WO2022254906A1 - Thermoplastic epoxy resin, adhesive, modifier, and method for producing thermoplastic epoxy resin - Google Patents

Thermoplastic epoxy resin, adhesive, modifier, and method for producing thermoplastic epoxy resin Download PDF

Info

Publication number
WO2022254906A1
WO2022254906A1 PCT/JP2022/014362 JP2022014362W WO2022254906A1 WO 2022254906 A1 WO2022254906 A1 WO 2022254906A1 JP 2022014362 W JP2022014362 W JP 2022014362W WO 2022254906 A1 WO2022254906 A1 WO 2022254906A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
bifunctional
thiol compound
compound
bifunctional thiol
Prior art date
Application number
PCT/JP2022/014362
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 坂口
肇 木村
盛生 米川
恵子 大塚
Original Assignee
旭化学工業株式会社
地方独立行政法人大阪産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化学工業株式会社, 地方独立行政法人大阪産業技術研究所 filed Critical 旭化学工業株式会社
Publication of WO2022254906A1 publication Critical patent/WO2022254906A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to thermoplastic epoxy resins, adhesives, modifiers, and methods for producing thermoplastic epoxy resins.
  • An epoxy resin is, for example, a reaction product of an epoxy compound and a curing agent.
  • Epoxy resins are typically three-dimensionally crosslinked thermosetting resins. Therefore, epoxy resins are widely used in various industrial fields where thermosetting properties are required.
  • epoxy resin may be required to be thermoplastic.
  • epoxy resins with thermoplastic properties are required.
  • the following thermally conductive thermoplastic adhesive compositions have been proposed as such epoxy resins.
  • the thermally conductive thermoplastic adhesive composition contains a bisphenol A type epoxy resin as a bifunctional epoxy resin, ethylene glycol bisthioglycolate as a curing agent, and graphite.
  • a thermally conductive thermoplastic adhesive composition is applied to polyethylene terephthalate and cured at 130°C. Thereby, a heat conductive sheet is obtained (see, for example, Patent Document 1 (Example 3)).
  • the thermally conductive thermoplastic adhesive composition described above has a relatively high curing temperature. Therefore, when curing the thermally conductive thermoplastic adhesive composition, the cost is relatively high and the productivity of the cured product is poor.
  • the present invention is a thermoplastic epoxy resin that can be cured at a relatively low temperature and has excellent productivity, an adhesive, a modifier, and a method for producing a thermoplastic epoxy resin.
  • the present invention [1] includes a reaction product of a bifunctional epoxy compound containing two glycidyl groups in one molecule and a bifunctional thiol compound containing two mercapto groups in one molecule, wherein the bifunctional thiol compound contains a thermoplastic epoxy resin containing at least one selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound.
  • the present invention [2] includes an adhesive containing the thermoplastic epoxy resin described in [1] above.
  • the present invention [3] contains a modifier containing the thermoplastic epoxy resin described in [1] above.
  • the present invention [4] includes the modifier described in [3] above, which is an epoxy resin modifier obtained by reaction of an epoxy compound and a curing agent.
  • the present invention [5] comprises a reaction step of reacting a bifunctional epoxy compound containing two glycidyl groups in one molecule with a bifunctional thiol compound containing two mercapto groups in one molecule, wherein the bifunctional thiol compound contains at least one selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound, and the reaction temperature in the reaction step is 120 ° C. or less.
  • a method for making a thermoplastic epoxy resin is included.
  • thermoplastic epoxy resin adhesive, modifier, and method for producing a thermoplastic epoxy resin of the present invention
  • a bifunctional epoxy compound containing two glycidyl groups in one molecule and two mercapto groups in one molecule is reacted with a bifunctional thiol compound containing Therefore, a linear structure is formed in the reaction product, and the formation of a three-dimensional crosslinked structure is suppressed.
  • the result is excellent thermoplasticity.
  • the bifunctional thiol compound is a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether. It contains at least one selected from the group consisting of group-containing bifunctional thiol compounds. Therefore, the thermoplastic epoxy resin, the adhesive, the modifier, and the method for producing the thermoplastic epoxy resin have excellent low-temperature curability and excellent productivity.
  • thermoplastic epoxy resin of the present invention contains a reaction product of a bifunctional epoxy compound and a bifunctional thiol compound.
  • the thermoplastic epoxy resin consists of the reaction product of a difunctional epoxy compound and a difunctional thiol compound.
  • a bifunctional epoxy compound is an epoxy compound containing two glycidyl groups in one molecule.
  • a bifunctional epoxy compound is the main ingredient in a thermoplastic epoxy resin.
  • Examples of bifunctional epoxy compounds include aromatic bifunctional epoxy compounds, hydrogenated aromatic bifunctional epoxy compounds, glycidyl ester type epoxy compounds, and glycidyl ether type epoxy compounds.
  • aromatic bifunctional epoxy compounds include bisphenol-type epoxy compounds, biphenol-type epoxy compounds, benzenediol-type epoxy compounds, and diphenyldicyclopentadiene-type epoxy compounds.
  • bisphenol-type epoxy compounds include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol Z diglycidyl ether, bisphenol S diglycidyl ether, bisphenol fluorenediglycidyl ether, and biscresol fluorenediglycidyl ether.
  • Biphenol-type epoxy compounds include, for example, biphenol diglycidyl ether and tetramethylbiphenol diglycidyl ether.
  • Benzenediol-type epoxy compounds include, for example, hydroquinone diglycidyl ether, methylhydroquinone diglycidyl ether, and resorcin diglycidyl ether.
  • Diphenyldicyclopentadiene type epoxy compounds include, for example, dihydroxyanthracene diglycidyl ether, hydroanthrahydroquinone diglycidyl ether, dihydroxynaphthalenediglycidyl ether, and bisnaphtholfluorenediglycidyl ether.
  • Examples of hydrogenated aromatic bifunctional epoxy compounds include bifunctional epoxy compounds obtained by adding hydrogen to the aromatic rings of the above aromatic bifunctional epoxy compounds.
  • Examples of glycidyl ester-type epoxy compounds include reaction products of known dicarboxylic acids and epichlorohydrin.
  • Examples of glycidyl ether type epoxy compounds include reaction products of known dialcohols and epichlorohydrin.
  • the bifunctional epoxy compound can be used alone or in combination of two or more. From the viewpoint of mechanical properties and cost reduction, the bifunctional epoxy compound preferably includes an aromatic bifunctional epoxy compound, more preferably a bisphenol type epoxy compound, and still more preferably bisphenol A diglycidyl ether. is mentioned.
  • a bifunctional thiol compound is a thiol compound containing two mercapto groups in one molecule.
  • Bifunctional thiol compounds are curing agents in thermoplastic epoxy resins.
  • the bifunctional thiol compound includes at least one selected from the group consisting of hydrocarbon-based bifunctional thiol compounds, hydroxyl group-containing bifunctional thiol compounds, and ether group-containing bifunctional thiol compounds. Preferably, it consists of at least one selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound.
  • a hydrocarbon-based bifunctional thiol compound is a bifunctional thiol compound having two mercapto groups in one molecule and having a hydrocarbon molecular skeleton other than the mercapto groups. That is, the hydrocarbon-based bifunctional thiol compound does not contain hydroxyl groups, ether bonds and ester bonds.
  • hydrocarbon-based bifunctional thiol compounds include alkanedithiol, alkenedithiol, alkynedithiol, cycloalkanedithiol, and aryldithiol.
  • alkanedithiols include alkanedithiols having 1 to 12 carbon atoms, more specifically dimercaptomethane, 1,2-dimercaptoethane, 1,1-dimercaptoethane, 1,3-dimercaptoethane, Mercaptopropane, 1,2-dimercaptopropane, 1,1-dimercaptopropane, 1,4-dimercaptobutane, 1,5-dimercaptopentane, 1,6-dimercaptohexane, 1,8-dimercaptooctane , 1,10-dimercaptodecane, and 1,12-dimercaptododecane.
  • alkenedithiols include alkenedithiols having 2 to 12 carbon atoms, more specifically 1,2-dimercapto-2-ethylene, 1,3-dimercapto-2-propene, and 1,4 - dimercapto-1-butene.
  • alkyneditiols include alkyneditiols having 2 to 12 carbon atoms, more specifically 1,2-dimercapto-2-acetylene, 1,3-dimercapto-2-propylene, and 1,4 -dimercapto-1-butyne.
  • Cycloalkanedithiols include, for example, cycloalkanedithiols having 3 to 12 carbon atoms, more specifically 1,4-dimercaptocycloalkanes.
  • aryldithiols include aryldithiols having 6 to 12 carbon atoms, more specifically 1,4-dimercaptobenzene and 1,5-dimercaptonaphthalene. These can be used alone or in combination of two or more.
  • a hydroxyl group-containing bifunctional thiol compound is a bifunctional thiol compound that has two mercapto groups and one or more hydroxyl groups in one molecule, and whose molecular skeleton other than the mercapto groups and hydroxyl groups consists of hydrocarbons. That is, the hydrocarbon-based bifunctional thiol compound does not contain an ether bond and an ester bond.
  • hydroxyl-containing bifunctional thiol compounds include dimercaptoalcohols having 3 to 12 carbon atoms, more specifically 1,3-dimercapto-2-propanol, 1,4-dimercapto-2-butanol, and 1,4-dimercapto-3-butanol.
  • the ether group-containing bifunctional thiol compound has two mercapto groups and one or more ether bonds in one molecule, and the molecular skeleton other than the mercapto groups and ether bonds is a bifunctional thiol compound consisting of hydrocarbons. . That is, the hydrocarbon-based bifunctional thiol compound does not contain hydroxyl groups and ester bonds.
  • Ether linkages include, for example, -O- and -S- (thioether).
  • ether group-containing bifunctional thiol compounds include bis (2-mercaptoethyl) ether, bis (2-mercaptoethyl) thioether, bis (3-mercaptopropyl) ether, and bis (3-mercaptopropyl) thioether. mentioned.
  • the bifunctional thiol compound may have a heterocyclic ring, if necessary.
  • Heterocycles include, for example, 4- to 8-membered heterocycles.
  • bifunctional thiol compounds can be used alone or in combination of two or more.
  • the bifunctional thiol compound preferably consists of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound, or an ether group-containing bifunctional thiol compound.
  • the bifunctional thiol compound is more preferably composed of a hydrocarbon-based bifunctional thiol compound.
  • the bifunctional thiol compound may have an aromatic ring (hydrocarbon-based aromatic ring and/or heteroaromatic ring), but from the viewpoint of low-temperature curability, preferably the bifunctional thiol compound has an aromatic ring. does not have A bifunctional thiol compound having no aromatic ring has higher reactivity than a bifunctional thiol compound having an aromatic ring. Therefore, by using a bifunctional thiol compound that does not have an aromatic ring, it is possible to further improve low-temperature curability.
  • thermoplastic epoxy resin In the production of the thermoplastic epoxy resin, the above bifunctional epoxy compound and the above bifunctional thiol compound are mixed, and the glycidyl group and the mercapto group undergo a curing reaction (reaction step).
  • the equivalent ratio of the mercapto group in the bifunctional thiol compound to the glycidyl group in the bifunctional epoxy compound is, for example, 0.8 or more, preferably 0.9 or more.
  • the equivalent ratio of mercapto groups in the bifunctional thiol compound to glycidyl groups in the bifunctional epoxy compound is, for example, 1.2 or less, preferably 1.1 or less.
  • the pressure conditions in the reaction may be normal pressure, increased pressure, or reduced pressure. Preferably, it is normal pressure.
  • the above bifunctional epoxy compound and the above bifunctional thiol compound undergo a curing reaction at a relatively low temperature. Therefore, the reaction temperature is relatively low, for example, 0° C. or higher, preferably 20° C. or higher, more preferably 50° C. or higher.
  • the reaction temperature is, for example, 120° C. or lower, preferably 110° C. or lower, more preferably 105° C. or lower, and even more preferably 100° C. or lower. If the reaction temperature is below the above upper limit, the thermoplastic epoxy resin will have excellent low cost and productivity.
  • reaction time is not particularly limited, it is, for example, 0.5 hours or longer, preferably 1 hour or longer. Also, the reaction time is, for example, 5 hours or less, preferably 3 hours or less. If the reaction time is within the above range, the thermoplastic epoxy resin has excellent low cost and productivity.
  • Curing accelerators include, for example, alkali metal hydroxides, tertiary amine compounds, quaternary ammonium compounds, tertiary phosphine compounds, quaternary phosphonium compounds and imidazole compounds. These can be used alone or in combination of two or more. The amount of the curing accelerator to be added is appropriately set according to the purpose and application.
  • Solvents include, for example, ketones, esters, ethers, amides and glycol ethers. These can be used alone or in combination of two or more. Ketones and glycol ethers are preferred. The amount of solvent to be added is appropriately set according to the purpose and application.
  • thermoplastic epoxy resin is obtained as a reaction product. More specifically, in the above method, a bifunctional epoxy compound and a bifunctional thiol compound react. That is, bifunctional compounds react with each other. Therefore, a linear structure is formed in the reaction product, and the formation of a three-dimensional crosslinked structure is suppressed. As a result, an epoxy resin having thermoplasticity is obtained.
  • hydroxyl groups are by-produced in the reaction between the bifunctional epoxy compound and the bifunctional thiol compound.
  • a bifunctional thiol compound may contain a hydroxyl group.
  • hydroxyl groups may react with glycidyl groups to form a three-dimensional crosslinked structure.
  • the reactivity of the hydroxyl group to the glycidyl group is much lower than the reactivity of the mercapto group to the glycidyl group. Therefore, the mercapto group preferentially reacts with the glycidyl group. As a result, a linear structure is formed, the formation of a three-dimensional crosslinked structure is suppressed, and a linear structure is formed. Therefore, a thermoplastic epoxy resin is obtained as a reaction product of the bifunctional epoxy compound and the bifunctional thiol compound.
  • thermoplastic epoxy resin is obtained as a reaction product of a bifunctional epoxy compound and a bifunctional thiol compound, it has excellent solubility and/or dispersibility in solvents. Therefore, the above thermoplastic epoxy resin can be obtained as a solution and/or dispersion liquid of the above solvent, and is excellent in handleability.
  • the solvent can be removed by a known method to obtain a solid thermoplastic epoxy resin, if necessary.
  • the solvent may be added to a solid thermoplastic epoxy resin to obtain a thermoplastic epoxy resin solution and/or dispersion.
  • the above solvent can be added to the thermoplastic epoxy resin solution and/or dispersion to adjust the solid content concentration.
  • the thermoplastic epoxy resin is preferably prepared as a solution and/or dispersion.
  • the solid content concentration of the thermoplastic epoxy resin solution and/or dispersion is, for example, 1% by mass or more, preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the solid content concentration of the thermoplastic epoxy resin solution and/or dispersion is, for example, 70% by mass or less, preferably 60% by mass or less, and more preferably 50% by mass or less.
  • thermoplastic epoxy resins have excellent thermoplasticity.
  • the bifunctional thiol compound is selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound. At least one type is included. Therefore, the thermoplastic epoxy resin has excellent low-temperature curability and excellent productivity.
  • thermoplastic epoxy resin (cured product) has thermoplasticity, so it can be molded into any shape by heating, and is suitably used in various fields.
  • Fields in which thermoplastic epoxy resins are used are not particularly limited, but include, for example, the fields of adhesives, paints, electric/electronic materials, semiconductor materials, insulating materials, coatings and films, preferably , adhesive field.
  • thermoplastic epoxy resin is preferably used as the adhesive.
  • the adhesive contains the thermoplastic epoxy resin described above, and preferably consists of the thermoplastic epoxy resin described above.
  • adhesives include liquid adhesives and film adhesives, preferably film adhesives.
  • a film adhesive is, for example, a hot melt adhesive. That is, when a thermoplastic epoxy resin is used as a film adhesive, first, the thermoplastic epoxy resin is molded into a film. Next, the thermoplastic epoxy resin film is heated and melted while being in contact with the adherend. The molten thermoplastic epoxy resin is then dried and cured. Thereby, the adherend can be adhered with the thermoplastic epoxy resin.
  • Thermoplastic epoxy resins are also used as resin modifiers.
  • the resin to be modified includes, for example, a resin containing a compound capable of reacting with a hydroxyl group (hydroxyl-reactive compound) as a raw material component.
  • the thermoplastic epoxy resin contains free hydroxyl groups as described above. More specifically, as described above, the reaction between the bifunctional epoxy compound and the bifunctional thiol compound produces a hydroxyl group by-product. Moreover, a bifunctional thiol compound may contain a hydroxyl group. However, the reactivity of hydroxyl groups to glycidyl groups is lower than the reactivity of mercapto groups to glycidyl groups. Therefore, the mercapto group preferentially reacts with the glycidyl group. As a result, the thermoplastic epoxy resin contains hydroxyl groups that remain unreacted with the glycidyl groups.
  • the raw material component of the resin to be modified contains a hydroxyl-reactive compound
  • a part of the raw material component and the thermoplastic epoxy resin can be reacted by adding the thermoplastic epoxy resin to the raw material component. and the resin to be modified can be modified with the thermoplastic epoxy resin.
  • Examples of compounds that can react with hydroxyl groups include epoxy compounds, acrylic acid ester compounds, isocyanate compounds, and acid anhydride compounds.
  • thermoplastic epoxy resin is blended with the raw material components of the resin to be modified, and the raw material components are reacted.
  • the mixing ratio and reaction conditions of the thermoplastic epoxy resin are appropriately set according to the type of the resin to be modified.
  • the blending amount of the thermoplastic epoxy resin is, for example, 20 parts by mass or less, preferably 10 parts by mass or less, with respect to 100 parts by mass of the resin to be modified.
  • the lower limit is not particularly limited, but the blending amount of the thermoplastic epoxy resin is, for example, 0.1 parts by mass or more with respect to 100 parts by mass of the resin to be modified.
  • the reaction temperature is, for example, 0°C or higher, preferably 20°C or higher, and more preferably 50°C or higher.
  • the reaction temperature is, for example, 120° C. or lower, preferably 110° C. or lower, more preferably 105° C. or lower, and even more preferably 100° C. or lower.
  • a curing accelerator can be added as needed.
  • the curing accelerator is appropriately set according to the type of curable compound.
  • examples of the curing accelerator include the curing accelerators described above.
  • the resin modified with the thermoplastic epoxy resin is not particularly limited, and is suitably used in various industrial fields.
  • Such fields include, for example, the fields of adhesives, paints, electrical and electronic materials, semiconductor materials, insulating materials, coatings and films.
  • Raw material (A component) Main agent Bisphenol A type epoxy compound (product name jER828, manufactured by Mitsubishi Chemical Corporation, epoxy compound, bisphenol A diglycidyl ether, number of functional groups 2)
  • Curing accelerator (1) Amine adduct type curing accelerator (product name Amicure PN-23, manufactured by Ajinomoto Fine-Techno Co., Ltd., PN-23) (2) Triphenylphosphine (manufactured by Wako Pure Chemical Industries, Ltd., TPP)
  • Thermoplastic epoxy resin Example 1 Example 3 and Comparative Example 1 Based on the formulation shown in Table 1, A component, B component and C component were mixed. The equivalent ratio (mercapto group/glycidyl group) of the mercapto group in the bifunctional thiol compound to the glycidyl group in the bifunctional epoxy compound was 1.0.
  • thermoplastic epoxy resin (thickness: 3 mm) was thus obtained.
  • thermoplastic epoxy resin was not obtained, and a thermosetting epoxy resin was obtained.
  • Example 2 Based on the formulation shown in Table 1, A component, B component and C component were mixed. The equivalent ratio (mercapto group/glycidyl group) of the mercapto group in the bifunctional thiol compound to the glycidyl group in the bifunctional epoxy compound was 1.0.
  • thermoplastic epoxy resin (thickness: 3 mm) was thus obtained.
  • Comparative example 2 Based on the formulation shown in Table 1, A component, B component and C component were mixed. The resulting mixture was then poured into a mold (thickness 3 mm) and heated at 120° C. for 30 minutes and then at 150° C. for 5 hours. A thermoplastic epoxy resin (thickness: 3 mm) was thus obtained. In Comparative Example 1, under the same temperature conditions as in Example 1, the A component, the B component and the C component did not react.
  • thermoplastic epoxy resin obtained in each example and each comparative example was sandwiched between two aluminum plates. Next, the gap between the aluminum plates was adjusted to 1 mm with a spacer. Next, the aluminum plate and thermoplastic epoxy resin were fixed and heated at 150° C. for 60 minutes in a hot air drying oven. After that, it was confirmed that the temperature of the thermoplastic epoxy resin had returned to room temperature. As a result, a film-like adhesive (thickness: 1 mm) made of a thermoplastic epoxy resin was obtained.
  • Thermoplasticity The epoxy resins of Examples 1 to 3 and Comparative Example 2 were able to be formed into films by the above method, and thus were judged to have thermoplasticity. On the other hand, since the epoxy resin of Comparative Example 1 could not be formed into a film by the above method, it was determined that it did not have thermoplasticity.
  • test piece was pulled in the tensile direction (180°) at a tensile speed of 5 mm/min by a universal material testing machine (AGS-X manufactured by Shimadzu Corporation) to measure the maximum load.
  • AGS-X manufactured by Shimadzu Corporation
  • the bond strength (MPa) was then calculated based on the maximum load and bond area.
  • this test conforms to JIS K 6850 (1999).
  • Modifier (Component D) Hydroxyl-reactive compound (1) Bisphenol A type epoxy compound (product name: jER828, manufactured by Mitsubishi Chemical Corporation, epoxy compound, number of functional groups: 2) (2) 4-methylcyclohexane-1,2-dicarboxylic anhydride (acid anhydride, MCDA)
  • Examples 4-5 and Comparative Example 3 D component, E component and F component were mixed based on the formulation described in Table 2. The resulting mixture was then poured into a mold (thickness 3 mm) and heated at 50° C. for 1 hour and then at 80° C. for 1 hour. As a result, a resin (thickness: 3 mm) modified with a thermoplastic epoxy resin was obtained. In addition, in Comparative Example 3, the E component was not blended.
  • Fracture toughness value The fracture toughness value of the resin test piece (60 mm ⁇ 10 mm ⁇ 3 mm) obtained in each example and each comparative example was measured using a universal material testing machine (Shimadzu Corporation AGS-X). did. The measurement conforms to the three-point bending method of ASTM D5043-93. The measurement conditions were a distance between fulcrums of 40 mm and a load speed of 1 mm/min. As the fracture toughness value, a critical stress intensity factor (K 1C ) calculated by a fracture toughness test was used.
  • K 1C critical stress intensity factor
  • thermoplastic epoxy resin, adhesive, modifier, and method for producing the thermoplastic epoxy resin of the present invention are widely used in the fields of adhesives, paints, electrical and electronic materials, semiconductor materials, insulating materials, coatings, and the like.
  • Film field WHEREIN It is used suitably.

