WO2021241129A1 - Sealant for display devices - Google Patents

Sealant for display devices Download PDF

Info

Publication number
WO2021241129A1
WO2021241129A1 PCT/JP2021/017086 JP2021017086W WO2021241129A1 WO 2021241129 A1 WO2021241129 A1 WO 2021241129A1 JP 2021017086 W JP2021017086 W JP 2021017086W WO 2021241129 A1 WO2021241129 A1 WO 2021241129A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy compound
sealant
viscosity
polyamine
epoxy
Prior art date
Application number
PCT/JP2021/017086
Other languages
French (fr)
Japanese (ja)
Inventor
桂 永田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202180016659.4A priority Critical patent/CN115151861A/en
Priority to KR1020227029760A priority patent/KR20220133967A/en
Priority to JP2022527617A priority patent/JP7391211B2/en
Publication of WO2021241129A1 publication Critical patent/WO2021241129A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1059Heat-curable materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0647Polyepoxides

Definitions

  • the present invention relates to a sealant for a display device.
  • liquid crystal display devices organic EL display devices, electrophoresis type display devices, and the like have been put into practical use as display devices for various electronic devices.
  • a liquid crystal display device has a structure in which a liquid crystal is sealed between a pair of substrates.
  • Such a liquid crystal display device can be manufactured by, for example, the following method. First, a liquid crystal sealant is applied on a transparent substrate to form a frame for filling the liquid crystal. Then, a minute liquid crystal is dropped in the frame. While the liquid crystal sealant remains uncured, the other substrate is laminated under high vacuum so as to face the substrate. Then, the liquid crystal sealant is cured.
  • Various sealing agents have been proposed as sealing agents for sealing liquid crystal, and an epoxy resin having low solubility in liquid crystal and a liquid crystal sealing agent containing an epoxy resin curing agent have been proposed (for example, Patent Document 1). ..
  • an electrophoresis type display device for example, a display device having a microcup structure has been proposed (for example, Patent Document 2).
  • the electrophoresis-type display device has a structure in which display elements are sealed between a pair of substrates.
  • a sealing agent is applied to a gap in a peripheral portion of the laminated body and the sealant is cured to form a sealing member. ..
  • a sealant for an electrophoresis-type display device is required to have a low viscosity that allows it to penetrate into minute gaps.
  • the cured product of the sealing agent is also required to have moisture resistance from the viewpoint of protecting elements, liquid crystals and the like, and it is common to include a large amount of filler.
  • the sealant contains a large amount of filler, the viscosity tends to be remarkably high. That is, it has been difficult to have both a low viscosity that can penetrate into a minute gap and a moisture resistance of a cured product.
  • the sealant is also required to be curable at a low temperature and have good viscosity stability.
  • the present invention has been made in view of the above problems. That is, it is an object of the present invention to provide a sealant for a display device having a low viscosity, good viscosity stability, curable at a low temperature, and high moisture resistance of a cured product.
  • the present invention provides the following sealants for display devices.
  • An E-type viscosity meter containing an epoxy compound (A) containing a polyfunctional epoxy compound (a1) and a monofunctional epoxy compound (a2) having a biphenyl structure, and a polyamine-based latent thermosetting agent (B).
  • a sealant for a display device having a viscosity of 20.0 Pa ⁇ s or less measured at 25 ° C. and 2.5 rpm.
  • the sealant for display devices of the present invention has a low viscosity. Further, the cured product of the sealant for the display device has high moisture resistance. Further, the sealant has excellent low-temperature curability and viscosity stability. Therefore, it is very useful as a sealing agent for sealing various display devices such as electronic paper and liquid crystal display devices.
  • sealant for display devices of the present invention is a composition for sealing various display devices such as electronic paper and liquid crystal display devices.
  • a sealing agent used for electronic paper or the like is required to have a low viscosity and high moisture resistance when cured.
  • a filler in order to improve the moisture resistance, and such a method has a problem that the viscosity of the sealant tends to increase. ..
  • the sealant of the present invention has a viscosity of 20.0 Pa ⁇ s or less measured at 25 ° C. and 2.5 rpm with an E-type viscometer, and has at least a polyfunctional epoxy compound (a1) and a biphenyl structure. It contains an epoxy compound (A) containing a functional epoxy compound (a2) (hereinafter, also simply referred to as “monofunctional epoxy compound (a2)”), and a polyamine-based latent thermosetting agent (B).
  • A an epoxy compound (A) containing a functional epoxy compound (a2) (hereinafter, also simply referred to as “monofunctional epoxy compound (a2)”), and a polyamine-based latent thermosetting agent (B).
  • the monofunctional epoxy compound (a2) having a biphenyl structure is included in the sealing agent, a low viscosity can be achieved as described above, and a cured product can be obtained without adding a filler. It was found that the moisture resistance of the material is increased. Although the reason is not clear, it is considered that the biphenyl structure of the monofunctional epoxy compound (a2) enhances the moisture resistance of the cured product. Further, since the monofunctional epoxy compound (a2) has an epoxy structure in addition to the biphenyl structure, it has a high affinity with the polyfunctional epoxy compound (a1).
  • the biphenyl structure is arranged on the entire cured product of the sealant, and the moisture resistance of the cured product is significantly improved.
  • the monofunctional epoxy compound (a2) has a relatively low viscosity. In general, when the sealant contains a latent thermosetting agent, the viscosity tends to increase. However, since the sealant of the present invention contains the monofunctional epoxy compound (a2), the viscosity of the sealant falls within the above range.
  • a polyamine-based latent thermosetting agent (B) is used as a curing agent for curing the epoxy compound (A).
  • a polyamine-based latent thermosetting agent By combining the epoxy compound (A) with a polyamine-based latent thermosetting agent, a one-component sealing agent having excellent storage stability can be obtained.
  • the sealant may further contain components other than the epoxy compound (A) and the polyamine-based latent thermosetting agent (B).
  • Epoxy compound (A) The epoxy compound (A) of the present invention contains a polyfunctional epoxy compound (a1) and a monofunctional epoxy compound (a2) having a biphenyl structure, and may further contain other epoxy compounds, if necessary.
  • the total amount of the epoxy compound (A) with respect to the total amount of the sealant is preferably 30 to 80% by mass, more preferably 40 to 70% by mass.
  • the cured product of the sealant can surely seal the display device.
  • the polyfunctional epoxy compound may be a compound having two or more epoxy groups in one molecule.
  • the polyfunctional epoxy compound may be solid at room temperature, but is more preferably liquid.
  • the polyfunctional epoxy compound (a1) may be either a monomer, an oligomer, or a polymer, but from the viewpoint of keeping the viscosity of the sealant within the above range, the monomer or oligomer is preferable, and the monomer is more preferable.
  • the weight average molecular weight (Mw) of the polyfunctional epoxy compound (a1) is preferably 200 to 700, more preferably 300 to 500. When the weight average molecular weight of the polyfunctional epoxy compound (a1) is in the above range, the viscosity of the sealant tends to fall within the desired range.
  • the weight average molecular weight of the polyfunctional epoxy compound (a1) can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the number of epoxy groups contained in one molecule of the polyfunctional epoxy compound (a1) may be 2 or more, and may be 3 or more, but the crystallinity is relatively low, and the coatability and viscosity stability are good. 2 is more preferable from the viewpoint that it is good and a cured product having a crosslinked structure can be easily obtained.
  • the epoxy equivalent of the polyfunctional epoxy compound (a1) is preferably 100 to 250 g / equivalent, more preferably 110 to 200 g / equivalent. When the amount of the epoxy group of the polyfunctional epoxy compound (a1) is in the above range, the obtained cured product tends to have an appropriate hardness.
  • the epoxy equivalent of the polyfunctional epoxy compound (a1) can be specified by a known method, for example, by titration or the like.
  • the structure of the polyfunctional epoxy compound (a1) is not particularly limited, and may have, for example, an aromatic ring between a plurality of epoxy groups, an aliphatic group, or an alicyclic group. May be.
  • the polyfunctional epoxy compound (a1) include bisphenol type epoxy compounds such as bisphenol A type, bisphenol F type, bisphenol E type, bisphenol S type, bisphenol AD type, and hydrogenated bisphenol A type; diphenyl ether type epoxy compounds; Phenol novolak type, cresol novolak type, biphenyl novolak type, bisphenol novolak type, naphthol novolak type, trisphenol novolak type, dicyclopentadiene novolak type and other novolak type epoxy compounds; biphenyl type epoxy compound; naphthyl type epoxy compound; triphenol methane Includes triphenol alkane type epoxy compounds such as type, triphenol ethane type, triphenol propane type; alicyclic epoxy compound; aliphatic epoxy compound; polysulfide-modified
  • the polyfunctional epoxy compound (a1) preferably contains an aromatic ring or a hydrogenated product thereof, and preferably contains a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, and a bisphenol E.
  • Type epoxy compounds and bisphenol type epoxy compounds such as hydrogenated bisphenol A type are particularly preferable.
  • the amount of the polyfunctional epoxy compound (a1) in the epoxy compound (A) is preferably 10 to 65% by mass, more preferably 30 to 60% by mass.
  • the curability of the sealant can be improved.
  • an appropriate crosslinked structure can be included in the cured product.
  • the monofunctional epoxy compound (a2) may be a compound having a biphenyl structure and one epoxy group in one molecule.
  • the monofunctional epoxy compound (a2) may partially contain a structure other than the biphenyl structure and the epoxy group.
  • Examples of the monofunctional epoxy compound (a2) include a reaction product of phenylphenol and epichlorohydrin. Specific examples of the monofunctional epoxy compound (a2) include o-phenylphenol glycidyl ether, m-phenylphenol glycidyl ether, p-phenylphenol glycidyl ether, and derivatives thereof.
  • the epoxy compound (A) may contain only one type of monofunctional epoxy compound (a2), or may contain two or more types.
  • the epoxy equivalent of the monofunctional epoxy compound (a2) is preferably 226 to 260.
  • the epoxy equivalent of the monofunctional epoxy compound (a2) can be specified by a known method, for example, by titration.
  • the amount of the monopolyfunctional epoxy compound (a2) in the epoxy compound (A) is preferably 35 to 90% by mass, more preferably 40 to 70% by mass.
  • the amount of the monofunctional epoxy compound (a2) in the epoxy compound (A) is in the above range, the moisture resistance of the cured product can be improved.
  • the epoxy compound (A) may partially contain an epoxy compound that does not correspond to the polyfunctional epoxy compound (a1) or the monofunctional epoxy compound (a2).
  • examples of other epoxy compounds include monofunctional epoxy compounds having no biphenyl structure and the like.
  • the amount of the other epoxy compound in the epoxy compound (A) is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly other epoxy compounds. It is preferable not to contain.
  • the polyamine-based latent thermosetting agent may be a compound having two or more amino groups in one molecule and reacting with the above-mentioned epoxy compound (A) by heating.
  • the polyamine-based latent thermosetting agent (B) is preferably solid at room temperature.
  • the polyamine-based latent thermosetting agent (B) does not easily react with the epoxy compound (A) during storage of the sealing agent, and the viscosity of the sealing agent is stable. Sex increases.
  • the softening point of the polyamine-based latent thermosetting agent (B) is preferably 70 to 110 ° C, more preferably 70 to 80 ° C.
  • the softening point of the polyamine-based latent thermosetting agent (B) is in the above range, the reaction with the epoxy compound (A) at room temperature can be suppressed, while the polyamine-based latent property can be suppressed without excessive heating. It becomes possible to react the thermosetting agent (B) with the epoxy compound (A).
  • Examples of the polyamine-based latent thermosetting agent (B) include a latent curing agent having a polymer structure obtained by reacting an amine with an epoxy.
  • ADEKA hardener EH5015S softening point: 85 to 105 ° C.
  • ADEKA hardener EH4357S softening point: 75 to 85 ° C.
  • ADEKA hardener EH5030S softening point: 70 ° C.) 80 ° C.
  • the amine equivalent of the polyamine-based latent thermosetting agent (B) is preferably 0.4 to 2.0 equivalents, more preferably 0.6 to 1.4 equivalents, relative to the epoxy equivalent of the epoxy compound (A).
  • the epoxy equivalent (g / equivalent) of the epoxy compound (A) is the total amount of the epoxy compound (A) with respect to the total number of epoxy groups derived from the epoxy compound (A) in the sealant, that is, (the epoxy compound in the sealant). (A) total amount / total number of epoxy groups in the sealant).
  • the amine equivalent (g / equivalent) of the polyamine-based latent thermosetting agent (B) is the polyamine-based latent thermosetting agent (B) with respect to the number of amino groups derived from the polyamine-based latent thermosetting agent (B). , That is, (amount of polyamine-based latent heat-curing agent (B) / number of amino groups in the sealant).
  • the amine equivalent of the polyamine-based latent thermosetting agent (B) can be specified by a known method, and can be determined by, for example, titration.
  • the equivalent of the polyamine-based latent thermosetting agent (B) to the epoxy equivalent of the epoxy compound (A) is obtained from (the amine equivalent of the polyamine-based latent thermosetting agent (B) / the epoxy equivalent of the epoxy compound (A)). Desired.
  • the amine equivalent of the polyamine-based latent thermosetting agent (B) can be adjusted by the number of amino groups contained in the polyamine-based latent thermosetting agent (B) and the amount of the polyamine-based latent thermosetting agent (B).
  • the total amount of the polyamine-based latent thermosetting agent (B) with respect to the total amount of the sealing agent is preferably 10 to 50% by mass, more preferably 20 to 40% by mass.
  • the cured product of the sealing agent can surely seal the display device.
  • the sealing agent may contain components other than the above-mentioned epoxy compound (A) and polyamine-based latent thermosetting agent (B) as long as the object and effect of the present invention are not impaired.
  • examples of other components include fillers, various additives and the like.
  • the filler may be either an inorganic filler or an organic filler, and may contain both of them.
  • inorganic fillers examples include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, potassium titanate, kaolin, talc. , Glass beads, sericite active white clay, bentonite, aluminum nitride, silicon nitride and the like.
  • organic fillers include particles having a melting point or softening point of 60-120 ° C., such as silicone fine particles, acrylic fine particles, styrene fine particles such as styrene / divinylbenzene copolymers, and polyolefin fine particles. Fine particles selected from the group; and include carnauba wax, microcrystalline wax, modified microcrystalline wax, Fishertropush wax, modified Fishertropush wax and the like.
  • the shape of the filler is not particularly limited and may be a fixed shape such as a spherical shape, a plate shape, a needle shape or a non-fixed shape, but a spherical shape is preferable from the viewpoint of enhancing the embedding property in a minute gap.
  • the average primary particle size of the filler is preferably 0.1 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, and even more preferably 0.5 to 5 ⁇ m.
  • the average primary particle size of the filler can be measured by the laser diffraction method described in JIS Z8825-1.
  • the mass average particle size d50 of the filler is preferably 0.05 to 30 ⁇ m, more preferably less than 25 ⁇ m. When the mass average particle size d50 of the filler is in the above range, the viscosity stability of the sealant becomes high.
  • the mass average particle size d50 of the filler is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 0.2 ⁇ m or more, and may be more than 1.0 ⁇ m. ..
  • the mass average particle size d50 of the filler is obtained by a laser method particle measuring instrument by a method conforming to JIS Z8825-1. Specifically, it is a particle size represented by a 50% by mass value on the mass addition curve.
  • a laser diffraction / scattering type particle size distribution measuring device MT-3300EX2 (laser wavelength 780 nm) manufactured by Microtrac can be used.
  • the amount of filler is appropriately selected according to the viscosity of the sealant. As the amount of filler increases, the viscosity of the sealant tends to increase.
  • additives examples include silane coupling agents, rubber agents, ion trap agents, ion exchangers, leveling agents, pigments, dyes, plasticizers, defoamers, etc. These additives may be used alone or in combination of two or more.
  • the method for preparing a sealant described above is not particularly limited.
  • Each component can be mixed and prepared by a known method.
  • the means for mixing each component is not particularly limited, and examples of the stirrer include a double-arm stirrer, a roll kneader, a twin-screw extruder, a ball mill kneader, a planetary stirrer, and the like.
  • the sealant may be filtered with a filter to remove impurities. Further, vacuum defoaming treatment or the like may be performed.
  • the sealant of the present invention has a viscosity of 20.0 Pa ⁇ s or less measured at 25 ° C. and 2.5 rpm by an E-type viscometer, and has a viscosity of 1 to 10 Pa ⁇ s. s is preferable, and 1 to 5 Pa ⁇ s is more preferable.
  • the viscosity of the sealant is 20.0 Pa ⁇ s or less, it can enter even a minute gap when manufacturing various display devices.
  • the ratio of the viscosity measured at a relatively low shear rate to the viscosity measured at a relatively high shear rate (low shear viscosity (measured value of 1 rpm viscosity) / It is preferable that the thixotropy index (TI value) showing a high share viscosity (measured value of 10 rpm viscosity) is close to 1.
  • the thixotropy index is adjusted by, for example, the amount of filler.
  • the cured product of the sealant preferably has high heat resistance in order to maintain the adhesive strength with the substrate of various display devices.
  • the glass transition temperature (Tg) of the cured product obtained by heating and curing the sealant at 80 ° C. for 60 minutes is preferably 30 to 120 ° C. If the glass transition temperature of the cured product of the sealant is within the relevant range, there is little possibility that interface peeling or the like will occur between each substrate and the cured product of the sealant, and it is possible to obtain a highly reliable display device. It becomes.
  • a sealant when used in a display device that sandwiches a display element between two resin sheets or between two inorganic substrates, a cured product obtained by heating and curing the sealant at 80 ° C. for 60 minutes.
  • the glass transition temperature (Tg) of the above is preferably 10 to 40 ° C.
  • the glass transition temperature is considered from the viewpoint of preventing peeling from the substrate and imparting flexibility to the display device. Is preferably in the above range.
  • the glass transition temperature of the cured product of the sealant is the glass transition temperature of a film having a thickness of 100 ⁇ m obtained by thermally curing the sealant at 80 ° C. for 60 minutes, and the temperature rise rate of 5 ° C./min by a thermal analyzer. It is obtained by measuring with.
  • substrates that can be bonded to the sealant of the present invention include inorganic substrates such as glass substrates; polyethylene terephthalate, polymethylmethacrylate, polycarbonate, cyclic polyolefin (COC), polypropylene, polystyrene, polyvinyl chloride, and transparent ABS resin. , A resin substrate made of transparent nylon, transparent polyimide, polyvinyl alcohol, etc.;
  • the sealing agent of the present invention may be used as a display device end face sealing agent for sealing the end face of various display devices, particularly a gap between two substrates sandwiching a display element. preferable. Since the sealant has an appropriately low viscosity, it is particularly easy to enter the gap between the substrates that sandwich the display element. Further, as described above, the cured product has high moisture resistance.
  • the sealing agent for various display devices having a liquid crystal element, an EL element, an LED element, an electrophoretic display element, and the like.
  • it is very useful as a sealing agent for sealing the end face of a display device having an electrophoresis type or electric flow type display element in which it is necessary to apply a sealing agent to the gap between two substrates.
  • electrophoretic display devices include electronic paper and the like.
  • the electrophoresis-type display device has, for example, a display element and a pair of substrates sandwiching the display element, and a sealing member seals a gap between the substrates formed on the peripheral edge of the pair of substrates. Has a structure. Then, a cured product of the above-mentioned sealing agent can be used for the sealing member.
  • the above-mentioned method for applying the sealant is not particularly limited, and a known method such as a dispenser or screen printing can be used.
  • the curing method of the sealant is not particularly limited and may be thermosetting or photocuring, but thermosetting is preferable in terms of suppressing deterioration of the display device.
  • the thermosetting temperature is preferably 60 to 80 ° C. from the viewpoint of reducing damage to the display device.
  • the thermosetting time is, for example, about 30 to 90 minutes, although it depends on the thermosetting temperature and the amount of the sealing agent.
  • CE-2021P manufactured by Daicel Co., Ltd., alicyclic bifunctional epoxy compound represented by the following chemical formula, epoxy equivalent 156 g / equivalent, viscosity measured at 25 ° C.
  • E-type viscometer 200 mPa ⁇ s
  • YX8000D Mer by Mitsubishi Chemical, hydrogenated bisphenol A type bifunctional epoxy compound, epoxy equivalent 205 g / equivalent, viscosity measured at 25 ° C and 2.5 rpm with an E type viscometer: 800 mPa ⁇ s
  • EP-4088S made by ADEKA, dicyclopentadiene-based bifunctional epoxy compound, epoxy equivalent 170 g / equivalent, viscosity measured at 25 ° C and 2.5 rpm with an E-type viscometer: 230 mPa ⁇ s
  • EXA-835LV polyfunctional epoxy compound (a1) 320 parts by mass, OPP-EP (epoxy compound (a2) having a biphenyl structure) 250 parts by mass, and EH-5030S (polyamine-based latent thermosetting agent) 400 parts by mass.
  • the amine equivalent with respect to the epoxy equivalent was calculated as follows. First, the number of epoxy groups contained in the sealant was calculated from the epoxy equivalents of the individual epoxy compounds, and the epoxy equivalent of the entire epoxy compound (A) (total amount of the epoxy compound (A) / number of epoxy groups) was calculated. Subsequently, the amine equivalent / epoxy equivalent was calculated.
  • Examples 2 to 7 and Comparative Examples 1 to 5 A sealant was prepared in the same manner as in Example 1 except that the composition was changed to that shown in Table 1.
  • Viscosity The viscosity of the sealant was measured at 25 ° C., an E-type viscometer, and a rotation speed of 2.5 rpm.
  • the TI value was calculated by using an E-type viscometer and a rotation speed of 1.0 rpm measured value / 10 rpm measured value.
  • Tg Glass transition temperature of the cured product
  • the sealant was applied on a release paper with an applicator to a film thickness of 100 ⁇ m.
  • the release paper on which the coating film of the sealant was formed was held in a hot air drying oven at 80 ° C. for 60 minutes, then taken out and cooled. Then, the coating film was peeled off from the release paper to obtain a film having a film thickness of 100 ⁇ m.
  • the glass transition temperature (Tg) of the obtained film was measured using a DMS-6100 manufactured by Seiko Instruments Inc. at a heating rate of 5 ° C./min.
  • Moisture permeability 60 ° C, 90% Rh
  • the measurement was carried out in the same manner as the above-mentioned method for measuring the amount of moisture permeation, except that the humidity of the high-temperature and high-humidity tank was changed to 90% Rh.
  • Viscosity stability The produced sealant was left at 23 ° C. for 8 days.
  • the calorific value B / calorific value A was calculated, and the curing rate was obtained. It was evaluated according to the following criteria. ⁇ : Calorific value B / calorific value A is 80% or more ⁇ : Calorific value B / calorific value A is less than 80%
  • any of the sealants containing the polyfunctional epoxy compound (a1), the monofunctional epoxy compound (a2) having a biphenyl structure, and the polyamine-based latent thermosetting agent (B) The viscosity was low and the amount of moisture permeation was small (Examples 1 to 7). Further, these were also excellent in viscosity stability and low temperature curability (curability at 80 ° C. for 60 minutes).
  • the sealant for display devices of the present invention has a low viscosity. Further, the cured product of the sealant for the display device has high moisture resistance. Therefore, it is very useful as a sealing agent for electronic paper and liquid crystal display devices.

