects on the surface of the nitride semiconductor is reduced by increasing the film thickness, the film thickness is larger than increasing the film thickness of the high dielectric constant insulating film. Even if it is small, the gate leakage current can be more effectively reduced by stacking the high barrier insulating film. This is because the influence of the incomplete structure remaining in the high dielectric constant insulating film, which is approaching the steady state, is due to the presence of the insulating film interface newly formed by the two-layered insulating film, and the higher barrier layer. It is thought that it is because it is cut off effectively by the installation of.
図5は、図4に示される、本発明による高誘電率高障壁2層ゲート絶縁膜を用いたMIS構造HFETの構成を模式的に示したものである。図において、窒化物半導体1とゲート電極3との間にゲート絶縁膜を有するヘテロ構造電界効果トランジスタであって、該ゲート絶縁膜は、窒化物半導体1に近い側の第1の絶縁膜6(高誘電率絶縁膜)と、ゲート電極3に近い側の第2の絶縁膜7(高障壁絶縁膜)とを構成要素としていることを特徴とするヘテロ構造電界効果トランジスタが示されている。この場合のゲート絶縁膜は、第1の絶縁膜6と第2の絶縁膜7とを構成要素とする2層ゲート絶縁膜である。
FIG. 5 schematically shows the structure of the MIS structure HFET shown in FIG. 4 using the high dielectric constant high barrier two-layer gate insulating film according to the present invention. In the figure, a heterostructure field effect transistor having a gate insulating film between a
図6は、図5に示された高誘電率高障壁2層ゲート絶縁膜MIS構造HFET(図4にポテンシャル形状を示す)のゲートリーク特性を、単層の高誘電率ゲート絶縁膜MIS構造HFET(図1の下部にポテンシャル形状を示す)のそれと比較して示したものであり、薄層の高障壁絶縁膜(第2の絶縁膜7)を付加した結果、ゲートリーク電流が低減する様子が示されている。これで、本発明による、高誘電率高障壁2層ゲート絶縁膜の作用が示された。 6 shows the gate leakage characteristics of the high dielectric constant high barrier two-layer gate insulating film MIS structure HFET shown in FIG. 5 (the potential shape is shown in FIG. 4), and the single-layer high dielectric constant gate insulating film MIS structure HFET. (The potential shape is shown in the lower part of FIG. 1) Compared to that of FIG. 1, as a result of adding a thin high-barrier insulating film (second insulating film 7), the state in which the gate leakage current is reduced is shown. It is shown. Thus, the operation of the high dielectric constant high barrier two-layer gate insulating film according to the present invention is shown.
図7は、本発明による、高誘電率高障壁3層絶縁ゲート構造の層構造と、これを用いたMIS構造HFETの構成を模式的に示したものである。図において、高品質の半導体/絶縁体界面の形成が可能なSi3N4膜(第3の絶縁膜8)を、窒化物半導体1の薄層障壁層半導体と高誘電率絶縁膜(第1の絶縁膜6)の間に、薄層として挿入した層構造が示されている。すなわち、図7に示された層構造は、図5に示された層構造に、第3の絶縁膜8を付加してなる層構造である。この第3の絶縁膜8もゲート絶縁膜の構成要素となっていて、この場合のゲート絶縁膜は、第1の絶縁膜6と、第2の絶縁膜7と第3の絶縁膜8とを構成要素とする3層ゲート絶縁膜である。ここで、Si3N4膜は、良質な界面の形成のためには、膜厚は非常に小さくても十分であり、また、この時には、Si3N4膜の挿入による利得の低下は無視することができる。
FIG. 7 schematically shows a layer structure of a high dielectric constant, high barrier, three-layer insulated gate structure according to the present invention and a configuration of a MIS structure HFET using the layer structure. In the figure, a Si 3 N 4 film (third insulating film 8) capable of forming a high-quality semiconductor / insulator interface is formed of a thin barrier layer semiconductor of a
図8に、本発明による、極薄膜のSi3N4膜(第3の絶縁膜8)が挿入された高誘電率高障壁3層ゲート絶縁膜のポテンシャル形状を模式的に示した。 FIG. 8 schematically shows a potential shape of a high dielectric constant high barrier three-layer gate insulating film in which an ultra-thin Si 3 N 4 film (third insulating film 8) is inserted according to the present invention.
図7に示される、極薄層のSi3N4膜が挿入された3層ゲート絶縁膜のMIS構造HFETは、ゲートリーク特性およびゲート耐圧のデバイス信頼性においては、図6に示される2層ゲート絶縁膜のMIS構造HFETと全く同じ性能であるが、極薄膜のSi3N4膜が挿入された3層ゲート絶縁膜のMIS構造HFETにおいては、高品質の半導体/絶縁体界面が形成される結果、2層ゲート絶縁膜のMIS構造HFETにおいて有意に観察された、いわゆる電流コラプス現象(大きな負のゲート電圧や大きなドレイン電圧を印加した際、それらが大きくない場合に比べて、ドレイン電流が大きく低減してしまう、望ましくない現象)が低減し、ほぼ消失した。 The MIS structure HFET having a three-layer gate insulating film in which an extremely thin Si 3 N 4 film is inserted as shown in FIG. 7 has two layers as shown in FIG. 6 in terms of gate leakage characteristics and device reliability of gate breakdown voltage. The MIS structure HFET with the gate insulating film has exactly the same performance, but the high-quality semiconductor / insulator interface is formed in the MIS structure HFET with the three-layer gate insulating film in which an extremely thin Si 3 N 4 film is inserted. As a result, a so-called current collapse phenomenon (a large negative gate voltage or a large drain voltage is applied when a large negative gate voltage or a large drain voltage is applied), which is significantly observed in a MIS structure HFET having a two-layer gate insulating film. Undesirable phenomenon that is greatly reduced) has been reduced and almost disappeared.
