JPH06334288A - Metal-based printed board - Google Patents

Metal-based printed board

Info

Publication number
JPH06334288A
JPH06334288A JP14158093A JP14158093A JPH06334288A JP H06334288 A JPH06334288 A JP H06334288A JP 14158093 A JP14158093 A JP 14158093A JP 14158093 A JP14158093 A JP 14158093A JP H06334288 A JPH06334288 A JP H06334288A
Authority
JP
Japan
Prior art keywords
metal
high temperature
insulating adhesive
adhesive layer
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14158093A
Other languages
Japanese (ja)
Inventor
Fumiyo Oosawa
文葉 大澤
Hideo Otsuka
英雄 大塚
Toshiaki Asada
敏明 浅田
Shozo Yano
正三 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14158093A priority Critical patent/JPH06334288A/en
Publication of JPH06334288A publication Critical patent/JPH06334288A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a metal-based printed wiring board that is excellent in resistance to high temperature solder and maintains favorable withstand voltage characteristic and adhesive strength for a long time under a high temperature condition. CONSTITUTION:A sheet of conductive metal foil 3 is bonded with at least one side of a metal board 1 with an insulating adhesive layer 2 in-between to form a metal-based printed board. The insulating adhesive layer 2 is composed of resin based on epoxy resin, bisoxazoline compound, aromatic diamine as hardening agent and 50-65 volume % of minute particles of inorganic filler. This improves solder heat resistance; accordingly, high temperature solder is applicable and the rationalization of packaging processes is feasible. Further, improved dielectric breakdown strength and copper foil peel strength are maintained for a long time under a high temperature condition, which makes the printed board applicable as a board to be mounted on automobiles that is subjected to high temperature for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器分野で使用さ
れる高放熱性金属ベースプリント基板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal base printed circuit board having a high heat dissipation property used in the field of electronic equipment.

【0002】[0002]

【従来の技術】高放熱性金属ベースプリント配線基板
は、熱伝導性の良いアルミニウム、銅、鉄、鉄−ニッケ
ル合金等の金属板をベース金属とし、その片面または両
面に絶縁接着剤層を介して銅箔などの導電性金属箔を貼
り合わせたものである。この高放熱性金属ベースプリン
ト基板は、貼り付けた導電性金属箔をエッチングして回
路パターンを形成した後、ここに電子部品を搭載して使
用されていた。このような高放熱性金属ベースプリント
基板に使用されている絶縁接着剤には、絶縁性で良熱伝
導性の無機充填剤が配合されている。例えば、熱放散性
を向上させるため、絶縁性で良熱伝導性のアルミナ粉末
を60〜65体積%高充填すると、その反面、得られる
絶縁接着剤は導電性金属箔および金属板に対する接着力
が低下するようになる。このような無機充填剤の高充填
による絶縁接着剤の接着力低下を回避するために、シラ
ン系カップリング剤および/またはチタネート系カップ
リング剤などを配合した絶縁接着剤を用いて導電性金属
箔を貼り合わせた金属ベースプリント基板などが特公昭
63−49920号で提案されている。
2. Description of the Related Art A high heat dissipation metal base printed wiring board uses a metal plate of aluminum, copper, iron, iron-nickel alloy or the like having good heat conductivity as a base metal and an insulating adhesive layer on one or both sides thereof. It is a laminate of conductive metal foil such as copper foil. This highly heat-dissipative metal-based printed board has been used by mounting a conductive metal foil on the printed circuit board to form a circuit pattern and then mounting an electronic component thereon. The insulating adhesive used for such a high heat radiation metal-based printed circuit board contains an inorganic filler having an insulating property and a good thermal conductivity. For example, in order to improve the heat dissipation property, when the insulating and highly heat-conductive alumina powder is highly filled in an amount of 60 to 65% by volume, on the other hand, the obtained insulating adhesive has an adhesive force to the conductive metal foil and the metal plate. Will start to decline. In order to avoid such a decrease in the adhesive strength of the insulating adhesive due to the high filling of the inorganic filler, a conductive metal foil is prepared by using an insulating adhesive containing a silane coupling agent and / or a titanate coupling agent. Japanese Patent Publication No. 63-49920 proposes a metal-based printed circuit board and the like.