Abstract

The present invention addresses the problem of providing a sealant for display devices, which has low viscosity, high viscosity stability, and low-temperature curability, and can form a cured product having high moisture resistance. The sealant for display devices, which resolves the problem, includes: an epoxy compound (A) containing a polyfunctional epoxy compound (a1) and a monofunctional epoxy compound (a2) having a biphenyl structure; and a polyamine-based latent thermal-curing agent (B). The sealant for display devices has a viscosity of 20.0 Pa·s or less as measured at 25°C and 2.5 rpm using an E-type viscometer.

Description

表示装置用シール剤Sealant for display devices
 本発明は、表示装置用シール剤に関する。 The present invention relates to a sealant for a display device.
 近年、各種電子機器の表示装置として、液晶方式の表示装置、有機EL方式の表示装置、電気泳動方式の表示装置等が実用化されている。例えば液晶方式の装置では、一対の基板間に、液晶が封止された構造を有する。 In recent years, liquid crystal display devices, organic EL display devices, electrophoresis type display devices, and the like have been put into practical use as display devices for various electronic devices. For example, a liquid crystal display device has a structure in which a liquid crystal is sealed between a pair of substrates.
 このような液晶方式の装置は、例えば以下の方法で作製できる。まず、透明な基板の上に液晶シール剤を塗布して液晶を充填するための枠を形成する。そして、当該枠内に微小の液晶を滴下する。液晶シール剤が未硬化状態のままで、上記基板に対向するように、他方の基板を高真空下で重ね合わせる。そして、液晶シール剤を硬化させる。液晶を封止するためのシール剤として種々のシール剤が提案されており、液晶に対する溶解性の低いエポキシ樹脂、およびエポキシ樹脂硬化剤を含む液晶シール剤が提案されている(例えば特許文献1)。 Such a liquid crystal display device can be manufactured by, for example, the following method. First, a liquid crystal sealant is applied on a transparent substrate to form a frame for filling the liquid crystal. Then, a minute liquid crystal is dropped in the frame. While the liquid crystal sealant remains uncured, the other substrate is laminated under high vacuum so as to face the substrate. Then, the liquid crystal sealant is cured. Various sealing agents have been proposed as sealing agents for sealing liquid crystal, and an epoxy resin having low solubility in liquid crystal and a liquid crystal sealing agent containing an epoxy resin curing agent have been proposed (for example, Patent Document 1). ..
 一方、電気泳動方式の表示装置として、例えばマイクロカップ構造を有する表示装置が提案されている(例えば、特許文献2)。当該電気泳動方式の表示装置は、表示素子が一対の基板間に封止された構造を有する。当該表示装置では、表示素子と、それを挟持する一対の基板とを有する積層体を作製した後、積層体の周縁部の隙間にシール剤を塗布し、これを硬化させてシール部材を形成する。 On the other hand, as an electrophoresis type display device, for example, a display device having a microcup structure has been proposed (for example, Patent Document 2). The electrophoresis-type display device has a structure in which display elements are sealed between a pair of substrates. In the display device, after producing a laminated body having a display element and a pair of substrates sandwiching the display element, a sealing agent is applied to a gap in a peripheral portion of the laminated body and the sealant is cured to form a sealing member. ..
特開2005-018022号公報Japanese Unexamined Patent Publication No. 2005-018022 特表2004-536332号公報Japanese Patent Publication No. 2004-536332
 特に、電気泳動方式の表示装置のシール剤には、微小な隙間に侵入可能な低い粘度が求められている。一方で、シール剤の硬化物には、素子や液晶等を保護する観点で耐湿性も求められており、フィラーを大量に含めることが一般的であった。しかしながら、シール剤が大量のフィラーを含むと、粘度が著しく高くなりやすかった。つまり、微小な隙間にも侵入可能な低い粘度と、硬化物の耐湿性とを兼ね備えることは難しかった。また、シール剤には、低温で硬化可能であり、かつ粘度安定性が良好であることも求められる。 In particular, a sealant for an electrophoresis-type display device is required to have a low viscosity that allows it to penetrate into minute gaps. On the other hand, the cured product of the sealing agent is also required to have moisture resistance from the viewpoint of protecting elements, liquid crystals and the like, and it is common to include a large amount of filler. However, when the sealant contains a large amount of filler, the viscosity tends to be remarkably high. That is, it has been difficult to have both a low viscosity that can penetrate into a minute gap and a moisture resistance of a cured product. Further, the sealant is also required to be curable at a low temperature and have good viscosity stability.
 本発明は、上記課題を鑑みてなされたものである。すなわち、低い粘度を有し、粘度安定性が良好であり、低温で硬化可能であり、かつ硬化物の耐湿性が高い表示装置用シール剤の提供を目的とする。 The present invention has been made in view of the above problems. That is, it is an object of the present invention to provide a sealant for a display device having a low viscosity, good viscosity stability, curable at a low temperature, and high moisture resistance of a cured product.
 本発明は、以下の表示装置用シール剤を提供する。
 [1]多官能エポキシ化合物(a1)およびビフェニル構造を有する単官能エポキシ化合物(a2)を含むエポキシ化合物(A)と、ポリアミン系潜在性熱硬化剤(B)と、を含み、E型粘度計で25℃、2.5rpmで測定した粘度が20.0Pa・s以下である、表示装置用シール剤。
The present invention provides the following sealants for display devices.
[1] An E-type viscosity meter containing an epoxy compound (A) containing a polyfunctional epoxy compound (a1) and a monofunctional epoxy compound (a2) having a biphenyl structure, and a polyamine-based latent thermosetting agent (B). A sealant for a display device having a viscosity of 20.0 Pa · s or less measured at 25 ° C. and 2.5 rpm.
 [2]前記ポリアミン系潜在性熱硬化剤(B)の軟化点が70℃~110℃である、[1]に記載の表示装置用シール剤。
 [3]前記ポリアミン系潜在性熱硬化剤(B)のアミン当量が、前記エポキシ化合物(A)のエポキシ当量に対して0.4~2.0当量の範囲である、[1]または[2]に記載の表示装置用シール剤。
[2] The sealant for a display device according to [1], wherein the polyamine-based latent thermosetting agent (B) has a softening point of 70 ° C to 110 ° C.
[3] The amine equivalent of the polyamine-based latent thermosetting agent (B) is in the range of 0.4 to 2.0 equivalent with respect to the epoxy equivalent of the epoxy compound (A), [1] or [2]. ] The sealant for the display device described in.
 [4]前記エポキシ化合物(A)100質量部中の、前記単官能エポキシ化合物(a2)の量が35質量部~90質量部である、[1]~[3]のいずれかに記載の表示装置用シール剤。
 [5]電子ペーパー用のシール剤である、[1]~[4]のいずれかに記載の表示装置用シール剤。
[4] The indication according to any one of [1] to [3], wherein the amount of the monofunctional epoxy compound (a2) in 100 parts by mass of the epoxy compound (A) is 35 parts by mass to 90 parts by mass. Equipment sealant.
[5] The sealant for a display device according to any one of [1] to [4], which is a sealant for electronic paper.
 本発明の表示装置用シール剤は、低い粘度を有する。さらに、当該表示装置用シール剤の硬化物は耐湿性が高い。さらに、当該シール剤は低温硬化性に優れ、粘度安定性にも優れる。したがって、例えば電子ペーパーや液晶表示装置等、各種表示装置を封止するためのシール剤として、非常に有用である。 The sealant for display devices of the present invention has a low viscosity. Further, the cured product of the sealant for the display device has high moisture resistance. Further, the sealant has excellent low-temperature curability and viscosity stability. Therefore, it is very useful as a sealing agent for sealing various display devices such as electronic paper and liquid crystal display devices.
 本発明の表示装置用シール剤(以下、単に「シール剤」とも称する)は、電子ペーパーや液晶表示装置等、各種表示装置を封止するための組成物である。 The sealant for display devices of the present invention (hereinafter, also simply referred to as "seal agent") is a composition for sealing various display devices such as electronic paper and liquid crystal display devices.
 例えば、電子ペーパー等に用いるシール剤には、低い粘度、および硬化したときの耐湿性が高いこと、が求められる。しかしながら、従来のシール剤では、上述のように、耐湿性を高めるために、フィラーを使用することが一般的であり、このような方法では、シール剤の粘度が高まりやすい、という課題があった。 For example, a sealing agent used for electronic paper or the like is required to have a low viscosity and high moisture resistance when cured. However, in the conventional sealant, as described above, it is common to use a filler in order to improve the moisture resistance, and such a method has a problem that the viscosity of the sealant tends to increase. ..
 これに対し、本発明のシール剤は、E型粘度計で25℃、2.5rpmで測定した粘度が20.0Pa・s以下であり、少なくとも多官能エポキシ化合物(a1)およびビフェニル構造を有する単官能エポキシ化合物(a2)(以下、単に「単官能エポキシ化合物(a2)」とも称する)を含むエポキシ化合物(A)と、ポリアミン系潜在性熱硬化剤(B)と、を含む。本発明者らが鋭意検討した結果、ビフェニル構造を有する単官能エポキシ化合物(a2)をシール剤に含めると、上述のように低い粘度を達成でき、さらにはフィラーを添加しなくても、硬化物の耐湿性が高まることを見出した。その理由は定かではないが、当該単官能エポキシ化合物(a2)のビフェニル構造によって、硬化物の耐湿性が高まると考えられる。また、当該単官能エポキシ化合物(a2)は、ビフェニル構造の他にエポキシ構造も有するため、多官能エポキシ化合物(a1)との親和性が高い。したがって、シール剤の硬化物全体に、ビフェニル構造が配置されることとなり、硬化物の耐湿性が格段に高まると考えられる。さらに、単官能エポキシ化合物(a2)は比較的粘度が低い。一般的に、シール剤が潜在性熱硬化剤を含むと、粘度が高まりやすい。しかしながら、本発明のシール剤では、単官能エポキシ化合物(a2)を含むため、シール剤は、粘度が上記範囲に収まる。 On the other hand, the sealant of the present invention has a viscosity of 20.0 Pa · s or less measured at 25 ° C. and 2.5 rpm with an E-type viscometer, and has at least a polyfunctional epoxy compound (a1) and a biphenyl structure. It contains an epoxy compound (A) containing a functional epoxy compound (a2) (hereinafter, also simply referred to as “monofunctional epoxy compound (a2)”), and a polyamine-based latent thermosetting agent (B). As a result of diligent studies by the present inventors, when the monofunctional epoxy compound (a2) having a biphenyl structure is included in the sealing agent, a low viscosity can be achieved as described above, and a cured product can be obtained without adding a filler. It was found that the moisture resistance of the material is increased. Although the reason is not clear, it is considered that the biphenyl structure of the monofunctional epoxy compound (a2) enhances the moisture resistance of the cured product. Further, since the monofunctional epoxy compound (a2) has an epoxy structure in addition to the biphenyl structure, it has a high affinity with the polyfunctional epoxy compound (a1). Therefore, it is considered that the biphenyl structure is arranged on the entire cured product of the sealant, and the moisture resistance of the cured product is significantly improved. Further, the monofunctional epoxy compound (a2) has a relatively low viscosity. In general, when the sealant contains a latent thermosetting agent, the viscosity tends to increase. However, since the sealant of the present invention contains the monofunctional epoxy compound (a2), the viscosity of the sealant falls within the above range.