以上の説明のように、GaN系MIS構造HFETにおいて、主要なゲート絶縁膜として、高誘電率絶縁膜(HfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物)の厚膜が積層され、かつ、前記の高誘電率絶縁膜の上に、高障壁を有する(すなわちバンドギャップの大きい)SiO2あるいはAl2O3の薄層膜が積層されていることを特徴とする、2層絶縁ゲート構造を有するMIS構造HFETを用いることにより、ゲートリーク電流をより効果的に低減し、また、大きなゲート電圧の印加に際してのデバイス信頼性の向上も可能とする、MIS構造HFETを実現することが可能となる。 As described above, in the GaN-based MIS structure HFET, as a main gate insulating film, a thick film of a high dielectric constant insulating film (an insulator having a dielectric constant of 20 or more, such as HfO 2 , HfAlO, or ZrO 2 ) is laminated. And a thin layer film of SiO 2 or Al 2 O 3 having a high barrier (that is, having a large band gap) is laminated on the high dielectric constant insulating film. By using a MIS structure HFET having an insulated gate structure, a gate leakage current can be more effectively reduced, and a device reliability can be improved when a large gate voltage is applied. Is possible.
また、さらに、上記のMIS構造HFETにおいて、主要なゲート絶縁膜である高誘電率膜(HfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物)と、窒化物半導体との間に、高品質の半導体/絶縁体界面を形成するための、Si3N4の極薄層膜が挿入されていることを特徴とする、3層絶縁ゲート構造を有するMIS構造HFETを用いることにより、付加的な効果として、電流コラプス現象を低減し、ほぼ消失させることが可能となる。 Furthermore, in the MIS structure HFET, a high dielectric constant film (an insulator having a dielectric constant of 20 or more, such as HfO 2 , HfAlO, or ZrO 2 ), which is a main gate insulating film, and a nitride semiconductor By using a MIS structure HFET having a three-layer insulated gate structure, in which an ultrathin layer film of Si 3 N 4 is inserted to form a high-quality semiconductor / insulator interface, As an additional effect, the current collapse phenomenon can be reduced and substantially eliminated.
以上で、本発明による作用がすべて示された。 As described above, all the effects of the present invention are shown.
[実施の形態例1]
図5において、障壁層半導体がAlXGa1−XN(0<X≦1)であり、チャネル層半導体がGaNである窒化物半導体1が用いられ、主要なゲート絶縁膜(第1の絶縁膜6)である高誘電率膜としてHfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物が用いられ、高障壁ゲート絶縁膜(第2の絶縁膜7)としてSiO2あるいはAl2O3が用いられる。
[Embodiment 1]
In FIG. 5, a nitride semiconductor 1 in which the barrier layer semiconductor is Al X Ga 1-X N (0 <X ≦ 1) and the channel layer semiconductor is GaN is used, and the main gate insulating film (first insulating film) is used. An insulator having a dielectric constant of 20 or more such as HfO 2 , HfAlO, or ZrO 2 is used as the high dielectric constant film as the film 6), and SiO 2 or Al 2 as the high barrier gate insulating film (second insulating film 7). O 3 is used.
主要なゲート絶縁膜である高誘電率膜(第1の絶縁膜6)のHfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物の膜厚は、4nm以上200nm以下とする。これは、絶縁膜成膜初期に形成された欠陥構造の低減には、4nm以上の膜厚が必要であり、一方、200nmを超える膜厚では、HFETの利得の低下が大きくなり、不都合であるためである。 The film thickness of an insulator having a dielectric constant of 20 or more, such as HfO 2 , HfAlO, or ZrO 2 of the high dielectric constant film (first insulating film 6) which is a main gate insulating film, is 4 nm to 200 nm. This is disadvantageous in that the thickness of 4 nm or more is required to reduce the defect structure formed in the initial stage of the insulating film formation, whereas the film thickness exceeding 200 nm increases the gain of the HFET. Because.
高障壁ゲート絶縁膜(第2の絶縁膜7)であるSiO2あるいはAl2O3の膜厚は、2nm以上かつ前記高誘電率膜(第1の絶縁膜6)の膜厚以下とする。これは、絶縁膜の高障壁の効果を得るためには、2nm以上の膜厚が必要であり、一方、高誘電率絶縁膜の膜厚を超える高障壁層絶縁膜の膜厚は、高誘電率絶縁膜を主要なゲート絶縁膜とする本発明の構造として不要であるためである。 The film thickness of SiO 2 or Al 2 O 3 which is the high barrier gate insulating film (second insulating film 7) is 2 nm or more and not more than the film thickness of the high dielectric constant film (first insulating film 6). In order to obtain the high barrier effect of the insulating film, a film thickness of 2 nm or more is necessary. On the other hand, the film thickness of the high barrier layer insulating film exceeding the film thickness of the high dielectric constant insulating film is high dielectric constant. This is because the structure of the present invention in which the rate insulating film is the main gate insulating film is unnecessary.