Abstract

A thermoplastic epoxy resin including a product of reaction between a bifunctional epoxy compound, which has two glycidyl groups in the molecule, and one or more bifunctional thiol compounds, which each have two mercapto groups in the molecule. The bifunctional thiol compounds comprise a hydrocarbon-based bifunctional thiol compound and/or an ether-based bifunctional thiol compound.

Description

熱可塑性エポキシ樹脂、接着剤、改質剤、および、熱可塑性エポキシ樹脂の製造方法Thermoplastic epoxy resin, adhesive, modifier, and method for producing thermoplastic epoxy resin
 本発明は、熱可塑性エポキシ樹脂、接着剤、改質剤、および、熱可塑性エポキシ樹脂の製造方法に関する。 The present invention relates to thermoplastic epoxy resins, adhesives, modifiers, and methods for producing thermoplastic epoxy resins.
 エポキシ樹脂は、例えば、エポキシ化合物および硬化剤の反応生成物である。エポキシ樹脂は、通常、三次元架橋された熱硬化性樹脂である。そのため、エポキシ樹脂は、熱硬化性が要求される各種産業分野において、広範に使用されている。 An epoxy resin is, for example, a reaction product of an epoxy compound and a curing agent. Epoxy resins are typically three-dimensionally crosslinked thermosetting resins. Therefore, epoxy resins are widely used in various industrial fields where thermosetting properties are required.
 一方、使用分野によっては、エポキシ樹脂に、熱可塑性が要求される場合がある。例えば、接着剤の分野において、熱可塑性を有するエポキシ樹脂が要求される。そのようなエポキシ樹脂として、下記の熱伝導性熱可塑性接着剤組成物が、提案されている。 On the other hand, depending on the field of use, epoxy resin may be required to be thermoplastic. For example, in the field of adhesives, epoxy resins with thermoplastic properties are required. The following thermally conductive thermoplastic adhesive compositions have been proposed as such epoxy resins.
 すなわち、熱伝導性熱可塑性接着剤組成物は、2官能エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と、硬化剤としてのエチレングリコールビスチオグリコレートと、黒鉛とを含む。熱伝導性熱可塑性接着剤組成物は、ポリエチレンテレフタレートに塗工され、130℃で硬化する。これにより、熱伝導シートが得られる(例えば、特許文献1(実施例3)参照。)。 That is, the thermally conductive thermoplastic adhesive composition contains a bisphenol A type epoxy resin as a bifunctional epoxy resin, ethylene glycol bisthioglycolate as a curing agent, and graphite. A thermally conductive thermoplastic adhesive composition is applied to polyethylene terephthalate and cured at 130°C. Thereby, a heat conductive sheet is obtained (see, for example, Patent Document 1 (Example 3)).
特開2011-184668号JP 2011-184668
 一方、上記の熱伝導性熱可塑性接着剤組成物は、硬化温度が比較的高い。そのため、熱伝導性熱可塑性接着剤組成物を硬化させる場合、コストが比較的高く、硬化物の生産性に劣る。 On the other hand, the thermally conductive thermoplastic adhesive composition described above has a relatively high curing temperature. Therefore, when curing the thermally conductive thermoplastic adhesive composition, the cost is relatively high and the productivity of the cured product is poor.
 本発明は、比較的低温で硬化可能であり、生産性に優れる熱可塑性エポキシ樹脂、接着剤、改質剤、および、熱可塑性エポキシ樹脂の製造方法である。 The present invention is a thermoplastic epoxy resin that can be cured at a relatively low temperature and has excellent productivity, an adhesive, a modifier, and a method for producing a thermoplastic epoxy resin.
 本発明[1]は、1分子中に2つのグリシジル基を含む2官能エポキシ化合物と、1分子中に2つのメルカプト基を含む2官能チオール化合物との反応生成物を含み、前記2官能チオール化合物が、炭化水素系2官能チオール化合物、水酸基含有2官能チオール化合物およびエーテル基含有2官能チオール化合物からなる群から選択される少なくとも1種を含む、熱可塑性エポキシ樹脂を、含んでいる。 The present invention [1] includes a reaction product of a bifunctional epoxy compound containing two glycidyl groups in one molecule and a bifunctional thiol compound containing two mercapto groups in one molecule, wherein the bifunctional thiol compound contains a thermoplastic epoxy resin containing at least one selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound.
 本発明[2]は、上記[1]に記載の熱可塑性エポキシ樹脂を含む、接着剤を、含んでいる。 The present invention [2] includes an adhesive containing the thermoplastic epoxy resin described in [1] above.
 本発明[3]は、上記[1]に記載の熱可塑性エポキシ樹脂を含む、改質剤を、含んでいる。 The present invention [3] contains a modifier containing the thermoplastic epoxy resin described in [1] above.
 本発明[4]は、エポキシ化合物および硬化剤の反応により得られるエポキシ樹脂の改質剤である、上記[3]に記載の改質剤を、含んでいる。 The present invention [4] includes the modifier described in [3] above, which is an epoxy resin modifier obtained by reaction of an epoxy compound and a curing agent.
 本発明[5]は、1分子中に2つのグリシジル基を含む2官能エポキシ化合物と、1分子中に2つのメルカプト基を含む2官能チオール化合物とを反応させる反応工程を備え、2官能チオール化合物が、炭化水素系2官能チオール化合物、水酸基含有2官能チオール化合物およびエーテル基含有2官能チオール化合物からなる群から選択される少なくとも1種を含み、前記反応工程における反応温度が120℃以下である、熱可塑性エポキシ樹脂の製造方法を、含んでいる。 The present invention [5] comprises a reaction step of reacting a bifunctional epoxy compound containing two glycidyl groups in one molecule with a bifunctional thiol compound containing two mercapto groups in one molecule, wherein the bifunctional thiol compound contains at least one selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound, and the reaction temperature in the reaction step is 120 ° C. or less. A method for making a thermoplastic epoxy resin is included.
 本発明の熱可塑性エポキシ樹脂、接着剤、改質剤、および、熱可塑性エポキシ樹脂の製造方法では、1分子中に2つのグリシジル基を含む2官能エポキシ化合物と、1分子中に2つのメルカプト基を含む2官能チオール化合物とを反応させる。そのため、反応生成物中において、リニア構造が形成され、三次元架橋構造の形成が抑制される。その結果、優れた熱可塑性が得られる。 In the thermoplastic epoxy resin, adhesive, modifier, and method for producing a thermoplastic epoxy resin of the present invention, a bifunctional epoxy compound containing two glycidyl groups in one molecule and two mercapto groups in one molecule is reacted with a bifunctional thiol compound containing Therefore, a linear structure is formed in the reaction product, and the formation of a three-dimensional crosslinked structure is suppressed. The result is excellent thermoplasticity.
 さらに、本発明の熱可塑性エポキシ樹脂、接着剤、改質剤、および、熱可塑性エポキシ樹脂の製造方法では、2官能チオール化合物が、炭化水素系2官能チオール化合物、水酸基含有2官能チオール化合物およびエーテル基含有2官能チオール化合物からなる群から選択される少なくとも1種を含む。そのため、熱可塑性エポキシ樹脂、接着剤、改質剤、および、熱可塑性エポキシ樹脂の製造方法は、優れた低温硬化性を有し、生産性に優れる。 Furthermore, in the thermoplastic epoxy resin, adhesive, modifier, and method for producing a thermoplastic epoxy resin of the present invention, the bifunctional thiol compound is a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether. It contains at least one selected from the group consisting of group-containing bifunctional thiol compounds. Therefore, the thermoplastic epoxy resin, the adhesive, the modifier, and the method for producing the thermoplastic epoxy resin have excellent low-temperature curability and excellent productivity.
 本発明の熱可塑性エポキシ樹脂は、2官能エポキシ化合物と2官能チオール化合物との反応生成物を含む。好ましくは、熱可塑性エポキシ樹脂は、2官能エポキシ化合物と2官能チオール化合物との反応生成物からなる。 The thermoplastic epoxy resin of the present invention contains a reaction product of a bifunctional epoxy compound and a bifunctional thiol compound. Preferably, the thermoplastic epoxy resin consists of the reaction product of a difunctional epoxy compound and a difunctional thiol compound.
 2官能エポキシ化合物は、1分子中に2つのグリシジル基を含むエポキシ化合物である。2官能エポキシ化合物は、熱可塑性エポキシ樹脂における主剤である。2官能エポキシ化合物としては、例えば、芳香族2官能エポキシ化合物、芳香族2官能エポキシ化合物の水添物、グリシジルエステル型エポキシ化合物およびグリシジルエーテル型エポキシ化合物が挙げられる。 A bifunctional epoxy compound is an epoxy compound containing two glycidyl groups in one molecule. A bifunctional epoxy compound is the main ingredient in a thermoplastic epoxy resin. Examples of bifunctional epoxy compounds include aromatic bifunctional epoxy compounds, hydrogenated aromatic bifunctional epoxy compounds, glycidyl ester type epoxy compounds, and glycidyl ether type epoxy compounds.
 芳香族2官能エポキシ化合物としては、例えば、ビスフェノール型エポキシ化合物、ビフェノール型エポキシ化合物、ベンゼンジオール型エポキシ化合物およびジフェニルジシクロペンタジエン型エポキシ化合物が挙げられる。ビスフェノール型エポキシ化合物としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールZジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、および、ビスクレゾールフルオレンジグリシジルエーテルが挙げられる。ビフェノール型エポキシ化合物としては、例えば、ビフェノールジグリシジルエーテル、および、テトラメチルビフェノールジグリシジルエーテルが挙げられる。ベンゼンジオール型エポキシ化合物としては、例えば、ハイドロキノンジグリシジルエーテル、メチルハイドロキノンジグリシジルエーテル 、および、レゾルシンジグリシジルエーテルが挙げられる。ジフェニルジシクロペンタジエン型エポキシ化合物としては、例えば、ジヒドロキシアントラセンジグリシジルエーテル、ヒドロアントラハイドロキノンジグリシジルエーテル、ジヒドロキシナフタレンジグリシジルエーテル、および、ビスナフトールフルオレンジグリシジルエーテルが挙げられる。 Examples of aromatic bifunctional epoxy compounds include bisphenol-type epoxy compounds, biphenol-type epoxy compounds, benzenediol-type epoxy compounds, and diphenyldicyclopentadiene-type epoxy compounds. Examples of bisphenol-type epoxy compounds include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol Z diglycidyl ether, bisphenol S diglycidyl ether, bisphenol fluorenediglycidyl ether, and biscresol fluorenediglycidyl ether. . Biphenol-type epoxy compounds include, for example, biphenol diglycidyl ether and tetramethylbiphenol diglycidyl ether. Benzenediol-type epoxy compounds include, for example, hydroquinone diglycidyl ether, methylhydroquinone diglycidyl ether, and resorcin diglycidyl ether. Diphenyldicyclopentadiene type epoxy compounds include, for example, dihydroxyanthracene diglycidyl ether, hydroanthrahydroquinone diglycidyl ether, dihydroxynaphthalenediglycidyl ether, and bisnaphtholfluorenediglycidyl ether.