 また、本発明のシール剤では、エポキシ化合物(A)を硬化させる硬化剤として、ポリアミン系潜在性熱硬化剤(B)を使用している。上記エポキシ化合物(A)にポリアミン系潜在性熱硬化剤を組み合わせることで、貯蔵安定性に優れた一液型のシール剤とすることができる。 Further, in the sealant of the present invention, a polyamine-based latent thermosetting agent (B) is used as a curing agent for curing the epoxy compound (A). By combining the epoxy compound (A) with a polyamine-based latent thermosetting agent, a one-component sealing agent having excellent storage stability can be obtained.
 以下、本発明のシール剤が含む、各成分およびシール剤の物性について説明する。なお、シール剤は、必要に応じて、エポキシ化合物(A)およびポリアミン系潜在性熱硬化剤(B)以外の成分をさらに含んでいてもよい。 Hereinafter, the physical properties of each component and the sealing agent contained in the sealing agent of the present invention will be described. If necessary, the sealant may further contain components other than the epoxy compound (A) and the polyamine-based latent thermosetting agent (B).
 (1)エポキシ化合物(A)
 本発明のエポキシ化合物(A)は、多官能エポキシ化合物(a1)およびビフェニル構造を有する単官能エポキシ化合物(a2)と、を含み、必要に応じてその他のエポキシ化合物をさらに含んでいてもよい。
(1) Epoxy compound (A)
The epoxy compound (A) of the present invention contains a polyfunctional epoxy compound (a1) and a monofunctional epoxy compound (a2) having a biphenyl structure, and may further contain other epoxy compounds, if necessary.
 シール剤の総量に対するエポキシ化合物(A)の総量は、30~80質量%が好ましく、40~70質量%がより好ましい。エポキシ化合物(A)の総量が当該範囲であると、シール剤の硬化物が、表示装置を確実に封止できる。 The total amount of the epoxy compound (A) with respect to the total amount of the sealant is preferably 30 to 80% by mass, more preferably 40 to 70% by mass. When the total amount of the epoxy compound (A) is in the above range, the cured product of the sealant can surely seal the display device.
 ・多官能エポキシ化合物(a1)
 多官能エポキシ化合物は、1分子中に2以上のエポキシ基を有する化合物であればよい。当該多官能エポキシ化合物は、常温で固体状であってもよいが、液状であることがより好ましい。
-Polyfunctional epoxy compound (a1)
The polyfunctional epoxy compound may be a compound having two or more epoxy groups in one molecule. The polyfunctional epoxy compound may be solid at room temperature, but is more preferably liquid.
 多官能エポキシ化合物(a1)は、モノマーまたはオリゴマー、もしくはポリマーのいずれであってもよいが、シール剤の粘度を上述の範囲にするとの観点で、モノマーまたはオリゴマーが好ましく、モノマーがさらに好ましい。 The polyfunctional epoxy compound (a1) may be either a monomer, an oligomer, or a polymer, but from the viewpoint of keeping the viscosity of the sealant within the above range, the monomer or oligomer is preferable, and the monomer is more preferable.
 多官能エポキシ化合物(a1)の重量平均分子量(Mw)は、200~700が好ましく、300~500がより好ましい。多官能エポキシ化合物(a1)の重量平均分子量が当該範囲であると、シール剤の粘度が所望の範囲に収まりやすい。多官能エポキシ化合物(a1)の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準として測定できる。 The weight average molecular weight (Mw) of the polyfunctional epoxy compound (a1) is preferably 200 to 700, more preferably 300 to 500. When the weight average molecular weight of the polyfunctional epoxy compound (a1) is in the above range, the viscosity of the sealant tends to fall within the desired range. The weight average molecular weight of the polyfunctional epoxy compound (a1) can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard.
 また、多官能エポキシ化合物(a1)が一分子中に有するエポキシ基の数は2以上であればよく、3以上であってもよいが、結晶性が比較的低く、塗布性や粘度安定性が良好であり、架橋構造を有する硬化物が得られやすい等の観点から、2がより好ましい。さらに、多官能エポキシ化合物(a1)のエポキシ当量は、100~250g/当量が好ましく、110~200g/当量がより好ましい。多官能エポキシ化合物(a1)のエポキシ基の量が当該範囲であると、得られる硬化物が適度な硬度になりやすい。多官能エポキシ化合物(a1)のエポキシ当量は、公知の方法によって特定でき、例えば滴定等によって特定できる。 Further, the number of epoxy groups contained in one molecule of the polyfunctional epoxy compound (a1) may be 2 or more, and may be 3 or more, but the crystallinity is relatively low, and the coatability and viscosity stability are good. 2 is more preferable from the viewpoint that it is good and a cured product having a crosslinked structure can be easily obtained. Further, the epoxy equivalent of the polyfunctional epoxy compound (a1) is preferably 100 to 250 g / equivalent, more preferably 110 to 200 g / equivalent. When the amount of the epoxy group of the polyfunctional epoxy compound (a1) is in the above range, the obtained cured product tends to have an appropriate hardness. The epoxy equivalent of the polyfunctional epoxy compound (a1) can be specified by a known method, for example, by titration or the like.
 多官能エポキシ化合物(a1)の構造は特に制限されず、例えば複数のエポキシ基の間に芳香環を有していてもよく、脂肪族基を有していてもよく、脂環基を有していてもよい。多官能エポキシ化合物(a1)の例には、ビスフェノールA型、ビスフェノールF型、ビスフェノールE型、ビスフェノールS型、ビスフェノールAD型、および水添ビスフェノールA型等のビスフェノール型エポキシ化合物;ジフェニルエーテル型エポキシ化合物;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、ビスフェノールノボラック型、ナフトールノボラック型、トリスフェノールノボラック型、ジシクロペンタジエンノボラック型等のノボラック型エポキシ化合物;ビフェニル型エポキシ化合物;ナフチル型エポキシ化合物;トリフェノールメタン型、トリフェノールエタン型、トリフェノールプロパン型等のトリフェノールアルカン型エポキシ化合物;脂環式エポキシ化合物;脂肪族エポキシ化合物;ポリサルファイド変性エポキシ化合物;レゾルシン型エポキシ化合物;グリシジルアミン型エポキシ化合物;等が含まれる。エポキシ化合物(A)は、多官能エポキシ化合物(a1)を一種のみ含んでいてもよく、二種以上含んでいてもよい。 The structure of the polyfunctional epoxy compound (a1) is not particularly limited, and may have, for example, an aromatic ring between a plurality of epoxy groups, an aliphatic group, or an alicyclic group. May be. Examples of the polyfunctional epoxy compound (a1) include bisphenol type epoxy compounds such as bisphenol A type, bisphenol F type, bisphenol E type, bisphenol S type, bisphenol AD type, and hydrogenated bisphenol A type; diphenyl ether type epoxy compounds; Phenol novolak type, cresol novolak type, biphenyl novolak type, bisphenol novolak type, naphthol novolak type, trisphenol novolak type, dicyclopentadiene novolak type and other novolak type epoxy compounds; biphenyl type epoxy compound; naphthyl type epoxy compound; triphenol methane Includes triphenol alkane type epoxy compounds such as type, triphenol ethane type, triphenol propane type; alicyclic epoxy compound; aliphatic epoxy compound; polysulfide-modified epoxy compound; resorcin type epoxy compound; glycidylamine type epoxy compound; etc. Is done. The epoxy compound (A) may contain only one type of the polyfunctional epoxy compound (a1), or may contain two or more types.
 これらの中でも、硬化物の耐湿性が高いことから、多官能エポキシ化合物(a1)は芳香環、もしくはその水添物を含むことが好ましく、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールE型エポキシ化合物、および水添ビスフェノールA型等のビスフェノール型エポキシ化合物が特に好ましい。 Among these, since the cured product has high moisture resistance, the polyfunctional epoxy compound (a1) preferably contains an aromatic ring or a hydrogenated product thereof, and preferably contains a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, and a bisphenol E. Type epoxy compounds and bisphenol type epoxy compounds such as hydrogenated bisphenol A type are particularly preferable.
 エポキシ化合物(A)中の多官能エポキシ化合物(a1)の量は、10~65質量%が好ましく、30~60質量%がより好ましい。エポキシ化合物(A)中の多官能エポキシ化合物(a1)の量が当該範囲であると、シール剤の硬化性を良好にできる。また、硬化物中に適度な架橋構造を含めることができる。 The amount of the polyfunctional epoxy compound (a1) in the epoxy compound (A) is preferably 10 to 65% by mass, more preferably 30 to 60% by mass. When the amount of the polyfunctional epoxy compound (a1) in the epoxy compound (A) is in the above range, the curability of the sealant can be improved. In addition, an appropriate crosslinked structure can be included in the cured product.
 ・ビフェニル構造を有する単官能エポキシ化合物(a2)
 単官能エポキシ化合物(a2)は、一分子内にビフェニル構造と、1つのエポキシ基と、有する化合物であればよい。当該単官能エポキシ化合物(a2)は、ビフェニル構造およびエポキシ基以外の構造を一部に含んでいてもよい。
-A monofunctional epoxy compound having a biphenyl structure (a2)
The monofunctional epoxy compound (a2) may be a compound having a biphenyl structure and one epoxy group in one molecule. The monofunctional epoxy compound (a2) may partially contain a structure other than the biphenyl structure and the epoxy group.
 単官能エポキシ化合物(a2)の例には、フェニルフェノールとエピクロロヒドリンとの反応物が含まれる。単官能エポキシ化合物(a2)の具体例には、o-フェニルフェノールグリシジルエーテル、m-フェニルフェノールグリシジルエーテル、p-フェニルフェノールグリシジルエーテル、およびこれらの誘導体が含まれる。エポキシ化合物(A)は、単官能エポキシ化合物(a2)を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Examples of the monofunctional epoxy compound (a2) include a reaction product of phenylphenol and epichlorohydrin. Specific examples of the monofunctional epoxy compound (a2) include o-phenylphenol glycidyl ether, m-phenylphenol glycidyl ether, p-phenylphenol glycidyl ether, and derivatives thereof. The epoxy compound (A) may contain only one type of monofunctional epoxy compound (a2), or may contain two or more types.
 単官能エポキシ化合物(a2)のエポキシ当量は、226~260が好ましい。単官能エポキシ化合物(a2)のエポキシ当量が当該範囲であると、得られる硬化物の耐湿性が高まりやすい。単官能エポキシ化合物(a2)のエポキシ当量は、公知の方法によって特定でき、例えば滴定によって特定できる。 The epoxy equivalent of the monofunctional epoxy compound (a2) is preferably 226 to 260. When the epoxy equivalent of the monofunctional epoxy compound (a2) is in the above range, the moisture resistance of the obtained cured product tends to increase. The epoxy equivalent of the monofunctional epoxy compound (a2) can be specified by a known method, for example, by titration.
 エポキシ化合物(A)中の単多官能エポキシ化合物(a2)の量は、35~90質量%が好ましく、40~70質量%がより好ましい。エポキシ化合物(A)中の単官能エポキシ化合物(a2)の量が当該範囲であると、硬化物の耐湿性を良好にできる。 The amount of the monopolyfunctional epoxy compound (a2) in the epoxy compound (A) is preferably 35 to 90% by mass, more preferably 40 to 70% by mass. When the amount of the monofunctional epoxy compound (a2) in the epoxy compound (A) is in the above range, the moisture resistance of the cured product can be improved.
 ・その他のエポキシ化合物
 エポキシ化合物(A)は、多官能エポキシ化合物(a1)または単官能エポキシ化合物(a2)に相当しないエポキシ化合物を一部に含んでいてもよい。その他のエポキシ化合物の例には、ビフェニル構造を有さない単官能のエポキシ化合物等が含まれる。
-Other Epoxy Compounds The epoxy compound (A) may partially contain an epoxy compound that does not correspond to the polyfunctional epoxy compound (a1) or the monofunctional epoxy compound (a2). Examples of other epoxy compounds include monofunctional epoxy compounds having no biphenyl structure and the like.