【0003】[0003]

【発明が解決しようとする課題】ところで、最近、電子
部品の基板への実装工程をより合理化するために、これ
らの金属ベースプリント基板に対して、半田耐熱性を向
上させるなどの要求が高まって来ている。具体的には、
従来の共晶半田だけでなく、高温半田との併用により二
段階実装方式に適用できる金属ベースプリント基板が要
求されている。高温半田の実装の場合、炉内の温度は3
30〜350℃の雰囲気となるため、それに耐え得る半
田耐熱性を有する金属ベースプリント基板が要求されて
来ている。更に、金属ベースプリント基板は、自動車搭
載用基板としてその需要が期待されており、その場合に
は高温状態での使用が考えられるため、高温で長期間良
好な耐電圧特性および接着力の維持の要求が高まってい
る。
By the way, recently, in order to further rationalize the mounting process of electronic parts on a substrate, demands for improving soldering heat resistance of these metal-based printed circuit boards have increased. It is coming. In particular,
In addition to the conventional eutectic solder, there is a demand for a metal-based printed circuit board that can be applied to a two-step mounting method by using it in combination with high-temperature solder. When mounting high temperature solder, the temperature in the furnace is 3
Since the atmosphere is 30 to 350 ° C., there is a demand for a metal-based printed circuit board having solder heat resistance capable of withstanding the atmosphere. Further, the demand for the metal-based printed circuit board is expected as a substrate for mounting on an automobile, and in that case, it may be used in a high temperature state. Therefore, it is possible to maintain good withstand voltage characteristics and adhesive strength at a high temperature for a long time. The demand is increasing.

【0004】しかしながら、特公昭63−49920号
公報などに記載されているように、絶縁接着剤として無
機充填剤の微細粒子を高充填するために、カップリング
剤を配合したエポキシ樹脂系接着剤組成物では、前記高
温下での半田実装工程時に導電性金属箔−接着剤層間
や、金属板−接着剤層間で剥離を引き起こす他、200
℃連続使用を行った場合、著しい耐電圧特性の低下が問
題として指摘されている。本発明者らは、これらの問題
点を解決するために鋭意研究した結果、350℃半田耐
熱性に優れ、かつ高温で長期間良好な耐電圧特性および
接着力の維持に優れた金属ベースプリント基板を開発し
得たものである。
However, as described in Japanese Examined Patent Publication No. 63-49920, etc., an epoxy resin type adhesive composition containing a coupling agent in order to highly fill fine particles of an inorganic filler as an insulating adhesive. In the case of the object, in addition to causing peeling between the conductive metal foil-adhesive layer and the metal plate-adhesive layer during the solder mounting process at the high temperature, 200
It has been pointed out that a significant decrease in withstand voltage characteristics is a problem when continuously used at ℃. As a result of intensive studies to solve these problems, the present inventors have found that the metal-based printed circuit board has excellent solder heat resistance at 350 ° C. and excellent voltage resistance and adhesive strength at high temperature for a long period of time. Was developed.

【0005】[0005]

【課題を解決するための手段】即ち、本発明の金属ベー
スプリント基板は、図1に示すように金属板1の少なく
とも一面に絶縁接着剤層2を介して導電性金属箔3が貼
り合わされてなる金属ベースプリント基板において、前
記接着剤層2が、エポキシ樹脂を主体とする樹脂分に対
して、5〜30重量%のビスオキサゾリン化合物と硬化
剤として芳香族ジアミンと50〜65体積%の無機充填
剤の微細粒子とが配合された組成物の層であることを特
徴とするものである。
That is, in the metal base printed circuit board of the present invention, as shown in FIG. 1, a conductive metal foil 3 is attached to at least one surface of a metal plate 1 via an insulating adhesive layer 2. In the metal-based printed circuit board, the adhesive layer 2 has a bisoxazoline compound content of 5 to 30% by weight, an aromatic diamine as a curing agent, and an inorganic content of 50 to 65% by volume with respect to a resin component mainly composed of an epoxy resin. It is a layer of a composition in which fine particles of a filler are blended.

【0006】本発明にてベース金属として用いる金属板
1としては、例えばアルミニウム、鉄、ニッケル、銅お
よびこれらの合金からなる板、およびこれらの金属板の
クラッド板等が用いられる。本発明にて用いる接着剤
は、エポキシ樹脂、無機充填剤の微細粒子、ビスオキサ
ゾリン化合物、芳香族ジアミンを必須成分とするもので
ある。そして、エポキシ樹脂としては、例えば、ビスフ
ェノールA型エポキシ樹脂、フェノールノボラック型エ
ポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多
官能型エポキシ樹脂などの、汎用のエポキシ樹脂を主体
としたものが用いられる。
As the metal plate 1 used as the base metal in the present invention, for example, a plate made of aluminum, iron, nickel, copper and an alloy thereof, and a clad plate of these metal plates are used. The adhesive used in the present invention contains an epoxy resin, fine particles of an inorganic filler, a bisoxazoline compound, and an aromatic diamine as essential components. As the epoxy resin, for example, a general-purpose epoxy resin such as a bisphenol A type epoxy resin, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or a multifunctional type epoxy resin is used.

【0007】また、ビスオキサゾリン化合物としては、
2,2, −(1,2−エチレン)−ビス(2−オキサゾ
リン)、2,2, −(1,4−ブチレン)−ビス(2−
オキサゾリン)、2,2, −(1,3−フェニレン)−
ビス(2−オキサゾリン)などが用いられる。このビス
オキサゾリン化合物の配合量は、樹脂分に対して5重量
%未満の配合では、得られる絶縁接着剤は350℃の高
温半田耐熱性、200℃での長期耐電圧特性、200℃
での長期接着性などが改善されない。また、30重量%
を超えて多量に配合すると得られる絶縁接着剤は耐湿性
が低下する傾向ある。このようなことから、樹脂分に対
して5〜30重量%の範囲内で配合する必要がある。
Further, as the bisoxazoline compound,
2,2 , -(1,2-ethylene) -bis (2-oxazoline), 2,2 , -(1,4-butylene) -bis (2-
Oxazoline), 2,2 , -(1,3-phenylene)-
Bis (2-oxazoline) or the like is used. When the blending amount of this bisoxazoline compound is less than 5% by weight with respect to the resin content, the resulting insulating adhesive has high temperature solder heat resistance at 350 ° C., long-term withstand voltage characteristic at 200 ° C., and 200 ° C.
The long-term adhesiveness etc. is not improved. Also, 30% by weight
If it is blended in a large amount, the insulating adhesive obtained will tend to have reduced moisture resistance. For this reason, it is necessary to mix the resin component within the range of 5 to 30% by weight.

【0008】硬化剤の芳香族ジアミンとしては、例えば
4,4, −ジアミノジフェニルメタン、4,4, −ジア
ミノジフェニルスルフォン、3,3, −ジアミノジフェ
ニルスルフォンなどが使用できる。絶縁接着剤に配合す
る無機充填剤の微細粒子としては、平均粒径が1〜10
μmの無機充填剤が好適に用いられる。得られる絶縁接
着剤の電気絶縁性および熱放散性の点から、例えばSi
2 、Al2 3 、MgO、BN 、AlNなどのセラ
ミックスの1種または2種以上を用いるのが好ましい。
この無機充填剤の微細粒子の配合量が、樹脂分に対して
50体積%未満の配合量では、得られる絶縁接着剤の熱
放散性が不十分であるばかりか、耐熱性も劣ったものに
なる。また、配合量が65体積%を超えて多量に配合す
ると、導電性金属箔との接着力が低下し、かつ、貼り付
けた導電性金属箔表面の平滑性が損なわれるようにな
る。このようなことから、樹脂分に対して50〜65体
積%の範囲内で配合する必要がある。
As the aromatic diamine as the curing agent, for example, 4,4 , -diaminodiphenylmethane, 4,4 , -diaminodiphenylsulfone, 3,3 , -diaminodiphenylsulfone and the like can be used. The fine particles of the inorganic filler mixed in the insulating adhesive have an average particle size of 1 to 10
A μm inorganic filler is preferably used. From the viewpoint of electric insulation and heat dissipation of the obtained insulating adhesive, for example, Si
It is preferable to use one or more kinds of ceramics such as O 2 , Al 2 O 3 , MgO, BN, and AlN.
When the content of the fine particles of the inorganic filler is less than 50% by volume with respect to the resin content, not only the heat dissipation of the insulating adhesive obtained is insufficient but also the heat resistance is poor. Become. Further, if the blending amount exceeds 65 vol% and is blended in a large amount, the adhesive force with the conductive metal foil is lowered, and the smoothness of the surface of the conductive metal foil attached is impaired. For this reason, it is necessary to mix the resin component within the range of 50 to 65% by volume.