 芳香族2官能エポキシ化合物の水添物としては、例えば、上記芳香族2官能エポキシ化合物の芳香環に水素を添加した2官能エポキシ化合物が挙げられる。 Examples of hydrogenated aromatic bifunctional epoxy compounds include bifunctional epoxy compounds obtained by adding hydrogen to the aromatic rings of the above aromatic bifunctional epoxy compounds.
 グリシジルエステル型エポキシ化合物としては、例えば、公知のジカルボン酸と、エピクロルヒドリンとの反応生成物が挙げられる。 Examples of glycidyl ester-type epoxy compounds include reaction products of known dicarboxylic acids and epichlorohydrin.
 グリシジルエーテル型エポキシ化合物としては、例えば、公知のジアルコールとエピクロルヒドリンとの反応生成物が挙げられる。 Examples of glycidyl ether type epoxy compounds include reaction products of known dialcohols and epichlorohydrin.
 2官能エポキシ化合物は、単独使用または2種類以上併用できる。2官能エポキシ化合物として、機械物性および低コスト化の観点から、好ましくは、芳香族2官能エポキシ化合物が挙げられ、より好ましくは、ビスフェノール型エポキシ化合物が挙げられ、さらに好ましくは、ビスフェノールAジグリシジルエーテルが挙げられる。 The bifunctional epoxy compound can be used alone or in combination of two or more. From the viewpoint of mechanical properties and cost reduction, the bifunctional epoxy compound preferably includes an aromatic bifunctional epoxy compound, more preferably a bisphenol type epoxy compound, and still more preferably bisphenol A diglycidyl ether. is mentioned.
 2官能チオール化合物は、1分子中に2つのメルカプト基を含むチオール化合物である。2官能チオール化合物は、熱可塑性エポキシ樹脂における硬化剤である。 A bifunctional thiol compound is a thiol compound containing two mercapto groups in one molecule. Bifunctional thiol compounds are curing agents in thermoplastic epoxy resins.
 2官能チオール化合物は、炭化水素系2官能チオール化合物、水酸基含有2官能チオール化合物およびエーテル基含有2官能チオール化合物からなる群から選択される少なくとも1種を含む。好ましくは、炭化水素系2官能チオール化合物、水酸基含有2官能チオール化合物およびエーテル基含有2官能チオール化合物からなる群から選択される少なくとも1種からなる。 The bifunctional thiol compound includes at least one selected from the group consisting of hydrocarbon-based bifunctional thiol compounds, hydroxyl group-containing bifunctional thiol compounds, and ether group-containing bifunctional thiol compounds. Preferably, it consists of at least one selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound.
 炭化水素系2官能チオール化合物は、1分子中に2つのメルカプト基を有し、メルカプト基以外の分子骨格が炭化水素からなる2官能チオール化合物である。すなわち、炭化水素系2官能チオール化合物は、水酸基、エーテル結合およびエステル結合を含まない。 A hydrocarbon-based bifunctional thiol compound is a bifunctional thiol compound having two mercapto groups in one molecule and having a hydrocarbon molecular skeleton other than the mercapto groups. That is, the hydrocarbon-based bifunctional thiol compound does not contain hydroxyl groups, ether bonds and ester bonds.
 炭化水素系2官能チオール化合物としては、例えば、アルカンジチオール、アルケンジチオール、アルキンジチオール、シクロアルカンジチオールおよびアリールジチオールが挙げられる。アルカンジチオールとしては、例えば、炭素数1~12のアルカンジチオールが挙げられ、より具体的には、ジメルカプトメタン、1,2-ジメルカプトエタン、1,1-ジメルカプトエタン、1,3-ジメルカプトプロパン、1,2-ジメルカプトプロパン、1,1-ジメルカプトプロパン、1,4-ジメルカプトブタン、1,5-ジメルカプトペンタン、1,6-ジメルカプトヘキサン、1,8-ジメルカプトオクタン、1,10-ジメルカプトデカン、および、1,12-ジメルカプトドデカンが挙げられる。アルケンジチオールとしては、例えば、炭素数2~12のアルケンジチオールが挙げられ、より具体的には、1,2-ジメルカプト-2-エチレン、1,3-ジメルカプト-2-プロペン、および、1,4-ジメルカプト-1-ブテンが挙げられる。アルキンジチオールとしては、例えば、炭素数2~12のアルキンジチオールが挙げられ、より具体的には、1,2-ジメルカプト-2-アセチレン、1,3-ジメルカプト-2-プロピレン、および、1,4-ジメルカプト-1-ブチンが挙げられる。シクロアルカンジチオールとしては、例えば、炭素数3~12のシクロアルカンジチオールが挙げられ、より具体的には、1,4-ジメルカプトシクロアルカンが挙げられる。アリールジチオールとしては、例えば、炭素数6~12のアリールジチオールが挙げられ、より具体的には、1,4-ジメルカプトベンゼンおよび1,5-ジメルカプトナフタレンが挙げられる。これらは、単独使用または2種類以上併用できる。 Examples of hydrocarbon-based bifunctional thiol compounds include alkanedithiol, alkenedithiol, alkynedithiol, cycloalkanedithiol, and aryldithiol. Examples of alkanedithiols include alkanedithiols having 1 to 12 carbon atoms, more specifically dimercaptomethane, 1,2-dimercaptoethane, 1,1-dimercaptoethane, 1,3-dimercaptoethane, Mercaptopropane, 1,2-dimercaptopropane, 1,1-dimercaptopropane, 1,4-dimercaptobutane, 1,5-dimercaptopentane, 1,6-dimercaptohexane, 1,8-dimercaptooctane , 1,10-dimercaptodecane, and 1,12-dimercaptododecane. Examples of alkenedithiols include alkenedithiols having 2 to 12 carbon atoms, more specifically 1,2-dimercapto-2-ethylene, 1,3-dimercapto-2-propene, and 1,4 - dimercapto-1-butene. Examples of alkyneditiols include alkyneditiols having 2 to 12 carbon atoms, more specifically 1,2-dimercapto-2-acetylene, 1,3-dimercapto-2-propylene, and 1,4 -dimercapto-1-butyne. Cycloalkanedithiols include, for example, cycloalkanedithiols having 3 to 12 carbon atoms, more specifically 1,4-dimercaptocycloalkanes. Examples of aryldithiols include aryldithiols having 6 to 12 carbon atoms, more specifically 1,4-dimercaptobenzene and 1,5-dimercaptonaphthalene. These can be used alone or in combination of two or more.
 水酸基含有2官能チオール化合物は、1分子中に2つのメルカプト基と、1つ以上の水酸基とを有し、メルカプト基および水酸基以外の分子骨格が炭化水素からなる2官能チオール化合物である。すなわち、炭化水素系2官能チオール化合物は、エーテル結合およびエステル結合を含まない。 A hydroxyl group-containing bifunctional thiol compound is a bifunctional thiol compound that has two mercapto groups and one or more hydroxyl groups in one molecule, and whose molecular skeleton other than the mercapto groups and hydroxyl groups consists of hydrocarbons. That is, the hydrocarbon-based bifunctional thiol compound does not contain an ether bond and an ester bond.
 水酸基含有2官能チオール化合物としては、例えば、炭素数3~12のジメルカプトアルコールが挙げられ、より具体的には、1,3-ジメルカプト-2-プロパノール、1,4-ジメルカプト-2-ブタノール、および、1,4-ジメルカプト-3-ブタノールが挙げられる。 Examples of hydroxyl-containing bifunctional thiol compounds include dimercaptoalcohols having 3 to 12 carbon atoms, more specifically 1,3-dimercapto-2-propanol, 1,4-dimercapto-2-butanol, and 1,4-dimercapto-3-butanol.
 エーテル基含有2官能チオール化合物は、1分子中に2つのメルカプト基と、1つ以上のエーテル結合とを有し、メルカプト基およびエーテル結合以外の分子骨格が炭化水素からなる2官能チオール化合物である。すなわち、炭化水素系2官能チオール化合物は、水酸基およびエステル結合を含まない。エーテル結合としては、例えば、-O-および-S-(チオエーテル)が挙げられる。 The ether group-containing bifunctional thiol compound has two mercapto groups and one or more ether bonds in one molecule, and the molecular skeleton other than the mercapto groups and ether bonds is a bifunctional thiol compound consisting of hydrocarbons. . That is, the hydrocarbon-based bifunctional thiol compound does not contain hydroxyl groups and ester bonds. Ether linkages include, for example, -O- and -S- (thioether).
 エーテル基含有2官能チオール化合物としては、例えば、ビス(2-メルカプトエチル)エーテル、ビス(2-メルカプトエチル)チオエーテル、ビス(3-メルカプトプロピル)エーテル、および、ビス(3-メルカプトプロピル)チオエーテルが挙げられる。 Examples of ether group-containing bifunctional thiol compounds include bis (2-mercaptoethyl) ether, bis (2-mercaptoethyl) thioether, bis (3-mercaptopropyl) ether, and bis (3-mercaptopropyl) thioether. mentioned.
 また、2官能チオール化合物は、必要に応じて、複素環を有していてもよい。複素環としては、例えば、4~8員環のヘテロ環が挙げられる。 In addition, the bifunctional thiol compound may have a heterocyclic ring, if necessary. Heterocycles include, for example, 4- to 8-membered heterocycles.
 これら2官能チオール化合物は、単独使用または2種類以上併用できる。2官能チオール化合物は、生産性の観点から、好ましくは、炭化水素系2官能チオール化合物からなるか、水酸基含有2官能チオール化合物からなるか、エーテル基含有2官能チオール化合物からなる。2官能チオール化合物は、より好ましくは、炭化水素系2官能チオール化合物からなる。 These bifunctional thiol compounds can be used alone or in combination of two or more. From the viewpoint of productivity, the bifunctional thiol compound preferably consists of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound, or an ether group-containing bifunctional thiol compound. The bifunctional thiol compound is more preferably composed of a hydrocarbon-based bifunctional thiol compound.
 また、2官能チオール化合物は、芳香環(炭化水素系芳香環および/または複素芳香環)を有していてもよいが、低温硬化性の観点から、好ましくは、2官能チオール化合物は、芳香環を有していない。芳香環を有していない2官能チオール化合物は、芳香環を有している2官能チオール化合物に比べ、反応性が高い。そのため、芳香環を有していない2官能チオール化合物を用いることによって、より一層、低温硬化性の向上を図ることができる。 Further, the bifunctional thiol compound may have an aromatic ring (hydrocarbon-based aromatic ring and/or heteroaromatic ring), but from the viewpoint of low-temperature curability, preferably the bifunctional thiol compound has an aromatic ring. does not have A bifunctional thiol compound having no aromatic ring has higher reactivity than a bifunctional thiol compound having an aromatic ring. Therefore, by using a bifunctional thiol compound that does not have an aromatic ring, it is possible to further improve low-temperature curability.
 熱可塑性エポキシ樹脂の製造では、上記の2官能エポキシ化合物と、上記の2官能チオール化合物とを混合し、グリシジル基とメルカプト基とを硬化反応させる(反応工程)。 In the production of the thermoplastic epoxy resin, the above bifunctional epoxy compound and the above bifunctional thiol compound are mixed, and the glycidyl group and the mercapto group undergo a curing reaction (reaction step).