 ただし、硬化物の耐湿性や硬化性等の観点から、エポキシ化合物(A)中のその他のエポキシ化合物の量は、10質量%以下が好ましく、5質量%以下がより好ましく、特にその他のエポキシ化合物を含まないことが好ましい。 However, from the viewpoint of moisture resistance and curability of the cured product, the amount of the other epoxy compound in the epoxy compound (A) is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly other epoxy compounds. It is preferable not to contain.
 (2)ポリアミン系潜在性熱硬化剤(B)
 ポリアミン系潜在性熱硬化剤は、一分子中にアミノ基を2つ以上有し、かつ加熱によって上述のエポキシ化合物(A)と反応する化合物であればよい。
(2) Polyamine-based latent thermosetting agent (B)
The polyamine-based latent thermosetting agent may be a compound having two or more amino groups in one molecule and reacting with the above-mentioned epoxy compound (A) by heating.
 ポリアミン系潜在性熱硬化剤(B)は、室温で固体であることが好ましい。ポリアミン系潜在性熱硬化剤(B)が室温で固体であると、シール剤の保存時に、ポリアミン系潜在性熱硬化剤(B)がエポキシ化合物(A)と反応し難く、シール剤の粘度安定性が高まる。 The polyamine-based latent thermosetting agent (B) is preferably solid at room temperature. When the polyamine-based latent thermosetting agent (B) is solid at room temperature, the polyamine-based latent thermosetting agent (B) does not easily react with the epoxy compound (A) during storage of the sealing agent, and the viscosity of the sealing agent is stable. Sex increases.
 ポリアミン系潜在性熱硬化剤(B)の軟化点は、70~110℃が好ましく、70~80℃がより好ましい。ポリアミン系潜在性熱硬化剤(B)の軟化点が当該範囲であると、常温におけるエポキシ化合物(A)との反応を抑制でき、その一方で、過度に加熱しなくても、ポリアミン系潜在性熱硬化剤(B)とエポキシ化合物(A)とを反応させることが可能となる。 The softening point of the polyamine-based latent thermosetting agent (B) is preferably 70 to 110 ° C, more preferably 70 to 80 ° C. When the softening point of the polyamine-based latent thermosetting agent (B) is in the above range, the reaction with the epoxy compound (A) at room temperature can be suppressed, while the polyamine-based latent property can be suppressed without excessive heating. It becomes possible to react the thermosetting agent (B) with the epoxy compound (A).
 ポリアミン系潜在性熱硬化剤(B)の例には、アミンとエポキシとを反応させて得られるポリマー構造を有する潜在性硬化剤等が含まれる。具体的には、ADEKA社製アデカハードナーEH5015S(軟化点:85~105℃)、ADEKA社製アデカハードナーEH4357S(軟化点:75~85℃)、ADEKA社製アデカハードナーEH5030S(軟化点:70℃~80℃)等が含まれる。 Examples of the polyamine-based latent thermosetting agent (B) include a latent curing agent having a polymer structure obtained by reacting an amine with an epoxy. Specifically, ADEKA hardener EH5015S (softening point: 85 to 105 ° C.), ADEKA hardener EH4357S (softening point: 75 to 85 ° C.), ADEKA hardener EH5030S (softening point: 70 ° C.) 80 ° C.) and the like are included.
 ポリアミン系潜在性熱硬化剤(B)のアミン当量は、エポキシ化合物(A)のエポキシ当量に対して0.4~2.0当量が好ましい、0.6~1.4当量がより好ましい。ポリアミン系潜在性熱硬化剤(B)のアミン当量が当該範囲であると、シール剤の硬化性が良好になる。なお、エポキシ化合物(A)のエポキシ当量(g/当量)とは、シール剤中のエポキシ化合物(A)由来のエポキシ基の総数に対するエポキシ化合物(A)の総量、すなわち(シール剤中のエポキシ化合物(A)の総量/シール剤中のエポキシ基の総数)である。 The amine equivalent of the polyamine-based latent thermosetting agent (B) is preferably 0.4 to 2.0 equivalents, more preferably 0.6 to 1.4 equivalents, relative to the epoxy equivalent of the epoxy compound (A). When the amine equivalent of the polyamine-based latent thermosetting agent (B) is in the above range, the curability of the sealant becomes good. The epoxy equivalent (g / equivalent) of the epoxy compound (A) is the total amount of the epoxy compound (A) with respect to the total number of epoxy groups derived from the epoxy compound (A) in the sealant, that is, (the epoxy compound in the sealant). (A) total amount / total number of epoxy groups in the sealant).
 一方、ポリアミン系潜在性熱硬化剤(B)のアミン当量(g/当量)は、ポリアミン系潜在性熱硬化剤(B)由来のアミノ基の数に対する、ポリアミン系潜在性熱硬化剤(B)の総量、すなわち(ポリアミン系潜在性熱硬化剤(B)の量/シール剤中のアミノ基の数)である。ポリアミン系潜在性熱硬化剤(B)のアミン当量は、公知の方法により特定でき、例えば滴定等により求められる。 On the other hand, the amine equivalent (g / equivalent) of the polyamine-based latent thermosetting agent (B) is the polyamine-based latent thermosetting agent (B) with respect to the number of amino groups derived from the polyamine-based latent thermosetting agent (B). , That is, (amount of polyamine-based latent heat-curing agent (B) / number of amino groups in the sealant). The amine equivalent of the polyamine-based latent thermosetting agent (B) can be specified by a known method, and can be determined by, for example, titration.
 また、ポリアミン系潜在性熱硬化剤(B)のエポキシ化合物(A)のエポキシ当量に対する当量は、(ポリアミン系潜在性熱硬化剤(B)のアミン当量/エポキシ化合物(A)のエポキシ当量)から求められる。ポリアミン系潜在性熱硬化剤(B)のアミン当量は、ポリアミン系潜在性熱硬化剤(B)が有するアミノ基の数、およびポリアミン系潜在性熱硬化剤(B)の量によって調整できる。 Further, the equivalent of the polyamine-based latent thermosetting agent (B) to the epoxy equivalent of the epoxy compound (A) is obtained from (the amine equivalent of the polyamine-based latent thermosetting agent (B) / the epoxy equivalent of the epoxy compound (A)). Desired. The amine equivalent of the polyamine-based latent thermosetting agent (B) can be adjusted by the number of amino groups contained in the polyamine-based latent thermosetting agent (B) and the amount of the polyamine-based latent thermosetting agent (B).
 シール剤の総量に対するポリアミン系潜在性熱硬化剤(B)の総量は、10~50質量%が好ましく、20~40質量%がより好ましい。ポリアミン系潜在性熱硬化剤(B)の総量が当該範囲であると、シール剤の硬化物が、表示装置を確実に封止できる。 The total amount of the polyamine-based latent thermosetting agent (B) with respect to the total amount of the sealing agent is preferably 10 to 50% by mass, more preferably 20 to 40% by mass. When the total amount of the polyamine-based latent thermosetting agent (B) is in the above range, the cured product of the sealing agent can surely seal the display device.
 (3)その他
 シール剤は、本発明の目的および効果を損なわない範囲において、上述のエポキシ化合物(A)およびポリアミン系潜在性熱硬化剤(B)以外の成分を含んでいてもよい。その他の成分の例には、フィラーや、各種添加剤等が含まれる。
(3) Others The sealing agent may contain components other than the above-mentioned epoxy compound (A) and polyamine-based latent thermosetting agent (B) as long as the object and effect of the present invention are not impaired. Examples of other components include fillers, various additives and the like.
 シール剤がフィラーを含むと、シール剤の硬化物の耐湿性や線膨張性が調整される。フィラーは、無機フィラーおよび有機フィラーのいずれであってもよく、これらを両方含んでいてもよい。 When the sealant contains a filler, the moisture resistance and linear expansion of the cured product of the sealant are adjusted. The filler may be either an inorganic filler or an organic filler, and may contain both of them.
 無機フィラーの例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等が含まれる。 Examples of inorganic fillers include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, potassium titanate, kaolin, talc. , Glass beads, sericite active white clay, bentonite, aluminum nitride, silicon nitride and the like.
 有機フィラーの例には、融点または軟化点が60~120℃である粒子が含まれ、その例には、シリコーン微粒子、アクリル微粒子、スチレン・ジビニルベンゼン共重合体等のスチレン微粒子、およびポリオレフィン微粒子からなる群より選ばれる微粒子;およびカルナバワックス、マイクロクリスタリンワックス、変性マイクロクリスタリンワックス、フィッシャートロプッシュワックスおよび変性フィッシャートロプッシュワックス等が含まれる。 Examples of organic fillers include particles having a melting point or softening point of 60-120 ° C., such as silicone fine particles, acrylic fine particles, styrene fine particles such as styrene / divinylbenzene copolymers, and polyolefin fine particles. Fine particles selected from the group; and include carnauba wax, microcrystalline wax, modified microcrystalline wax, Fishertropush wax, modified Fishertropush wax and the like.
 フィラーの形状は、特に限定されず、球状、板状、針状等の定形状あるいは非定形状のいずれであってもよいが、微小な隙間への埋め込み性を高める観点では、球状が好ましい。 The shape of the filler is not particularly limited and may be a fixed shape such as a spherical shape, a plate shape, a needle shape or a non-fixed shape, but a spherical shape is preferable from the viewpoint of enhancing the embedding property in a minute gap.
 フィラーの平均一次粒径は、0.1~20μmが好ましく、0.1~10μmがより好ましく、0.5~5μmがさらに好ましい。フィラーの平均一次粒径は、JIS Z8825-1に記載のレーザー回折法で測定できる。さらに、フィラーの質量平均粒径d50は、0.05~30μmが好ましく、25μm未満がより好ましい。フィラーの質量平均粒径d50が前記範囲にあると、シール剤の粘度安定性が高くなる。また耐湿性を高めるという観点からは、フィラーの質量平均粒径d50は0.05μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましく、1.0μm超であってもよい。 The average primary particle size of the filler is preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm, and even more preferably 0.5 to 5 μm. The average primary particle size of the filler can be measured by the laser diffraction method described in JIS Z8825-1. Further, the mass average particle size d50 of the filler is preferably 0.05 to 30 μm, more preferably less than 25 μm. When the mass average particle size d50 of the filler is in the above range, the viscosity stability of the sealant becomes high. From the viewpoint of enhancing moisture resistance, the mass average particle size d50 of the filler is preferably 0.05 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, and may be more than 1.0 μm. ..
 フィラーの質量平均粒径d50は、JIS Z8825-1に準拠した方法でレーザー法粒子測定器によって求められる。具体的には、質量加積曲線上の50質量%値で示される粒径である。粒子測定器としては、レーザー回折/散乱式粒度分布測定装置Microtrac社製MT-3300EX2(レーザー波長780nm)等を用いることができる。 The mass average particle size d50 of the filler is obtained by a laser method particle measuring instrument by a method conforming to JIS Z8825-1. Specifically, it is a particle size represented by a 50% by mass value on the mass addition curve. As the particle measuring device, a laser diffraction / scattering type particle size distribution measuring device MT-3300EX2 (laser wavelength 780 nm) manufactured by Microtrac can be used.
 フィラーの量は、シール剤の粘度に応じて適宜選択される。フィラーの量が多くなると、シール剤の粘度が高まる傾向にある。 The amount of filler is appropriately selected according to the viscosity of the sealant. As the amount of filler increases, the viscosity of the sealant tends to increase.
 各種添加剤の例には、シランカップリング剤、ゴム剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、可塑剤、消泡剤等が含まれる。これらの添加剤は、単独で、あるいは複数種を組み合わせて用いてもよい。 Examples of various additives include silane coupling agents, rubber agents, ion trap agents, ion exchangers, leveling agents, pigments, dyes, plasticizers, defoamers, etc. These additives may be used alone or in combination of two or more.