障壁層半導体としてAlXGa1−XN(0<X≦1)のAl組成および膜厚、チャネル層半導体としてGaNの膜厚は任意とする。これは、前記の任意の値に対して、本発明の効果が得られるためである。 The Al composition and film thickness of Al X Ga 1-X N (0 <X ≦ 1) as the barrier layer semiconductor and the film thickness of GaN as the channel layer semiconductor are arbitrary. This is because the effect of the present invention can be obtained with respect to the above-mentioned arbitrary value.
本実施の形態例として、図5に示された構造において、障壁層半導体として15nmのAl0.4Ga0.6N、チャネル層半導体として2μmのGaN、なる層構造を、c面サファイア基板あるいはSiC基板上に有機金属気相成長法(MOVPE:Metal Organic Vapor Phase Epitaxy)等の結晶成長法によって成長し、また、高誘電率ゲート絶縁膜として50nmのHfO2膜を、高障壁ゲート絶縁膜として8nmのAl2O3膜を、PLD法(PLD:Pulsed Laser Deposition)等の絶縁膜堆積法によって堆積した構造を用いて、本発明によるHFETを作製したところ、ゲートリーク電流は、−20Vの逆方向電圧にて10−10A/mm台、+5Vの正方向電圧にて1×10−5A/mm以下の非常に低い値が得られた。 As an example of this embodiment, in the structure shown in FIG. 5, a layer structure of 15 nm Al 0.4 Ga 0.6 N as a barrier layer semiconductor and 2 μm GaN as a channel layer semiconductor is used as a c-plane sapphire substrate or It is grown on a SiC substrate by a crystal growth method such as metal organic vapor phase epitaxy (MOVPE), and a 50 nm HfO 2 film is used as a high dielectric gate insulating film as a high barrier gate insulating film. When an HFET according to the present invention was fabricated using a structure in which an 8 nm Al 2 O 3 film was deposited by an insulating film deposition method such as a PLD method (PLD: Pulsed Laser Deposition), the gate leakage current was -20V reverse. A very low value of the order of 10 −10 A / mm in the directional voltage and 1 × 10 −5 A / mm or less was obtained in the positive direction voltage of + 5V.
また、作製した複数のデバイスにおいて、前記のゲートリーク電流特性の均一性が確認され、ゲート耐圧も、+8Vの正方向電圧においても異常な電流リークの発生が確認されたデバイスは存在せず、ゲート耐圧におけるデバイス信頼性の高さが確認された。 In addition, in the manufactured devices, the uniformity of the gate leakage current characteristics was confirmed, and there was no device in which abnormal current leakage was confirmed even when the gate breakdown voltage was +8 V in the positive direction voltage. The high device reliability at the withstand voltage was confirmed.
本実施の形態例においては、障壁層半導体としてAlXGa1−XN(0<X≦1)、チャネル層半導体としてGaNを用いた、AlXGa1−XN/GaNなる障壁層半導体/チャネル層半導体ヘテロ構造を用いたが、障壁層半導体/チャネル層半導体ヘテロ構造が、たとえば、AlXGa1−XN(0<X≦1)/InYGa1−YN(0<Y≦1)、In1−XAlXN(0.63≦X≦1)/GaN、In1−XAlXN(0.63≦X≦1)/InYGa1−YN(0<Y≦1)等のいかなる構造であっても本発明の範囲内とする。 In the embodiment of the present embodiment, Al X Ga 1-X N (0 <X ≦ 1) as a barrier layer semiconductor, using GaN as a channel layer semiconductor, Al X Ga 1-X N / GaN becomes barrier layer semiconductor / Although the channel layer semiconductor heterostructure is used, the barrier layer semiconductor / channel layer semiconductor heterostructure is, for example, Al X Ga 1-X N (0 <X ≦ 1) / In Y Ga 1-Y N (0 <Y ≦ 1), In 1-X Al X N (0.63 ≦ X ≦ 1) / GaN, In 1-X Al X N (0.63 ≦ X ≦ 1) / In Y Ga 1-Y N (0 <Y Any structure such as ≦ 1) is within the scope of the present invention.
また、本実施の形態例においては、高誘電率絶縁膜としてHfO2膜を用いたが、この絶縁膜がZrO2、、HfON、HfAlO等の、誘電率が20以上のいかなる高誘電率絶縁膜であっても本発明の範囲内とする。 In this embodiment, an HfO 2 film is used as the high dielectric constant insulating film. However, this insulating film is made of ZrO 2 , HfON, HfAlO, or any other high dielectric constant insulating film having a dielectric constant of 20 or more. However, it is within the scope of the present invention.