 硬化反応において、2官能エポキシ化合物中のグリシジル基に対する、2官能チオール化合物中のメルカプト基の当量比(メルカプト基/グリシジル基)が、例えば、0.8以上、好ましくは、0.9以上である。また、2官能エポキシ化合物中のグリシジル基に対する、2官能チオール化合物中のメルカプト基の当量比(メルカプト基/グリシジル基)が、例えば、1.2以下、好ましくは、1.1以下である。 In the curing reaction, the equivalent ratio of the mercapto group in the bifunctional thiol compound to the glycidyl group in the bifunctional epoxy compound (mercapto group/glycidyl group) is, for example, 0.8 or more, preferably 0.9 or more. . Further, the equivalent ratio of mercapto groups in the bifunctional thiol compound to glycidyl groups in the bifunctional epoxy compound (mercapto group/glycidyl group) is, for example, 1.2 or less, preferably 1.1 or less.
 反応における圧力条件は、常圧、加圧および減圧のいずれであってもよい。好ましくは、常圧である。 The pressure conditions in the reaction may be normal pressure, increased pressure, or reduced pressure. Preferably, it is normal pressure.
 また、上記の2官能エポキシ化合物と上記の2官能チオール化合物とは、比較的低温で硬化反応する。そのため、反応温度は、比較的低温であり、例えば、0℃以上、好ましくは、20℃以上、より好ましくは、50℃以上である。また、反応温度は、例えば、120℃以下、好ましくは、110℃以下、より好ましくは、105℃以下、さらに好ましくは、100℃以下である。反応温度が上記上限を下回っていれば、熱可塑性エポキシ樹脂は優れた低コスト性および生産性を有する。 In addition, the above bifunctional epoxy compound and the above bifunctional thiol compound undergo a curing reaction at a relatively low temperature. Therefore, the reaction temperature is relatively low, for example, 0° C. or higher, preferably 20° C. or higher, more preferably 50° C. or higher. The reaction temperature is, for example, 120° C. or lower, preferably 110° C. or lower, more preferably 105° C. or lower, and even more preferably 100° C. or lower. If the reaction temperature is below the above upper limit, the thermoplastic epoxy resin will have excellent low cost and productivity.
 反応時間は、特に制限されないが、例えば、0.5時間以上、好ましくは、1時間以上である。また、反応時間は、例えば、5時間以下、好ましくは、3時間以下である。反応時間が上記範囲であれば、熱可塑性エポキシ樹脂は優れた低コスト性および生産性を有する。 Although the reaction time is not particularly limited, it is, for example, 0.5 hours or longer, preferably 1 hour or longer. Also, the reaction time is, for example, 5 hours or less, preferably 3 hours or less. If the reaction time is within the above range, the thermoplastic epoxy resin has excellent low cost and productivity.
 硬化反応では、必要に応じて、公知の硬化促進剤を添加できる。硬化促進剤としては、例えば、アルカリ金属水酸化物、第3級アミン化合物、第4級アンモニウム化合物、第3級ホスフィン化合物、第4級ホスホニウム化合物およびイミダゾール化合物が挙げられる。これらは、単独使用または2種類以上併用できる。硬化促進剤の添加量は、目的および用途に応じて、適宜設定される。 In the curing reaction, if necessary, a known curing accelerator can be added. Curing accelerators include, for example, alkali metal hydroxides, tertiary amine compounds, quaternary ammonium compounds, tertiary phosphine compounds, quaternary phosphonium compounds and imidazole compounds. These can be used alone or in combination of two or more. The amount of the curing accelerator to be added is appropriately set according to the purpose and application.
 硬化反応では、必要に応じて、公知の溶剤を添加できる。溶剤としては、例えば、ケトン、エステル、エーテル、アミドおよびグリコールエーテルが挙げられる。これらは、単独使用または2種類以上併用できる。好ましくは、ケトンおよびグリコールエーテルが挙げられる。溶剤の添加量は、目的および用途に応じて、適宜設定される。 In the curing reaction, a known solvent can be added as necessary. Solvents include, for example, ketones, esters, ethers, amides and glycol ethers. These can be used alone or in combination of two or more. Ketones and glycol ethers are preferred. The amount of solvent to be added is appropriately set according to the purpose and application.
 これにより、反応生成物として、熱可塑性エポキシ樹脂が得られる。より具体的には、上記の方法では、2官能エポキシ化合物と2官能チオール化合物とが反応する。すなわち、2官能の化合物同士が反応する。そのため、反応生成物において、リニア構造が形成され、三次元架橋構造の形成が抑制される。その結果、熱可塑性を有するエポキシ樹脂が得られる。 As a result, a thermoplastic epoxy resin is obtained as a reaction product. More specifically, in the above method, a bifunctional epoxy compound and a bifunctional thiol compound react. That is, bifunctional compounds react with each other. Therefore, a linear structure is formed in the reaction product, and the formation of a three-dimensional crosslinked structure is suppressed. As a result, an epoxy resin having thermoplasticity is obtained.
 なお、2官能エポキシ化合物と2官能チオール化合物との反応では、水酸基が副生する。また、2官能チオール化合物が、水酸基を含有する場合がある。このような場合、2官能のメルカプト基に加えて、水酸基がグリシジル基と反応し、三次元架橋構造が形成される可能性がある。 Note that hydroxyl groups are by-produced in the reaction between the bifunctional epoxy compound and the bifunctional thiol compound. Moreover, a bifunctional thiol compound may contain a hydroxyl group. In such cases, in addition to the difunctional mercapto groups, hydroxyl groups may react with glycidyl groups to form a three-dimensional crosslinked structure.
 しかし、水酸基のグリシジル基に対する反応性は、メルカプト基のグリシジル基に対する反応性よりも極めて低い。そのため、グリシジル基に対して、メルカプト基が優先的に反応する。その結果、リニア構造が形成され、三次元架橋構造の形成が抑制され、リニア構造が形成される。そのため、2官能エポキシ化合物と2官能チオール化合物との反応生成物として、熱可塑性エポキシ樹脂が得られる。 However, the reactivity of the hydroxyl group to the glycidyl group is much lower than the reactivity of the mercapto group to the glycidyl group. Therefore, the mercapto group preferentially reacts with the glycidyl group. As a result, a linear structure is formed, the formation of a three-dimensional crosslinked structure is suppressed, and a linear structure is formed. Therefore, a thermoplastic epoxy resin is obtained as a reaction product of the bifunctional epoxy compound and the bifunctional thiol compound.
 また、上記の熱可塑性エポキシ樹脂は、2官能エポキシ化合物と2官能チオール化合物との反応生成物として得られるため、溶剤に対する溶解性および/または分散性に優れる。そのため、上記の熱可塑性エポキシ樹脂は、上記溶剤の溶液および/または分散液として得ることができ、取り扱い性に優れる。 In addition, since the above thermoplastic epoxy resin is obtained as a reaction product of a bifunctional epoxy compound and a bifunctional thiol compound, it has excellent solubility and/or dispersibility in solvents. Therefore, the above thermoplastic epoxy resin can be obtained as a solution and/or dispersion liquid of the above solvent, and is excellent in handleability.
 熱可塑性エポキシ樹脂が、上記溶剤の溶液および/または分散液として得られる場合、必要に応じて、上記の溶剤を公知の方法で除去し、固形の熱可塑性エポキシ樹脂することができる。また、固形の熱可塑性エポキシ樹脂に、上記溶剤を添加し、熱可塑性エポキシ樹脂の溶液および/または分散液を得ることもできる。さらに、熱可塑性エポキシ樹脂の溶液および/または分散液に、上記溶剤を添加し、固形分濃度を調整することもできる。
 粘度を調整し、取扱性の向上を図る観点から、好ましくは、熱可塑性エポキシ樹脂は、溶液および/または分散液として調製される。
When the thermoplastic epoxy resin is obtained as a solution and/or dispersion of the above solvent, the solvent can be removed by a known method to obtain a solid thermoplastic epoxy resin, if necessary. Alternatively, the solvent may be added to a solid thermoplastic epoxy resin to obtain a thermoplastic epoxy resin solution and/or dispersion. Furthermore, the above solvent can be added to the thermoplastic epoxy resin solution and/or dispersion to adjust the solid content concentration.
From the viewpoint of adjusting viscosity and improving handleability, the thermoplastic epoxy resin is preferably prepared as a solution and/or dispersion.
 熱可塑性エポキシ樹脂の溶液および/または分散液の固形分濃度は、例えば、1質量%以上、好ましくは、5質量%以上、より好ましくは、10質量%以上である。また、熱可塑性エポキシ樹脂の溶液および/または分散液の固形分濃度は、例えば、70質量%以下、好ましくは、60質量%以下、より好ましくは、50質量%以下である。 The solid content concentration of the thermoplastic epoxy resin solution and/or dispersion is, for example, 1% by mass or more, preferably 5% by mass or more, and more preferably 10% by mass or more. The solid content concentration of the thermoplastic epoxy resin solution and/or dispersion is, for example, 70% by mass or less, preferably 60% by mass or less, and more preferably 50% by mass or less.
 このような熱可塑性エポキシ樹脂およびその製造方法では、1分子中に2つのグリシジル基を含む2官能エポキシ化合物と、1分子中に2つのメルカプト基を含む2官能チオール化合物とを反応させる。そのため、反応生成物中において、リニア構造が形成され、三次元架橋構造の形成が抑制される。その結果、熱可塑性エポキシ樹脂は、優れた熱可塑性を有する。 In such a thermoplastic epoxy resin and its manufacturing method, a bifunctional epoxy compound containing two glycidyl groups in one molecule is reacted with a bifunctional thiol compound containing two mercapto groups in one molecule. Therefore, a linear structure is formed in the reaction product, and the formation of a three-dimensional crosslinked structure is suppressed. As a result, thermoplastic epoxy resins have excellent thermoplasticity.
 また、上記の熱可塑性エポキシ樹脂およびその製造方法ででは、2官能チオール化合物が、炭化水素系2官能チオール化合物、水酸基含有2官能チオール化合物およびエーテル基含有2官能チオール化合物からなる群から選択される少なくとも1種を含む。そのため、熱可塑性エポキシ樹脂は、優れた低温硬化性を有し、生産性に優れる。 Further, in the thermoplastic epoxy resin and the method for producing the same, the bifunctional thiol compound is selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound. At least one type is included. Therefore, the thermoplastic epoxy resin has excellent low-temperature curability and excellent productivity.
 このような熱可塑性エポキシ樹脂(硬化物)は、熱可塑性を有するため、加熱によって任意の形状に成型でき、種々の分野において好適に使用される。熱可塑性エポキシ樹が使用される分野は、特に制限されないが、例えば、接着剤分野、塗料分野、電気・電子材料分野、半導体材料分野、絶縁材料分野、コーティング分野およびフィルム分野が挙げられ、好ましくは、接着剤分野が挙げられる。 Such a thermoplastic epoxy resin (cured product) has thermoplasticity, so it can be molded into any shape by heating, and is suitably used in various fields. Fields in which thermoplastic epoxy resins are used are not particularly limited, but include, for example, the fields of adhesives, paints, electric/electronic materials, semiconductor materials, insulating materials, coatings and films, preferably , adhesive field.
 熱可塑性エポキシ樹脂は、好ましくは、接着剤として使用される。接着剤は、上記の熱可塑性エポキシ樹脂を含み、好ましくは、上記の熱可塑性エポキシ樹脂からなる。接着剤としては、例えば、液状接着剤およびフィルム状接着剤が挙げられ、好ましくは、フィルム状接着剤が挙げられる。 A thermoplastic epoxy resin is preferably used as the adhesive. The adhesive contains the thermoplastic epoxy resin described above, and preferably consists of the thermoplastic epoxy resin described above. Examples of adhesives include liquid adhesives and film adhesives, preferably film adhesives.
 フィルム状接着剤は、例えば、ホットメルト接着剤である。すなわち、熱可塑性エポキシ樹脂を、フィルム状接着剤として使用する場合、まず、熱可塑性エポキシ樹脂をフィルム状に成型する。次いで、熱可塑性エポキシ樹脂のフィルムを、被接着物に接触させた状態で加熱溶融させる。その後、溶融した熱可塑性エポキシ樹脂を、乾燥および硬化させる。これにより、熱可塑性エポキシ樹脂によって被接着物を接着できる。 A film adhesive is, for example, a hot melt adhesive. That is, when a thermoplastic epoxy resin is used as a film adhesive, first, the thermoplastic epoxy resin is molded into a film. Next, the thermoplastic epoxy resin film is heated and melted while being in contact with the adherend. The molten thermoplastic epoxy resin is then dried and cured. Thereby, the adherend can be adhered with the thermoplastic epoxy resin.
 また、熱可塑性エポキシ樹脂は、樹脂の改質剤としても使用される。改質される樹脂(被改質樹脂)としては、例えば、原料成分として水酸基と反応可能な化合物(水酸基反応性化合物)を含む樹脂が挙げられる。 Thermoplastic epoxy resins are also used as resin modifiers. The resin to be modified (resin to be modified) includes, for example, a resin containing a compound capable of reacting with a hydroxyl group (hydroxyl-reactive compound) as a raw material component.
 すなわち、熱可塑性エポキシ樹脂は、上記したように、遊離の水酸基を含有する。より具体的には、上記したように、2官能エポキシ化合物と2官能チオール化合物との反応により、水酸基が副生する。また、2官能チオール化合物が、水酸基を含有する場合がある。しかし、水酸基のグリシジル基に対する反応性は、メルカプト基のグリシジル基に対する反応性よりも低い。そのため、グリシジル基に対して、メルカプト基が優先的に反応する。その結果、熱可塑性エポキシ樹脂は、グリシジル基と反応せずに残存する水酸基を、含有する。 That is, the thermoplastic epoxy resin contains free hydroxyl groups as described above. More specifically, as described above, the reaction between the bifunctional epoxy compound and the bifunctional thiol compound produces a hydroxyl group by-product. Moreover, a bifunctional thiol compound may contain a hydroxyl group. However, the reactivity of hydroxyl groups to glycidyl groups is lower than the reactivity of mercapto groups to glycidyl groups. Therefore, the mercapto group preferentially reacts with the glycidyl group. As a result, the thermoplastic epoxy resin contains hydroxyl groups that remain unreacted with the glycidyl groups.
 そのため、被改質樹脂の原料成分が水酸基反応性化合物を含有している場合、その原料成分に熱可塑性エポキシ樹脂を添加することによって、原料成分の一部と熱可塑性エポキシ樹脂とを反応させることができ、被改質樹脂を熱可塑性エポキシ樹脂により改質できる。 Therefore, when the raw material component of the resin to be modified contains a hydroxyl-reactive compound, a part of the raw material component and the thermoplastic epoxy resin can be reacted by adding the thermoplastic epoxy resin to the raw material component. and the resin to be modified can be modified with the thermoplastic epoxy resin.
 水酸基と反応可能な化合物としては、例えば、エポキシ化合物、アクリル酸エステル化合物、イソシアネート化合物、および、酸無水物化合物が挙げられる。 Examples of compounds that can react with hydroxyl groups include epoxy compounds, acrylic acid ester compounds, isocyanate compounds, and acid anhydride compounds.
 被改質樹脂を熱可塑性エポキシ樹脂により改質するには、例えば、被改質樹脂の原料成分に、上記の熱可塑性エポキシ樹脂を配合し、原料成分を反応させる。熱可塑性エポキシ樹脂の配合割合および反応条件は、被改質樹脂の種類に応じて、適宜設定される。 To modify a resin to be modified with a thermoplastic epoxy resin, for example, the thermoplastic epoxy resin is blended with the raw material components of the resin to be modified, and the raw material components are reacted. The mixing ratio and reaction conditions of the thermoplastic epoxy resin are appropriately set according to the type of the resin to be modified.
 例えば、被改質樹脂100質量部に対して、熱可塑性エポキシ樹脂の配合量は、例えば、20質量部以下、好ましくは、10質量部以下である。また、下限は、特に制限されないが、被改質樹脂100質量部に対して、熱可塑性エポキシ樹脂の配合量は、例えば、0.1質量部以上である。 For example, the blending amount of the thermoplastic epoxy resin is, for example, 20 parts by mass or less, preferably 10 parts by mass or less, with respect to 100 parts by mass of the resin to be modified. The lower limit is not particularly limited, but the blending amount of the thermoplastic epoxy resin is, for example, 0.1 parts by mass or more with respect to 100 parts by mass of the resin to be modified.
 また、例えば、被改質樹脂の原料成分が、エポキシ化合物を含む場合、反応温度は、例えば、0℃以上、好ましくは、20℃以上、より好ましくは、50℃以上である。また、反応温度は、例えば、120℃以下、好ましくは、110℃以下、より好ましくは、105℃以下、さらに好ましくは、100℃以下である。 Further, for example, when the raw material component of the resin to be modified contains an epoxy compound, the reaction temperature is, for example, 0°C or higher, preferably 20°C or higher, and more preferably 50°C or higher. The reaction temperature is, for example, 120° C. or lower, preferably 110° C. or lower, more preferably 105° C. or lower, and even more preferably 100° C. or lower.
 また、これらの反応では、必要に応じて、硬化促進剤を添加できる。硬化促進剤は、硬化性化合物の種類に応じて、適宜設定される。例えば、硬化性化合物がエポキシ化合物である場合、硬化促進剤として、上記した硬化促進剤が挙げられる。 Also, in these reactions, a curing accelerator can be added as needed. The curing accelerator is appropriately set according to the type of curable compound. For example, when the curable compound is an epoxy compound, examples of the curing accelerator include the curing accelerators described above.
 熱可塑性エポキシ樹脂により改質された樹脂は、特に制限されず、各種産業分野において、好適に使用される。そのような分野としては、例えば、接着剤分野、塗料分野、電気・電子材料分野、半導体材料分野、絶縁材料分野、コーティング分野およびフィルム分野が挙げられる。  The resin modified with the thermoplastic epoxy resin is not particularly limited, and is suitably used in various industrial fields. Such fields include, for example, the fields of adhesives, paints, electrical and electronic materials, semiconductor materials, insulating materials, coatings and films.
 次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited by the following examples. "Parts" and "%" are based on mass unless otherwise specified. In addition, specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the following description are the corresponding mixing ratios ( Content ratio), physical properties, parameters, etc. be able to.
 1.原料
  (A成分)主剤
 ビスフェノールA型エポキシ化合物(製品名jER828、三菱ケミカル社製、エポキシ化合物、ビスフェノールAジグリシジルエーテル、官能基数2)
1. Raw material (A component) Main agent Bisphenol A type epoxy compound (product name jER828, manufactured by Mitsubishi Chemical Corporation, epoxy compound, bisphenol A diglycidyl ether, number of functional groups 2)
  (B成分)硬化剤
(1)1,3-ジメルカプト-2-プロパノール(旭化学工業社製、DMP、チオール化合物、水酸基含有2官能チオール化合物、官能基数2)
(2)1,4-ジメルカプトベンゼン(旭化学工業社製、1,4-DMB、チオール化合物、炭化水素系2官能チオール化合物、官能基数2)
(3)ビス(2-メルカプトエチル)エーテル(東京化成社製、BMEE、チオール化合物、エーテル基含有2官能チオール化合物、官能基数2)
(4)ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(東京化成社製、PE-TMPA、チオール化合物、官能基数4)
(5)ビスフェノールA(ナカライテスク社製、Bis-A、ポリオール化合物、官能基数2)
(Component B) Curing agent (1) 1,3-dimercapto-2-propanol (manufactured by Asahi Chemical Industry Co., Ltd., DMP, thiol compound, hydroxyl group-containing bifunctional thiol compound, number of functional groups: 2)
(2) 1,4-dimercaptobenzene (manufactured by Asahi Chemical Industry Co., Ltd., 1,4-DMB, thiol compound, hydrocarbon-based bifunctional thiol compound, number of functional groups: 2)
(3) bis (2-mercaptoethyl) ether (manufactured by Tokyo Chemical Industry Co., Ltd., BMEE, thiol compound, ether group-containing bifunctional thiol compound, number of functional groups 2)
(4) Pentaerythritol tetrakis(3-mercaptopropionate) (manufactured by Tokyo Chemical Industry Co., Ltd., PE-TMPA, thiol compound, 4 functional groups)
(5) Bisphenol A (manufactured by Nacalai Tesque, Bis-A, polyol compound, number of functional groups: 2)
  (C成分)硬化促進剤
(1)アミンアダクト型硬化促進剤(製品名アミキュアPN-23、味の素ファインテクノ社製、PN-23)
(2)トリフェニルホスフィン(和光純薬社製、TPP)
(Component C) Curing accelerator (1) Amine adduct type curing accelerator (product name Amicure PN-23, manufactured by Ajinomoto Fine-Techno Co., Ltd., PN-23)
(2) Triphenylphosphine (manufactured by Wako Pure Chemical Industries, Ltd., TPP)
 2.熱可塑性エポキシ樹脂
  実施例1、実施例3および比較例1
 表1に記載の処方に基づいて、A成分、B成分およびC成分を混合した。なお、2官能エポキシ化合物中のグリシジル基に対する、2官能チオール化合物中のメルカプト基の当量比(メルカプト基/グリシジル基)は、1.0であった。
2. Thermoplastic epoxy resin Example 1, Example 3 and Comparative Example 1
Based on the formulation shown in Table 1, A component, B component and C component were mixed. The equivalent ratio (mercapto group/glycidyl group) of the mercapto group in the bifunctional thiol compound to the glycidyl group in the bifunctional epoxy compound was 1.0.
 次いで、得られた混合物を金型(厚み3mm)に流し込み、50℃で1時間加熱し、その後、80℃で1時間加熱した。これにより、熱可塑性エポキシ樹脂(厚み3mm)を得た。 The resulting mixture was then poured into a mold (thickness: 3 mm), heated at 50°C for 1 hour, and then heated at 80°C for 1 hour. A thermoplastic epoxy resin (thickness: 3 mm) was thus obtained.
 なお、後述するように、比較例1では、熱可塑性エポキシ樹脂が得られず、熱硬化性エポキシ樹脂が得られた。 As will be described later, in Comparative Example 1, a thermoplastic epoxy resin was not obtained, and a thermosetting epoxy resin was obtained.
  実施例2
 表1に記載の処方に基づいて、A成分、B成分およびC成分を混合した。なお、2官能エポキシ化合物中のグリシジル基に対する、2官能チオール化合物中のメルカプト基の当量比(メルカプト基/グリシジル基)は、1.0であった。
Example 2
Based on the formulation shown in Table 1, A component, B component and C component were mixed. The equivalent ratio (mercapto group/glycidyl group) of the mercapto group in the bifunctional thiol compound to the glycidyl group in the bifunctional epoxy compound was 1.0.
 次いで、得られた混合物を金型(厚み3mm)に流し込み、80℃で1時間加熱し、その後、120℃で2時間加熱した。これにより、熱可塑性エポキシ樹脂(厚み3mm)を得た。 The resulting mixture was then poured into a mold (3 mm thick), heated at 80°C for 1 hour, and then heated at 120°C for 2 hours. A thermoplastic epoxy resin (thickness: 3 mm) was thus obtained.
  比較例2
 表1に記載の処方に基づいて、A成分、B成分およびC成分を混合した。次いで、得られた混合物を金型(厚み3mm)に流し込み、120℃で30分加熱し、その後、150℃で5時間加熱した。これにより、熱可塑性エポキシ樹脂(厚み3mm)を得た。なお、比較例1では、実施例1と同じ温度条件では、A成分、B成分およびC成分が反応しなかった。
Comparative example 2
Based on the formulation shown in Table 1, A component, B component and C component were mixed. The resulting mixture was then poured into a mold (thickness 3 mm) and heated at 120° C. for 30 minutes and then at 150° C. for 5 hours. A thermoplastic epoxy resin (thickness: 3 mm) was thus obtained. In Comparative Example 1, under the same temperature conditions as in Example 1, the A component, the B component and the C component did not react.
  <評価>
 (1)溶解性
 エポキシ樹脂の試験片(30mm×10mm×3mm)に対して、固形分30%質量となるように、シクロヘキサノンまたはエチレングリコールモノメチルを添加し、常温でエポキシ樹脂を溶解させた。その後、エポキシ樹脂の溶け残り具合を目視観察した。評価基準を下記する。
  ○:溶け残りが確認されなかった。
  △:溶け残りが僅かに確認された。
  ×:ほとんど溶解しなかった。
<Evaluation>
(1) Solubility Cyclohexanone or ethylene glycol monomethyl was added to an epoxy resin test piece (30 mm × 10 mm × 3 mm) so that the solid content was 30% by mass, and the epoxy resin was dissolved at room temperature. After that, the undissolved state of the epoxy resin was visually observed. Evaluation criteria are described below.
◯: Undissolved residue was not observed.
△: Undissolved residue was slightly confirmed.
x: hardly dissolved.
 3.接着剤
 2枚のアルミニウム板に、各実施例および各比較例で得られた熱可塑性エポキシ樹脂を挟み込んだ。次いで、アルミニウム板の隙間を、スペーサーにより1mmに調整した。次いで、アルミニウム板および熱可塑性エポキシ樹脂を固定し、これらを熱風乾燥炉により150℃で60分加熱した。その後、熱可塑性エポキシ樹脂の温度が室温に戻ったことを確認した。これにより、熱可塑性エポキシ樹脂からなるフィルム状接着剤(厚み1mm)を得た。
3. Adhesive The thermoplastic epoxy resin obtained in each example and each comparative example was sandwiched between two aluminum plates. Next, the gap between the aluminum plates was adjusted to 1 mm with a spacer. Next, the aluminum plate and thermoplastic epoxy resin were fixed and heated at 150° C. for 60 minutes in a hot air drying oven. After that, it was confirmed that the temperature of the thermoplastic epoxy resin had returned to room temperature. As a result, a film-like adhesive (thickness: 1 mm) made of a thermoplastic epoxy resin was obtained.
  <評価>   <Evaluation>
 (1)熱可塑性
 実施例1~3および比較例2のエポキシ樹脂は、上記の方法によりフィルム状に成形できたため、熱可塑性を有していると判断された。一方、比較例1のエポキシ樹脂は、上記の方法によりフィルム状に成形できなかったため、熱可塑性を有していないと判断された。
 (2)接着性
 アルミニウム板(厚さ1.5mm×幅25mm×長さ100mm、A1050P)を2枚準備した。次いで、各アルミニウム板の接着部分(幅25mm×長さ12.5mm)を、ブラスト処理した。次いで、一方のアルミニウム板の接着部分に、熱可塑性エポキシ樹脂からなるフィルムを乗せ、他方のアルミニウム板と貼り合わせた。その後、アルミニウム板およびフィルムを固定し、これらを熱風乾燥炉により150℃で60分加熱し、室温まで放冷した。これにより、テストピースを得た。
(1) Thermoplasticity The epoxy resins of Examples 1 to 3 and Comparative Example 2 were able to be formed into films by the above method, and thus were judged to have thermoplasticity. On the other hand, since the epoxy resin of Comparative Example 1 could not be formed into a film by the above method, it was determined that it did not have thermoplasticity.
(2) Adhesiveness Two aluminum plates (thickness 1.5 mm×width 25 mm×length 100 mm, A1050P) were prepared. Then, the bonding portion (width 25 mm×length 12.5 mm) of each aluminum plate was blasted. Next, a film made of a thermoplastic epoxy resin was placed on the adhesive portion of one of the aluminum plates, and the other aluminum plate was attached to the film. After that, the aluminum plate and film were fixed, heated at 150° C. for 60 minutes in a hot air drying oven, and allowed to cool to room temperature. A test piece was thus obtained.
 テストピースを、万能材料試験機(島津製作所製 AGS-X)により引張方向(180°)に引張速度5mm/minで引っ張り、最大荷重を測定した。その後、最大荷重と接着面積とに基づいて、接着強度(MPa)を計算した。なお、この試験は、JIS K
 6850(1999年)に準拠した。
The test piece was pulled in the tensile direction (180°) at a tensile speed of 5 mm/min by a universal material testing machine (AGS-X manufactured by Shimadzu Corporation) to measure the maximum load. The bond strength (MPa) was then calculated based on the maximum load and bond area. In addition, this test conforms to JIS K
6850 (1999).
 4.改質剤
  (D成分)水酸基反応性化合物
 (1)ビスフェノールA型エポキシ化合物(製品名jER828、三菱ケミカル社製、エポキシ化合物、官能基数2)
 (2)4-メチルシクロヘキサン-1,2-ジカルボン酸無水物(酸無水物、MCDA)
4. Modifier (Component D) Hydroxyl-reactive compound (1) Bisphenol A type epoxy compound (product name: jER828, manufactured by Mitsubishi Chemical Corporation, epoxy compound, number of functional groups: 2)
(2) 4-methylcyclohexane-1,2-dicarboxylic anhydride (acid anhydride, MCDA)
  (E成分)改質剤
(1)実施例3の熱可塑性エポキシ樹脂(BMEE828)
(Component E) Modifier (1) Thermoplastic epoxy resin (BMEE828) of Example 3
  (F成分)硬化促進剤
(1)N,N’-ジメチルベンジルアミン(DMBA)
(Component F) Curing accelerator (1) N,N'-dimethylbenzylamine (DMBA)
 実施例4~5および比較例3
 表2に記載の処方に基づいて、D成分、E成分およびF成分を混合した。次いで、得られた混合物を金型(厚み3mm)に流し込み、50℃で1時間加熱し、その後、80℃で1時間加熱した。これにより、熱可塑性エポキシ樹脂により改質された樹脂(厚み3mm)を得た。なお、比較例3では、E成分を配合しなかった。
Examples 4-5 and Comparative Example 3
D component, E component and F component were mixed based on the formulation described in Table 2. The resulting mixture was then poured into a mold (thickness 3 mm) and heated at 50° C. for 1 hour and then at 80° C. for 1 hour. As a result, a resin (thickness: 3 mm) modified with a thermoplastic epoxy resin was obtained. In addition, in Comparative Example 3, the E component was not blended.
  <評価>
 (1)破壊靭性値
 各実施例および各比較例で得られた樹脂の試験片(60mm×10mm×3mm)の破壊靭性値を、万能材料試験機(島津製作所製 AGS-X)を用いて測定した。なお、測定は、ASTM D5043-93の3点曲げ法に準拠した。また、測定条件は、支点間距離40mm、荷重速度1mm/minとした。破壊靭性値としては、破壊靭性試験により算出される臨界応力拡大係数(K1C)を採用した。
<Evaluation>
(1) Fracture toughness value The fracture toughness value of the resin test piece (60 mm × 10 mm × 3 mm) obtained in each example and each comparative example was measured using a universal material testing machine (Shimadzu Corporation AGS-X). did. The measurement conforms to the three-point bending method of ASTM D5043-93. The measurement conditions were a distance between fulcrums of 40 mm and a load speed of 1 mm/min. As the fracture toughness value, a critical stress intensity factor (K 1C ) calculated by a fracture toughness test was used.
 (2)曲げ強さおよび曲げ弾性率
 各実施例および各比較例で得られた樹脂の試験片(60mm×10mm×3mm)の曲げ強さおよび曲げ弾性率を、万能材料試験機(島津製作所製 AGS-X)を用いて測定した。なお、測定は、JIS K-6911(2006年)の3点曲げ試験に準拠した。
 また、測定条件は、支点間距離48mm、荷重速度1.5mm/minとした。
(2) Bending strength and bending elastic modulus The bending strength and bending elastic modulus of the resin test pieces (60 mm × 10 mm × 3 mm) obtained in each example and each comparative example were measured using a universal material testing machine (manufactured by Shimadzu Corporation). AGS-X) was used. The measurement conforms to the three-point bending test of JIS K-6911 (2006).
The measurement conditions were a distance between fulcrums of 48 mm and a load speed of 1.5 mm/min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an illustration and should not be construed as limiting. Variations of the invention that are obvious to those skilled in the art are intended to be included in the following claims.
 本発明の熱可塑性エポキシ樹脂、接着剤、改質剤、および、熱可塑性エポキシ樹脂の製造方法は、接着剤分野、塗料分野、電気・電子材料分野、半導体材料分野、絶縁材料分野、コーティング分野およびフィルム分野において、好適に用いられる。 The thermoplastic epoxy resin, adhesive, modifier, and method for producing the thermoplastic epoxy resin of the present invention are widely used in the fields of adhesives, paints, electrical and electronic materials, semiconductor materials, insulating materials, coatings, and the like. Film field WHEREIN: It is used suitably.

Claims (5)

  1.  1分子中に2つのグリシジル基を含む2官能エポキシ化合物と、
     1分子中に2つのメルカプト基を含む2官能チオール化合物との反応生成物を含み、
     前記2官能チオール化合物が、炭化水素系2官能チオール化合物、水酸基含有2官能チオール化合物およびエーテル基含有2官能チオール化合物からなる群から選択される少なくとも1種を含む、熱可塑性エポキシ樹脂。
    a bifunctional epoxy compound containing two glycidyl groups in one molecule;
    Including a reaction product with a bifunctional thiol compound containing two mercapto groups in one molecule,
    A thermoplastic epoxy resin in which the bifunctional thiol compound comprises at least one selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound.
  2.  請求項1に記載の熱可塑性エポキシ樹脂を含む、接着剤。 An adhesive containing the thermoplastic epoxy resin according to claim 1.
  3.  請求項1に記載の熱可塑性エポキシ樹脂を含む、改質剤。 A modifier containing the thermoplastic epoxy resin according to claim 1.
  4.  エポキシ化合物および硬化剤の反応により得られるエポキシ樹脂の改質剤である、請求項3に記載の改質剤。 The modifier according to claim 3, which is an epoxy resin modifier obtained by reaction of an epoxy compound and a curing agent.
  5.  1分子中に2つのグリシジル基を含む2官能エポキシ化合物と、1分子中に2つのメルカプト基を含む2官能チオール化合物とを反応させる反応工程を備え、
     前記2官能チオール化合物が、炭化水素系2官能チオール化合物、水酸基含有2官能チオール化合物およびエーテル基含有2官能チオール化合物からなる群から選択される少なくとも1種を含み、
     前記反応工程における反応温度が120℃以下である、熱可塑性エポキシ樹脂の製造方法。
    A reaction step of reacting a bifunctional epoxy compound containing two glycidyl groups in one molecule with a bifunctional thiol compound containing two mercapto groups in one molecule,
    The bifunctional thiol compound includes at least one selected from the group consisting of a hydrocarbon-based bifunctional thiol compound, a hydroxyl group-containing bifunctional thiol compound and an ether group-containing bifunctional thiol compound,
    A method for producing a thermoplastic epoxy resin, wherein the reaction temperature in the reaction step is 120° C. or less.
PCT/JP2022/014362 2021-06-02 2022-03-25 Thermoplastic epoxy resin, adhesive, modifier, and method for producing thermoplastic epoxy resin WO2022254906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-093144 2021-06-02
JP2021093144 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022254906A1 true WO2022254906A1 (en) 2022-12-08