 (4)シール剤の調製方法
 上述のシール剤の調製方法は、特に限定されない。各成分を公知の方法で混合して調製できる。各成分を混合する手段は、特に限定されず、撹拌機の例には、双腕式攪拌機、ロール混練機、2軸押出機、ボールミル混練機、および遊星式撹拌機等が含まれる。シール剤は、各成分の混合後、フィルタでろ過して不純物を取り除いてもよい。さらに真空脱泡処理等を施してもよい。
(4) Method for preparing a sealant The method for preparing a sealant described above is not particularly limited. Each component can be mixed and prepared by a known method. The means for mixing each component is not particularly limited, and examples of the stirrer include a double-arm stirrer, a roll kneader, a twin-screw extruder, a ball mill kneader, a planetary stirrer, and the like. After mixing each component, the sealant may be filtered with a filter to remove impurities. Further, vacuum defoaming treatment or the like may be performed.
 (5)シール剤およびその硬化物の物性
 本発明のシール剤は、E型粘度計により25℃、2.5rpmで測定される粘度が20.0Pa・s以下であり、粘度は1~10Pa・sが好ましく、1~5Pa・sがより好ましい。シール剤の粘度が20.0Pa・s以下であると、各種表示装置を作製する際に、微小な隙間にも入り込むことができる。
(5) Physical properties of sealant and cured product thereof The sealant of the present invention has a viscosity of 20.0 Pa · s or less measured at 25 ° C. and 2.5 rpm by an E-type viscometer, and has a viscosity of 1 to 10 Pa · s. s is preferable, and 1 to 5 Pa · s is more preferable. When the viscosity of the sealant is 20.0 Pa · s or less, it can enter even a minute gap when manufacturing various display devices.
 また、シール剤を微小な隙間に対して埋め込み易くする観点から、比較的低いせん断速度で測定した粘度と比較的高いせん断速度で測定した粘度との比(低シェア粘度(1rpm粘度測定値)/高シェア粘度(10rpm粘度測定値)を示すチキソトロピー指数(TI値)が1に近いことが好ましい。チキソトロピー指数は、例えばフィラーの量等によって調整される。 In addition, from the viewpoint of facilitating embedding of the sealant in minute gaps, the ratio of the viscosity measured at a relatively low shear rate to the viscosity measured at a relatively high shear rate (low shear viscosity (measured value of 1 rpm viscosity) / It is preferable that the thixotropy index (TI value) showing a high share viscosity (measured value of 10 rpm viscosity) is close to 1. The thixotropy index is adjusted by, for example, the amount of filler.
 一方、シール剤の硬化物は、各種表示装置の基板との接着強度を維持するため、高い耐熱性を有することが好ましい。シール剤を80℃で60分間加熱硬化させて得られる硬化物のガラス転移温度(Tg)は、30~120℃が好ましい。シール剤の硬化物のガラス転移温度が当該範囲であれば、各基板とシール剤の硬化物との間での界面剥離等が生じる可能性が少なく、信頼性の高い表示装置とすることが可能となる。 On the other hand, the cured product of the sealant preferably has high heat resistance in order to maintain the adhesive strength with the substrate of various display devices. The glass transition temperature (Tg) of the cured product obtained by heating and curing the sealant at 80 ° C. for 60 minutes is preferably 30 to 120 ° C. If the glass transition temperature of the cured product of the sealant is within the relevant range, there is little possibility that interface peeling or the like will occur between each substrate and the cured product of the sealant, and it is possible to obtain a highly reliable display device. It becomes.
 また、2枚の樹脂シートの間、もしくは2枚の無機基板の間に表示素子を挟持する表示装置にシール剤を使用する場合、シール剤を80℃で60分間加熱硬化させて得られる硬化物のガラス転移温度(Tg)は、10~40℃が好ましい。2枚の樹脂シート間、もしくは2枚の無機基板をシール剤の硬化物で封止する場合、基板との剥離を防いだり、表示装置に柔軟性を付与したりするとの観点で、ガラス転移温度を上記範囲にすることが好ましい。シール剤の硬化物のガラス転移温度は、シール剤を、80℃で60分間熱硬化させて得られる、厚さ100μmのフィルムのガラス転移温度を、熱分析装置により5℃/分の昇温速度で測定することにより求められる。 Further, when a sealant is used in a display device that sandwiches a display element between two resin sheets or between two inorganic substrates, a cured product obtained by heating and curing the sealant at 80 ° C. for 60 minutes. The glass transition temperature (Tg) of the above is preferably 10 to 40 ° C. When sealing between two resin sheets or two inorganic substrates with a cured product of a sealant, the glass transition temperature is considered from the viewpoint of preventing peeling from the substrate and imparting flexibility to the display device. Is preferably in the above range. The glass transition temperature of the cured product of the sealant is the glass transition temperature of a film having a thickness of 100 μm obtained by thermally curing the sealant at 80 ° C. for 60 minutes, and the temperature rise rate of 5 ° C./min by a thermal analyzer. It is obtained by measuring with.
 なお、本発明のシール剤と接合可能な基板の例には、ガラス基板等の無機基板;ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリカーボネート、環状ポリオレフィン(COC)、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、透明ABS樹脂、透明ナイロン、透明ポリイミド、ポリビニルアルコール等からなる樹脂基板;が含まれる。 Examples of substrates that can be bonded to the sealant of the present invention include inorganic substrates such as glass substrates; polyethylene terephthalate, polymethylmethacrylate, polycarbonate, cyclic polyolefin (COC), polypropylene, polystyrene, polyvinyl chloride, and transparent ABS resin. , A resin substrate made of transparent nylon, transparent polyimide, polyvinyl alcohol, etc.;
 (6)シール剤の用途
 本発明のシール剤は、各種表示装置の端面、特に表示素子を挟持する2枚の基板の間の隙間を封止するための表示装置端面シール剤として用いられることが好ましい。上記シール剤は、適度に低粘度であるため、特に表示素子を挟持する基板間の隙間に入り込みやすい。また、上述のように、硬化物の耐湿性が高い。
(6) Applications of Sealing Agent The sealing agent of the present invention may be used as a display device end face sealing agent for sealing the end face of various display devices, particularly a gap between two substrates sandwiching a display element. preferable. Since the sealant has an appropriately low viscosity, it is particularly easy to enter the gap between the substrates that sandwich the display element. Further, as described above, the cured product has high moisture resistance.
 したがって、液晶素子、EL素子、LED素子、電気泳動方式の表示素子等を有する各種表示装置のシール剤に使用可能である。特に、2枚の基板の間の隙間にシール剤を塗布する必要がある電気泳動方式や電気流動方式の表示素子を有する表示装置の端面を封止するシール剤として非常に有用である。電気泳動方式の表示装置の例には、電子ペーパー等が含まれる。 Therefore, it can be used as a sealing agent for various display devices having a liquid crystal element, an EL element, an LED element, an electrophoretic display element, and the like. In particular, it is very useful as a sealing agent for sealing the end face of a display device having an electrophoresis type or electric flow type display element in which it is necessary to apply a sealing agent to the gap between two substrates. Examples of electrophoretic display devices include electronic paper and the like.
 電気泳動方式の表示装置は、例えば、表示素子と、当該表示素子を挟持する一対の基板とを有し、一対の基板の周縁部に形成される基板同士の隙間を、シール部材が封止する構造を有する。そして、当該シール部材に、上述のシール剤の硬化物を用いることができる。 The electrophoresis-type display device has, for example, a display element and a pair of substrates sandwiching the display element, and a sealing member seals a gap between the substrates formed on the peripheral edge of the pair of substrates. Has a structure. Then, a cured product of the above-mentioned sealing agent can be used for the sealing member.
 上述のシール剤の塗布方法は特に制限されず、特に制限されず、ディスペンサー、スクリーン印刷等、公知の方法を用いることができる。また、上記シール剤の硬化方法も特に制限されず、熱硬化でも光硬化であってもよいが、表示装置の劣化を抑制する点で、熱硬化が好ましい。熱硬化温度は、表示装置へのダメージを少なくする観点から、60~80℃が好ましい。熱硬化時間は、熱硬化温度や、シール剤の量にもよるが、例えば30~90分程度である。 The above-mentioned method for applying the sealant is not particularly limited, and a known method such as a dispenser or screen printing can be used. Further, the curing method of the sealant is not particularly limited and may be thermosetting or photocuring, but thermosetting is preferable in terms of suppressing deterioration of the display device. The thermosetting temperature is preferably 60 to 80 ° C. from the viewpoint of reducing damage to the display device. The thermosetting time is, for example, about 30 to 90 minutes, although it depends on the thermosetting temperature and the amount of the sealing agent.
 以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to examples. These examples do not limit the scope of the invention to be construed.
 1.シール剤の材料
 (1)エポキシ化合物(A)
 ・多官能エポキシ化合物(a1)
  EXA-835LV(DIC社製、ビスフェノールF型/ビスフェノールA型2官能エポキシ化合物、エポキシ当量:165g/当量、E型粘度計で25℃、2.5rpmで測定した粘度:2200mPa・s)
  YED216D(三菱ケミカル社製、以下の化学式で表される脂肪族系2官能エポキシ化合物、エポキシ当量120g/当量、E型粘度計で25℃、2.5rpmで測定した粘度:15mPa・s)
Figure JPOXMLDOC01-appb-C000001
  CE-2021P(ダイセル社製、以下の化学式で表される脂環式2官能エポキシ化合物、エポキシ当量156g/当量、E型粘度計で25℃、2.5rpmで測定した粘度:200mPa・s)
Figure JPOXMLDOC01-appb-C000002
  YX8000D(三菱ケミカル社製、水添ビスフェノールA型2官能エポキシ化合物、エポキシ当量205g/当量、E型粘度計で25℃、2.5rpmで測定した粘度:800mPa・s)
  EP-4088S(ADEKA社製、ジシクロペンタジエン系2官能エポキシ化合物、エポキシ当量170g/当量、E型粘度計で25℃、2.5rpmで測定した粘度:230mPa・s)
1. 1. Sealing agent material (1) Epoxy compound (A)
-Polyfunctional epoxy compound (a1)
EXA-835LV (manufactured by DIC, bisphenol F type / bisphenol A type bifunctional epoxy compound, epoxy equivalent: 165 g / equivalent, viscosity measured at 25 ° C. and 2.5 rpm with an E type viscometer: 2200 mPa · s)
YED216D (manufactured by Mitsubishi Chemical Co., Ltd., an aliphatic bifunctional epoxy compound represented by the following chemical formula, epoxy equivalent 120 g / equivalent, viscosity measured at 25 ° C. and 2.5 rpm with an E-type viscometer: 15 mPa · s)
Figure JPOXMLDOC01-appb-C000001
CE-2021P (manufactured by Daicel Co., Ltd., alicyclic bifunctional epoxy compound represented by the following chemical formula, epoxy equivalent 156 g / equivalent, viscosity measured at 25 ° C. and 2.5 rpm with an E-type viscometer: 200 mPa · s)
Figure JPOXMLDOC01-appb-C000002
YX8000D (Made by Mitsubishi Chemical, hydrogenated bisphenol A type bifunctional epoxy compound, epoxy equivalent 205 g / equivalent, viscosity measured at 25 ° C and 2.5 rpm with an E type viscometer: 800 mPa · s)
EP-4088S (made by ADEKA, dicyclopentadiene-based bifunctional epoxy compound, epoxy equivalent 170 g / equivalent, viscosity measured at 25 ° C and 2.5 rpm with an E-type viscometer: 230 mPa · s)
 ・ビフェニル構造を有する単官能エポキシ化合物(a2)
  OPP-EP(四日市合成社製、以下の化学式で表されるエポキシ化合物、エポキシ当量:230g/当量、E型粘度計で25℃、2.5rpmで測定した粘度:200mPa・s)
Figure JPOXMLDOC01-appb-C000003