また、本実施の形態例においては、薄膜障壁層半導体/チャネル層半導体ヘテロ構造はすべてのデバイス領域で全く同構造であるが、ソース・ゲート電極間およびゲート・ドレイン電極間の薄膜障壁層半導体/チャネル層半導体ヘテロ構造に対して、ソース抵抗を低減するための、イオン注入が施されている場合も、ゲート電極下の層構造が図5に示された構造であるHFETはすべて本発明の範囲内とする。 In the present embodiment, the thin film barrier layer semiconductor / channel layer semiconductor heterostructure has the same structure in all device regions, but the thin film barrier layer semiconductor / between the source and gate electrodes and between the gate and drain electrodes. Even when the channel layer semiconductor heterostructure is subjected to ion implantation for reducing the source resistance, all the HFETs in which the layer structure under the gate electrode has the structure shown in FIG. 5 are within the scope of the present invention. Within.
また、本実施の形態例においては、障壁層半導体の膜厚はすべてのデバイス領域で全く同じであるが、ソース抵抗を低減するために、ソース・ゲート電極間およびゲート・ドレイン電極間の障壁層半導体の膜厚が、ゲート電極下の障壁層半導体の膜厚よりも大きい、いわゆるリセスゲート構造が採用されている場合も、ゲート電極下の層構造が図5に示された構造であるHFETはすべて本発明の範囲内とする。 In this embodiment, the thickness of the barrier layer semiconductor is exactly the same in all device regions. However, in order to reduce the source resistance, the barrier layer between the source and gate electrodes and between the gate and drain electrodes is used. Even when a so-called recess gate structure is employed in which the thickness of the semiconductor is larger than the thickness of the barrier layer semiconductor under the gate electrode, all the HFETs whose layer structure under the gate electrode is the structure shown in FIG. Within the scope of the present invention.
[実施の形態例2]
図7において、障壁層半導体がAlXGa1−XN(0<X≦1)であり、チャネル層半導体がGaNである窒化物半導体1が用いられ、主要なゲート絶縁膜である高誘電率膜(第1の絶縁膜6)としてHfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物が用いられ、高障壁絶縁膜(第2の絶縁膜7)としてSiO2あるいはAl2O3が、用いられ、障壁層半導体と高誘電率絶縁膜(第1の絶縁膜6)の間に挿入された高品質界面形成絶縁膜(第3の絶縁膜8)としてSi3N4が用いられる。本構造は、実施の形態例1において、障壁層半導体と高誘電率絶縁膜(第1の絶縁膜6)の間に、高品質形成絶縁膜(第3の絶縁膜8)であるSi3N4を挿入した構造である。
[Embodiment 2]
In FIG. 7, a nitride semiconductor 1 in which the barrier layer semiconductor is Al X Ga 1-X N (0 <X ≦ 1), the channel layer semiconductor is GaN, and a high dielectric constant that is a main gate insulating film is used. An insulator having a dielectric constant of 20 or more such as HfO 2 , HfAlO or ZrO 2 is used as the film (first insulating film 6), and SiO 2 or Al 2 O as the high barrier insulating film (second insulating film 7). 3 is used, and Si 3 N 4 is used as the high-quality interface forming insulating film (third insulating film 8) inserted between the barrier layer semiconductor and the high dielectric constant insulating film (first insulating film 6). It is done. This structure is Si 3 N which is a high quality formation insulating film (third insulating film 8) between the barrier layer semiconductor and the high dielectric constant insulating film (first insulating film 6) in the first embodiment. 4 is inserted.
主要なゲート絶縁膜である高誘電率膜(第1の絶縁膜6)のHfO2、HfAlOあるいはZrO2など、誘電率が20以上の絶縁物の膜厚は、4nm以上200nm以下とする。これは、絶縁膜成膜初期に形成された欠陥構造の低減には、4nm以上の膜厚が必要であり、一方、200nmを超える膜厚では、HFETの利得の低下が大きくなり、不都合であるためである。 The film thickness of an insulator having a dielectric constant of 20 or more, such as HfO 2 , HfAlO, or ZrO 2 of the high dielectric constant film (first insulating film 6) which is a main gate insulating film, is 4 nm to 200 nm. This is disadvantageous in that the thickness of 4 nm or more is required to reduce the defect structure formed in the initial stage of the insulating film formation, whereas the film thickness exceeding 200 nm increases the gain of the HFET. Because.
高障壁ゲート絶縁膜(第2の絶縁膜7)であるSiO2あるいはAl2O3の膜厚は、2nm以上かつ前記高誘電率膜(第1の絶縁膜6)の膜厚以下とする。これは、絶縁膜の高障壁の効果を得るためには、2nm以上の膜厚が必要であり、一方、高誘電率絶縁膜の膜厚を超える高障壁層絶縁膜の膜厚は、高誘電率絶縁膜を主要なゲート絶縁膜とする本発明の構造として不要であるためである。 The film thickness of SiO 2 or Al 2 O 3 which is the high barrier gate insulating film (second insulating film 7) is 2 nm or more and not more than the film thickness of the high dielectric constant film (first insulating film 6). In order to obtain the high barrier effect of the insulating film, a film thickness of 2 nm or more is necessary. On the other hand, the film thickness of the high barrier layer insulating film exceeding the film thickness of the high dielectric constant insulating film is high dielectric constant. This is because the structure of the present invention in which the rate insulating film is the main gate insulating film is unnecessary.