Family

ID=84323053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014362 WO2022254906A1 (en) 2021-06-02 2022-03-25 Thermoplastic epoxy resin, adhesive, modifier, and method for producing thermoplastic epoxy resin

Country Status (2)

Country Link
TW (1) TW202302690A (en)
WO (1) WO2022254906A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112999A (en) * 1977-03-10 1978-10-02 Ciba Geigy Ag Curable mixture
WO2005088398A1 (en) * 2004-03-16 2005-09-22 Nissan Chemical Industries, Ltd. Antireflective film containing sulfur atom
WO2010137636A1 (en) * 2009-05-28 2010-12-02 昭和電工株式会社 Epoxy resin-based coating composition
JP2011184668A (en) * 2010-03-11 2011-09-22 Sekisui Chem Co Ltd Thermally conductive thermoplastic adhesive composition
WO2020080390A1 (en) * 2018-10-17 2020-04-23 ナミックス株式会社 Resin composition
JP2020109068A (en) * 2019-01-07 2020-07-16 四国化成工業株式会社 Thiol compound, method for synthesizing the same and use of the thiol compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112999A (en) * 1977-03-10 1978-10-02 Ciba Geigy Ag Curable mixture
WO2005088398A1 (en) * 2004-03-16 2005-09-22 Nissan Chemical Industries, Ltd. Antireflective film containing sulfur atom
WO2010137636A1 (en) * 2009-05-28 2010-12-02 昭和電工株式会社 Epoxy resin-based coating composition
JP2011184668A (en) * 2010-03-11 2011-09-22 Sekisui Chem Co Ltd Thermally conductive thermoplastic adhesive composition
WO2020080390A1 (en) * 2018-10-17 2020-04-23 ナミックス株式会社 Resin composition
JP2020109068A (en) * 2019-01-07 2020-07-16 四国化成工業株式会社 Thiol compound, method for synthesizing the same and use of the thiol compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRAVER, R. B.: "Catalyzed Polymercaptans: Low Temperature Epoxy Resin Curing Agents", JOURNAL OF PAINT TECHNOLOGY , vol. 42, no. 540, 1 January 1970 (1970-01-01), pages 37 - 41, XP009541462, ISSN: 0022-3352 *

Also Published As

Publication number Publication date
TW202302690A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
KR102585184B1 (en) Adhesive films, tapes and methods comprising a (meth)acrylate matrix comprising a curable epoxy/thiol resin composition
CN110072907B (en) Epoxy stabilization using substituted barbituric acids
TWI815031B (en) Epoxy resin composition
TWI827873B (en) Epoxy resin composition
JP2019035087A (en) Epoxy resin, epoxy resin composition and cured product
TWI826714B (en) Epoxy resin composition
WO2022254906A1 (en) Thermoplastic epoxy resin, adhesive, modifier, and method for producing thermoplastic epoxy resin
JP2021038337A (en) Epoxy resin composition
TWI775813B (en) Epoxy stabilization using metal nanoparticles and nitrogen-containing catalysts, and methods
JP6620273B1 (en) Epoxy resin composition
JP6650123B2 (en) Polyester modified epoxy resin and adhesive
TW202214736A (en) Modified phenoxy resin, method for producing same, resin composition, cured product, and laminated board for electrical/electronic circuit
JP2021031666A (en) Epoxy resin composition
JP7080672B2 (en) Epoxy resin composition for structural adhesives and structures using this
KR101787728B1 (en) An adhesive composition comprising polythiol and oligosiloxane hardner
WO2019065470A1 (en) Curable epoxy resin composition and fiber-reinforced composite material using same
JP6651161B1 (en) Epoxy resin composition
JP2019052276A (en) Epoxy resin, epoxy resin composition and cured product
WO2023276851A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
JP2013023668A (en) Method for modifying epoxy resin and adhesive composition
JPS6138727B2 (en)
JP2023059131A (en) epoxy resin composition
KR20240044519A (en) Epoxy resin compositions, cured products, sealants and adhesives
JP2024033232A (en) Modified glycidylamine type epoxy resin, manufacturing method thereof, curable resin composition and cured product
TW202248265A (en) Modified epoxy resin, manufacturing method therefor, curable resin composition, cured product thereof, coating material, and adhesive agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE