JP2011184668A - Thermally conductive thermoplastic adhesive composition - Google Patents

Thermally conductive thermoplastic adhesive composition Download PDF

Info

Publication number
JP2011184668A
JP2011184668A JP2010054701A JP2010054701A JP2011184668A JP 2011184668 A JP2011184668 A JP 2011184668A JP 2010054701 A JP2010054701 A JP 2010054701A JP 2010054701 A JP2010054701 A JP 2010054701A JP 2011184668 A JP2011184668 A JP 2011184668A
Authority
JP
Japan
Prior art keywords
adhesive composition
graphite
conductive thermoplastic
thermoplastic adhesive
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010054701A
Other languages
Japanese (ja)
Other versions
JP2011184668A5 (en
Inventor
Satoshi Hayashi
聡史 林
Masateru Fukuoka
正輝 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010054701A priority Critical patent/JP2011184668A/en
Publication of JP2011184668A publication Critical patent/JP2011184668A/en
Publication of JP2011184668A5 publication Critical patent/JP2011184668A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive thermoplastic adhesive composition having high thermal conductivity, intense adhesive strength and high adhesive reliability used for laminating glass panels for plasma displays, heat radiation plates for electronic equipment and the like. <P>SOLUTION: The thermally conductive thermoplastic adhesive composition comprises (A) an epoxy resin having 1.5-2.2 average functional groups, (B) at least one kind of compounds selected from the group consisting of amine-based compounds, phenol-based compounds and thiol-based compounds each having 2 functional groups capable of reacting with an epoxy group, and (C) graphite. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プラズマディスプレイのガラスパネルや電子機器の放熱板等の貼り合せに用いる熱伝導性に優れた熱可塑性接着剤組成物に関し、更に詳細には、高い熱伝導性と、高い接着強度、高い接着信頼性とを有し、解体性にも優れる接着剤組成物に関する。 The present invention relates to a thermoplastic adhesive composition excellent in thermal conductivity used for bonding a glass panel of a plasma display or a heat sink of an electronic device, and more specifically, high thermal conductivity, high adhesive strength, The present invention relates to an adhesive composition having high adhesion reliability and excellent dismantling properties.

プラズマディスプレイパネル、高輝度LED基板、高性能CPU等は、発熱量が大きいことから、その温度を低下させる方法が検討されている。なかでも、プラズマディスプレイパネルでは、発熱によってガラスパネルに温度むらが生じると、画面の色むらの原因となることから、何らかの方法により温度を低下させることが必要である。 Plasma display panels, high-brightness LED substrates, high-performance CPUs, and the like generate a large amount of heat, so methods for lowering their temperatures are being studied. In particular, in the plasma display panel, if temperature unevenness occurs in the glass panel due to heat generation, it causes uneven color in the screen, and thus it is necessary to lower the temperature by some method.

一般にプラズマディスプレイパネルの温度低下方法としては、ガラスパネルとアルミや鉄等の金属フレームとを、熱伝導性を有する両面粘着テープで貼り合せる方法が採用されている。該熱伝導性を有する両面粘着テープによりガラスパネルで発生した熱を金属フレームに伝導して放熱することにより、ガラスパネル内の温度上昇を抑え、温度の不均一化を抑制し、画面の色むらを抑制することができる。 In general, as a method for lowering the temperature of a plasma display panel, a method in which a glass panel and a metal frame such as aluminum or iron are bonded with a double-sided adhesive tape having thermal conductivity is employed. The heat generated in the glass panel is conducted to the metal frame by the double-sided adhesive tape having thermal conductivity to dissipate the heat, thereby suppressing temperature rise in the glass panel, suppressing temperature non-uniformity, and uneven color of the screen. Can be suppressed.

例えば特許文献1には、黒鉛を液状ゴム、スチレン系ゴム又は非晶性オレフィン樹脂、粘着付与樹脂に配合した熱伝導性熱可塑性粘着剤組成物と、これを用いた熱伝導性シートが記載されている。特許文献1に記載された熱伝導性シートは、高い熱伝導性を有しプラズマディスプレイのガラスパネルや、電子機器の放熱板等の接着に好適であるとされている。更に、特許文献1に記載された熱伝導性シートは、製品のリペア時や製品のライフサイクル終了後には、加熱により容易に解体することができるという特徴も有する。 For example, Patent Document 1 describes a heat conductive thermoplastic pressure-sensitive adhesive composition in which graphite is mixed with liquid rubber, styrene rubber or amorphous olefin resin, and tackifier resin, and a heat conductive sheet using the same. ing. The heat conductive sheet described in Patent Document 1 has high heat conductivity and is said to be suitable for bonding a glass panel of a plasma display, a heat radiating plate of an electronic device, and the like. Furthermore, the heat conductive sheet described in Patent Document 1 also has a feature that it can be easily disassembled by heating at the time of repair of the product or after the end of the product life cycle.

プラズマディスプレイは、年々大型化して、その発生熱量も大きくなっている。また、家庭用テレビに用いられるプラズマディスプレイは、1日のうちで何回も使用による発熱と、スイッチを切った時の冷却が繰り返されることから、極めて過酷な熱履歴を経ても高い接着信頼性を発揮できることが求められる。更に、直射日光のあたる屋外での使用も想定されるなど、プラズマディスプレイの使用環境も多様化している。
特許文献1に記載された熱伝導性シートでは、このような過酷な条件下での高い接着信頼性は得られないという問題があった。そこで、高い熱伝導性と、高い接着強度、高い接着信頼性とを有し、解体性にも優れる接着剤組成物が求められていた。
Plasma displays are becoming larger year by year and the amount of heat generated is also increasing. In addition, plasma displays used in home TVs repeatedly generate heat from use several times a day and cool down when they are turned off, so they have high adhesive reliability even after extremely severe heat history. Must be able to demonstrate In addition, the usage environment of plasma displays is diversifying, such as being expected to be used outdoors in direct sunlight.
The thermal conductive sheet described in Patent Document 1 has a problem that high adhesion reliability under such severe conditions cannot be obtained. Therefore, there has been a demand for an adhesive composition that has high thermal conductivity, high adhesive strength, high adhesive reliability, and excellent dismantling properties.

国際公開第07/148729号パンフレットInternational Publication No. 07/148729 Pamphlet

本発明は、プラズマディスプレイのガラスパネルや電子機器の放熱板等の貼り合わせに用いる、高い熱伝導性と、高い接着強度、高い接着信頼性とを有する熱伝導性熱可塑性接着剤組成物を提供することを目的とする。 The present invention provides a thermally conductive thermoplastic adhesive composition having high thermal conductivity, high adhesive strength, and high adhesion reliability, which is used for bonding a glass panel of a plasma display or a heat sink of an electronic device. The purpose is to do.

本発明は、(A)平均官能基数1.5〜2.2個のエポキシ樹脂、(B)エポキシ基と反応し得る官能基を2個有するアミン系化合物、フェノール系化合物及びチオール系化合物からなる群より選択される少なくとも1種の化合物、及び、(C)黒鉛を含有する熱伝導性熱可塑性接着剤組成物である。
以下に本発明を詳述する。
The present invention comprises (A) an epoxy resin having an average functional group number of 1.5 to 2.2, (B) an amine compound having two functional groups capable of reacting with an epoxy group, a phenol compound, and a thiol compound. A thermally conductive thermoplastic adhesive composition containing at least one compound selected from the group and (C) graphite.
The present invention is described in detail below.

(A)平均官能基数1.5〜2.2個のエポキシ樹脂と、(B)エポキシ基と反応し得る官能基を2個有するアミン系化合物、フェノール系化合物及びチオール系化合物からなる群より選択される少なくとも1種の化合物とを含有する接着剤組成物の硬化物は、エポキシ樹脂本来の高い接着性と接着信頼性とを有する一方、熱可塑性をも有するという特異な性質を有する。本発明者は、この接着剤組成物に、更に(C)黒鉛を配合した熱伝導性熱可塑性接着剤組成物は、高い熱伝導性と、高い接着強度、高い接着信頼性とを発揮できるとともに、製品のリペア時や製品のライフサイクル終了後には、加熱により容易に解体することができることを見出し、本発明を完成した。 Selected from the group consisting of (A) an epoxy resin having an average functional group number of 1.5 to 2.2, and (B) an amine compound having two functional groups capable of reacting with an epoxy group, a phenol compound, and a thiol compound. The cured product of the adhesive composition containing at least one kind of compound has a unique property that it has high adhesiveness and adhesion reliability inherent to an epoxy resin, and also has thermoplasticity. The inventor of the present invention can exhibit high thermal conductivity, high adhesive strength, and high adhesive reliability while the thermally conductive thermoplastic adhesive composition in which (C) graphite is further added to the adhesive composition. The present invention has been completed by finding that it can be easily disassembled by heating at the time of repair of the product or after the end of the product life cycle.

本発明の熱伝導性熱可塑性接着剤組成物は、(A)平均官能基数1.5〜2.2個のエポキシ樹脂、(B)エポキシ基と反応し得る官能基を2個有するアミン系化合物、フェノール系化合物及びチオール系化合物からなる群より選択される少なくとも1種の化合物、及び、(C)黒鉛を含有する。 The thermally conductive thermoplastic adhesive composition of the present invention comprises (A) an epoxy resin having an average functional group number of 1.5 to 2.2, and (B) an amine compound having two functional groups capable of reacting with an epoxy group. And at least one compound selected from the group consisting of phenolic compounds and thiol compounds, and (C) graphite.

上記平均官能基数1.5〜2.2個のエポキシ樹脂とは、2官能エポキシ樹脂を主成分として、必要に応じて1官能エポキシ樹脂や3官能以上のエポキシ樹脂を配合したエポキシ樹脂又はエポキシ樹脂混合物を意味する。エポキシ樹脂の平均官能基数が1.5個未満であると、充分な接着強度や接着信頼性が得られず、2.2個を超えると、熱可塑性が小さくなり、加熱しても解体することが困難となる。エポキシ樹脂の平均官能基数の好ましい下限は1.8個、好ましい上限は2個である。
なお、本明細書において平均官能基数とは、エポキシ樹脂1分子当たりが有するエポキシ基の数を意味する。
The epoxy resin having an average functional group number of 1.5 to 2.2 is an epoxy resin or an epoxy resin containing a bifunctional epoxy resin as a main component and a monofunctional epoxy resin or a trifunctional or higher functional epoxy resin as necessary. It means a mixture. If the average number of functional groups of the epoxy resin is less than 1.5, sufficient adhesive strength and adhesive reliability cannot be obtained, and if it exceeds 2.2, the thermoplasticity will be reduced, and it will be disassembled even when heated. It becomes difficult. The preferable lower limit of the average number of functional groups of the epoxy resin is 1.8, and the preferable upper limit is 2.
In this specification, the average number of functional groups means the number of epoxy groups per molecule of epoxy resin.

上記2官能エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂や、ビスフェノールF型エポキシ樹脂や、2官能のフェノールノボラック型エポキシ樹脂や、ビスフェノールAD型エポキシ樹脂や、ビフェニル型エポキシ樹脂や、2官能のナフタレン型エポキシ樹脂や、2官能の脂環式エポキシ樹脂や、ジグリシジルフタレート、ジグリシジルテトラヒドロフタレート、ダイマー酸ジグリシジルエステル等な2官能のグリシジルエステル型エポキシ樹脂や、ジグリシジルアニリン、ジグリシジルトルイジン等の2官能のグリシジルアミン型エポキシ樹脂や、2官能の複素環式エポキシ樹脂や、2官能のジアリールスルホン型エポキシ樹脂や、ヒドロキノンジグリシジルエーテル、2,5−ジ−tert−ブチルヒドロキノンジグリシジルエーテル、レゾルシンジグリシジルエーテル等のヒドロキノン型エポキシ樹脂や、ブタンジオールジグリシジルエーテル、ブテンジオールジグリシジルエーテル、ブチンジオールジグリシジルエーテル等の2官能のアルキレングリシジルエーテル系化合物や、1,3−ジグリシジル−5,5−ジアルキルヒダントイン、1−グリシジル−3−(グリシドキシアルキル)−5,5−ジアルキルヒダントイン等の2官能のグリシジル基含有ヒダントイン化合物や、1,3−ビス(3−グリシドキシプロピル)−1,1,3,3−テトラメチルジシロキサン、α,β−ビス(3−グリシドキシプロピル)ポリジメチルシロキサン等の2官能のグリシジル基含有シロキサンや、これらの変性物等が挙げられる。これらの2官能エポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。なかでも、反応性及び作業性の点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好適である。 Examples of the bifunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bifunctional phenol novolac type epoxy resin, bisphenol AD type epoxy resin, biphenyl type epoxy resin, and bifunctional naphthalene. Type epoxy resin, bifunctional alicyclic epoxy resin, difunctional glycidyl ester type epoxy resin such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, dimer acid diglycidyl ester, diglycidyl aniline, diglycidyl toluidine, etc. Bifunctional glycidylamine type epoxy resin, bifunctional heterocyclic epoxy resin, bifunctional diarylsulfone type epoxy resin, hydroquinone diglycidyl ether, 2,5-di-tert-butylhydroquinone diglycidyl Hydroquinone type epoxy resins such as ether and resorcin diglycidyl ether, bifunctional alkylene glycidyl ether compounds such as butanediol diglycidyl ether, butenediol diglycidyl ether, butynediol diglycidyl ether, and 1,3-diglycidyl-5 Bifunctional glycidyl group-containing hydantoin compounds such as 1,5-dialkylhydantoin, 1-glycidyl-3- (glycidoxyalkyl) -5,5-dialkylhydantoin, and 1,3-bis (3-glycidoxypropyl) Examples thereof include bifunctional glycidyl group-containing siloxanes such as -1,1,3,3-tetramethyldisiloxane and α, β-bis (3-glycidoxypropyl) polydimethylsiloxane, and modified products thereof. These bifunctional epoxy resins may be used alone or in combination of two or more. Of these, bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable from the viewpoint of reactivity and workability.

上記2官能エポキシ樹脂は、上記エポキシ樹脂の主成分となるものである。
上記エポキシ樹脂中に占める上記2官能エポキシ樹脂の含有量の好ましい下限は50重量%である。上記2官能エポキシ樹脂の含有量が50重量%未満であると、充分な接着強度や接着信頼性と解体性との両立が困難となることがある。上記2官能エポキシ樹脂の含有量のより好ましい下限は80重量%である。
The bifunctional epoxy resin is a main component of the epoxy resin.
The minimum with preferable content of the said bifunctional epoxy resin which occupies in the said epoxy resin is 50 weight%. When the content of the bifunctional epoxy resin is less than 50% by weight, it may be difficult to achieve both sufficient adhesive strength, adhesion reliability, and disassembly. The minimum with more preferable content of the said bifunctional epoxy resin is 80 weight%.

上記1官能エポキシ樹脂は、反応性希釈剤としての役割を有し、本発明の熱伝導性熱可塑性接着剤組成物の粘度を調整する役割を有する。ただし、上記1官能エポキシ樹脂を大量に配合すると本発明の熱伝導性熱可塑性接着剤の接着強度や接着信頼性を損なうことがあるので、配合は本発明の目的を損なわない範囲としなければならない。
上記1官能エポキシ樹脂は、例えば、tert−ブチルフェニルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、1−(3−グリシドキシプロピル)1,1,3,3,3−ペンタメチルジシロキサン、N−グリシジル−N,N−ビス[ 3−(トリメトキシシリル)プロピル] アミン等のモノグリシジル化合物や、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のモノ脂環式エポキシ化合物等が挙げられる。これらの1官能エポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。
The said monofunctional epoxy resin has a role as a reactive diluent, and has a role which adjusts the viscosity of the heat conductive thermoplastic adhesive composition of this invention. However, since blending a large amount of the above monofunctional epoxy resin may impair the adhesive strength and adhesive reliability of the heat conductive thermoplastic adhesive of the present invention, the blending should be within a range that does not impair the purpose of the present invention. .
Examples of the monofunctional epoxy resin include tert-butylphenyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, Monoglycidyl compounds such as 1- (3-glycidoxypropyl) 1,1,3,3,3-pentamethyldisiloxane, N-glycidyl-N, N-bis [3- (trimethoxysilyl) propyl] amine And monoalicyclic epoxy compounds such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. These monofunctional epoxy resins may be used alone or in combination of two or more.