高品質界面形成絶縁膜(第3の絶縁膜8)であるSi3N4の膜厚は、0.5nm以上2.0nm以下とする。これは、高品質の半導体/絶縁膜界面の形成には、0.5nm以上の膜厚が必要であり、一方、2.0nmを超える膜厚とすると、ゲート容量の減少によってHFETの利得が有意に低下してしまうためである。 The film thickness of Si 3 N 4 which is a high quality interface forming insulating film (third insulating film 8) is 0.5 nm or more and 2.0 nm or less. This is because the formation of a high-quality semiconductor / insulating film interface requires a film thickness of 0.5 nm or more. On the other hand, if the film thickness exceeds 2.0 nm, the gain of the HFET is significant due to a decrease in gate capacitance. It is because it will fall.
障壁層半導体としてAlXGa1−XN(0<X≦1)のAl組成および膜厚、チャネル層半導体としてGaNの膜厚は任意とする。これは、前記の任意の値に対して、本発明の効果が得られるためである。 The Al composition and film thickness of Al X Ga 1-X N (0 <X ≦ 1) as the barrier layer semiconductor and the film thickness of GaN as the channel layer semiconductor are arbitrary. This is because the effect of the present invention can be obtained with respect to the above-mentioned arbitrary value.
本実施の形態例として、図7に示された構造において、障壁層半導体として15nmのAl0.4Ga0.6N、チャネル層として2μmのGaN、なる層構造を、c面サファイア基板あるいはSiC基板上に有機金属気相成長法(MOVPE:Metal Organic Vapor Phase Epitaxy)等の結晶成長法によって成長し、また、1.0nmのSi3N4膜をECR(Electron Cyclotron Resonance)スパッタ法等の絶縁膜堆積法によって堆積し、さらに、高誘電率ゲート絶縁膜として50nmのHfO2膜を、高障壁ゲート絶縁膜として8nmのAl2O3膜を、PLD法(PLD:Pulsed Laser Deposition)等の絶縁膜堆積法によって堆積した構造を用いて、本発明によるHFETを作製したところ、ゲートリーク電流は、−20Vの逆方向電圧にて10−10A/mm台、+5Vの正方向電圧にて1×10−5A/mm以下の非常に低い値が得られた。 As an example of this embodiment, in the structure shown in FIG. 7, a layer structure comprising 15 nm Al 0.4 Ga 0.6 N as a barrier layer semiconductor and 2 μm GaN as a channel layer is formed as a c-plane sapphire substrate or SiC. It is grown on a substrate by a crystal growth method such as metal organic vapor phase epitaxy (MOVPE), and a 1.0 nm Si 3 N 4 film is insulated by an ECR (Electron Cyclotron Resonance) sputtering method or the like. In addition, a 50 nm HfO 2 film is used as a high dielectric constant gate insulating film, an 8 nm Al 2 O 3 film is used as a high barrier gate insulating film, and insulation such as PLD (Pulsed Laser Deposition) is used. When an HFET according to the present invention was fabricated using a structure deposited by a film deposition method, the gate leakage current was 10 −10 A / min at a reverse voltage of −20 V. A very low value of 1 × 10 −5 A / mm or less was obtained at a positive voltage of + 5V in the mm range.
また、作製した複数のデバイスにおいて、前記のゲートリーク電流特性の均一性が確認され、ゲート耐圧も、+8Vの正方向電圧においても異常な電流リークの発生が確認されたデバイスは存在せず、ゲート耐圧におけるデバイス信頼性の高さが確認された。 In addition, in the manufactured devices, the uniformity of the gate leakage current characteristics was confirmed, and there was no device in which abnormal current leakage was confirmed even when the gate breakdown voltage was +8 V in the positive direction voltage. The high device reliability at the withstand voltage was confirmed.
さらに、ドレイン電流を、−10Vのゲートストレス印加の前後で測定したところ、ストレス前後でのドレイン電流は一致し、電流コラプス現象が無視できることが確認された。この点は、実施の形態例1においては、前記のストレス後に、ドレイン電流が約10%減少してしまう程度の電流コラプス現象が観測された状況との相異点である。このように、実施の形態例2は、実施の形態例1よりもデバイスの作製プロセスがより複雑になるという欠点を有するが、電流コラプス現象がほぼ消失するという利点を有する。 Furthermore, when the drain current was measured before and after applying the gate stress of −10 V, it was confirmed that the drain current before and after the stress coincided and the current collapse phenomenon can be ignored. This point is different from the situation in which the current collapse phenomenon in which the drain current is reduced by about 10% after the stress is observed in the first embodiment. As described above, the second embodiment has the disadvantage that the device manufacturing process becomes more complicated than the first embodiment, but has the advantage that the current collapse phenomenon is almost eliminated.