【0009】[0009]

【作用】本発明の金属ベースプリント基板は、金属板1
と導電性金属箔3との間に介在させる絶縁接着剤層2
を、従来、無機充填剤の多量配合においては必要とされ
たカップリング剤を配合しない絶縁接着剤組成物、即
ち、エポキシ樹脂を主体とした樹脂分に多量の無機充填
剤の微細粒子とビスオキサゾリン化合物および硬化剤の
芳香族ジアミンを配合した絶縁接着剤組成物で形成した
ので、高温半田耐熱性が良好であり、かつ高温での長期
耐電圧特性および接着力が優れている。
The metal-based printed circuit board of the present invention is the metal plate 1.
Insulating adhesive layer 2 interposed between the conductive metal foil 3 and the conductive metal foil 3.
Conventionally, an insulating adhesive composition containing no coupling agent, which is conventionally required in the case of blending a large amount of inorganic filler, that is, fine particles of a large amount of inorganic filler and bisoxazoline in a resin component mainly composed of an epoxy resin. Since it is formed of an insulating adhesive composition containing a compound and an aromatic diamine as a curing agent, it has good high-temperature soldering heat resistance and excellent long-term withstand voltage characteristics and adhesive strength at high temperatures.

【0010】[0010]

【実施例】以下に本発明の実施例および比較例を示す。 (実施例1)ビスフェノールA型エポキシ樹脂100重
量部と2,2, −(1,3−フェニレン)−ビス(2−
オキサゾリン)20重量部とを混合した。この混合物中
に、樹脂分に対して60体積%となるように平均粒径3
μmのアルミナ粉末を加え、硬化剤として4,4, −ジ
アミノジフェニルメタンを樹脂分に対して1重量%配合
し、これに溶剤としてメチルエチルケトンを加え、全体
をミキサーで均一に混合して絶縁接着剤を調製した。調
製した絶縁接着剤を厚さ35μmの銅箔上に80μmの
膜厚になるように塗布し加熱して銅箔プリプレグとなし
た。次に、この銅箔プリプレグを厚さ1. 5mmのアル
ミ板上に、その絶縁接着剤層を介して重ね、これを真空
プレスにより加熱加圧し接着させて金属ベースプリント
基板を作製した。
EXAMPLES Examples and comparative examples of the present invention will be shown below. (Example 1) 100 parts by weight of bisphenol A type epoxy resin and 2,2 , -(1,3-phenylene) -bis (2-
20 parts by weight of oxazoline) were mixed. In this mixture, the average particle size was 3 so that the content of the resin was 60% by volume.
Alumina powder of μm was added, 4,4 , -diaminodiphenylmethane was mixed as a curing agent in an amount of 1% by weight with respect to the resin content, methyl ethyl ketone was added as a solvent to this, and the whole was uniformly mixed with a mixer to form an insulating adhesive. Prepared. The prepared insulating adhesive was applied on a copper foil having a thickness of 35 μm so as to have a film thickness of 80 μm and heated to form a copper foil prepreg. Next, this copper foil prepreg was laminated on an aluminum plate having a thickness of 1.5 mm with the insulating adhesive layer interposed therebetween, and this was heated and pressed by a vacuum press for adhesion to produce a metal base printed board.

【0011】(実施例2)ビスフェノールA型エポキシ
樹脂80重量部とマレイミド樹脂20重量部と2,2,
−(1,3−フェニレン)−ビス(2−オキサゾリン)
20重量部とを混合した。この混合物中に、60体積%
となるように平均粒径3μmのアルミナ粉末を加え、硬
化剤として4,4, −ジアミノジフェニルメタンを樹脂
分に対して1重量%配合し、これに溶剤としてメチルエ
チルケトンを加え、全体をミキサーで均一に混合して絶
縁接着剤を調製した。調製した絶縁接着剤を厚さ35μ
mの銅箔上に80μmの膜厚になるように塗布し加熱し
て銅箔プリプレグとなした。次に、この銅箔プリプレグ
を厚さ1. 5mmのアルミ板上に、その絶縁接着剤層を
介して重ね、これを真空プレスにより加熱加圧し接着さ
せて金属ベースプリント基板を作製した。
Example 2 80 parts by weight of a bisphenol A type epoxy resin, 20 parts by weight of a maleimide resin, 2,2 ,
-(1,3-phenylene) -bis (2-oxazoline)
20 parts by weight were mixed. In this mixture, 60% by volume
Alumina powder with an average particle size of 3 μm was added to the mixture so that 1% by weight of 4,4 , -diaminodiphenylmethane as a curing agent was added to the resin component, and methyl ethyl ketone was added as a solvent to this, and the whole was uniformly mixed with a mixer. An insulating adhesive was prepared by mixing. Prepare the insulating adhesive with a thickness of 35μ
m to a thickness of 80 μm and then heated to form a copper foil prepreg. Next, this copper foil prepreg was laminated on an aluminum plate having a thickness of 1.5 mm with the insulating adhesive layer interposed therebetween, and this was heated and pressed by a vacuum press for adhesion to produce a metal base printed board.

【0012】(比較例1)ビスフェノールA型エポキシ
樹脂100重量部に、シラン系カップリング剤のγ−グ
リシドキシプロピルトリメトキシシランで表面処理した
平均粒径3μmのアルミナ粉末を樹脂分に対して60体
積%となるように加え、硬化剤として4,4, −ジアミ
ノジフェニルメタンを樹脂分に対して1重量%配合し、
これに溶剤としてメチルエチルケトンを加え、全体をミ
キサーで均一に混合して絶縁接着剤を調製した。調製し
た絶縁接着剤を厚さ35μmの銅箔上に80μmの膜厚
になるように塗布し加熱して銅箔プリプレグとなした。
次に、この銅箔プリプレグを厚さ1. 5mmのアルミ板
上に、その絶縁接着剤層を介して重ね、これを真空プレ
スにより加熱加圧し接着させて金属ベースプリント基板
を作製した。
(Comparative Example 1) 100 parts by weight of bisphenol A type epoxy resin was treated with silane coupling agent γ-glycidoxypropyltrimethoxysilane, and alumina powder having an average particle size of 3 μm was added to the resin component. In addition to 60% by volume, 1% by weight of 4,4 , -diaminodiphenylmethane was added as a curing agent to the resin,
Methyl ethyl ketone was added to this as a solvent, and the whole was uniformly mixed with a mixer to prepare an insulating adhesive. The prepared insulating adhesive was applied on a copper foil having a thickness of 35 μm so as to have a film thickness of 80 μm and heated to form a copper foil prepreg.
Next, this copper foil prepreg was laminated on an aluminum plate having a thickness of 1.5 mm with the insulating adhesive layer interposed therebetween, and this was heated and pressed by a vacuum press for adhesion to produce a metal base printed board.

【0013】(比較例2)ビスフェノールA型エポキシ
樹脂80重量部とマレイミド樹脂20重量部とを混合し
た。この混合物中に、樹脂分に対して60体積%となる
ようにシラン系カップリング剤のγ−グリシドキシプロ
ピルトリメトキシシランで表面処理した平均粒径3μm
のアルミナ粉末を樹脂分に対して60体積%となるよう
に加え、硬化剤として4,4, −ジアミノジフェニルメ
タンを樹脂分に対して1重量%配合し、これに溶剤とし
てメチルエチルケトンを加え、全体をミキサーで均一に
混合して絶縁接着剤を調製した。調製した絶縁接着剤を
厚さ35μmの銅箔上に80μmの膜厚になるように塗
布し加熱して銅箔プリプレグとなした。次に、この銅箔
プリプレグを厚さ1. 5mmのアルミ板上に、その絶縁
接着剤層を介して重ね、これを真空プレスにより加熱加
圧し接着させて金属ベースプリント基板を作製した。
Comparative Example 2 80 parts by weight of a bisphenol A type epoxy resin and 20 parts by weight of a maleimide resin were mixed. In this mixture, the average particle size was 3 μm, which was surface-treated with silane coupling agent γ-glycidoxypropyltrimethoxysilane so as to be 60% by volume with respect to the resin content.
Alumina powder was added to 60% by volume with respect to the resin content, 4,4 , -diaminodiphenylmethane as a curing agent was mixed with 1% by weight with respect to the resin content, and methyl ethyl ketone was added as a solvent to the whole, An insulating adhesive was prepared by uniformly mixing with a mixer. The prepared insulating adhesive was applied on a copper foil having a thickness of 35 μm so as to have a film thickness of 80 μm and heated to form a copper foil prepreg. Next, this copper foil prepreg was laminated on an aluminum plate having a thickness of 1.5 mm with the insulating adhesive layer interposed therebetween, and this was heated and pressed by a vacuum press for adhesion to produce a metal base printed board.

【0014】以上、実施例1〜2および比較例1〜2で
作製したそれぞれの金属ベースプリント基板について、
350℃半田耐熱性、200℃で2000時間保存後の
絶縁破壊電圧値、および200℃で4000時間保存後
の銅箔ピール強度などを測定した。得られた結果を表1
に示す。
As described above, with respect to each of the metal-based printed circuit boards produced in Examples 1-2 and Comparative Examples 1-2,
Solder heat resistance at 350 ° C., dielectric breakdown voltage value after storage at 200 ° C. for 2000 hours, and copper foil peel strength after storage at 200 ° C. for 4000 hours were measured. The results obtained are shown in Table 1.
Shown in.

【0015】[0015]

【表1】 [Table 1]

【0016】なお、350℃の半田耐熱性は、350℃
の半田槽に50mm角に切断したサンプルを浮かべ、銅
箔−接着剤層間、あるいは金属板−接着剤層間の剥離が
発生するまでの時間を測定した。絶縁破壊電圧について
は、それぞれの金属ベースプリント基板の銅箔をエッチ
ング除去して接着剤層を露出させ、100mm角に切断
したものをサンプルとし、直径25mmの面状電極を用
いてAC500V/秒の昇電圧速度にて接着剤層が絶縁
破壊した時の電圧値を測定した。銅箔ピール強度につい
ては、JIS C6381に基づいて測定した。
The solder heat resistance at 350 ° C. is 350 ° C.
A sample cut into 50 mm square was floated in the solder bath of No. 1 and the time until peeling between the copper foil-adhesive layer or the metal plate-adhesive layer was measured. Regarding the dielectric breakdown voltage, the copper foil of each metal-based printed circuit board was removed by etching to expose the adhesive layer, and the sample was cut into 100 mm square, using a planar electrode with a diameter of 25 mm, and AC 500 V / sec. The voltage value when the adhesive layer had a dielectric breakdown was measured at a rising voltage speed. The copper foil peel strength was measured based on JIS C6381.

【0017】表1から明らかなように、実施例1の金属
ベースプリント基板は、絶縁接着剤に無機充填剤として
カップリング剤による表面処理を施さないアルミナ粉末
を配合したにもかかわらず、ビスオキサゾリン化合物の
配合により、無機充填剤としてカップリング剤による表
面処理を施したアルミナ粉末を配合した絶縁接着剤を用
いて作製した比較例1の金属ベースプリント基板に比べ
て、350℃半田耐熱性、200℃で2000時間保存
後の絶縁破壊電圧値、および200℃で4000時間保
存後の銅箔ピール強度のいずれの性能においても著しく
優れていた。また、エポキシ樹脂の一部量を他の樹脂に
置き換え、ビスオキサゾリン化合物と無機充填剤として
カップリング剤による表面処理を施さないアルミナ粉末
を配合した絶縁接着剤を用いて作製した実施例2の金属
ベースプリント基板は、無機充填剤としてカップリング
剤による表面処理を施したアルミナ粉末を配合した絶縁
接着剤を用いて作製した比較例2の金属ベースプリント
基板に比べて、実施例1品と同様に350℃半田耐熱
性、200℃で2000時間保存後の絶縁破壊電圧値、
および200℃で4000時間保存後の銅箔ピール強度
のいずれの性能においても著しく優れていた。
As is apparent from Table 1, the metal-based printed circuit board of Example 1 contained the bisoxazoline in spite of the fact that the insulating adhesive was mixed with the alumina powder which was not surface-treated with the coupling agent as the inorganic filler. Compared with the metal-based printed circuit board of Comparative Example 1 prepared by using an insulating adhesive compounded with an alumina powder surface-treated with a coupling agent as an inorganic filler by compounding the compound, 350 ° C. solder heat resistance, 200 Both of the dielectric breakdown voltage values after storage at 2000C for 2000 hours and the copper foil peel strength after storage at 200 ° C for 4000 hours were extremely excellent. Further, the metal of Example 2 prepared by replacing a part of the epoxy resin with another resin and using an insulating adhesive compounded with a bisoxazoline compound and an alumina powder not surface-treated with a coupling agent as an inorganic filler. The base printed circuit board was similar to the metal base printed circuit board of Comparative Example 2 prepared by using the insulating adhesive compounded with the alumina powder surface-treated with the coupling agent as the inorganic filler in the same manner as in Example 1. 350 ℃ solder heat resistance, dielectric breakdown voltage value after 2000 hours storage at 200 ℃,
Also, the copper foil peel strength after storage at 200 ° C. for 4000 hours was remarkably excellent.

【0018】[0018]

【発明の効果】本発明の金属ベースプリント基板は、半
田耐熱性が向上したため、高温半田の使用が可能であ
り、実装工程の合理化が可能である。また長期間高温下
での絶縁破壊電圧および銅箔ピール強度が向上したた
め、長期間高温状態での使用が条件となる自動車搭載用
基板として使用が可能である。
Since the metal-based printed circuit board of the present invention has improved solder heat resistance, high-temperature solder can be used and the mounting process can be rationalized. Further, since the dielectric breakdown voltage and the copper foil peel strength at a high temperature for a long period of time are improved, it can be used as a substrate for mounting on an automobile which is required to be used at a high temperature for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金属ベースプリント基板の断面説明図
である。
FIG. 1 is a cross-sectional explanatory diagram of a metal-based printed circuit board of the present invention.

【符号の説明】[Explanation of symbols]

1 金属板 2 絶縁接着剤層 3 導電性金属箔 1 Metal plate 2 Insulating adhesive layer 3 Conductive metal foil

フロントページの続き (72)発明者 矢野 正三 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内Front page continuation (72) Inventor Shozo Yano 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属板の少なくとも一面に絶縁性の接着
剤層を介して導電性金属箔が貼り合わされてなる金属ベ
ースプリント基板において、前記接着剤層が、エポキシ
樹脂を主体とする樹脂とビスオキサゾリン化合物と硬化
剤として芳香族ジアミンと50〜65体積%の無機充填
剤の微細粒子とが配合された組成物の層であることを特
徴とする金属ベースプリント基板。
1. A metal-based printed circuit board, comprising a metal plate and a conductive metal foil bonded to at least one surface of the metal plate via an insulating adhesive layer, wherein the adhesive layer comprises a resin mainly composed of an epoxy resin and a screw. A metal-based printed circuit board, which is a layer of a composition in which an oxazoline compound, an aromatic diamine as a curing agent, and 50 to 65% by volume of fine particles of an inorganic filler are blended.
【請求項2】 前記接着剤に配合された無機充填剤が、
電気絶縁性で、かつ良熱伝導性のセラミックスの1種ま
たは2種以上であることを特徴とする請求項2記載の金
属ベースプリント基板。
2. The inorganic filler compounded in the adhesive,
3. The metal-based printed circuit board according to claim 2, which is one kind or two or more kinds of ceramics which are electrically insulating and have good heat conductivity.
JP14158093A 1993-05-20 1993-05-20 Metal-based printed board Pending JPH06334288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14158093A JPH06334288A (en) 1993-05-20 1993-05-20 Metal-based printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14158093A JPH06334288A (en) 1993-05-20 1993-05-20 Metal-based printed board

Publications (1)

Publication Number Publication Date
JPH06334288A true JPH06334288A (en) 1994-12-02

Family

ID=15295302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14158093A Pending JPH06334288A (en) 1993-05-20 1993-05-20 Metal-based printed board

Country Status (1)

Country Link
JP (1) JPH06334288A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184668A (en) * 2010-03-11 2011-09-22 Sekisui Chem Co Ltd Thermally conductive thermoplastic adhesive composition
US20120025399A1 (en) * 2010-07-29 2012-02-02 Nitto Denko Corporation Film for flip chip type semiconductor back surface, and its use
JP2013121903A (en) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd Filler, composition for forming insulating layer, film for forming insulating layer, and substrate
CN104822768A (en) * 2012-11-30 2015-08-05 Lg伊诺特有限公司 Epoxy resin composition, and printed circuit board comprising insulation layer using epoxy resin composition
CN104884531A (en) * 2012-12-12 2015-09-02 Lg伊诺特有限公司 Epoxy resin composition, and printed circuit board using same
CN104918996A (en) * 2012-12-14 2015-09-16 Lg伊诺特有限公司 Epoxy resin composition and printed circuit board using same
US20150319856A1 (en) * 2012-12-12 2015-11-05 Lg Innotek Co., Ltd. Epoxy resin composition, and printed circuit board using same
US20150319855A1 (en) * 2012-12-12 2015-11-05 Lg Innotek Co., Ltd. Resin composition, and printed circuit board using same
US20150319854A1 (en) * 2012-12-12 2015-11-05 Lg Innotek Co., Ltd. Epoxy resin composition and printed circuit board
WO2024018767A1 (en) * 2022-07-22 2024-01-25 日本碍子株式会社 Waveguide element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184668A (en) * 2010-03-11 2011-09-22 Sekisui Chem Co Ltd Thermally conductive thermoplastic adhesive composition
US20120025399A1 (en) * 2010-07-29 2012-02-02 Nitto Denko Corporation Film for flip chip type semiconductor back surface, and its use
US8513816B2 (en) * 2010-07-29 2013-08-20 Nitto Denko Corporation Film for flip chip type semiconductor back surface containing thermoconductive filler
JP2013121903A (en) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd Filler, composition for forming insulating layer, film for forming insulating layer, and substrate
US20150305152A1 (en) * 2012-11-30 2015-10-22 Lg Innotek Co., Ltd. Epoxy resin composition and printed circuit board including insulating layer using the epoxy resin composition
CN104822768A (en) * 2012-11-30 2015-08-05 Lg伊诺特有限公司 Epoxy resin composition, and printed circuit board comprising insulation layer using epoxy resin composition
US9462689B2 (en) * 2012-11-30 2016-10-04 Lg Innotek Co., Ltd. Epoxy resin composition and printed circuit board including insulating layer using the epoxy resin composition
US20150319854A1 (en) * 2012-12-12 2015-11-05 Lg Innotek Co., Ltd. Epoxy resin composition and printed circuit board
US20150319856A1 (en) * 2012-12-12 2015-11-05 Lg Innotek Co., Ltd. Epoxy resin composition, and printed circuit board using same
US20150319855A1 (en) * 2012-12-12 2015-11-05 Lg Innotek Co., Ltd. Resin composition, and printed circuit board using same
US20150319857A1 (en) * 2012-12-12 2015-11-05 Lg Innotek Co., Ltd. Epoxy resin composition, and printed circuit board using same
US9445498B2 (en) * 2012-12-12 2016-09-13 Lg Innotek Co., Ltd. Epoxy resin composition and printed circuit board
US9445499B2 (en) * 2012-12-12 2016-09-13 Lg Innotek Co., Ltd. Epoxy resin composition, and printed circuit board using same
CN104884531A (en) * 2012-12-12 2015-09-02 Lg伊诺特有限公司 Epoxy resin composition, and printed circuit board using same
US9468096B2 (en) * 2012-12-12 2016-10-11 Lg Innotek Co., Ltd. Epoxy resin composition, and printed circuit board using same
US9504147B2 (en) * 2012-12-12 2016-11-22 Lg Innotek Co., Ltd. Resin composition, and printed circuit board using same
CN104918996A (en) * 2012-12-14 2015-09-16 Lg伊诺特有限公司 Epoxy resin composition and printed circuit board using same
US20150334827A1 (en) * 2012-12-14 2015-11-19 Lg Innotek Co., Ltd. Epoxy resin composition and printed circuit board using same
US9445500B2 (en) * 2012-12-14 2016-09-13 Lg Innotek Co., Ltd. Epoxy resin composition and printed circuit board using same
WO2024018767A1 (en) * 2022-07-22 2024-01-25 日本碍子株式会社 Waveguide element

Similar Documents

Publication Publication Date Title
JPH10242606A (en) Metal base board
US20030148079A1 (en) Thermal conductive substrate and the method for manufacturing the same
JP3792327B2 (en) Thermally conductive adhesive composition and thermally conductive adhesive film using the composition
JPH10237410A (en) Thermally conductive adhesive composition and thermally conductive adhesive film prepared by using the same
JPH06334288A (en) Metal-based printed board
JPH09298369A (en) Multilayer wiring board and its manufacture
JP3351852B2 (en) Insulating material and circuit board using the same
US5547758A (en) Insulating material
JP2001203313A (en) Thermal conduction substrate and manufacturing method therefor
JP2520988B2 (en) Metal base wiring board
JPH0883963A (en) Metal-based board
JPH06172618A (en) Epoxy resin composition and printed board
JPH1064331A (en) Conductive paste, electric circuit using conductive paste, and manufacture of electric circuit
JP2001057408A (en) Power module and manufacture thereof
JP2001223450A (en) Metal base circuit board
JP3067512B2 (en) Production method of metal foil-clad laminate and metal foil used for the production
JPH02286768A (en) Insulating adhesive composition for circuit board and use thereof
JPH07320538A (en) Insulating material composition and circuit board and module using this insulating material composition
JPH0197633A (en) Manufacture of laminated plate for printed circuit
JP6726481B2 (en) Circuit board and electronic component mounting board
JPH0892394A (en) Prepreg for laminate formation and laminated plate
JPH06350213A (en) Metal base board
JPH0883979A (en) Manufacture of metal-based board
JPH06310824A (en) Board for metal-base printed circuit
TWI799128B (en) Metal clad substrate