JP2011204125A - 状況予測装置及び経路生成装置 - Google Patents
状況予測装置及び経路生成装置 Download PDFInfo
- Publication number
- JP2011204125A JP2011204125A JP2010072540A JP2010072540A JP2011204125A JP 2011204125 A JP2011204125 A JP 2011204125A JP 2010072540 A JP2010072540 A JP 2010072540A JP 2010072540 A JP2010072540 A JP 2010072540A JP 2011204125 A JP2011204125 A JP 2011204125A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- information
- road
- situation
- risk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
【課題】車両の走行の妨げとなる状況を早い段階から予測することができる状況予測装置及び経路生成装置を提供する。
【解決手段】車両100の走行の妨げとなる状況を予測する状況予測装置1であって、車両100の周囲の道路情報を取得する道路情報取得部30と、車両100の周囲に存在する大型車両200の車両情報を取得する車両情報取得部31と、道路情報及び車両情報に基づいて、車両100の走行の妨げとなる障害物の存在を予測する状況予測部33と、を備えて構成することで、例えば急カーブ時における積載物の落下や車線のはみ出し等、車両100の走行の妨げとなる障害物が突発的に現れる状況を予め予測することができる。
【選択図】図2
【解決手段】車両100の走行の妨げとなる状況を予測する状況予測装置1であって、車両100の周囲の道路情報を取得する道路情報取得部30と、車両100の周囲に存在する大型車両200の車両情報を取得する車両情報取得部31と、道路情報及び車両情報に基づいて、車両100の走行の妨げとなる障害物の存在を予測する状況予測部33と、を備えて構成することで、例えば急カーブ時における積載物の落下や車線のはみ出し等、車両100の走行の妨げとなる障害物が突発的に現れる状況を予め予測することができる。
【選択図】図2
Description
本発明は、状況予測装置及び経路生成装置に関するものである。
従来、状況を予測する装置として、走行の妨げとなる障害物の存在を予測するものが知られている(例えば、特許文献1参照)。特許文献1記載の装置は、カメラやレーダの出力結果に基づいて周囲車両の積載物の固定が十分であるか否かを検出し、積載物の固定が不安定である場合には、積載物の落下を予測して車間距離を長く確保する等の回避策を実行するものである。
しかしながら、従来の状況予測装置にあっては、カメラやレーダの出力結果に基づいて積載物の固定状況の観測のみから積載物の落下を予測するため、積載物落下直前にならないと積載物の落下を予測することができない場合がある。例えば、実環境においては、カーブ等を走行する際に車両に急激な負荷が加わり、積載物の固定状態が急激に悪化する場合がある。
そこで、本発明はこのような技術課題を解決するためになされたものであって、車両の走行の妨げとなる状況を早い段階から予測することができる状況予測装置及び経路生成装置を提供することを目的とする。
すなわち、本発明に係る状況予測装置は、車両の走行の妨げとなる状況を予測する状況予測装置であって、前記車両の周囲の道路情報を取得する道路情報取得手段と、前記車両の周囲に存在する周囲車両の車両情報を取得する車両情報取得手段と、前記道路情報及び前記車両情報に基づいて、前記車両の走行の妨げとなる障害物の存在を予測する予測手段と、を備えて構成される。
本発明に係る状況予測装置では、道路情報取得手段により、車両の周囲の道路情報が取得され、車両情報取得手段により、周囲車両の車両情報が取得され、予測手段により、道路情報及び車両情報に基づいて、車両の走行の妨げとなる障害物の存在が予測される。このように、道路情報及び周囲車両の車両情報を用いることで、例えば急カーブ時における積載物の落下や車線のはみ出し等、車両の走行の妨げとなる障害物が突発的に現れる状況を予め予測することができる。よって、走行の妨げとなる状況を早い段階から予測することが可能となる。
ここで、前記予測手段は、前記道路情報及び前記車両情報に基づいて、前記周囲車両が前記車両の走行車線へ進入すること、又は前記周囲車両が前記車両に接近することを予測することが好適である。このように構成することで、周囲車両が車両の走行の妨げになる状況を早い段階から予測することができる。
また、前記予測手段は、前記車両情報として、前記周囲車両の大きさ又は形状を用いてもよい。また、前記予測手段は、前記車両情報として、前記周囲車両の走行軌跡に関する情報を用いてもよい。さらに、前記予測手段は、前記車両情報として、前記周囲車両の積載物情報を用いてもよい。
また、気象情報を取得する気象情報取得手段を備え、前記予測手段は、前記道路情報、前記車両情報及び前記気象情報に基づいて、前記車両の走行の妨げとなる障害物の存在を予測するとともに、前記道路情報として、経路に存在する遮蔽物の情報を用いることが好適である。このように構成することで、例えば防風用の遮蔽物が存在しないことに起因して発生する状況を予測することができる。よって、車両の走行の妨げとなる状況を早い段階から精度よく予測することが可能となる。
また、本発明に係る経路生成装置は、上記の状況予測装置を有する経路生成装置であって、前記状況予測装置により予測された前記障害物の存在に基づいて前記車両の走行経路を生成する経路生成手段を備えて構成される。このように構成することで、車両の走行の妨げとなる状況を早い段階から予測して回避することができる。
本発明によれば、車両の走行の妨げとなる状況を早い段階から予測することができる。
以下、添付図面を参照して本発明の実施形態について説明する。なお、各図において同一又は相当部分には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
本実施形態に係る状況予測装置及び経路生成装置は、例えば、障害物を検出して警報を出力する警報装置又は検出された障害物を回避するように運転支援もしくは車両制御を行う運転支援装置等を備える車両に好適に採用されるものである。
本実施形態に係る状況予測装置及び経路生成装置は、例えば、障害物を検出して警報を出力する警報装置又は検出された障害物を回避するように運転支援もしくは車両制御を行う運転支援装置等を備える車両に好適に採用されるものである。
最初に、本実施形態に係る状況予測装置及び経路生成装置を備える車両の概要から説明する。図1は、本実施形態に係る状況予測装置及び経路生成装置を備える車両100の構成概要図、図2は、本実施形態に係る状況予測装置1及び経路生成装置10を備える車両100の構成概要を示すブロック図である。
図1,2に示すように、車両100は、周辺監視用センサ11、路車間/車車間通信機12、GPS(Global Positioning System)受信機14、地図情報記憶部15、ナビゲーションECU(Electronic Control Unit)16、ヨー/Gセンサ17、速度センサ18、車両制御ECU19、ブレーキアクチュエータ21、ステアリングアクチュエータ22及びエンジン制御ECU23を含んで構成されている。ECUは、電子制御する自動車デバイスのコンピュータであり、CPU(Central Processing Unit)、ROM(Read Only Memory)やRAM(Random Access Memory)等のメモリ、及び入出力インターフェイスなどを備えて構成されている。
周辺監視用センサ11は、例えば車両100の前部、側部及び後部に配置されており、車両100周囲の物体検出や物体認識を行う機能を有している。周辺監視用センサ11は、例えば車両100の周囲に存在する周囲車両の大きさ、種類、形状、搭載物、速度、位置、操舵状態等の情報を取得する機能を有している。また、周辺監視用センサ11は、例えば車両100の走行道路に存在するガードレール、白線、遮蔽板(遮蔽物)等の情報を取得する機能を有している。周辺監視用センサ11として、例えば画像センサやミリ波レーダ等が用いられる。また、周辺監視用センサ11は、取得した車両周囲の物体に関する情報を車両制御ECU19へ出力する機能を有している。
路車間/車車間通信機12は、路車間通信により、例えば道路に設置された光ビーコンから気象情報、交通情報等を取得する機能を有している。また、路車間/車車間通信機12は、車車間通信により、例えば他車両の諸元情報、搭載物(積載物情報)、速度、位置、操舵情報、内輪差、経路情報(走行軌跡情報)、行動パターン、運転特性等を取得する機能を有している。また、路車間/車車間通信機12は、取得した情報を車両制御ECU19へ出力する機能を有している。
GPS受信機14は、GPS衛星から衛星の軌道と時刻のデータを含む電波信号を受信する機能を有している。GPS受信機14は、受信した電波信号をナビゲーションECU16に出力する機能を有している。地図情報記憶部15には、道路に関する情報が格納されている。道路に関する情報としては、例えば、道路曲率情報(曲率半径)、勾配情報、防風・防音用の遮蔽板の設置状況等が用いられる。
ナビゲーションECU16は、GPS受信機14から出力された電波信号を演算して、車両100の現在位置を定期的に特定する機能を有している。そして、ナビゲーションECU16は、地図情報記憶部15から道路地図に関する情報を適時読み出して、車両100の現在位置情報及び道路地図に関する情報を車両制御ECU19に出力する機能を有している。さらに、車両の走行経路(走行軌跡)を算出して車両制御ECU19に出力する機能を有している。
ヨー/Gセンサ17は、走行方向において左右方向の加速度、走行方向において前後方向の加速度を検知する機能及びヨーレートを検出する機能を有している。ヨー/Gセンサ17は、検出した各加速度情報等を車両制御ECU19に出力する機能を有している。また、速度センサ18は、車両100の速度を検出する機能を有している。速度センサ18は、検出した速度、加速度情報等を車両制御ECU19に送出する機能を有している。
車両制御ECU19は、道路情報取得部(道路情報取得手段)30、車両情報取得部(車両情報取得手段)31、状況予測部(予測手段)33及び経路生成部(経路生成手段)34を備えている。
道路情報取得部30は、例えば周辺監視用センサ11により出力された走行路の物体情報に基づいて、周囲の道路情報を取得する機能を有している。あるいは、道路情報取得部30は、路車間/車車間通信機12により出力された周囲の道路情報を取得する機能を有していてもよい。さらに、道路情報取得部30は、ナビゲーションECU16により出力された道路曲率情報、勾配情報、見通し情報、道路幅、車線幅、防風・防音用の遮蔽板の設置状況等の道路情報を取得する機能を有している。また、道路情報取得部30は、取得した道路情報を状況予測部33へ出力する機能を有している。
車両情報取得部31は、例えば周辺監視用センサ11により出力された周囲車両の車両情報を取得する機能を有している。例えば、車両情報取得部31は、周辺監視用センサ11により出力された周囲車両の大きさ、種類、形状、搭載物、速度、位置、操舵状態等の情報や、路車間/車車間通信機12により出力された周囲車両の諸元情報、搭載物、速度、位置、操舵情報、内輪差、経路情報、行動パターン、運転特性等を取得する機能を有している。さらに、車両情報取得部31は、ナビゲーションECU16により出力された情報、ヨー/Gセンサ17及び車速センサ18に基づいて、車両100の現在位置、ヨーレート、加速度情報、車速情報等の車両情報を取得する機能を有している。また、車両情報取得部31は、取得した車両100の車両情報及び周囲車両の車両情報を状況予測部33へ出力する機能を有している。
状況予測部33は、道路情報取得部30により取得された周囲の道路情報と、車両情報取得部31により取得された周囲車両の車両情報及び車両100の車両情報とに基づいて、車両100の走行の妨げとなる障害物の存在を予測する機能を有している。状況予測部33は、例えば、道路情報、車両100の車両情報、及び周囲車両の車両情報に基づいて、周囲車両の予定経路を予測し、車両100の走行を妨げる状況が発生するリスクを所定の走行範囲で算出する機能を有している。例えば、周囲車両に積載された積載物の落下により車両100の走行予定の路面に障害物が突発的に現れる状況が発生するリスクを所定の走行範囲で算出する機能を有している。また、状況予測部33は、予測したリスク及び障害物に関する情報を経路生成部34に出力する機能を有している。
経路生成部34は、状況予測部33により出力されたリスク及び障害物に関する情報に基づいて車両100の走行経路を生成する機能を有している。例えば、経路生成部34は、予測されたリスクが所定の閾値よりも大きい場合には、障害物を回避するように走行経路を生成し、生成した走行経路を実現するように速度制御、制動制御及び操舵制御の内容を決定する機能を有している。そして、経路生成部34は、決定した制御内容を実行するように、ブレーキアクチュエータ21、ステアリングアクチュエータ22及びエンジン制御ECU23に制御信号を出力する機能を有している。
ブレーキアクチュエータ21は、例えば各輪のホイールシリンダ(図示せず)のブレーキ油圧を調整するアクチュエータである。ブレーキアクチュエータ21は、車両制御ECU19からの目標油圧信号に応じて作動し、ホイールシリンダのブレーキ油圧を調整する機能を有している。
ステアリングアクチュエータ22は、車両制御ECU19からの操舵トルク制御信号又は操舵角度制御信号に応じて作動し、車両の操舵トルク又は操舵角度を制御する機能を有している。
エンジン制御ECU23は、エンジンを制御する制御装置である。エンジン制御ECU23では、車両制御ECU19からの目標加速度又は目標駆動力に応じて作動し、例えば、その目標加速度になるために必要なスロットルバルブ(図示せず)の目標開度を設定し、その目標開度を目標スロットル開度信号としてスロットルアクチュエータ(図示せず)に出力する機能を有している。
上述した道路情報取得部30、車両情報取得部31及び状況予測部33により、状況予測装置1が構成され、状況予測装置1及び経路生成部34により、経路生成装置10が構成される。
次に、本実施形態に係る状況予測装置1及び経路生成装置10の動作について説明する。図3は、本実施形態に係る経路生成装置10の動作を示すフローチャートである。図3に示す制御処理は、例えば、イグニッションONされたタイミングから所定の間隔で繰り返し実行される。なお、以下では説明理解の容易性を考慮して、例えば図4に示すように、車両100が周囲車両とすれ違う場合を例に説明する。図4は、車両100が見通しの良い右カーブを走行予定であり、カーブの先の対向車線から大きな積載物を積載した重心の高い大型車両200が接近している場面を示している。
図2に示すように、経路生成装置10は、周囲状況の認識処理から開始する(S10)。S10の処理では、最初に、車両情報取得部31が、車両100の現在位置情報を取得する。例えば、車両情報取得部31は、ナビゲーションECU16により出力された情報に基づいて、車両100の現在位置情報(時刻T0)を取得する。そして、道路情報取得部30が、ナビゲーションECU16により出力された情報に基づいて、走行予定の周囲の道路情報(曲率情報等の道路線形情報)を取得する。なお、走行予定の周囲の道路情報は、周辺監視用センサ11により出力された情報を用いてもよい。そして、車両情報取得部31は、周辺監視用センサ11の出力情報、又は、路車間/車車間通信機12の出力情報に基づいて、対向車両の存在を検出する。これにより、車両100の走行予定経路には、カーブが存在するとともに対向車両が存在することが検出される。次に、車両情報取得部31は、周辺監視用センサ11の出力情報、又は、路車間/車車間通信機12の出力情報に基づいて、対向車両の種類、形状、搭載物、速度、位置、操舵状態、諸元情報、内輪差、運転特性等を取得する。これにより、対向車両が大きな積載物を積載した重心の高い大型車両200であることが検出される。S10の処理が終了すると、周囲物体動作の予測処理へ移行する(S12)。
S12の処理では、状況予測部33が、対向車両である大型車両200の動作すなわち経路を予測(取得)する。状況予測部33は、例えば、S12の処理により取得された道路情報、大型車両200の位置、速度及び進行方向の情報に基づいて、大型車両200の典型的な走行進路を予測する。あるいは、状況予測部33は、路車間/車車間通信機12により出力された大型車両200の経路情報を取得してもよい。S12の処理が終了すると、リスク算出処理へ移行する(S14)。
S14の処理では、状況予測部33が、S10の処理で認識された大型車両200によって生じる車両100の走行のリスクを算出する。例えば、状況予測部33は、S10の処理で取得された道路形状、大型車両200の車両情報(種類、形状、搭載物、速度、位置、操舵状態等)、及びS12の処理で予測された大型車両200の走行進路に基づいて、大型車両200の時刻Tにおける位置情報を算出する。そして、状況予測部33は、大型車両200によって生じる車両100の走行のリスクを、車両100の現在位置から大型車両200の現在位置までの範囲(時刻T0から時刻T3までの範囲)で算出する。図4に示すように、車両100の走行予定経路にカーブが存在し、大型車両200がカーブの先に存在する場合には、車両100の走行の妨げになる可能性がある。例えば、大型車両200がカーブ通過時(時刻T2)に横転したり、カーブ通過時において積載物の固定が外れて積載物が落下したりするおそれがある。このようなリスクは、様々な手法で評価可能である。例えば、大型車両200の速度V、高さ情報h、積載物の搭載状況、道路の曲率半径Rに基づいて上記リスクを評価する。積載物の搭載状況を例にすると、積載物の搭載の有無に応じて積載物落下のリスクの有無を大雑把に評価できる。また、下記の式1に基づいてリスクJの詳細を算出してもよい。
式1の関数fは、大型車両200の高さh、速度Vが大きいほど、又は曲率半径Rが小さいほど、大きな値をとるものである。すなわち、大型車両200の高さh、速度Vが大きいほど、又は曲率半径Rが小さいほどリスクJが大きく評価される。また、車両100が停止する範囲内の最大横力に基づいてリスクJを算出してもよい。横力をFとすると、下記の式2に基づいてリスクJを評価できる。
式2により速度Vが大きいほど、曲率半径Rが小さいほどリスクJが大きく評価される。ここで、大型車両200の速度Vは可変であってもよいし一定値としてもよい。また、曲率半径Rは道路構造例に従うものとしてクロソイド曲線により設計されているものとしてもよい。速度Vを一定値、曲率半径Rをクロソイド曲線とした場合、リスクJの大きさは例えば図5の(A)に示すグラフとなる。図5の(A)は、リスクJの対向車両位置依存性を示すグラフである。横軸が車両位置(時刻)であり、縦軸がリスクJである。図5の(A)に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。また、状況予測部33は、図5の(A)に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図5の(B)にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。