-A monofunctional epoxy compound having a biphenyl structure (a2)
OPP-EP (manufactured by Yokkaichi Chemical Company Limited, epoxy compound represented by the following chemical formula, epoxy equivalent: 230 g / equivalent, viscosity measured at 25 ° C. and 2.5 rpm with an E-type viscometer: 200 mPa · s)
Figure JPOXMLDOC01-appb-C000003
 ・その他のエポキシ化合物
  ED-509S(ADEKA社製、以下の化学式で表されるエポキシ化合物、エポキシ当量:206g/当量、E型粘度計で25℃、2.5rpmで測定した粘度:20mPa・s)
Figure JPOXMLDOC01-appb-C000004
-Other epoxy compounds ED-509S (manufactured by ADEKA, epoxy compounds represented by the following chemical formula, epoxy equivalent: 206 g / equivalent, viscosity measured at 25 ° C. and 2.5 rpm with an E-type viscometer: 20 mPa · s)
Figure JPOXMLDOC01-appb-C000004
 (2)ポリアミン系潜在性熱硬化剤(B)
 EH5030S(ADEKA社製、アデカハードナー(商品名)、軟化点:70~80℃、アミン当量:105g/当量)
(2) Polyamine-based latent thermosetting agent (B)
EH5030S (manufactured by ADEKA, ADEKA Hardener (trade name), softening point: 70 to 80 ° C., amine equivalent: 105 g / equivalent)
 (3)その他
 ポリアミノアミド系硬化剤:トーマイド245(T&K TOKA社製、液状)
 芳香族アミン系潜在性硬化剤:カヤハードAA(日本化薬社製)
 潜在性硬化剤:DICY7(三菱ケミカル社製、ジシアンジアミド)
 SO-C6(アドマテックス社製、シリカ、平均一次粒径:1.8~2.3μm)
 KBM403(信越シリコーン社製、3-グリシジドキシプロピルトリメトキシシラン)
(3) Others Polyaminoamide-based curing agent: Tomide 245 (manufactured by T & K TOKA, liquid)
Aromatic amine-based latent curing agent: Kayahard AA (manufactured by Nippon Kayaku Co., Ltd.)
Latent curing agent: DICY7 (manufactured by Mitsubishi Chemical Corporation, dicyandiamide)
SO-C6 (manufactured by Admatex, silica, average primary particle size: 1.8-2.3 μm)
KBM403 (made by Shinetsu Silicone Co., Ltd., 3-glycidoxypropyltrimethoxysilane)
 2.シール剤の調製
 [実施例1]
 EXA-835LV(多官能エポキシ化合物(a1))320質量部、OPP-EP(ビフェニル構造を有するエポキシ化合物(a2))250質量部、およびEH-5030S(ポリアミン系潜在性熱硬化剤)400質量部を混合し、シール剤を得た。なお、エポキシ当量に対するアミン当量は、以下のように算出した。まず、個々のエポキシ化合物のエポキシ当量から、シール剤が含むエポキシ基の数を算出し、エポキシ化合物(A)全体のエポキシ当量(エポキシ化合物(A)の総量/エポキシ基の数)を算出した。続いて、アミン当量/エポキシ当量を算出した。
2. 2. Preparation of Sealing Agent [Example 1]
EXA-835LV (polyfunctional epoxy compound (a1)) 320 parts by mass, OPP-EP (epoxy compound (a2) having a biphenyl structure) 250 parts by mass, and EH-5030S (polyamine-based latent thermosetting agent) 400 parts by mass. Was mixed to obtain a sealant. The amine equivalent with respect to the epoxy equivalent was calculated as follows. First, the number of epoxy groups contained in the sealant was calculated from the epoxy equivalents of the individual epoxy compounds, and the epoxy equivalent of the entire epoxy compound (A) (total amount of the epoxy compound (A) / number of epoxy groups) was calculated. Subsequently, the amine equivalent / epoxy equivalent was calculated.
 [実施例2~7、および比較例1~5]
 表1に示す組成に変更した以外は、実施例1と同様にシール剤を調製した。
[Examples 2 to 7 and Comparative Examples 1 to 5]
A sealant was prepared in the same manner as in Example 1 except that the composition was changed to that shown in Table 1.
 3.評価
 得られたシール剤、およびその硬化物に対し、以下の評価を行った。
3. 3. Evaluation The following evaluation was performed on the obtained sealant and its cured product.
 (1)粘度
 シール剤の粘度は、25℃、E型粘度計、回転速度2.5rpmにより測定した。
(1) Viscosity The viscosity of the sealant was measured at 25 ° C., an E-type viscometer, and a rotation speed of 2.5 rpm.
 (2)TI値
 TI値は、E型粘度計、回転速度1.0rpm測定値/10rpm測定値により算出した。
(2) TI value The TI value was calculated by using an E-type viscometer and a rotation speed of 1.0 rpm measured value / 10 rpm measured value.
 (3)硬化物のガラス転移温度(Tg)
 シール剤をアプリケータにて離型紙上に100μmの膜厚に塗布した。シール剤の塗膜が形成された離型紙を、80℃の熱風乾燥オーブンで60分間保持した後、取り出して冷却した。その後、離型紙から塗膜を剥離して、膜厚100μmのフィルムを得た。得られたフィルムのガラス転移温度(Tg)を、セイコーインスツルメント社製 DMS-6100を用いて、5℃/minの昇温速度で測定した。
(3) Glass transition temperature (Tg) of the cured product
The sealant was applied on a release paper with an applicator to a film thickness of 100 μm. The release paper on which the coating film of the sealant was formed was held in a hot air drying oven at 80 ° C. for 60 minutes, then taken out and cooled. Then, the coating film was peeled off from the release paper to obtain a film having a film thickness of 100 μm. The glass transition temperature (Tg) of the obtained film was measured using a DMS-6100 manufactured by Seiko Instruments Inc. at a heating rate of 5 ° C./min.
 (4)透湿量(60℃、80%Rh)
 シール剤をアプリケータにて離型紙上に100μmの膜厚に塗布した。シール剤の塗膜が形成された離型紙を、80℃の熱風乾燥オーブンで60分間保持した後、取り出して冷却した。その後、離型紙から塗膜を剥離して、膜厚100μmのフィルムを得た。その後、JIS:Z0208に準拠した方法でアルミカップを作製し、60℃80%RHの高温高湿槽に24h放置した。そして、高温高湿槽放置前後の質量から、下記の計算式で透湿量を算出した。
  透湿量(g/m・100μm・24h)=[24h放置後のアルミカップ重量(g)-放置前のアルミカップ重量(g)]/フィルム面積(m
(4) Moisture permeability (60 ° C, 80% Rh)
The sealant was applied on a release paper with an applicator to a film thickness of 100 μm. The release paper on which the coating film of the sealant was formed was held in a hot air drying oven at 80 ° C. for 60 minutes, then taken out and cooled. Then, the coating film was peeled off from the release paper to obtain a film having a film thickness of 100 μm. Then, an aluminum cup was prepared by a method conforming to JIS: Z0208, and left in a high-temperature and high-humidity tank at 60 ° C. and 80% RH for 24 hours. Then, the amount of moisture permeation was calculated from the mass before and after leaving the high-temperature and high-humidity tank by the following formula.
Weight moisture permeation (g / m 2 · 100μm · 24h) = [ aluminum cup Weight after 24h standing (g) - aluminum cup weight before standing (g)] / film area (m 2)
 (5)透湿量(60℃、90%Rh)
 高温高湿槽の湿度を90%Rhに変更した以外は、上記透湿量の測定方法と同様に測定した。
(5) Moisture permeability (60 ° C, 90% Rh)
The measurement was carried out in the same manner as the above-mentioned method for measuring the amount of moisture permeation, except that the humidity of the high-temperature and high-humidity tank was changed to 90% Rh.
 (6)粘度安定性
 製造したシール剤を23℃で8日間放置した。放置前後のシール剤の粘度を比較し、以下の基準で評価した。
 〇:放置前の粘度に対して放置後の粘度が1.5倍以下
 △:放置前の粘度に対して放置後の粘度が、1.5倍超2倍以下
 ×:放置前の粘度に対して放置後の粘度が、2倍超、もしくはゲル化した
(6) Viscosity stability The produced sealant was left at 23 ° C. for 8 days. The viscosities of the sealants before and after leaving were compared and evaluated according to the following criteria.
〇: Viscosity after standing is 1.5 times or less compared to the viscosity before standing Δ: Viscosity after standing is more than 1.5 times and 2 times or less compared to viscosity before leaving ×: Viscosity before leaving The viscosity after leaving was more than doubled or gelled.
 (7)低温硬化性(80℃60分硬化性)
 日立ハイテク社製 示差走査熱量計DSC7020を使用し、硬化前のシール剤10mg、昇温範囲20℃~250℃、昇温速度5℃/分で20~250℃における発熱量Aを測定した。また、硬化前のシール剤10mgを20℃~80℃まで昇温速度50℃/分で昇温し、その後80℃で60分間保持し、この間の発熱量Bを測定した。そして、発熱量B/発熱量Aを算出し、硬化率を求めた。以下の基準で評価した。
 〇:発熱量B/発熱量Aが80%以上である
 ×:発熱量B/発熱量Aが80%未満である
(7) Low temperature curability (curability at 80 ° C for 60 minutes)
Using a differential scanning calorimeter DSC7020 manufactured by Hitachi High-Tech, the calorific value A at 20 to 250 ° C. was measured at a sealant of 10 mg before curing, a temperature rise range of 20 ° C. to 250 ° C., and a temperature rise rate of 5 ° C./min. Further, 10 mg of the sealant before curing was heated from 20 ° C. to 80 ° C. at a heating rate of 50 ° C./min, and then held at 80 ° C. for 60 minutes, and the calorific value B during this period was measured. Then, the calorific value B / calorific value A was calculated, and the curing rate was obtained. It was evaluated according to the following criteria.
〇: Calorific value B / calorific value A is 80% or more ×: Calorific value B / calorific value A is less than 80%
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表1に示されるように、多官能エポキシ化合物(a1)と、ビフェニル構造を有する単官能エポキシ化合物(a2)と、ポリアミン系潜在性熱硬化剤(B)と、を含むシール剤は、いずれも粘度が低く、かつ透湿量が少なかった(実施例1~7)。さらに、これらは、粘度安定性や低温硬化性(80℃60分硬化性)も優れていた。 As shown in Table 1 above, any of the sealants containing the polyfunctional epoxy compound (a1), the monofunctional epoxy compound (a2) having a biphenyl structure, and the polyamine-based latent thermosetting agent (B) The viscosity was low and the amount of moisture permeation was small (Examples 1 to 7). Further, these were also excellent in viscosity stability and low temperature curability (curability at 80 ° C. for 60 minutes).
 これに対し、ビフェニル構造を有さない単官能エポキシ化合物を用いた場合(比較例1)には、粘度は低くなったものの、透湿量が高かった。また、単官能エポキシ化合物を含まない場合(比較例2)にも、透湿量が高かった。さらに、液状のポリアミノアミド系硬化剤を用いた場合(比較例3)には、配合後、すぐに硬化してしまい、シール剤とすることが困難であった。また、ポリアミン系ではない潜在性熱硬化剤を用いた場合(比較例4および5)には、80℃60分硬化性が低かった。 On the other hand, when a monofunctional epoxy compound having no biphenyl structure was used (Comparative Example 1), the viscosity was low, but the moisture permeability was high. In addition, the moisture permeability was high even when the monofunctional epoxy compound was not contained (Comparative Example 2). Further, when a liquid polyaminoamide-based curing agent was used (Comparative Example 3), it was cured immediately after blending, and it was difficult to use it as a sealing agent. Further, when a non-polyamine-based latent thermosetting agent was used (Comparative Examples 4 and 5), the curability at 80 ° C. for 60 minutes was low.
 本出願は、2020年5月29日出願の特願2020-094354号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2020-094354 filed on May 29, 2020. All the contents described in the application specification are incorporated in the application specification.
 本発明の表示装置用シール剤は、低い粘度を有する。さらに、当該表示装置用シール剤の硬化物は耐湿性が高い。したがって、電子ペーパーや液晶表示装置等のシール剤として、非常に有用である。 The sealant for display devices of the present invention has a low viscosity. Further, the cured product of the sealant for the display device has high moisture resistance. Therefore, it is very useful as a sealing agent for electronic paper and liquid crystal display devices.

Claims (5)

  1.  多官能エポキシ化合物(a1)およびビフェニル構造を有する単官能エポキシ化合物(a2)を含むエポキシ化合物(A)と、
     ポリアミン系潜在性熱硬化剤(B)と、
     を含み、E型粘度計で25℃、2.5rpmで測定した粘度が20.0Pa・s以下である、
     表示装置用シール剤。
    An epoxy compound (A) containing a polyfunctional epoxy compound (a1) and a monofunctional epoxy compound (a2) having a biphenyl structure,
    Polyamine-based latent thermosetting agent (B) and
    The viscosity measured at 25 ° C. and 2.5 rpm with an E-type viscometer is 20.0 Pa · s or less.
    Sealing agent for display devices.
  2.  前記ポリアミン系潜在性熱硬化剤(B)の軟化点が70℃~110℃である、
     請求項1に記載の表示装置用シール剤。
    The softening point of the polyamine-based latent thermosetting agent (B) is 70 ° C to 110 ° C.
    The sealant for a display device according to claim 1.
  3.  前記ポリアミン系潜在性熱硬化剤(B)のアミン当量が、前記エポキシ化合物(A)のエポキシ当量に対して0.4~2.0当量の範囲である、
     請求項1または2に記載の表示装置用シール剤。
    The amine equivalent of the polyamine-based latent thermosetting agent (B) is in the range of 0.4 to 2.0 equivalent with respect to the epoxy equivalent of the epoxy compound (A).
    The sealant for a display device according to claim 1 or 2.
  4.  前記エポキシ化合物(A)100質量部中の、前記単官能エポキシ化合物(a2)の量が35質量部~90質量部である、
     請求項1~3のいずれか一項に記載の表示装置用シール剤。
    The amount of the monofunctional epoxy compound (a2) in 100 parts by mass of the epoxy compound (A) is 35 parts by mass to 90 parts by mass.
    The sealant for a display device according to any one of claims 1 to 3.
  5.  電子ペーパー用のシール剤である、
     請求項1~4のいずれか一項に記載の表示装置用シール剤。
    A sealant for electronic paper,
    The sealant for a display device according to any one of claims 1 to 4.
PCT/JP2021/017086 2020-05-29 2021-04-28 Sealant for display devices WO2021241129A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180016659.4A CN115151861A (en) 2020-05-29 2021-04-28 Sealing agent for display device
KR1020227029760A KR20220133967A (en) 2020-05-29 2021-04-28 Sealing agent for display devices
JP2022527617A JP7391211B2 (en) 2020-05-29 2021-04-28 Sealant for display devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094354 2020-05-29
JP2020094354 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241129A1 true WO2021241129A1 (en) 2021-12-02