上記3官能以上のエポキシ樹脂を併用することにより、本発明の熱伝導性熱可塑性接着剤組成物による接着強度や接着信頼性をより向上させることができる。ただし、上記3官能以上のエポキシ樹脂を大量に配合すると本発明の熱伝導性熱可塑性接着剤組成物の解体性を損なうことがあるので、配合は本発明の目的を損なわない範囲としなければならない。
上記3官能以上のエポキシ樹脂は、例えば、3官能以上のフェノールノボラック型エポキシ樹脂や、3官能以上の脂環式エポキシ樹脂や、3官能以上のグリシジルエステル型エポキシ樹脂や、テトラグリシジルジアミノジフェニルメタン、トリグリシジル−p−アミノフェニルメタン、トリグリシジル−m−アミノフェニルメタン、テトラグリシジル−m−キシリレンジアミン等の3官能以上のグリシジルアミン型エポキシ樹脂や、3官能以上の複素環式エポキシ樹脂や、3官能以上のジアリールスルホン型エポキシ樹脂や、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等の3官能以上のアルキレングリシジルエーテル系化合物や、3官能以上のグリシジル基含有ヒダントイン化合物や、3官能以上のグリシジル基含有シロキサンや、これらの変性物等が挙げられる。これらの3官能以上のエポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。
By using the above-mentioned trifunctional or higher epoxy resin in combination, it is possible to further improve the adhesion strength and adhesion reliability of the heat conductive thermoplastic adhesive composition of the present invention. However, if a large amount of the above-mentioned trifunctional or higher epoxy resin is blended, the disassembling property of the thermally conductive thermoplastic adhesive composition of the present invention may be impaired. Therefore, the blending should be within a range that does not impair the purpose of the present invention. .
The tri- or higher functional epoxy resin may be, for example, a tri- or higher functional phenol novolac type epoxy resin, a tri- or higher functional alicyclic epoxy resin, a tri- or higher functional glycidyl ester type epoxy resin, tetraglycidyl diaminodiphenylmethane, Trifunctional or higher glycidylamine type epoxy resins such as glycidyl-p-aminophenylmethane, triglycidyl-m-aminophenylmethane, tetraglycidyl-m-xylylenediamine, trifunctional or higher heterocyclic epoxy resins, 3 More than trifunctional diaryl sulfone type epoxy resin, trifunctional or higher alkylene glycidyl ether compounds such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, and more than trifunctional group And glycidyl group-containing hydantoin compound, trifunctional or more glycidyl group-containing siloxane, and modified products thereof. These trifunctional or higher functional epoxy resins may be used alone or in combination of two or more.

本発明の熱伝導性熱可塑性接着剤組成物は、黒鉛を含有する。
上記黒鉛は、熱伝導材としての役割を果たすものである。
上記黒鉛は特に限定されず、例えば、天然黒鉛であっても、人造黒鉛であってもよい。なかでも人造黒鉛は純度が高く灰分が少ないことから好適である。
The heat conductive thermoplastic adhesive composition of the present invention contains graphite.
The graphite plays a role as a heat conductive material.
The graphite is not particularly limited, and may be natural graphite or artificial graphite, for example. Among these, artificial graphite is preferable because of its high purity and low ash content.

上記黒鉛の平均粒子径の好ましい下限は0.5μm、好ましい上限は250μmである。上記黒鉛の平均粒子径が0.5μm未満であると、本発明の熱伝導性熱可塑性接着剤の粘度が高くなり、塗工性が悪くなることがあり、250μmを超えると、熱伝導率は良好になるものの、接着信頼性が低下することがある。上記黒鉛の平均粒子径のより好ましい下限は1μm、より好ましい上限は200μmであり、更に好ましい下限は5μm、更に好ましい上限は150μmである。
なお、本明細書において黒鉛の平均粒子径は、レーザー回折法により測定される平均粒子径を意味する。
The preferable lower limit of the average particle diameter of the graphite is 0.5 μm, and the preferable upper limit is 250 μm. When the average particle size of the graphite is less than 0.5 μm, the viscosity of the thermally conductive thermoplastic adhesive of the present invention is increased, and the coating property may be deteriorated. When the average particle size is more than 250 μm, the thermal conductivity is Although it becomes better, the adhesion reliability may be lowered. A more preferable lower limit of the average particle diameter of the graphite is 1 μm, a more preferable upper limit is 200 μm, a further preferable lower limit is 5 μm, and a further preferable upper limit is 150 μm.
In the present specification, the average particle diameter of graphite means an average particle diameter measured by a laser diffraction method.

上記黒鉛の形状は特に限定されないが、鱗片状、針状、又はその混合物を用いると、本発明の熱伝導性熱可塑性接着剤の塗布性と、接着後の接着信頼性とを両立させることができる。
なかでも、平均アスペクト比が1.1〜30である黒鉛を含有することが好ましい。このような平均アスペクト比の黒鉛は、上記エポキシ樹脂中において黒鉛同士がより接触し易くなり、より高い熱伝導性を発揮することができる。更に、黒鉛の長径方向を揃えることにより、異方熱伝導性を発揮することもできる。
上記黒鉛の平均アスペクト比が1.1未満であると、熱伝導性向上効果や異方熱伝導性が得られないことがあり、30を超えると、本発明の熱伝導性熱可塑性接着剤の粘度が高くなり、塗工性が悪くなることがある。上記黒鉛のアスペクト比のより好ましい下限は1.2、より好ましい上限は20であり、更に好ましい下限は1.5、更に好ましい上限は10であり、特に好ましい下限は2、特に好ましい上限は5である。
The shape of the graphite is not particularly limited, but when a scaly shape, a needle shape, or a mixture thereof is used, both the applicability of the thermally conductive thermoplastic adhesive of the present invention and the adhesion reliability after adhesion can be achieved. it can.
Especially, it is preferable to contain the graphite whose average aspect-ratio is 1.1-30. The graphite having such an average aspect ratio can be more easily brought into contact with each other in the epoxy resin, and can exhibit higher thermal conductivity. Furthermore, anisotropic thermal conductivity can be exhibited by aligning the major axis direction of graphite.
When the average aspect ratio of the graphite is less than 1.1, the effect of improving thermal conductivity and anisotropic thermal conductivity may not be obtained. When the average aspect ratio exceeds 30, the thermal conductive thermoplastic adhesive of the present invention Viscosity increases and coatability may deteriorate. A more preferred lower limit of the aspect ratio of the graphite is 1.2, a more preferred upper limit is 20, a further preferred lower limit is 1.5, a still more preferred upper limit is 10, a particularly preferred lower limit is 2, and a particularly preferred upper limit is 5. is there.

なお、本明細書において黒鉛の平均アスペクト比とは、黒鉛を電子顕微鏡で写真撮影し、無作為に抽出した50個の黒鉛粒子画像から求めたアスペクト比の平均値を意味する。また、黒鉛のアスペクト比は、個々の黒鉛粒子画像の最大長と最大長に対する垂直長の比率、すなわち、アスペクト比=(最大長)/(最大長に対する垂直長)の式から求められる黒鉛の針状度を表す。ここで、最大長に対する垂直長は、とり得る最小の値とする。 In the present specification, the average aspect ratio of graphite means an average value of aspect ratios obtained from 50 graphite particle images randomly extracted by photographing graphite with an electron microscope. The aspect ratio of graphite is the ratio of the maximum length of each graphite particle image and the ratio of the vertical length to the maximum length, that is, the aspect ratio = (maximum length) / (vertical length relative to the maximum length). Represents the degree of condition. Here, the vertical length with respect to the maximum length is the minimum value that can be taken.

上記黒鉛は、ジブチルフタレート(DBP)吸油量の好ましい下限が30mL/100g、好ましい上限が200mL/100gである。上記黒鉛のDBP吸油量が30mL/100g未満であると、接着信頼性が低下することがあり、200mL/100gを超えると、本発明の熱伝導性熱可塑性接着剤の粘度が高くなり過ぎることがある。上記黒鉛のDBP吸油量のより好ましい下限は50mL/100g、より好ましい上限は160mL/100gであり、更に好ましい下限は60mL/100g、更に好ましい上限は140mL/100gである。 The graphite has a preferable lower limit of dibutyl phthalate (DBP) oil absorption of 30 mL / 100 g and a preferable upper limit of 200 mL / 100 g. When the DBP oil absorption amount of the graphite is less than 30 mL / 100 g, the adhesion reliability may be lowered, and when it exceeds 200 mL / 100 g, the viscosity of the thermally conductive thermoplastic adhesive of the present invention may become too high. is there. The more preferable lower limit of the DBP oil absorption of the graphite is 50 mL / 100 g, the more preferable upper limit is 160 mL / 100 g, the still more preferable lower limit is 60 mL / 100 g, and the still more preferable upper limit is 140 mL / 100 g.

上記黒鉛の配合量は、本発明の熱伝導性熱可塑性接着剤の全質量に対して好ましい下限が30重量%、好ましい上限が75重量%である。上記黒鉛の配合量が30質量%未満であると、熱伝導性が不充分となることがあり、75重量%を超えると、本発明の熱伝導性熱可塑性接着剤の粘度が高くなり、塗工性が悪くなることがある。上記黒鉛の配合量のより好ましい下限は35重量%、より好ましい上限が65重量%であり、更に好ましい下限は40重量%、更に好ましい上限が60重量%である。 The blending amount of the graphite is preferably 30% by weight and preferably 75% by weight with respect to the total mass of the heat conductive thermoplastic adhesive of the present invention. When the blending amount of the graphite is less than 30% by mass, the thermal conductivity may be insufficient. When the blending amount exceeds 75% by weight, the viscosity of the thermally conductive thermoplastic adhesive of the present invention increases, Workability may deteriorate. The more preferable lower limit of the compounding amount of the graphite is 35% by weight, the more preferable upper limit is 65% by weight, the still more preferable lower limit is 40% by weight, and the still more preferable upper limit is 60% by weight.

本発明の熱伝導性熱可塑性接着剤組成物は、更に、エポキシ基と反応し得る官能基を2個有するアミン系化合物、フェノール系化合物及びチオール系化合物からなる群より選択される少なくとも1種の化合物を含有する。これらの化合物は、エポキシ樹脂に対する硬化剤として働く。エポキシ基と反応し得る官能基を2個有する硬化剤を用いることにより、得られる硬化物は網目状のポリマーとならずに直鎖状のポリマーとなることから、エポキシ樹脂硬化物の高い接着信頼性を有しながら、高い熱可塑性、即ち優れた解体性をも発揮することができる。 The thermally conductive thermoplastic adhesive composition of the present invention further comprises at least one selected from the group consisting of an amine compound having two functional groups capable of reacting with an epoxy group, a phenol compound, and a thiol compound. Contains compounds. These compounds act as curing agents for the epoxy resin. By using a curing agent having two functional groups capable of reacting with an epoxy group, the resulting cured product does not become a network polymer but a linear polymer, so that the epoxy resin cured product has high adhesion reliability. It is possible to exhibit high thermoplasticity, that is, excellent dismantling properties.

上記エポキシ基と反応し得る官能基を2個有するアミン系化合物は、例えば、ピペラジン、ドデシルアミン、ベンジルアミン、ジメチルアミノプロピルアミン等が挙げられる。
上記エポキシ基と反応し得る官能基を2個有するフェノール系化合物は、例えば、カテコール、レゾルシン、ヒドロキノン等のベンゼン環を1個有する一核体芳香族ジヒドロキシ化合物類や、ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、ビス(4−ヒドロキシフェニル)メタン(ビスフェノールF)、ビス(4−ヒドロキシフェニル)エタン(ビスフェノールAD)等のビスフェノール類や、ジヒドロキシナフタレン等の縮合環を有する化合物や、ジアリルレゾルシン、ジアリルビスフェノールA、トリアリルジヒドロキシビフェニル等のアリル基を導入した2官能フェノール化合物や、ジブチルビスフェノールA等が挙げられる。
上記エポキシ基と反応し得る官能基を2個有するチオール系化合物は、例えば、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート等が挙げられる。
これらのアミン系化合物、フェノール系化合物及びチオール系化合物は単独で用いてもよく2種以上を併用してもよい。
Examples of the amine compound having two functional groups capable of reacting with the epoxy group include piperazine, dodecylamine, benzylamine, dimethylaminopropylamine and the like.
Examples of the phenolic compound having two functional groups capable of reacting with the epoxy group include mononuclear aromatic dihydroxy compounds having one benzene ring such as catechol, resorcin, and hydroquinone, and bis (4-hydroxyphenyl). Bisphenols such as propane (bisphenol A), bis (4-hydroxyphenyl) methane (bisphenol F), bis (4-hydroxyphenyl) ethane (bisphenol AD), compounds having a condensed ring such as dihydroxynaphthalene, diallyl resorcin , Bifunctional phenol compounds into which an allyl group such as diallyl bisphenol A and triallyl dihydroxy biphenyl has been introduced, and dibutyl bisphenol A.
Examples of the thiol compound having two functional groups capable of reacting with the epoxy group include ethylene glycol bisthioglycolate and ethylene glycol bisthiopropionate.
These amine compounds, phenol compounds and thiol compounds may be used alone or in combination of two or more.

上記アミン系化合物、フェノール系化合物及びチオール系化合物は、室温で液状又は半固形状のものが好適である。また、上記アミン系化合物、フェノール系化合物及びチオール系化合物の分子量の好ましい下限は50、好ましい上限は1000であり、より好ましい下限は100、より好ましい上限は500である。 The amine compound, phenol compound and thiol compound are preferably liquid or semi-solid at room temperature. Moreover, the minimum with the preferable molecular weight of the said amine compound, a phenol type compound, and a thiol type compound is 50, a preferable upper limit is 1000, a more preferable minimum is 100, and a more preferable upper limit is 500.

上記アミン系化合物、フェノール系化合物及びチオール系化合物の配合量は特に限定されないが、上記エポキシ樹脂1当量に対する好ましい下限は0.8当量、好ましい上限は1.2当量であり、より好ましい下限は0.9当量、より好ましい上限は1.1当量である。 Although the compounding quantity of the said amine compound, a phenolic compound, and a thiol type compound is not specifically limited, The preferable minimum with respect to 1 equivalent of the said epoxy resin is 0.8 equivalent, A preferable upper limit is 1.2 equivalent, A more preferable minimum is 0. 0.9 equivalent, and a more preferable upper limit is 1.1 equivalent.

本発明の熱伝導性熱可塑性接着剤組成物は、更に、熱可塑性樹脂からなる粒子を含有してもよい。上記熱可塑性樹脂からなる粒子を含有することにより、耐衝撃性や解体性が向上する。
上記熱可塑性樹脂からなる粒子の粒子径は特に限定されないが、1〜200μmが好ましい。この程度の粒子径の上記熱可塑性樹脂からなる粒子は、通常のフィラーと同様に接着剤組成物の分散させることができる。
上記熱可塑性樹脂からなる粒子は、例えば、ポリエチレンパウダー、ポリ塩化ビニルパウダー、熱可塑性ポリウレタンパウダー(TPU)等が挙げられる。これらの熱可塑性樹脂からなる粒子は単独で用いてもよく、2種以上を併用してもよい。なかでも、熱可塑性ポリウレタンパウダー(TPU)が好適である。
The heat conductive thermoplastic adhesive composition of the present invention may further contain particles made of a thermoplastic resin. By containing the particles made of the thermoplastic resin, impact resistance and disassembly are improved.
Although the particle diameter of the particle | grains which consist of the said thermoplastic resin is not specifically limited, 1-200 micrometers is preferable. Particles made of the above thermoplastic resin having such a particle size can be dispersed in the adhesive composition in the same manner as ordinary fillers.
Examples of the particles made of the thermoplastic resin include polyethylene powder, polyvinyl chloride powder, thermoplastic polyurethane powder (TPU), and the like. The particles made of these thermoplastic resins may be used alone or in combination of two or more. Of these, thermoplastic polyurethane powder (TPU) is preferred.

上記熱可塑性樹脂からなる粒子の配合量は特に限定されないが、好ましい下限は10重量%、好ましい上限は50重量%である。上記熱可塑性樹脂からなる粒子の配合量が10重量%未満であると、耐衝撃性や解体性が向上効果が得られないことがあり、50重量%を超えると、本発明の熱伝導性熱可塑性接着剤の粘度が著しく高くなることがある。上記熱可塑性樹脂からなる粒子の配合量のより好ましい上限は30重量%である。 Although the compounding quantity of the particle | grains which consist of the said thermoplastic resin is not specifically limited, A preferable minimum is 10 weight% and a preferable upper limit is 50 weight%. When the blending amount of the thermoplastic resin particles is less than 10% by weight, the effect of improving impact resistance and disassembly may not be obtained. When the blending amount exceeds 50% by weight, the heat conductive heat of the present invention is not obtained. The viscosity of the plastic adhesive can be very high. The upper limit with more preferable compounding quantity of the particle | grains which consist of the said thermoplastic resin is 30 weight%.

本発明の熱伝導性熱可塑性接着剤組成物は、更に、硬化促進剤、シランカップリング剤、消泡剤、難燃剤、分散剤、酸化防止剤、老化防止剤、安定剤等の、一般にエポキシ樹脂組成物に添加される成分を含有してもよい。 The thermally conductive thermoplastic adhesive composition of the present invention is generally an epoxy, such as a curing accelerator, a silane coupling agent, an antifoaming agent, a flame retardant, a dispersant, an antioxidant, an anti-aging agent, and a stabilizer. You may contain the component added to a resin composition.

本発明の熱伝導性熱可塑性接着剤組成物の製造方法は特に限定されず、従来公知の方法を採用することができる。 The manufacturing method of the heat conductive thermoplastic adhesive composition of this invention is not specifically limited, A conventionally well-known method is employable.

本発明の熱伝導性熱可塑性接着剤組成物は、高い熱伝導性と、高い接着強度、高い接着信頼性とを発揮できるとともに、製品のリペア時や製品のライフサイクル終了後には、加熱により容易に解体することができる。
本発明の熱伝導性熱可塑性接着剤組成物は、プラズマディスプレイパネル、高輝度LED基板、高性能CPU等の発熱量が大きい部材を接着し、その放熱を促進する用途に用いることができる。なかでも、プラズマディスプレイパネルにおけるガラスパネルと金属フレームとの接着に用いるプラズマディスプレイパネル用接着剤として好適である。
本発明の熱伝導性熱可塑性接着剤組成物からなるプラズマディスプレイパネル用接着剤もまた、本発明の1つである。
The thermally conductive thermoplastic adhesive composition of the present invention can exhibit high thermal conductivity, high adhesive strength, and high adhesive reliability, and can be easily heated by heating during product repair or after the product life cycle is completed. Can be dismantled.
The thermally conductive thermoplastic adhesive composition of the present invention can be used for applications in which a member having a large calorific value, such as a plasma display panel, a high-brightness LED substrate, or a high-performance CPU, is bonded and the heat dissipation is promoted. Especially, it is suitable as an adhesive for plasma display panels used for adhesion | attachment with the glass panel and metal frame in a plasma display panel.
The adhesive for plasma display panels which consists of the heat conductive thermoplastic adhesive composition of this invention is also one of this invention.

本発明の熱伝導性熱可塑性接着剤組成物は、接着する部材に直接塗工して接着に供する。また、本発明の熱伝導性熱可塑性接着剤組成物は、ダイコーターやプレス機等の従来公知の装置を用いて、離型処理が施されたプラスチックフィルムや紙等の基材に任意の形状に塗工した後、貼り合せする箇所に転写して用いることもできる。本発明の熱伝導性熱可塑性接着剤組成物は、熱伝導シートの形でも好適に用いることができる。 The thermally conductive thermoplastic adhesive composition of the present invention is directly applied to a member to be bonded and used for bonding. In addition, the thermally conductive thermoplastic adhesive composition of the present invention can be formed in any shape on a substrate such as a plastic film or paper that has been subjected to a release treatment using a conventionally known apparatus such as a die coater or a press. After coating, it can be transferred to the place to be bonded. The heat conductive thermoplastic adhesive composition of the present invention can also be suitably used in the form of a heat conductive sheet.

本発明の熱伝導性熱可塑性接着剤組成物の塗工方法は特に制限されず、例えば、プラズマディスプレイのガラスパネルのような平面の部材に均一に塗布する場合には、カーテンコータやロールコータなどを用いることができる。また、ドット状やビード状、スパイラル状等の特定の形状に塗工する必要がある場合には、溶融タンク、保温ホース、塗工ノズルからなるアプリケーター等を用いて、該塗工ノズルから必要な部位に塗工することができる。 The coating method of the heat conductive thermoplastic adhesive composition of the present invention is not particularly limited. For example, in the case of applying uniformly to a flat member such as a glass panel of a plasma display, a curtain coater, a roll coater, etc. Can be used. In addition, when it is necessary to apply a specific shape such as a dot shape, a bead shape, or a spiral shape, an applicator consisting of a melting tank, a heat insulating hose, a coating nozzle, etc. is used, and it is required from the coating nozzle. Can be applied to the site.

本発明の熱伝導性熱可塑性接着剤組成物が平均アスペクト比が1.1〜30である黒鉛を含有する場合には、本発明の熱伝導性熱可塑性接着剤組成物を塗工する際に、黒鉛が配向させるせん断応力かけることにより、高い異方熱伝導性を発揮させることができる。例えば、プラズマディスプレイパネルにおけるガラスパネルと金属フレームとの接着を行う際に、ガラスパネル面に対して垂直方向に黒鉛が配向するように塗工することにより、高い異方熱伝導性を発揮させ、より速やかにガラスパネルの表面温度を均一化することができる。 When the heat conductive thermoplastic adhesive composition of the present invention contains graphite having an average aspect ratio of 1.1 to 30, when applying the heat conductive thermoplastic adhesive composition of the present invention. High anisotropic heat conductivity can be exhibited by applying a shear stress to orient the graphite. For example, when performing adhesion between a glass panel and a metal frame in a plasma display panel, by applying so that graphite is oriented in a direction perpendicular to the glass panel surface, high anisotropic heat conductivity is exhibited, The surface temperature of the glass panel can be made uniform more quickly.

上記黒鉛が配向させるせん断応力かける塗工方法としては特に限定されず、例えば、塗工ノズルとガラスパネル等の塗布面との位置を相対的に面方向に移動させながらビード塗工を行う方法や、塗布ロールの周速と塗布面の移動速度とに速度差をつけたロールコート法により塗工を行う方法等の、接着剤組成物を塗工面の平行方向に変形させながら塗工する方法が挙げられる。また、本発明の粘接着剤組成物を一定の厚さを有するブロック状体又はシート状体の成形した後、該成形体を2本のロールの間に1回又は複数回通過させて延伸処理を施す方法が挙げられる。本発明の熱伝導性熱可塑性接着剤組成物は、溶融塗布時には粘性が低いことから、黒鉛を配向させることが特に容易である。 The coating method for applying shear stress to orient the graphite is not particularly limited. For example, a method of performing bead coating while relatively moving the position of the coating nozzle and the coating surface such as a glass panel in the surface direction, A method of coating while deforming the adhesive composition in the direction parallel to the coating surface, such as a method of coating by a roll coating method in which the peripheral speed of the coating roll and the moving speed of the coating surface are different. Can be mentioned. In addition, after the block-shaped body or sheet-shaped body having a certain thickness is molded with the adhesive composition of the present invention, the molded body is stretched by passing it once or a plurality of times between two rolls. There is a method of performing the treatment. The thermally conductive thermoplastic adhesive composition of the present invention is particularly easy to orient graphite because of its low viscosity during melt coating.

本発明によれば、プラズマディスプレイのガラスパネルや電子機器の放熱板等の貼り合わせに用いる、高い熱伝導性と、高い接着強度、高い接着信頼性とを有する熱伝導性熱可塑性接着剤組成物を提供することができる。 According to the present invention, a thermally conductive thermoplastic adhesive composition having high thermal conductivity, high adhesive strength, and high adhesive reliability, which is used for bonding a glass panel of a plasma display or a heat sink of an electronic device. Can be provided.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited only to these examples.

(実施例1)
2官能エポキシ樹脂(旭チバ社製「AER260」、ビスフェノールA型エポキシ樹脂、数平均分子量380)100重量部に対して、硬化促進剤としてトリトリルホスフィン(北興化学社製「TOTP」)1重量部を加えて100℃で溶解させた後、硬化剤としてウルトライトP(本州化学社製、主成分ジブチルビスフェノールA)102重量部を加えて混合した。更に、黒鉛としてG150(中越黒鉛工業所製、人造黒鉛、レーザー回折法により測定した平均粒子径は約100μm、平均アスペクト比3.4)を160重量部加えて混合して、熱伝導性熱可塑性接着剤組成物を得た。
得られた熱伝導性熱可塑性接着剤組成物を、塗工アプリケーターを用いて、ポリエチレンテレフタレート(PET)セパレーター上に加熱硬化後の厚みが1mmになるように塗工した後、130℃オーブン中で1時間加熱硬化させて、厚み1mmの熱伝導シートを得た。
Example 1
1 part by weight of tritolylphosphine (“TOTP” manufactured by Hokuko Chemical Co., Ltd.) as a curing accelerator with respect to 100 parts by weight of a bifunctional epoxy resin (“AER260” manufactured by Asahi Ciba, bisphenol A type epoxy resin, number average molecular weight 380) Was added and dissolved at 100 ° C., and 102 parts by weight of Ultrait P (manufactured by Honshu Chemical Co., Ltd., main component dibutyl bisphenol A) was added and mixed as a curing agent. Further, 160 parts by weight of G150 (manufactured by Chuetsu Graphite Industries Co., Ltd., artificial graphite, average particle diameter measured by laser diffraction method, about 100 μm, average aspect ratio 3.4) as graphite is added and mixed, and heat conductive thermoplasticity. An adhesive composition was obtained.
The obtained thermally conductive thermoplastic adhesive composition was coated on a polyethylene terephthalate (PET) separator using a coating applicator so that the thickness after heat curing was 1 mm, and then in a 130 ° C. oven. Heat curing was performed for 1 hour to obtain a heat conductive sheet having a thickness of 1 mm.

(実施例2)
黒鉛としてUF−G30(昭和電工株式会社製、人造黒鉛、レーザー回折により測定した平均粒子径は約10μm、平均アスペクト比3.6)を160重量部を用いた以外は実施例1と同様の方法により、熱伝導性熱可塑性接着剤組成物及び熱伝導シートを得た。
(Example 2)
The same method as in Example 1 except that 160 parts by weight of UF-G30 (manufactured by Showa Denko KK, artificial graphite, average particle diameter measured by laser diffraction is about 10 μm, average aspect ratio 3.6) was used as graphite. Thus, a heat conductive thermoplastic adhesive composition and a heat conductive sheet were obtained.

(実施例3)
2官能エポキシ樹脂(旭チバ社製「AER260」、ビスフェノールA型エポキシ樹脂、数平均分子量380)100重量部に対して、硬化促進剤としてテトラメチルアンモニウムクロライド(日本特殊化学工業社製)0.1重量部を加えて100℃で溶解させた後、硬化剤としてエチレングリコールビスチオグリコレート(淀化学社製「EGTG」)58重量部を加えて混合した。更に、黒鉛としてG150を129重量部加えて混合して熱伝導性熱可塑性接着剤組成物を得た。
得られた熱伝導性熱可塑性接着剤組成物を用いた以外は実施例1と同様にして、熱伝導性シートを作製した。
(Example 3)
Tetramethylammonium chloride (manufactured by Nippon Specialty Chemicals Co., Ltd.) as a curing accelerator for 100 parts by weight of a bifunctional epoxy resin (AER260 manufactured by Asahi Ciba, bisphenol A type epoxy resin, number average molecular weight 380) 0.1 After adding parts by weight and dissolving at 100 ° C., 58 parts by weight of ethylene glycol bisthioglycolate (“EGTG” manufactured by Sakai Chemical Co., Ltd.) as a curing agent was added and mixed. Further, 129 parts by weight of G150 as graphite was added and mixed to obtain a heat conductive thermoplastic adhesive composition.
A heat conductive sheet was produced in the same manner as in Example 1 except that the obtained heat conductive thermoplastic adhesive composition was used.

(比較例1)
液状ゴムであるクラプレンLIR−290(クラレ社製、液状水添ポリイソプレンゴム、重量平均分子量25000、水添率約90%)600重量部、スチレン系ゴムであるクレイトンG1650(クレイトンポリマージャパン社製、SEBS(スチレン/(エチレン・ブチレン)重量比=29/71)200重量部、粘着付与樹脂であるYSポリスターT145(ヤスハラケミカル社製、テルペンフェノール樹脂、軟化点145℃)200重量部、及び、IRGANOX1010(チバ・スペシャリティー・ケミカルズ社製、ヒンダードフェノール系老化防止剤)10重量部を180℃で4時間混合してゴム組成物を調整した。
得られたゴム組成物に、更に、黒鉛としてG150を826重量部を加えて混合して、接着剤組成物を得た。
(Comparative Example 1)
Claprene LIR-290 (manufactured by Kuraray Co., Ltd., liquid hydrogenated polyisoprene rubber, weight average molecular weight 25000, hydrogenation rate of about 90%) 600 parts by weight, Kraton G1650 (manufactured by Kraton Polymer Japan Co., Ltd.) 200 parts by weight of SEBS (styrene / (ethylene / butylene) weight ratio = 29/71), 200 parts by weight of YS Polystar T145 (Yasuhara Chemical Co., Ltd., terpene phenol resin, softening point 145 ° C.) which is a tackifier resin, and IRGANOX 1010 ( A rubber composition was prepared by mixing 10 parts by weight of a hindered phenol anti-aging agent manufactured by Ciba Specialty Chemicals Co., Ltd. at 180 ° C. for 4 hours.
To the obtained rubber composition, 826 parts by weight of G150 as graphite was further added and mixed to obtain an adhesive composition.

(比較例2)
2官能エポキシ樹脂(旭チバ社製「AER260」、ビスフェノールA型エポキシ樹脂、数平均分子量380)100重量部、1官能エポキシ樹脂(アデカ社製「ED509S」、tert−ブチルフェニル、数平均分子量209)82重量部及びトリトリルホスフィン1.5重量部を加えて100℃で溶解させた後、硬化剤としてウルトライトPを144重量部加えて混合した。更に、黒鉛としてG150を268重量部加えて混合して、熱伝導性熱可塑性接着剤組成物を得た。
得られた熱伝導性熱可塑性接着剤組成物を用いた以外は実施例1と同様にして、熱伝導性シートを作製した。
なお、用いたエポキシ樹脂混合物の平均官能基数は1.4である。
(Comparative Example 2)
100 parts by weight of bifunctional epoxy resin ("AER260" manufactured by Asahi Ciba, bisphenol A type epoxy resin, number average molecular weight 380), monofunctional epoxy resin ("ED509S" manufactured by Adeka, tert-butylphenyl, number average molecular weight 209) After 82 parts by weight and 1.5 parts by weight of tolylphosphine were added and dissolved at 100 ° C., 144 parts by weight of Ultrait P was added and mixed as a curing agent. Further, 268 parts by weight of G150 as graphite was added and mixed to obtain a heat conductive thermoplastic adhesive composition.
A heat conductive sheet was produced in the same manner as in Example 1 except that the obtained heat conductive thermoplastic adhesive composition was used.
In addition, the average number of functional groups of the used epoxy resin mixture is 1.4.

(比較例3)
2官能エポキシ樹脂(旭チバ社製「AER260」、ビスフェノールA型エポキシ樹脂、数平均分子量380)100重量部、3官能エポキシ樹脂(アデカ社製「EP3950S」、数平均分子量277)51重量部及びトリトリルホスフィン2重量部を加えて100℃で溶解させた後、硬化剤としてウルトライトPを179重量部加えて混合した。更に、黒鉛としてG150を272重量部加えて混合して、熱伝導性熱可塑性接着剤組成物を得た。
得られた熱伝導性熱可塑性接着剤組成物を用いた以外は実施例1と同様にして、熱伝導性シートを作製した。
なお、用いたエポキシ樹脂混合物の平均官能基数は2.4である。
(Comparative Example 3)
Bifunctional epoxy resin ("AER260" manufactured by Asahi Chiba Co., Ltd., bisphenol A type epoxy resin, number average molecular weight 380) 100 parts by weight Trifunctional epoxy resin ("EP3950S" manufactured by Adeka Co., Ltd., number average molecular weight 277) 51 parts by weight After adding 2 parts by weight of tolylphosphine and dissolving at 100 ° C., 179 parts by weight of Ultrait P was added and mixed as a curing agent. Further, 272 parts by weight of G150 as graphite was added and mixed to obtain a heat conductive thermoplastic adhesive composition.
A heat conductive sheet was produced in the same manner as in Example 1 except that the obtained heat conductive thermoplastic adhesive composition was used.
In addition, the average functional group number of the used epoxy resin mixture is 2.4.

(比較例4)
黒鉛の代わりに、ハイジライトH−42M(昭和電工社製、水酸化アルミニウム、レーザー回折による平均粒子径約1.1μm)を用いた以外は実施例1と同様の方法により接着剤組成物及び熱伝導シートを得た。
(Comparative Example 4)
The adhesive composition and heat were obtained in the same manner as in Example 1 except that Heidilite H-42M (made by Showa Denko KK, aluminum hydroxide, average particle diameter of about 1.1 μm by laser diffraction) was used instead of graphite. A conductive sheet was obtained.

(比較例5)
黒鉛の代わりに、AX−116(マイクロン社製、球状アルミナ、レーザー回折法により測定した平均粒子径は20μm)を用いた以外は実施例1と同様の方法により接着剤組成物及び熱伝導シートを得た。
(Comparative Example 5)
The adhesive composition and the heat conductive sheet were prepared in the same manner as in Example 1 except that AX-116 (manufactured by Micron, spherical alumina, average particle diameter measured by laser diffraction method was 20 μm) was used instead of graphite. Obtained.

(評価)
実施例及び比較例で得られた熱伝導性シートについて、以下の方法により評価を行った。
結果を表1に示した。
(Evaluation)
About the heat conductive sheet obtained by the Example and the comparative example, it evaluated by the following method.
The results are shown in Table 1.

(1)熱伝導率の測定
熱伝導性シートを直径50mmの円形に打ち抜き、ASTM E 1530に準拠した方法により、23℃における厚み方向の熱伝導率を測定した。
熱伝導性シートを10枚重ね、面方向と垂直方向とに1mm厚さとなるようにスライスし、スライスしたシートを直径50mmの円形に打ち抜き、ASTM E 1530に準拠した方法により、23℃における水平方向の熱伝導率を測定した。
(1) Measurement of thermal conductivity A thermal conductive sheet was punched into a circle having a diameter of 50 mm, and the thermal conductivity in the thickness direction at 23 ° C was measured by a method based on ASTM E 1530.
Ten heat conductive sheets are stacked, sliced to a thickness of 1 mm in the surface direction and the vertical direction, the sliced sheet is punched into a circle having a diameter of 50 mm, and the horizontal direction at 23 ° C. is obtained by a method in accordance with ASTM E 1530. The thermal conductivity of was measured.

(2)接着信頼性の評価
熱伝導性シートを幅2.5cm、長さ2.5cmに切断し、130℃のホットプレート上で加熱した幅2.5cm、長さ10cm、厚さ0.5mmのアルミニウム板上に置いた。同様に予め130℃のホットプレート上で加熱しておいた、同じ大きさで厚み0.5mmのもう1枚のアルミニウム板を、熱伝導性シートを覆うように置き、軽く圧着し、冷却して、試験片を調製した。
得られた試験片を80℃、相対湿度60%の雰囲気下で168時間放置して、劣化促進試験を行った。劣化促進試験後の試験片を引張試験器を用いて、薄い方のアルミ板を180度剥離するように剥離試験を実施し、剥離時の強度を測定した。
(2) Evaluation of adhesion reliability The heat conductive sheet was cut into a width of 2.5 cm and a length of 2.5 cm and heated on a hot plate at 130 ° C., the width was 2.5 cm, the length was 10 cm, and the thickness was 0.5 mm. Placed on an aluminum plate. Similarly, another aluminum plate having the same size and thickness of 0.5 mm, which has been heated on a hot plate at 130 ° C. in advance, is placed so as to cover the heat conductive sheet, and lightly pressed and cooled. A test piece was prepared.
The obtained test piece was left to stand for 168 hours in an atmosphere of 80 ° C. and a relative humidity of 60%, and a deterioration promotion test was conducted. A peel test was performed on the test piece after the deterioration acceleration test using a tensile tester so that the thin aluminum plate was peeled 180 degrees, and the strength at the time of peeling was measured.

(3)解体性の評価
上記(2)接着信頼性と同様にして試験片を調製した。
得られた試験片に130℃の温度をかけ、温度が下がる前に試験片の両端を手袋を着用した両手で引張り、解体性を確認した。2片のアルミ板が容易に分離できたものを「○」、解体に強い力を要するか又は解体が困難であったものを「×」と評価した。
(3) Evaluation of disassembly property A test piece was prepared in the same manner as in (2) Adhesion reliability.
A temperature of 130 ° C. was applied to the obtained test piece, and both ends of the test piece were pulled with both hands wearing gloves before the temperature was lowered to confirm the dismantling property. The case where the two pieces of aluminum plate could be easily separated was evaluated as “◯”, and the case where a strong force was required for disassembling or difficult to disassemble was evaluated as “×”.

Figure 2011184668
Figure 2011184668

本発明によれば、高い熱伝導性と、高い接着強度、高い接着信頼性とを有し、解体性にも優れる接着剤組成物を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, it can provide the adhesive composition which has high heat conductivity, high adhesive strength, high adhesive reliability, and is excellent also in demolition property.

Claims (7)

(A)平均官能基数1.5〜2.2個のエポキシ樹脂、
(B)エポキシ基と反応し得る官能基を2個有するアミン系化合物、フェノール系化合物及びチオール系化合物からなる群より選択される少なくとも1種の化合物、及び、
(C)黒鉛
を含有することを特徴とする熱伝導性熱可塑性接着剤組成物。
(A) an epoxy resin having an average functional group number of 1.5 to 2.2,
(B) at least one compound selected from the group consisting of an amine compound having two functional groups capable of reacting with an epoxy group, a phenol compound and a thiol compound, and
(C) A thermally conductive thermoplastic adhesive composition characterized by containing graphite.
黒鉛の含有量が30〜75重量%であることを特徴とする請求項1記載の熱伝導性熱可塑性接着剤組成物。 The heat conductive thermoplastic adhesive composition according to claim 1, wherein the graphite content is 30 to 75% by weight. 黒鉛は、人造黒鉛であることを特徴とする請求項1又は2記載の熱伝導性熱可塑性粘着剤組成物。 The heat conductive thermoplastic pressure-sensitive adhesive composition according to claim 1 or 2, wherein the graphite is artificial graphite. 黒鉛は、ジブチルフタレート吸油量が30〜200mL/100gであることを特徴とする請求項1、2又は3記載の熱伝導性熱可塑性接着剤組成物。 The heat conductive thermoplastic adhesive composition according to claim 1, 2 or 3, wherein the graphite has a dibutyl phthalate oil absorption of 30 to 200 mL / 100 g. レーザー回折法による測定される黒鉛の平均粒子径が、0.5〜250μmであることを特徴とする請求項1、2、3又は4記載の熱伝導性熱可塑性接着剤組成物。 The heat conductive thermoplastic adhesive composition according to claim 1, 2, 3, or 4, wherein the average particle diameter of graphite measured by a laser diffraction method is 0.5 to 250 µm. 黒鉛は、平均アスペクト比が1.1〜30であることを特徴とする請求項1、2、3、4又は5記載の熱伝導性熱可塑性接着剤組成物。 The heat conductive thermoplastic adhesive composition according to claim 1, 2, 3, 4, or 5, wherein the graphite has an average aspect ratio of 1.1 to 30. 請求項1、2、3、4、5又は6記載の熱伝導性熱可塑性接着剤組成物からなることを特徴とするプラズマディスプレイパネル用接着剤。
An adhesive for a plasma display panel, comprising the thermally conductive thermoplastic adhesive composition according to claim 1, 2, 3, 4, 5 or 6.
JP2010054701A 2010-03-11 2010-03-11 Thermally conductive thermoplastic adhesive composition Pending JP2011184668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054701A JP2011184668A (en) 2010-03-11 2010-03-11 Thermally conductive thermoplastic adhesive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054701A JP2011184668A (en) 2010-03-11 2010-03-11 Thermally conductive thermoplastic adhesive composition

Publications (2)

Publication Number Publication Date
JP2011184668A true JP2011184668A (en) 2011-09-22
JP2011184668A5 JP2011184668A5 (en) 2012-11-29

Family

ID=44791321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054701A Pending JP2011184668A (en) 2010-03-11 2010-03-11 Thermally conductive thermoplastic adhesive composition

Country Status (1)

Country Link
JP (1) JP2011184668A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523144B1 (en) * 2013-12-11 2015-05-26 동의대학교 산학협력단 Epoxy composites with improved heat dissipation, and their applications for thermal conductive and dissipative products
JP2018534224A (en) * 2015-09-23 2018-11-22 ナノテク インスツルメンツ インク Integrated monolithic film of highly oriented graphene halide
JP2020076029A (en) * 2018-11-09 2020-05-21 日本ゼオン株式会社 Thermoconductive sheet
CN113950516A (en) * 2019-08-06 2022-01-18 昭和电工株式会社 Thermoplastic resin member with primer and resin-resin bonded body
CN115230250A (en) * 2014-08-14 2022-10-25 泽费罗斯股份有限公司 Reformable epoxy resin for composites
WO2022254906A1 (en) * 2021-06-02 2022-12-08 旭化学工業株式会社 Thermoplastic epoxy resin, adhesive, modifier, and method for producing thermoplastic epoxy resin

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290235A (en) * 1985-10-15 1987-04-24 鐘淵化学工業株式会社 Electric metallic-foil lined laminated board
JPH0347877A (en) * 1990-05-31 1991-02-28 Toray Ind Inc Spherical particular epoxy adhesive and preparation thereof
JPH06334288A (en) * 1993-05-20 1994-12-02 Furukawa Electric Co Ltd:The Metal-based printed board
JP2000273426A (en) * 1999-03-29 2000-10-03 Polymatech Co Ltd Thermal conductive adhesive, bonding and semiconductor device
WO2007148729A1 (en) * 2006-06-21 2007-12-27 Hitachi Kasei Polymer Co., Ltd. Thermally conductive thermoplastic adhesive composition
WO2008001695A1 (en) * 2006-06-26 2008-01-03 Panasonic Corporation Heat curable resin composition, and mounting method and reparing process for circuit board using the heat curable composition
JP2008045123A (en) * 2006-08-10 2008-02-28 Natl Starch & Chem Investment Holding Corp Heat conductive material
JP2008069195A (en) * 2006-09-12 2008-03-27 Hitachi Kasei Polymer Co Ltd Heat conductive moisture-curing type adhesive and method for applying the same
JP2008106231A (en) * 2006-09-29 2008-05-08 Toray Ind Inc Adhesive sheet for electronic equipment
JP2008214597A (en) * 2007-03-08 2008-09-18 Toray Ind Inc Adhesive composition for electronic parts
JP2010044998A (en) * 2008-08-18 2010-02-25 Sekisui Chem Co Ltd Insulating sheet, and laminated structural body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290235A (en) * 1985-10-15 1987-04-24 鐘淵化学工業株式会社 Electric metallic-foil lined laminated board
JPH0347877A (en) * 1990-05-31 1991-02-28 Toray Ind Inc Spherical particular epoxy adhesive and preparation thereof
JPH06334288A (en) * 1993-05-20 1994-12-02 Furukawa Electric Co Ltd:The Metal-based printed board
JP2000273426A (en) * 1999-03-29 2000-10-03 Polymatech Co Ltd Thermal conductive adhesive, bonding and semiconductor device
WO2007148729A1 (en) * 2006-06-21 2007-12-27 Hitachi Kasei Polymer Co., Ltd. Thermally conductive thermoplastic adhesive composition
WO2008001695A1 (en) * 2006-06-26 2008-01-03 Panasonic Corporation Heat curable resin composition, and mounting method and reparing process for circuit board using the heat curable composition
JP2008045123A (en) * 2006-08-10 2008-02-28 Natl Starch & Chem Investment Holding Corp Heat conductive material
JP2008069195A (en) * 2006-09-12 2008-03-27 Hitachi Kasei Polymer Co Ltd Heat conductive moisture-curing type adhesive and method for applying the same
JP2008106231A (en) * 2006-09-29 2008-05-08 Toray Ind Inc Adhesive sheet for electronic equipment
JP2008214597A (en) * 2007-03-08 2008-09-18 Toray Ind Inc Adhesive composition for electronic parts
JP2010044998A (en) * 2008-08-18 2010-02-25 Sekisui Chem Co Ltd Insulating sheet, and laminated structural body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523144B1 (en) * 2013-12-11 2015-05-26 동의대학교 산학협력단 Epoxy composites with improved heat dissipation, and their applications for thermal conductive and dissipative products
CN115230250A (en) * 2014-08-14 2022-10-25 泽费罗斯股份有限公司 Reformable epoxy resin for composites
JP2018534224A (en) * 2015-09-23 2018-11-22 ナノテク インスツルメンツ インク Integrated monolithic film of highly oriented graphene halide
JP7050667B2 (en) 2015-09-23 2022-04-08 ナノテク インスツルメンツ インク Monolith membrane of integrated highly oriented halogenated graphene
JP2020076029A (en) * 2018-11-09 2020-05-21 日本ゼオン株式会社 Thermoconductive sheet
JP7322382B2 (en) 2018-11-09 2023-08-08 日本ゼオン株式会社 thermal conductive sheet
CN113950516A (en) * 2019-08-06 2022-01-18 昭和电工株式会社 Thermoplastic resin member with primer and resin-resin bonded body
WO2022254906A1 (en) * 2021-06-02 2022-12-08 旭化学工業株式会社 Thermoplastic epoxy resin, adhesive, modifier, and method for producing thermoplastic epoxy resin

Similar Documents

Publication Publication Date Title
KR101625422B1 (en) Curable heat radiation composition
US20100213403A1 (en) Thermally conductive thermoplastic pressure sensitive adhesive composition
JP6029990B2 (en) Thermally conductive sheet
JP2011184668A (en) Thermally conductive thermoplastic adhesive composition
JP6252473B2 (en) Sheet adhesive and organic EL panel using the same
TW201927966A (en) Adhesive tapes based on epoxy resin reactive adhesives
WO2006109841A1 (en) Impact absorption sheet for flat panel display, process for producing the same, and flat panel display
JP5004538B2 (en) Thermally conductive moisture-curing adhesive and its construction method
JP6487829B2 (en) Thermally conductive thermosetting adhesive composition and thermally conductive thermosetting adhesive sheet
TW202004873A (en) Die bonding film, dicing die bonding sheet, and method for producing semiconductor chip
WO2021241129A1 (en) Sealant for display devices
JP2015140375A (en) Adsorptive film
TWI613272B (en) Conductive composition and conductive molded body
WO2013118849A1 (en) Thermal conductive sheet
WO2023136017A1 (en) Resin composition for flexible device, film-like adhesive for flexible device, adhesive sheet for flexible device, and method for manufacturing flexible device
WO2023136018A1 (en) Film-like adhesive for flexible device, adhesive sheet for flexible device, and method for manufacturing flexible device
JP7470863B2 (en) Substrate/adhesive layer integrated sheet for flexible devices, and method for manufacturing flexible devices
JP2020181672A (en) Conductive adhesion sheet, method for manufacturing conductive adhesion sheet, and semiconductor device
WO2023112685A1 (en) Substrate-and-adhesive layer integrated sheet for flexible device, and production method of flexible device
JP2020143237A (en) Adhesive composition
JP2013252687A (en) Resin sheet with hard coat layer
TW201827512A (en) Resin composition for inkjet printing, electronic components, and method for manufacturing electronic component having an acrylic monoester as a main content and reducing the occurrence of voids after being hardened
JP2015140373A (en) Adsorptive film
CN107001884B (en) Optical applications adhesive composition, the preparation method of optical applications adhesive composition and optical applications binder film
JP2023101158A (en) Epoxy resin composition, cured product, structure, and electronic component

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

A621 Written request for application examination

Effective date: 20121017

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107