式1の関数fは、大型車両200の高さh、速度Vが大きいほど、又は曲率半径Rが小さいほど、大きな値をとるものである。すなわち、大型車両200の高さh、速度Vが大きいほど、又は曲率半径Rが小さいほどリスクJが大きく評価される。また、車両100が停止する範囲内の最大横力に基づいてリスクJを算出してもよい。横力をFとすると、下記の式2に基づいてリスクJを評価できる。
式2により速度Vが大きいほど、曲率半径Rが小さいほどリスクJが大きく評価される。ここで、大型車両200の速度Vは可変であってもよいし一定値としてもよい。また、曲率半径Rは道路構造例に従うものとしてクロソイド曲線により設計されているものとしてもよい。速度Vを一定値、曲率半径Rをクロソイド曲線とした場合、リスクJの大きさは例えば図5の(A)に示すグラフとなる。図5の(A)は、リスクJの対向車両位置依存性を示すグラフである。横軸が車両位置(時刻)であり、縦軸がリスクJである。図5の(A)に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。また、状況予測部33は、図5の(A)に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図5の(B)にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。
S16の処理では、経路生成部34が、S14の処理結果に基づいて、車両100の走行予定道路においてリスクJが閾値K以上となる危険領域Xが存在するか否かを判定する。S16の処理において、危険領域Xが存在すると判定した場合には、回避進路算出処理へ移行する(S18)。
S18の処理では、経路生成部34が、危険領域Xで大型車両200とすれ違わないように進路を決定する。例えば、経路生成部34は、道路情報や大型車両200の速度等に基づいて、危険領域Xで大型車両200とすれ違う状況を回避する車両100の走行計画(速度制御、制動制御及び操舵制御の支援内容)を生成する。S18の処理が終了すると、制御量算出処理へ移行する(S20)。
S20の処理では、経路生成部34が、S18の処理で生成した走行計画を実行する制御量を算出する。例えば、経路生成部34は、S10の処理で取得された道路情報や車両情報取得部31により出力された車両100の車両情報に基づいて、ブレーキアクチュエータ21、ステアリングアクチュエータ22及びエンジン制御ECU23に出力する制御信号を算出する。これにより、車両100に対して、危険領域Xで大型車両200とすれ違わないように走行制御が行われる。S20の処理が終了すると、図3に示す制御処理を終了する。
一方、S16の処理において、危険領域Xが存在しないと判定した場合には、進路算出処理へ移行する(S22)。S22の処理では、経路生成部34が、S10の処理で取得された道路情報や車両情報取得部31により出力された車両100の車両情報に基づいて、対向車両を考慮せずに進路を決定する。S22の処理が終了すると、制御量算出処理へ移行し(S20)、制御量を算出して図3に示す制御処理を終了する。
以上で図3に示す制御処理を終了する。図3に示す制御処理を実行することで、対向車両とすれ違う場面において、車両100の走行を妨げるリスクが算出され、リスクの大きさに基づいて回避制御が行われる。このように、道路構造等の外的要因によって対向車両の走行状態や積載状態が突発的に変化する可能性を予測することができるので、対向車両の横転や積載物の落下等により車両100の走行を妨げる障害物が存在する可能性を早い段階から予測して障害物を回避することが可能となる。
ここで、周囲車両が対向車両である場合を説明したが、周囲車両は対向車両である場合に限らず、並走車両であってもよいし、右左折する車両であってもよい。以下では周囲車両の他の例を具体的に説明する。
まず、周囲車両が並走車両である場合を説明する。図6は、並走車両に対する制御処理を説明するための概要図である。図6では、車両100、及び車両100に並走する大型車両200が左カーブを走行予定である場面を示している。図6では、車両100がカーブに進入する際に、カーブの先に大きな積載物を積載した重心の高い大型車両200が近接する場面を示している。このような場合には、車両100の走行の妨げになる可能性がある。例えば、大型車両200がカーブ通過時(時刻T1)に横転したり、カーブ通過時において積載物の固定が外れて積載物が落下したりするおそれがある。経路生成装置10は、図3に示す一連の処理を、対向車両ではなく並走車両に対して行う。ここで、並走車両の場合には、状況予測部33は、図3に示すS14のリスク算出処理において、大型車両200によって生じる車両100の走行のリスクを、車両100の現在位置及び並走車両の現在位置のうち進行方向後方側に位置する地点から、並走車両の追い越しが完了する地点までの範囲で算出する。あるいは、一定時間又は一定区間の範囲で算出してもよい。図6では、S14の処理で算出された危険領域Xを、車両100の走行予定の道路に示している。経路生成装置10は、危険領域Xで大型車両200と並走しないように、及び、危険領域Xで大型車両200の直後を走行しないように、危険領域Xの直前の区間L1において速度制御を行う。このように、道路構造等の外的要因によって並走車両の走行状態や積載状態が突発的に変化する可能性を予測することができるので、並走車両の横転や積載物の落下等により車両100の走行を妨げる障害物が存在する可能性を早い段階から予測して障害物を回避することが可能となる。
次に、周囲車両が右左折する車両である場合を説明する。右左折する車両は、対向車両、並走車両、合流車両の何れであってもよい。以下では説明理解の容易性を考慮して、対向車両が右折する場面を例に説明する。図7は、右左折車両に対する制御処理を説明するための概要図である。図7では、車両100に対向して走行する大型車両200が、交差点で右折する場面を示している。図7では、車両100が交差点に進入する際に、大きな積載物を積載した重心の高い大型車両200が近接する場面を示している。このような場合には、車両100の走行の妨げになる可能性がある。例えば、大型車両200が交差点右折時(時刻T1)において横転したり、又は、積載物の固定が外れて積載物が落下したりするおそれがある。経路生成装置10は、図3に示す一連の処理を、対向車両ではなく右左折する車両に対して行う。図7では、S14の処理で算出された危険領域Xを、車両100の走行予定の道路に示している。なお、危険領域Xには、リスク回避に必要な停止区間L2が含まれている。経路生成装置10は、危険領域Xをリスクの高い時刻に通過しないように、交差点直前の区間L3において速度制御を行い、通過タイミングを調整する。このように、道路構造等の外的要因によって右左折車両の走行状態や積載状態が突発的に変化する可能性を予測することができるので、右左折車両の横転や積載物の落下等により車両100の走行を妨げる障害物が存在する可能性を早い段階から予測して障害物を回避することが可能となる。
以上、第1実施形態に係る状況予測装置1によれば、道路情報取得部30により、車両100の周囲の道路情報が取得され、車両情報取得部31により、大型車両200の車両情報が取得され、状況予測部33により、周囲車両の高さ、速度、積載物の積載状況、道路の曲率半径に基づいて、車両100の走行の妨げとなる障害物の存在が予測される。このように、道路情報及び周囲車両の車両情報を用いることで、例えば急カーブ時における積載物の落下や横転等、車両100の走行の妨げとなる障害物が突発的に現れる状況を予め予測することができる。よって、走行の妨げとなる状況を早い段階から予測することが可能となる。
また、第1実施形態に係る経路生成装置10によれば、上記状況予測装置1の予測結果に基づいて車両100の走行を制御することができるので、走行の妨げとなる状況を早い段階から回避することが可能となる。
(第2実施形態)
第2実施形態に係る状況予測装置1及び経路生成装置10は、第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様に構成されており、気象情報取得部(気象情報取得手段)32を備える点が相違する。よって、第2実施形態では第1実施形態との相違点を中心に説明し、重複する説明は省略する。
第2実施形態に係る状況予測装置1及び経路生成装置10は、第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様に構成されており、気象情報取得部(気象情報取得手段)32を備える点が相違する。よって、第2実施形態では第1実施形態との相違点を中心に説明し、重複する説明は省略する。
図8は、本実施形態に係る状況予測装置1及び経路生成装置10を備える車両100の構成概要図である。図8に示すように、第2実施形態に係る状況予測装置1の構成は、第1実施形態に係る状況予測装置1の構成とほぼ同様であり、気象情報取得部32を備える点が相違する。気象情報取得部32は、例えば、路車間/車車間通信機12により出力された気象情報を取得する機能を有している。気象情報としては、例えば、風速情報が用いられる。また、状況予測部33は、気象情報取得部32により出力された気象情報と、道路情報取得部30により取得された周囲の道路情報と、車両情報取得部31により取得された周囲車両の車両情報及び車両100の車両情報とに基づいて、車両100の走行の妨げとなる障害物の存在を予測する機能を有している。その他の機能は第1実施形態で説明した状況予測部33と同様である。
次に、第2実施形態に係る状況予測装置1及び経路生成装置10の動作について説明する。第2実施形態に係る状況予測装置1及び経路生成装置10の動作は、図3に示す第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様であり、S10の周囲状況認識処理において気象情報及び遮蔽板の設置状況を取得し、S14のリスク算出処理において、横風の影響を考慮する点のみが相違する。以下では、図3,図9を用いて、周囲車両が対向車両である場合における動作を説明する。図9は、横風等の外乱を考慮した制御処理を説明するための概要図である。図9では、車両100が直線道路を走行予定であり、前方の対向車線から大きな積載物を積載した重心の高い大型車両200が接近している場面を示している。
状況予測装置1は、図3に示すS10の処理において、第1実施形態と同様に、道路情報取得部30が道路情報を取得し、車両情報取得部31が大型車両200の車両情報を取得する。ここで、道路情報には、図9に示す道路に設置された防風・防音用の遮蔽板の設置場所に関する情報が含まれている。すなわち、道路情報には、遮蔽板の切れ目(遮蔽板間の隙間)に関する情報が含まれている。また、S10の処理において、気象情報取得部32が、風速情報を取得する。S10の処理が終了すると、周囲物体動作の予測処理へ移行する(S12)。
S12の処理では、状況予測部33が、第1実施形態と同様に、対向車両である大型車両200の動作すなわち経路を予測(取得)する。S12の処理が終了すると、リスク算出処理へ移行する(S14)。
S14の処理では、状況予測部33が、S10の処理で認識された大型車両200によって生じる車両100の走行のリスクを算出する。例えば、状況予測部33は、第1実施形態と同様に、S10の処理で取得された道路形状、大型車両200の車両情報、及びS12の処理で予測された大型車両200の走行進路に基づいて、大型車両200の時刻Tにおける位置情報を算出する。そして、状況予測部33は、大型車両200によって生じる車両100の走行のリスクを、車両100の現在位置から大型車両200の現在位置までの範囲(時刻T0から時刻T3までの範囲)で算出する。図9に示すように、車両100の走行予定経路に遮蔽板Yの切れ目が存在する場合には、車両100の走行の妨げになる可能性がある。例えば、大型車両200が遮蔽板Yの切れ目の付近(地点A)で横風を受け、風圧により車線からはみ出たり、横転したり、積載物の固定が外れて積載物が落下したりするおそれがある。このようなリスクは、様々な手法で評価可能である。例えば、大型車両200が横転又は積載物落下により車両100の走行を妨げるリスクと、横風によって大型車両200が車線逸脱するリスクとの最大値を最終的なリスクとして評価する。あるいは、例えば、大型車両200及び積載物の高さh、道路状況(遮蔽板Yの切れ目に関する情報Z)、及び風速Mに基づいて上記リスクを評価する。例えば、下記の式3に基づいてリスクJを評価できる。
式3の関数fは、大型車両200及び積載物の高さhが大きいほど、遮蔽板Yの間隔が大きいほど、遮蔽板Yの間隔の数が多いほど、風速Mが大きいほど、大きな値をとるものである。すなわち、大型車両200及び積載物の高さh、遮蔽板Yの間隔、遮蔽板Yの間隔の数、風速Mが大きいほど、リスクJが大きく評価される。また、車両100が停止する範囲内の最大横力に基づいてリスクJを算出してもよい。横力をF、面積当たりの風圧をdF、風圧を受ける車両面積をdS1、風圧を受ける積載物面積をdS2、定数をK1,K2とすると、下記の式4に基づいてリスクJを評価できる。
式4により、横力F、風圧dF、車両面積dS1、積載物面積dS2が大きいほどリスクJが大きく評価される。ここで、気象情報に基づいて横風の有無を取得している場合には、横風が無いときは当該地点のリスクを0に修正する。式4により算出されたリスクJの大きさは、例えば図10に示すグラフとなる。図10は、リスクJの対向車両位置依存性を示すグラフである。横軸が車両位置(時刻)であり、縦軸がリスクJである。図10に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。また、状況予測部33は、図10に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図9にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。以降のS18〜S22の処理は第1実施形態と同様であるので省略する。なお、周囲車両が対向車両である場合を説明したが、周囲車両は対向車両である場合に限らず、並走車両であってもよいし、右左折する車両であってもよい。
式3の関数fは、大型車両200及び積載物の高さhが大きいほど、遮蔽板Yの間隔が大きいほど、遮蔽板Yの間隔の数が多いほど、風速Mが大きいほど、大きな値をとるものである。すなわち、大型車両200及び積載物の高さh、遮蔽板Yの間隔、遮蔽板Yの間隔の数、風速Mが大きいほど、リスクJが大きく評価される。また、車両100が停止する範囲内の最大横力に基づいてリスクJを算出してもよい。横力をF、面積当たりの風圧をdF、風圧を受ける車両面積をdS1、風圧を受ける積載物面積をdS2、定数をK1,K2とすると、下記の式4に基づいてリスクJを評価できる。
式4により、横力F、風圧dF、車両面積dS1、積載物面積dS2が大きいほどリスクJが大きく評価される。ここで、気象情報に基づいて横風の有無を取得している場合には、横風が無いときは当該地点のリスクを0に修正する。式4により算出されたリスクJの大きさは、例えば図10に示すグラフとなる。図10は、リスクJの対向車両位置依存性を示すグラフである。横軸が車両位置(時刻)であり、縦軸がリスクJである。図10に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。また、状況予測部33は、図10に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図9にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。以降のS18〜S22の処理は第1実施形態と同様であるので省略する。なお、周囲車両が対向車両である場合を説明したが、周囲車両は対向車両である場合に限らず、並走車両であってもよいし、右左折する車両であってもよい。
以上、第2実施形態に係る状況予測装置1によれば、道路情報取得部30により、車両100の周囲の道路情報が取得され、車両情報取得部31により、大型車両200の車両情報が取得され、気象情報取得部32により、気象情報が取得され、状況予測部33により、周囲車両の高さ、積載物の積載状況、遮蔽板の設置状況及び風速情報に基づいて、車両100の走行の妨げとなる障害物の存在が予測される。このように、気象情報、道路情報及び大型車両200周囲車両の車両情報を用いることで、例えば突風による周囲車両の車線逸脱、横転、積載物落下等、車両100の走行の妨げとなる障害物が突発的に現れる状況を予め予測することができる。よって、走行の妨げとなる状況を早い段階から予測することが可能となる。
また、第2実施形態に係る経路生成装置10によれば、上記状況予測装置1の予測結果に基づいて車両100の走行を制御することができるので、走行の妨げとなる状況を早い段階から回避することが可能となる。
(第3実施形態)
第3実施形態に係る状況予測装置1及び経路生成装置10は、第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様に構成されており、状況予測部33のリスク算出方法のみが相違する。よって、第3実施形態では第1実施形態との相違点を中心に説明し、重複する説明は省略する。
第3実施形態に係る状況予測装置1及び経路生成装置10は、第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様に構成されており、状況予測部33のリスク算出方法のみが相違する。よって、第3実施形態では第1実施形態との相違点を中心に説明し、重複する説明は省略する。
第3実施形態に係る状況予測装置1の構成は、第1実施形態に係る状況予測装置1の構成と同様である。次に、第3実施形態に係る状況予測装置1及び経路生成装置10の動作について説明する。第3実施形態に係る状況予測装置1及び経路生成装置10の動作は、図3に示す第1実施形態に係る状況予測装置1及び経路生成装置10の動作とほぼ同様であり、S14のリスク算出処理において、車両の内輪差を考慮する点が相違する。よって、以下では、図3,図11を用いて、周囲車両が並走車両である場合における動作を説明し、重複する説明は省略する。図11は、内輪差による積載物の車線逸脱を考慮した制御処理を説明するための概要図である。図11では、車両100、及び車両100に並走する大型車両200が右カーブを走行予定である場面を示している。図11では、車両100がカーブに進入する際に、大きな積載物を牽引した大型車両200が近接する場面を示している。
S10〜S12の処理は、第1実施形態と同様である。S14の処理では、状況予測部33が、S10の処理で認識された大型車両200によって生じる車両100の走行のリスクを算出する。例えば、状況予測部33は、第1実施形態と同様に、S10の処理で取得された道路形状、大型車両200の車両情報、及びS12の処理で予測された大型車両200の走行進路に基づいて、大型車両200の時刻Tにおける位置情報を算出する。そして、状況予測部33は、大型車両200によって生じる車両100の走行のリスクを、車両100の現在位置及び並走車両の現在位置のうち進行方向後方側に位置する地点から、並走車両の追い越しが完了する地点までの範囲(時刻T0から時刻T2までの範囲)で算出する。図11に示すように、カーブ走行時に大きな積載物を牽引した大型車両200が近接する場合には、車両100の走行の妨げになる可能性がある。例えば、カーブ走行時(時刻T1)に大型車両200の積載物が走行車線をはみ出してくるおそれがある。このようなリスクは、様々な手法で評価可能である。例えば、大型車両200の長さL(ホイールベース/オーバーハング等)、車種情報Q、走行状態St(車線内の位置、レーン取り等)、曲率半径R、道路幅・車線幅W等により、大型車両200が走行できる物理限界を算出してリスクを評価する。例えば、下記の式5に基づいてリスクJを評価できる。
式5の関数fは、大型車両200の長さLが大きいほど、大型車両200の車種がトレーラ等の牽引車両であるほど、大型車両200の走行位置が車両100の走行レーンに近いほど、曲率半径Rが小さいほど、道路幅・車線幅Wが小さいほど、大きな値をとるものである。また、最大の内輪差に基づいてリスクJを算出してもよい。ここで、大型車両200の内輪差をRstとすると、下記の式6に基づいてリスクJを評価できる。
式6により内輪差が大きいほどリスクJが大きく評価される。式6により算出されたリスクJの大きさは、例えば図12に示すグラフとなる。図12は、リスクJの対向車両位置依存性を示すグラフである。横軸が車両位置(時刻)であり、縦軸がリスクJである。図12に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。また、曲率半径Rを点線で示している。状況予測部33は、図12に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図11にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。以降のS18〜S22の処理は第1実施形態と同様であるので省略する。
式5の関数fは、大型車両200の長さLが大きいほど、大型車両200の車種がトレーラ等の牽引車両であるほど、大型車両200の走行位置が車両100の走行レーンに近いほど、曲率半径Rが小さいほど、道路幅・車線幅Wが小さいほど、大きな値をとるものである。また、最大の内輪差に基づいてリスクJを算出してもよい。ここで、大型車両200の内輪差をRstとすると、下記の式6に基づいてリスクJを評価できる。
式6により内輪差が大きいほどリスクJが大きく評価される。式6により算出されたリスクJの大きさは、例えば図12に示すグラフとなる。図12は、リスクJの対向車両位置依存性を示すグラフである。横軸が車両位置(時刻)であり、縦軸がリスクJである。図12に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。また、曲率半径Rを点線で示している。状況予測部33は、図12に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図11にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。以降のS18〜S22の処理は第1実施形態と同様であるので省略する。
ここで、周囲車両が並走車両である場合を説明したが、周囲車両は並走車両である場合に限らず、対向車両であってもよいし、右左折する車両であってもよい。以下では右左折する車両の例を具体的に説明する。右左折する車両は、対向車両、並走車両、交流車両のうち何れであってもよい。以下では説明理解の容易性を考慮して、交流車両が左折により合流する場面を例に説明する。
図13は、右左折車両に対する制御処理を説明するための概要図である。図13では、大きな積載物を牽引した大型車両200が、車両100が走行する道路に左折する場面を示している。図13では、車両100が交差点に進入する際に、大きな積載物を牽引した大型車両200が近接する場面を示している。このような場合には、車両100の走行の妨げになる可能性がある。例えば、大型車両200の積載物が左折時(時刻T1)において車線からはみ出るおそれがある。経路生成装置10は、図3に示す一連の処理を左折する車両に対して行う。図13では、S14の処理で算出された危険領域Xを、車両100の走行予定の道路に示している。経路生成装置10は、危険領域Xをリスクの高い時刻に通過しないように、交差点直前の区間L3において速度制御を行い、通過タイミングを調整する。このように、道路構造等の外的要因によって左折車両の積載状態が突発的に変化する可能性を予測することができるので、左折車両の積載物のはみ出し等により車両100の走行を妨げる障害物が存在する可能性を早い段階から予測して障害物を回避することが可能となる。
以上、第3実施形態に係る状況予測装置1によれば、道路情報取得部30により、車両100の周囲の道路情報が取得され、車両情報取得部31により、大型車両200の車両情報が取得され、状況予測部33により、道路情報及び車両情報によって規定される物理限界に基づいて、車両100の走行の妨げとなる障害物の存在が予測される。このように、道路情報及び周囲車両の車両情報を用いることで、例えば牽引された積載物の車線はみ出し等、車両100の走行の妨げとなる障害物が突発的に現れる状況を予め予測することができる。よって、走行の妨げとなる状況を早い段階から予測することが可能となる。
また、第3実施形態に係る経路生成装置10によれば、上記状況予測装置1の予測結果に基づいて車両100の走行を制御することができるので、走行の妨げとなる状況を早い段階から回避することが可能となる。
(第4実施形態)
第4実施形態に係る状況予測装置1及び経路生成装置10は、第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様に構成されており、状況予測部33のリスク算出方法のみが相違する。よって、第4実施形態では第1実施形態との相違点を中心に説明し、重複する説明は省略する。
第4実施形態に係る状況予測装置1及び経路生成装置10は、第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様に構成されており、状況予測部33のリスク算出方法のみが相違する。よって、第4実施形態では第1実施形態との相違点を中心に説明し、重複する説明は省略する。
第4実施形態に係る状況予測装置1の構成は、第1実施形態に係る状況予測装置1の構成と同様である。次に、第4実施形態に係る状況予測装置1及び経路生成装置10の動作について説明する。第4実施形態に係る状況予測装置1及び経路生成装置10の動作は、図3に示す第1実施形態に係る状況予測装置1及び経路生成装置10の動作とほぼ同様であり、S14のリスク算出処理において、車両の走行軌跡(走行ライン、走行パターン)を考慮する点が相違する。よって、以下では、図3,図14を用いて、周囲車両が対向車両である場合における動作を説明し、重複する説明は省略する。図14は、ショートカットによる車線逸脱を考慮した制御処理を説明するための概要図である。図14では、車両100、及び車両100に対向して走行する対向車両200が見通しのよいワインディング道路を走行予定である場面を示している。ワインデリング道路は、カーブ区間が連続する道路である。図14では、車両100がカーブ区間に進入する際に、対向車両200が近接する場面を示している。
S10〜S12の処理は、第1実施形態と同様である。なお、S12の処理では、対向車両200の運転特性を考慮して、頻繁にショートカットする傾向がある場合には、車両100とすれ違う際にもショートカットする走行進路が算出される。S14の処理では、状況予測部33が、S10の処理で認識された対向車両200によって生じる車両100の走行のリスクを算出する。例えば、状況予測部33は、第1実施形態と同様に、S10の処理で取得された道路形状、対向車両200の車両情報、及びS12の処理で予測された対向車両200の走行進路(ライン取り情報)に基づいて、対向車両200の時刻Tにおける位置情報を算出する。そして、状況予測部33は、対向車両200によって生じる車両100の走行のリスクを、車両100の現在位置から対向車両200の現在位置までの範囲(時刻T0から時刻T5までの範囲)で算出する。図14に示すように、ワインディング道路時に対向車両200が近接する場合には、車両100の走行の妨げになる可能性がある。例えば、カーブ区間走行時(時刻T3,T4)に対向車両200が走行車線をはみ出してショートカットするおそれがある。このようなリスクは、様々な手法で評価可能である。例えば、曲率半径R、道路幅・車線幅W、走行状態St(車線内の位置、レーン取り等)等により、対向車両200の動作を予測してリスクを評価する。例えば、下記の式7に基づいてリスクJを評価できる。
式7の関数fは、曲率半径Rが小さいほど、道路幅・車線幅Wが小さいほど、ライン取りがアウトインアウトに近いほど、大きな値をとるものである。また、道路形状に起因するショートカットの容易性Bや対向車両200の運転特性Cに基づいてリスクJを算出してもよい。例えば、下記の式8に基づいてリスクJを評価できる。
式8により、ショートカットが容易であるほど、運転者がショートカットを好むほどリスクJが大きく評価される。式8により算出されたリスクJの大きさは、例えば図15に示すグラフとなる。図15は、リスクJの対向車両位置依存性を示すグラフである。横軸が車両位置(時刻)であり、縦軸がリスクJである。図15に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。状況予測部33は、図15に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図14にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。以降のS18〜S22の処理は第1実施形態と同様であるので省略する。
式7の関数fは、曲率半径Rが小さいほど、道路幅・車線幅Wが小さいほど、ライン取りがアウトインアウトに近いほど、大きな値をとるものである。また、道路形状に起因するショートカットの容易性Bや対向車両200の運転特性Cに基づいてリスクJを算出してもよい。例えば、下記の式8に基づいてリスクJを評価できる。
式8により、ショートカットが容易であるほど、運転者がショートカットを好むほどリスクJが大きく評価される。式8により算出されたリスクJの大きさは、例えば図15に示すグラフとなる。図15は、リスクJの対向車両位置依存性を示すグラフである。横軸が車両位置(時刻)であり、縦軸がリスクJである。図15に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。状況予測部33は、図15に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図14にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。以降のS18〜S22の処理は第1実施形態と同様であるので省略する。
ここで、周囲車両が対向車両である場合を説明したが、周囲車両は対向車両である場合に限らず、並走車両であってもよいし、右左折する車両であってもよい。また、上記説明では、車線を逸脱する周囲車両の例として、ワインディング道路を説明したが、上り坂頂上付近又はブラインドカーブ先で車線の付け替えがなされた交差点や、カーブ路の拡幅部分におけるゼブラゾーンや右折車線が交互に存在する道路におけるゼブラゾーンでも同様に対向車両が走行車線を逸脱するおそれがある。以下では各場面を具体的に説明する。
まず、車線の付け替えがなされた交差点における走行車線の逸脱を説明する。図16は、対向車両に対する制御処理を説明するための概要図であり、図16の(A)は上方からみた概要図、図16の(B)は側方からみた概要図である。図16の(A)に示すように、車両100が、交差点の右折車線に進入し、右折待ち状態となる予定である。図16の(B)に示すように、この交差点は上り坂の頂上付近に存在し、坂の下すなわち対向車両200側からは、車両100を視認困難な場面となっている。すなわち、図16では、対向車両200が交差点に進入する際に車線の付け替えがなされていることに気が付けないため、車両100に近接する場面を示している。このような場合には、対向車両200は、右折しようとする車両100の走行の妨げになる可能性がある。経路生成装置10は、図3に示す一連の処理を対向車両200に対して行う。例えば、図3のS14の処理で、道路情報に基づいて対向車両200の車線付け替えの判断遅れを予測し、車両100の走行のリスクに反映させる。このようなリスクは、様々な手法で評価可能である。例えば、曲率半径R、道路幅・車線幅W、制限速度VL、一般的な走行速度VN、走行状態St(車線内の位置、レーン取り等)等によりリスクを評価してもよい。例えば、下記の式9に基づいてリスクJを評価できる。
式9の関数fは、曲率半径Rが小さいほど、道路幅・車線幅Wが小さいほど、制限速度VLが大きいほど、一般的な走行速度VNが大きいほど、車両100に近接するほど大きな値をとるものである。また、路車間通信により得られた対向車両200の現在の速度VAを用いてリスクを評価してもよい。例えば、下記の式10に基づいてリスクJを評価できる。
式10により、曲率半径R、道路幅・車線幅Wが小さいほど、現在の速度VAが大きいほどリスクJが大きく評価される。図16では、S14の処理で算出された危険領域Xを、車両100の走行予定の道路に示している。経路生成装置10は、危険領域Xをリスクの高い時刻に通過しないように車両制御を行う。
式9の関数fは、曲率半径Rが小さいほど、道路幅・車線幅Wが小さいほど、制限速度VLが大きいほど、一般的な走行速度VNが大きいほど、車両100に近接するほど大きな値をとるものである。また、路車間通信により得られた対向車両200の現在の速度VAを用いてリスクを評価してもよい。例えば、下記の式10に基づいてリスクJを評価できる。
式10により、曲率半径R、道路幅・車線幅Wが小さいほど、現在の速度VAが大きいほどリスクJが大きく評価される。図16では、S14の処理で算出された危険領域Xを、車両100の走行予定の道路に示している。経路生成装置10は、危険領域Xをリスクの高い時刻に通過しないように車両制御を行う。
次に、右折車線が交互に存在する道路における走行車線の逸脱を説明する。図17は、対向車両に対する制御処理を説明するための概要図である。図17に示すように、車両100が、交差点E2で右折すべく、右折車線に進入する予定である。図17に示す交差点E1,E2は、中央の車線が相互の右折車線となっており、交差点E1における右折車線と交差点E2における右折車線は、ゼブラゾーンZbにより仕切られている。このような場合には、右折しようとする対向車両200が、右折しようとする車両100の走行の妨げになる可能性がある。経路生成装置10は、図3に示す一連の処理を対向車両200に対して行う。例えば、図3のS14の処理で、道路情報に基づいて、車両100が進入しようとしている右折車線や、右折車線手前のゼブラゾーンZbに、右折しようとする対向車両200が進入することを予測し、ゼブラゾーンZbの前後のはみ出し部分を予測して車両100の走行のリスクに反映させる。このようなリスクは、様々な手法で評価可能である。例えば、ゼブラゾーンZbの長さLz、見通し易さGp、曲率半径R、道路幅・車線幅W、車種情報Q、走行状態St(車線内の位置、レーン取り等)等によりリスクを評価してもよい。例えば、下記の式11に基づいてリスクJを評価できる。
式11により、ゼブラゾーンZbの長さLzが長いほど、曲率半径R、道路幅・車線幅Wが小さいほど、見通し易さGpが悪いほど、車種が大型になるほど、車両100に近接するほどリスクJが大きく評価される。図17では、S14の処理で算出された危険領域Xを、車両100の走行予定の道路に示している。経路生成装置10は、危険領域Xをリスクの高い時刻に通過しないように車両制御を行う。
式11により、ゼブラゾーンZbの長さLzが長いほど、曲率半径R、道路幅・車線幅Wが小さいほど、見通し易さGpが悪いほど、車種が大型になるほど、車両100に近接するほどリスクJが大きく評価される。図17では、S14の処理で算出された危険領域Xを、車両100の走行予定の道路に示している。経路生成装置10は、危険領域Xをリスクの高い時刻に通過しないように車両制御を行う。
以上、第4実施形態に係る状況予測装置1によれば、道路情報取得部30により、車両100の周囲の道路情報が取得され、車両情報取得部31により、対向車両200の車両情報が取得され、状況予測部33により、道路形状及び対向車両200の走行軌跡情報に基づいて、車両100の走行の妨げとなる障害物の存在が予測される。このように、道路情報及び周囲車両の車両情報を用いることで、例えば、対向車両200が走行車線に突然進入する状況を予め予測することができる。よって、走行の妨げとなる状況を早い段階から予測することが可能となる。
また、第4実施形態に係る経路生成装置10によれば、上記状況予測装置1の予測結果に基づいて車両100の走行を制御することができるので、走行の妨げとなる状況を早い段階から回避することが可能となる。
(第5実施形態)
第5実施形態に係る状況予測装置1及び経路生成装置10は、第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様に構成されており、状況予測部33のリスク算出方法のみが相違する。よって、第5実施形態では第1実施形態との相違点を中心に説明し、重複する説明は省略する。
第5実施形態に係る状況予測装置1及び経路生成装置10は、第1実施形態に係る状況予測装置1及び経路生成装置10とほぼ同様に構成されており、状況予測部33のリスク算出方法のみが相違する。よって、第5実施形態では第1実施形態との相違点を中心に説明し、重複する説明は省略する。
第5実施形態に係る状況予測装置1の構成は、第1実施形態に係る状況予測装置1の構成と同様である。次に、第5実施形態に係る状況予測装置1及び経路生成装置10の動作について説明する。第5実施形態に係る状況予測装置1及び経路生成装置10の動作は、図3に示す第1実施形態に係る状況予測装置1及び経路生成装置10の動作とほぼ同様であり、S14のリスク算出処理において、周囲物体の行動パターンを考慮する点が相違する。よって、以下では、図3,図18を用いて、周囲物体が自転車である場合における動作を説明し、重複する説明は省略する。図18は、周囲物体の行動パターンを考慮した制御処理を説明するための概要図である。図18では、車両100が横断歩道Ha及び自転車横断帯Hbが設けられた箇所に進入予定である場面を示している。自転車200は、道路を横断する予定であり、道路横断方向を真っ直ぐ横切れば車両100は特に減速することなく通過できるものとする。
S10〜S12の処理は、第1実施形態と同様である。なお、S12の処理では、自転車200の行動パターンを考慮して、道路横断方向を真っ直ぐ横切るのではなく自転車横断帯Hbの前後において逸脱する傾向がある場合には、逸脱傾向の走行進路が算出される。S14の処理では、状況予測部33が、S10の処理で認識された自転車200によって生じる車両100の走行のリスクを算出する。例えば、状況予測部33は、第1実施形態と同様に、S10の処理で取得された道路形状、自転車200の車両情報、及びS12の処理で予測された自転車200の走行進路(ライン取り情報)に基づいて、自転車200の時刻Tにおける位置情報を算出する。そして、状況予測部33は、自転車200によって生じる車両100の走行のリスクを、車両100の現在位置から自転車横断帯Gbの必要範囲分先までの範囲で算出する。図18に示すように、道路横断中の自転車200が近接する場合には、車両100の走行の妨げになる可能性がある。例えば、道路横断方向を真っ直ぐ横切るのではなく横断開始終了において自転車横断帯Hbを逸脱して走行するおそれがある。すなわち、自転車200がショートカットするおそれがある。このようなリスクは、様々な手法で評価可能である。例えば、自転車200が道路上に留まる範囲をHcとすると、下記の式12に基づいてリスクJを評価できる。
式12の関数fは、範囲Hcが大きいほど大きな値をとるものである。また、道路形状(横断歩道、自転車横断帯、線形、勾配、見通し等)、自転車200の移動速度、サイズ、走行進路、行動パターンに基づいてリスクを算出してもよい。例えば、車両サイズをSe、車両種別をQ、群走行情報(群走行/単独走行)をJV、速度をV、路側幅をWS、走行状態をStとすると、例えば、下記の式13に基づいてリスクJを評価できる。
式13により、車両サイズSeが大きいほど、速度Vが小さいほど、路側幅WSが大きいほど、子供向けの車両ほど、群走行しているほど、車線中央側を走行するほどリスクJが大きく評価される。式13により算出されたリスクJの大きさは、例えば図19に示すグラフとなる。図19は、リスクJの自転車位置依存性を示すグラフである。横軸が自転車位置(時刻)であり、縦軸がリスクJである。図19に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。状況予測部33は、図19に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図18にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。以降のS18〜S22の処理は第1実施形態と同様であるので省略する。
式12の関数fは、範囲Hcが大きいほど大きな値をとるものである。また、道路形状(横断歩道、自転車横断帯、線形、勾配、見通し等)、自転車200の移動速度、サイズ、走行進路、行動パターンに基づいてリスクを算出してもよい。例えば、車両サイズをSe、車両種別をQ、群走行情報(群走行/単独走行)をJV、速度をV、路側幅をWS、走行状態をStとすると、例えば、下記の式13に基づいてリスクJを評価できる。
式13により、車両サイズSeが大きいほど、速度Vが小さいほど、路側幅WSが大きいほど、子供向けの車両ほど、群走行しているほど、車線中央側を走行するほどリスクJが大きく評価される。式13により算出されたリスクJの大きさは、例えば図19に示すグラフとなる。図19は、リスクJの自転車位置依存性を示すグラフである。横軸が自転車位置(時刻)であり、縦軸がリスクJである。図19に示すグラフにおいて、閾値K以上の領域を危険領域Xとして示している。この閾値Kは、危険の度合いを判定するための閾値であって、例えばシミュレーション等により予め設定された定数が採用される。状況予測部33は、図19に示すグラフに基づいて、車両100の走行予定の道路にリスクの大きさ(危険領域X)をマッピングする。図18にマッピングされた結果を示す。マッピングが終了すると、判定処理へ移行する(S16)。以降のS18〜S22の処理は第1実施形態と同様であるので省略する。
ここで、周囲物体が自転車である場合を説明したが、周囲物体は歩行者であってもよい。また、上記説明では、自転車200が自転車横断帯Hbを走行する例を説明したが、横断する箇所は自転車横断帯Hbに限られない。すなわち、自転車、歩行者、ミニバイク等が道路を横断する場合に、移動物体の渡り始めのライン取りLS、横断途中のライン取りLA、現在のライン取りLNを検出して走行のリスクを評価出してもよい。例えば、以下の式14に基づいてリスクJを評価できる。
式14により、ライン取りが道路横断方向に延びる直線から離れるほどリスクJが大きく評価される。
式14により、ライン取りが道路横断方向に延びる直線から離れるほどリスクJが大きく評価される。
以上、第5実施形態に係る状況予測装置1によれば、道路情報取得部30により、車両100の周囲の道路情報が取得され、車両情報取得部31により、自転車200の情報が取得され、状況予測部33により、道路形状及び自転車200の行動パターンに基づいて、車両100の走行の妨げとなる障害物の存在が予測される。このように、道路情報及び自転車200の情報を用いることで、例えば、自転車200が走行車線に飛び出したり残留したりする状況を予め予測することができる。よって、走行の妨げとなる状況を早い段階から予測することが可能となる。
また、第5実施形態に係る経路生成装置10によれば、上記状況予測装置1の予測結果に基づいて車両100の走行を制御することができるので、走行の妨げとなる状況を早い段階から回避することが可能となる。
なお、上述した実施形態は本発明に係る状況予測装置及び経路生成装置の一例を示すものである。本発明に係る状況予測装置及び経路生成装置は、各実施形態に係る状況予測装置1及び経路生成装置10に限られるものではなく、各請求項に記載した要旨を変更しない範囲で、各実施形態に係る状況予測装置及び経路生成装置を変形し、又は他のものに適用したものであってもよい。
例えば、上述した実施形態では、状況予測装置1及び経路生成装置10が車載される例を説明したが、車載されていなくてもよい。また、上述した実施形態では、車両100が経路生成装置10を備える例を説明したが、状況予測装置1のみを備える場合であってよい。また、上述した実施形態では、予測したリスクを回避するように車両制御する例を説明したが、予測したリスクを運転者に報知するのみでもよい。
1…状況予測装置、10…経路生成装置、30…道路情報取得部(道路情報取得手段)、31…車両情報取得部(車両情報取得手段)、32…気象情報取得部(気象情報取得手段)、33…状況予測部(予測手段)、34…経路生成部(経路生成手段)、100…車両、200…大型車両,対向車両,自転車(周囲車両)。
Claims (7)
- 車両の走行の妨げとなる状況を予測する状況予測装置であって、
前記車両の周囲の道路情報を取得する道路情報取得手段と、
前記車両の周囲に存在する周囲車両の車両情報を取得する車両情報取得手段と、
前記道路情報及び前記車両情報に基づいて、前記車両の走行の妨げとなる障害物の存在を予測する予測手段と、
を備えることを特徴とする状況予測装置。 - 前記予測手段は、前記道路情報及び前記車両情報に基づいて、前記周囲車両が前記車両の走行車線へ進入すること、又は前記周囲車両が前記車両に接近することを予測する請求項1に記載の状況予測装置。
- 前記予測手段は、前記車両情報として、前記周囲車両の大きさ又は形状を用いる請求項2に記載の状況予測装置。
- 前記予測手段は、前記車両情報として、前記周囲車両の走行軌跡に関する情報を用いる請求項2又は3に記載の状況予測装置。
- 前記予測手段は、前記車両情報として、前記周囲車両の積載物情報を用いる請求項2〜4の何れか一項に記載の状況予測装置。
- 気象情報を取得する気象情報取得手段を備え、
前記予測手段は、前記道路情報、前記車両情報及び前記気象情報に基づいて、前記車両の走行の妨げとなる障害物の存在を予測するとともに、前記道路情報として、経路に存在する遮蔽物の情報を用いる請求項1〜5の何れか一項に記載の状況予測装置。 - 請求項1〜6の何れか一項に記載の状況予測装置を有する経路生成装置であって、
前記状況予測装置により予測された前記障害物の存在に基づいて前記車両の走行経路を生成する経路生成手段を備えることを特徴とする経路生成装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072540A JP2011204125A (ja) | 2010-03-26 | 2010-03-26 | 状況予測装置及び経路生成装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072540A JP2011204125A (ja) | 2010-03-26 | 2010-03-26 | 状況予測装置及び経路生成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011204125A true JP2011204125A (ja) | 2011-10-13 |
Family
ID=44880686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010072540A Pending JP2011204125A (ja) | 2010-03-26 | 2010-03-26 | 状況予測装置及び経路生成装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011204125A (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013108860A (ja) * | 2011-11-22 | 2013-06-06 | Aisin Aw Co Ltd | 経路探索装置、経路探索方法及びプログラム |
JP2013125344A (ja) * | 2011-12-13 | 2013-06-24 | Nissan Motor Co Ltd | 車両運転支援装置及び車両運転支援方法 |
JP2015221625A (ja) * | 2014-05-23 | 2015-12-10 | 株式会社アドヴィックス | 制動制御装置 |
JP2019038415A (ja) * | 2017-08-25 | 2019-03-14 | 株式会社Subaru | 車両の制御装置 |
JP2019043396A (ja) * | 2017-09-04 | 2019-03-22 | 日産自動車株式会社 | 運転支援車両の走行制御方法及び走行制御装置 |
JP2019156195A (ja) * | 2018-03-14 | 2019-09-19 | 本田技研工業株式会社 | 車両制御装置 |
JP2019156196A (ja) * | 2018-03-14 | 2019-09-19 | 本田技研工業株式会社 | 車両制御装置および車両制御方法 |
JP2019159479A (ja) * | 2018-03-08 | 2019-09-19 | 株式会社デンソー | 制御装置 |
CN111149139A (zh) * | 2017-09-26 | 2020-05-12 | 日产自动车株式会社 | 驾驶辅助方法及驾驶辅助装置 |
JP2020075665A (ja) * | 2018-11-09 | 2020-05-21 | トヨタ自動車株式会社 | 車両走行制御装置 |
JP2020152222A (ja) * | 2019-03-20 | 2020-09-24 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
CN112046478A (zh) * | 2019-06-06 | 2020-12-08 | 本田技研工业株式会社 | 车辆控制装置及其动作方法、车辆以及存储介质 |
CN112172825A (zh) * | 2019-07-04 | 2021-01-05 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法及存储介质 |
US11046310B2 (en) | 2018-02-27 | 2021-06-29 | Samsung Electronics Co., Ltd. | Method of planning traveling path and electronic device therefor |
JP2021149464A (ja) * | 2020-03-18 | 2021-09-27 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
-
2010
- 2010-03-26 JP JP2010072540A patent/JP2011204125A/ja active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013108860A (ja) * | 2011-11-22 | 2013-06-06 | Aisin Aw Co Ltd | 経路探索装置、経路探索方法及びプログラム |
JP2013125344A (ja) * | 2011-12-13 | 2013-06-24 | Nissan Motor Co Ltd | 車両運転支援装置及び車両運転支援方法 |
JP2015221625A (ja) * | 2014-05-23 | 2015-12-10 | 株式会社アドヴィックス | 制動制御装置 |
JP7164940B2 (ja) | 2017-08-25 | 2022-11-02 | 株式会社Subaru | 車両の制御装置 |
JP2019038415A (ja) * | 2017-08-25 | 2019-03-14 | 株式会社Subaru | 車両の制御装置 |
JP2019043396A (ja) * | 2017-09-04 | 2019-03-22 | 日産自動車株式会社 | 運転支援車両の走行制御方法及び走行制御装置 |
CN111149139A (zh) * | 2017-09-26 | 2020-05-12 | 日产自动车株式会社 | 驾驶辅助方法及驾驶辅助装置 |
CN111149139B (zh) * | 2017-09-26 | 2022-10-21 | 日产自动车株式会社 | 驾驶辅助方法及驾驶辅助装置 |
US11046310B2 (en) | 2018-02-27 | 2021-06-29 | Samsung Electronics Co., Ltd. | Method of planning traveling path and electronic device therefor |
US11314257B2 (en) | 2018-03-08 | 2022-04-26 | Denso Corporation | Autonomous vehicle collision avoidance system with unattached load detection |
JP2019159479A (ja) * | 2018-03-08 | 2019-09-19 | 株式会社デンソー | 制御装置 |
JP2019156196A (ja) * | 2018-03-14 | 2019-09-19 | 本田技研工業株式会社 | 車両制御装置および車両制御方法 |
JP2019156195A (ja) * | 2018-03-14 | 2019-09-19 | 本田技研工業株式会社 | 車両制御装置 |
JP2020075665A (ja) * | 2018-11-09 | 2020-05-21 | トヨタ自動車株式会社 | 車両走行制御装置 |
JP2020152222A (ja) * | 2019-03-20 | 2020-09-24 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
US11260884B2 (en) * | 2019-06-06 | 2022-03-01 | Honda Motor Co., Ltd. | Vehicle control apparatus, vehicle, operation method of vehicle control apparatus, and non-transitory computer-readable storage medium |
CN112046478A (zh) * | 2019-06-06 | 2020-12-08 | 本田技研工业株式会社 | 车辆控制装置及其动作方法、车辆以及存储介质 |
CN112046478B (zh) * | 2019-06-06 | 2024-04-26 | 本田技研工业株式会社 | 车辆控制装置及其动作方法、车辆以及存储介质 |
CN112172825A (zh) * | 2019-07-04 | 2021-01-05 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法及存储介质 |
CN113492844A (zh) * | 2020-03-18 | 2021-10-12 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法及存储介质 |
JP2021149464A (ja) * | 2020-03-18 | 2021-09-27 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
CN113492844B (zh) * | 2020-03-18 | 2024-04-12 | 本田技研工业株式会社 | 车辆控制装置、车辆控制方法及存储介质 |
JP7503921B2 (ja) | 2020-03-18 | 2024-06-21 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011204125A (ja) | 状況予測装置及び経路生成装置 | |
US10943133B2 (en) | Vehicle control device, vehicle control method, and storage medium | |
US9594373B2 (en) | Apparatus and method for continuously establishing a boundary for autonomous driving availability and an automotive vehicle comprising such an apparatus | |
WO2021075454A1 (ja) | 車載装置及び運転支援方法 | |
JP6308233B2 (ja) | 車両制御装置及び車両制御方法 | |
JP5614055B2 (ja) | 運転支援装置 | |
KR102546343B1 (ko) | 주행 지원 방법 및 주행 지원 장치 | |
JP6206595B2 (ja) | 走行制御装置および走行制御方法 | |
EP2916190B1 (en) | Apparatus and method for prediction of time available for autonomous driving, in a vehicle having autonomous driving cap | |
JP6468261B2 (ja) | 自動運転システム | |
CN108352116B (zh) | 自身车辆周边信息管理装置 | |
US10843705B2 (en) | Method and device for environment-based adaptation of driver assistance functions | |
JP4728427B2 (ja) | 車両の衝突警告装置 | |
RU2731586C2 (ru) | Система и способ управления транспортным средством для избежания столкновений и транспортное средство | |
EP3539838A1 (en) | Vehicle control device | |
US20090088966A1 (en) | Driving support system | |
CN109703563B (zh) | 车辆、行驶控制装置和行驶控制方法 | |
JP4877364B2 (ja) | 物体検出装置 | |
JP6954469B2 (ja) | 運転支援方法及び運転支援装置 | |
JP2020163970A (ja) | 車両運転支援システム | |
JP2019160031A (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP6656603B2 (ja) | 車両制御装置 | |
US11137759B2 (en) | Systems and methods of level 2 autonomous vehicle driving on multiply digitized roads | |
US20190120634A1 (en) | Vehicle control device | |
JP2020163975A (ja) | 車両運転支援システム |