Family

ID=78744495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017086 WO2021241129A1 (en) 2020-05-29 2021-04-28 Sealant for display devices

Country Status (5)

Country Link
JP (1) JP7391211B2 (en)
KR (1) KR20220133967A (en)
CN (1) CN115151861A (en)
TW (1) TW202144450A (en)
WO (1) WO2021241129A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327621B1 (en) 2022-10-31 2023-08-16 住友ベークライト株式会社 Encapsulants, electrochromic sheets and electrochromic devices
WO2023182358A1 (en) * 2022-03-25 2023-09-28 三井化学株式会社 Thermosetting resin composition, sealant for display devices, and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047579A1 (en) * 2011-09-27 2013-04-04 日本化薬株式会社 Liquid crystal sealing agent, and liquid crystal display cell using same
WO2013108629A1 (en) * 2012-01-18 2013-07-25 三井化学株式会社 Composition, composition for display device end-face sealing agent comprising composition, and display device and method for manufacturing same
WO2018092508A1 (en) * 2016-11-21 2018-05-24 協立化学産業株式会社 Resin composition for electronic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753067B2 (en) 2001-04-23 2004-06-22 Sipix Imaging, Inc. Microcup compositions having improved flexure resistance and release properties
JP4022194B2 (en) 2003-06-04 2007-12-12 積水化学工業株式会社 Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device
WO2019221027A1 (en) 2018-05-17 2019-11-21 積水化学工業株式会社 Liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047579A1 (en) * 2011-09-27 2013-04-04 日本化薬株式会社 Liquid crystal sealing agent, and liquid crystal display cell using same
WO2013108629A1 (en) * 2012-01-18 2013-07-25 三井化学株式会社 Composition, composition for display device end-face sealing agent comprising composition, and display device and method for manufacturing same
WO2018092508A1 (en) * 2016-11-21 2018-05-24 協立化学産業株式会社 Resin composition for electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182358A1 (en) * 2022-03-25 2023-09-28 三井化学株式会社 Thermosetting resin composition, sealant for display devices, and display device
JP7327621B1 (en) 2022-10-31 2023-08-16 住友ベークライト株式会社 Encapsulants, electrochromic sheets and electrochromic devices

Also Published As

Publication number Publication date
JP7391211B2 (en) 2023-12-04
JPWO2021241129A1 (en) 2021-12-02
KR20220133967A (en) 2022-10-05
CN115151861A (en) 2022-10-04
TW202144450A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
KR101455547B1 (en) Composition, composition being for end-face sealing agent for display devices and consisting of the composition, display devices, and process for producing same
TWI460197B (en) Photocurable resin composition for sealing organic el device
KR101762055B1 (en) Composition, cured product, and display device and method for manufacturing same
WO2021241129A1 (en) Sealant for display devices
TWI581042B (en) Seal agent containing the composition, end-face seal agent for display device, display device and method for fabricating the same
WO2004090621A1 (en) Liquid crystal sealing agent and liquid crystalline display cell using the same
KR102504140B1 (en) Sealing liquid epoxy resin composition and electronic component device
TWI827873B (en) Epoxy resin composition
TW201136972A (en) Liquid crystal sealing agent, fabricating method of liquid crystal display panel using the same and liquid crystal display panel
JP5109572B2 (en) Adhesive composition, adhesive composition semi-cured product, adhesive film, laminated adhesive film, and production method thereof
WO2018201428A1 (en) Thermally curable sealant composition and use thereof
JP4302381B2 (en) Liquid crystal sealant composition, method for producing liquid crystal display cell, and liquid crystal display element
JP2010180334A (en) Adhesive composition, adhesive sheet, and dicing die attach film
WO2023182358A1 (en) Thermosetting resin composition, sealant for display devices, and display device
JP7368202B2 (en) Sealing sheet
WO2023136018A1 (en) Film-like adhesive for flexible device, adhesive sheet for flexible device, and method for manufacturing flexible device
TW202334349A (en) Resin composition for flexible device, film-like adhesive for flexible device, adhesive sheet for flexible device, and method for manufacturing flexible device
JP2020200356A (en) Thermosetting resin composition
TW202330695A (en) Substrate-and-adhesive layer integrated sheet for flexible device, and production method of flexible device
TW202330702A (en) Curable resin composition
JP2010090320A (en) Adhesive composition for touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227029760

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022527617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813215

Country of ref document: EP

Kind code of ref document: A1