本実施の形態例においては、障壁層半導体としてAlXGa1−XN(0<X≦1)、チャネル層半導体としてGaNを用いた、AlXGa1−XN/GaNなる障壁層半導体/チャネル層半導体ヘテロ構造を用いたが、障壁層半導体/チャネル層半導体ヘテロ構造が、たとえば、AlXGa1−XN(0<X≦1)/InYGa1−YN(0<Y≦1)、In1−XAlXN(0.63≦X≦1)/GaN、In1−XAlXN(0.63≦X≦1)/InYGa1−YN(0<Y≦1)等のいかなる構造であっても本発明の範囲内とする。 In the embodiment of the present embodiment, Al X Ga 1-X N (0 <X ≦ 1) as a barrier layer semiconductor, using GaN as a channel layer semiconductor, Al X Ga 1-X N / GaN becomes barrier layer semiconductor / Although the channel layer semiconductor heterostructure is used, the barrier layer semiconductor / channel layer semiconductor heterostructure is, for example, Al X Ga 1-X N (0 <X ≦ 1) / In Y Ga 1-Y N (0 <Y ≦ 1), In 1-X Al X N (0.63 ≦ X ≦ 1) / GaN, In 1-X Al X N (0.63 ≦ X ≦ 1) / In Y Ga 1-Y N (0 <Y Any structure such as ≦ 1) is within the scope of the present invention.
また、本実施の形態例においては、高誘電率絶縁膜としてHfO2膜を用いたが、絶縁膜がZrO2、HfON、HfAlO等の、誘電率が20以上のいかなる高誘電率絶縁膜であっても本発明の範囲内とする。 In this embodiment, an HfO 2 film is used as the high dielectric constant insulating film. However, the insulating film is any high dielectric constant insulating film having a dielectric constant of 20 or more, such as ZrO 2 , HfON, HfAlO, or the like. However, it is within the scope of the present invention.
また、本実施の形態例においては、薄膜障壁層半導体/チャネル層半導体ヘテロ構造はすべてのデバイス領域で全く同構造であるが、ソース・ゲート電極間およびゲート・ドレイン電極間の薄膜障壁層半導体/チャネル層半導体ヘテロ構造に対して、ソース抵抗を低減するための、イオン注入が施されている場合も、ゲート電極下の層構造が図7に示された構造であるHFETはすべて本発明の範囲内とする。 In the present embodiment, the thin film barrier layer semiconductor / channel layer semiconductor heterostructure has the same structure in all device regions, but the thin film barrier layer semiconductor / between the source and gate electrodes and between the gate and drain electrodes. Even when the channel layer semiconductor heterostructure is subjected to ion implantation for reducing the source resistance, all the HFETs having the layer structure under the gate electrode shown in FIG. 7 are within the scope of the present invention. Within.
また、本実施の形態例においては、障壁層半導体の膜厚はすべてのデバイス領域で全く同じであるが、ソース抵抗を低減するために、ソース・ゲート電極間およびゲート・ドレイン電極間の障壁層半導体の膜厚が、ゲート電極下の障壁層半導体の膜厚よりも大きい、いわゆるリセスゲート構造が採用されている場合も、ゲート電極下の層構造が図7に示された構造であるHFETはすべて本発明の範囲内とする。 In this embodiment, the thickness of the barrier layer semiconductor is exactly the same in all device regions. However, in order to reduce the source resistance, the barrier layer between the source and gate electrodes and between the gate and drain electrodes is used. Even when a so-called recessed gate structure is employed in which the thickness of the semiconductor is larger than the thickness of the barrier layer semiconductor under the gate electrode, all the HFETs whose layer structure under the gate electrode has the structure shown in FIG. Within the scope of the present invention.
1:窒化物半導体、2:ソース電極、3:ゲート電極、4:ドレイン電極、5:絶縁膜、6:第1の絶縁膜、7:第2の絶縁膜、8:第3の絶縁膜。 1: nitride semiconductor, 2: source electrode, 3: gate electrode, 4: drain electrode, 5: insulating film, 6: first insulating film, 7: second insulating film, 8: third insulating film.
Claims (2)
前記ゲート絶縁膜は、前記窒化物半導体に近い側の第1の絶縁膜と、前記ゲート電極に近い側の第2の絶縁膜とを構成要素とし、
前記第1の絶縁膜が、HfO2、HfAlO、HfON、ZrO2を例とする、誘電率が20以上の絶縁物からなる厚さ4nm以上200nm以下の絶縁膜であり、
前記第2の絶縁膜が、SiO2またはAl2O3からなる厚さ2nm以上かつ前記第1の絶縁膜の膜厚以下の絶縁膜であることを特徴とする半導体装置。 In a semiconductor device which is a heterostructure field effect transistor having a gate insulating film between a nitride semiconductor and a gate electrode,
The gate insulating film is composed of a first insulating film on the side close to the nitride semiconductor and a second insulating film on the side close to the gate electrode,
The first insulating film is an insulating film having a thickness of 4 nm to 200 nm made of an insulator having a dielectric constant of 20 or more, such as HfO 2 , HfAlO, HfON, ZrO 2 ,
The semiconductor device, wherein the second insulating film is an insulating film made of SiO 2 or Al 2 O 3 and having a thickness of 2 nm or more and not more than the thickness of the first insulating film.
前記ゲート絶縁膜は、前記窒化物半導体と前記第1の絶縁膜との間に挿入された第3の絶縁膜を構成要素とし、
前記第3の絶縁膜が、Si3N4からなる厚さ0.5nm以上2.0nm以下の薄層であることを特徴とする半導体装置。 The semiconductor device according to claim 1,
The gate insulating film includes a third insulating film inserted between the nitride semiconductor and the first insulating film as a component,
The semiconductor device, wherein the third insulating film is a thin layer made of Si 3 N 4 and having a thickness of 0.5 nm to 2.0 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008157587A JP5301208B2 (en) | 2008-06-17 | 2008-06-17 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008157587A JP5301208B2 (en) | 2008-06-17 | 2008-06-17 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009302435A true JP2009302435A (en) | 2009-12-24 |
JP5301208B2 JP5301208B2 (en) | 2013-09-25 |
Family
ID=41549002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008157587A Expired - Fee Related JP5301208B2 (en) | 2008-06-17 | 2008-06-17 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5301208B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011108615A1 (en) * | 2010-03-02 | 2011-09-09 | 次世代パワーデバイス技術研究組合 | Semiconductor transistor |
JP2011233695A (en) * | 2010-04-27 | 2011-11-17 | Sharp Corp | NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR |
JP2013041969A (en) * | 2011-08-15 | 2013-02-28 | Advantest Corp | Semiconductor device, method for manufacturing the same, and testing apparatus |
WO2013073315A1 (en) * | 2011-11-14 | 2013-05-23 | シャープ株式会社 | Field-effect transistor and method of manufacturing thereof |
EP2600404A2 (en) * | 2011-12-01 | 2013-06-05 | Power Integrations, Inc. | GaN high voltage HFET with passivation plus gate dielectric multilayer structure |
JP2014183125A (en) * | 2013-03-18 | 2014-09-29 | Fujitsu Ltd | Semiconductor device |
CN104425620A (en) * | 2013-09-03 | 2015-03-18 | 三星电子株式会社 | Semiconductor device and method of fabricating the same |
US9508822B2 (en) | 2013-03-28 | 2016-11-29 | Toyoda Gosei Co., Ltd. | Semiconductor device |
JP2016539496A (en) * | 2013-10-15 | 2016-12-15 | 蘇州晶湛半導体有限公司Enkris Semiconductor,Inc. | Group III nitride semiconductor device and manufacturing method thereof |
US10084052B2 (en) | 2014-09-29 | 2018-09-25 | Denso Corporation | Semiconductor device and method for manufacturing the same |
CN109659361A (en) * | 2017-10-12 | 2019-04-19 | 电力集成公司 | Grid pile stack for heterojunction device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108321198B (en) | 2017-01-17 | 2021-06-08 | 株式会社东芝 | Semiconductor device, power supply circuit, computer, and method for manufacturing semiconductor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002324813A (en) * | 2001-02-21 | 2002-11-08 | Nippon Telegr & Teleph Corp <Ntt> | Heterostructure field-effect transistor |
JP2004039728A (en) * | 2002-07-01 | 2004-02-05 | Toshiba Corp | Semiconductor device and its manufacturing method |
JP2006173294A (en) * | 2004-12-15 | 2006-06-29 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device |
JP2006222414A (en) * | 2005-01-14 | 2006-08-24 | Matsushita Electric Ind Co Ltd | Semiconductor apparatus |
-
2008
- 2008-06-17 JP JP2008157587A patent/JP5301208B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002324813A (en) * | 2001-02-21 | 2002-11-08 | Nippon Telegr & Teleph Corp <Ntt> | Heterostructure field-effect transistor |
JP2004039728A (en) * | 2002-07-01 | 2004-02-05 | Toshiba Corp | Semiconductor device and its manufacturing method |
JP2006173294A (en) * | 2004-12-15 | 2006-06-29 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device |
JP2006222414A (en) * | 2005-01-14 | 2006-08-24 | Matsushita Electric Ind Co Ltd | Semiconductor apparatus |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011108615A1 (en) * | 2010-03-02 | 2011-09-09 | 次世代パワーデバイス技術研究組合 | Semiconductor transistor |
JP2011181752A (en) * | 2010-03-02 | 2011-09-15 | Advanced Power Device Research Association | Semiconductor transistor |
CN102792449A (en) * | 2010-03-02 | 2012-11-21 | 先进动力设备技术研究协会 | Semiconductor transistor |
EP2544240A1 (en) * | 2010-03-02 | 2013-01-09 | Advanced Power Device Research Association | Semiconductor transistor |
US9875899B2 (en) | 2010-03-02 | 2018-01-23 | Fuji Electric Co., Ltd. | Semiconductor transistor |
EP2544240A4 (en) * | 2010-03-02 | 2013-08-28 | Advanced Power Device Res Ass | Semiconductor transistor |
JP2011233695A (en) * | 2010-04-27 | 2011-11-17 | Sharp Corp | NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR |
JP2013041969A (en) * | 2011-08-15 | 2013-02-28 | Advantest Corp | Semiconductor device, method for manufacturing the same, and testing apparatus |
WO2013073315A1 (en) * | 2011-11-14 | 2013-05-23 | シャープ株式会社 | Field-effect transistor and method of manufacturing thereof |
JP2013105863A (en) * | 2011-11-14 | 2013-05-30 | Sharp Corp | Field-effect transistor and method of manufacturing the same |
US9343541B2 (en) | 2011-12-01 | 2016-05-17 | Power Integrations, Inc. | Method of fabricating GaN high voltage HFET with passivation plus gate dielectric multilayer structure |
EP2600404A2 (en) * | 2011-12-01 | 2013-06-05 | Power Integrations, Inc. | GaN high voltage HFET with passivation plus gate dielectric multilayer structure |
JP2014183125A (en) * | 2013-03-18 | 2014-09-29 | Fujitsu Ltd | Semiconductor device |
US10074728B2 (en) | 2013-03-28 | 2018-09-11 | Toyoda Gosei Co., Ltd. | Semiconductor device |
US9508822B2 (en) | 2013-03-28 | 2016-11-29 | Toyoda Gosei Co., Ltd. | Semiconductor device |
EP2843706A3 (en) * | 2013-09-03 | 2016-02-24 | Samsung Electronics Co., Ltd | Semiconductor device and method of fabricating the same |
US9929239B2 (en) | 2013-09-03 | 2018-03-27 | Samsung Electronics Co., Ltd. | Semiconductor device and method of fabricating the same |
CN104425620A (en) * | 2013-09-03 | 2015-03-18 | 三星电子株式会社 | Semiconductor device and method of fabricating the same |
US9306008B2 (en) | 2013-09-03 | 2016-04-05 | Samsung Electronics Co., Ltd. | Semiconductor device and method of fabricating the same |
US10516042B2 (en) | 2013-10-15 | 2019-12-24 | Enkris Semiconductor, Inc. | III group nitride semiconductor device and manufacturing method thereof |
JP2016539496A (en) * | 2013-10-15 | 2016-12-15 | 蘇州晶湛半導体有限公司Enkris Semiconductor,Inc. | Group III nitride semiconductor device and manufacturing method thereof |
KR101902663B1 (en) * | 2013-10-15 | 2018-09-28 | 엔크리스 세미컨덕터, 아이엔씨. | Group-ⅲ nitride semiconductor device and manufacturing method therefor |
US10084052B2 (en) | 2014-09-29 | 2018-09-25 | Denso Corporation | Semiconductor device and method for manufacturing the same |
CN109659361A (en) * | 2017-10-12 | 2019-04-19 | 电力集成公司 | Grid pile stack for heterojunction device |
EP3480854A3 (en) * | 2017-10-12 | 2019-08-14 | Power Integrations, Inc. | Gate stack for heterostructure device |
JP2019075558A (en) * | 2017-10-12 | 2019-05-16 | パワー・インテグレーションズ・インコーポレーテッド | Gate stack for heterostructure device |
US11114539B2 (en) | 2017-10-12 | 2021-09-07 | Power Integrations, Inc. | Gate stack for heterostructure device |
CN109659361B (en) * | 2017-10-12 | 2022-03-04 | 电力集成公司 | Gate stack for heterojunction devices |
JP7330605B2 (en) | 2017-10-12 | 2023-08-22 | パワー・インテグレーションズ・インコーポレーテッド | Gate stack for heterostructure devices |
TWI835753B (en) * | 2017-10-12 | 2024-03-21 | 美商電源整合公司 | Heterostructure semiconductor device and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
JP5301208B2 (en) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5301208B2 (en) | Semiconductor device | |
US11594413B2 (en) | Semiconductor structure having sets of III-V compound layers and method of forming | |
JP5608238B2 (en) | Semiconductor structure | |
CN103545361B (en) | Compound semiconductor device and manufacture method, supply unit and high frequency amplifier | |
US8338862B2 (en) | Semiconductor device | |
US8729604B2 (en) | Compound semiconductor device, method for manufacturing the device and electric device | |
JP6591169B2 (en) | Semiconductor device and manufacturing method thereof | |
JPWO2006132418A1 (en) | Field effect transistor | |
JP2008270521A (en) | Field-effect transistor | |
JP2013207274A (en) | Semiconductor device and semiconductor device manufacturing method | |
JP2010232377A (en) | Semiconductor device | |
US11594625B2 (en) | III-N transistor structures with stepped cap layers | |
US10243049B2 (en) | Nitride semiconductor device | |
WO2017002317A1 (en) | Semiconductor device substrate, semiconductor device, and method for manufacturing semiconductor device | |
JP6966689B2 (en) | Nitride semiconductor device and its manufacturing method | |
JP6604036B2 (en) | Compound semiconductor device and manufacturing method thereof | |
JP2007250950A (en) | Heterostructure field effect transistor using nitride semiconductor | |
JP2005086102A (en) | Field effect transistor and method of manufacturing field effect transistor | |
JP2010206125A (en) | Gallium nitride-based high electron mobility transistor | |
US12068410B2 (en) | Semiconductor power device | |
JP6687831B2 (en) | Compound semiconductor device and manufacturing method thereof | |
JP2012049170A (en) | Nitride semiconductor device | |
JP2008288405A (en) | Hetero structure field effect transistor | |
JP2012004178A (en) | Field effect transistor | |
JP2016181570A (en) | Semiconductor device and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100721 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120530 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5301208 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |