JP4022194B2 - Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device - Google Patents

Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device Download PDF

Info

Publication number
JP4022194B2
JP4022194B2 JP2003394615A JP2003394615A JP4022194B2 JP 4022194 B2 JP4022194 B2 JP 4022194B2 JP 2003394615 A JP2003394615 A JP 2003394615A JP 2003394615 A JP2003394615 A JP 2003394615A JP 4022194 B2 JP4022194 B2 JP 4022194B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
resin composition
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003394615A
Other languages
Japanese (ja)
Other versions
JP2005018022A (en
Inventor
貴志 渡邉
雄一 尾山
拓也 山本
満 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003394615A priority Critical patent/JP4022194B2/en
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to EP04745587A priority patent/EP1640396A1/en
Priority to KR1020097014851A priority patent/KR100952263B1/en
Priority to TW102143740A priority patent/TWI504667B/en
Priority to PCT/JP2004/007811 priority patent/WO2004108790A1/en
Priority to TW099125906A priority patent/TWI509015B/en
Priority to US10/559,529 priority patent/US20060240198A1/en
Priority to KR1020097014852A priority patent/KR101180600B1/en
Priority to CN200480015573.6A priority patent/CN1798786B/en
Priority to KR1020057023184A priority patent/KR100935774B1/en
Priority to CN 200810214942 priority patent/CN101367982B/en
Priority to TW093116052A priority patent/TW200508314A/en
Priority to CN2008102149439A priority patent/CN101369098B/en
Publication of JP2005018022A publication Critical patent/JP2005018022A/en
Application granted granted Critical
Publication of JP4022194B2 publication Critical patent/JP4022194B2/en
Priority to US12/273,403 priority patent/US20090093562A1/en
Priority to US12/274,103 priority patent/US20090134358A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、液晶表示素子並びにその製造において液晶表示素子用シール剤、液晶表示素子用封口剤及び液晶表示素子用上下導通材料の少なくとも一つとして用いた場合に、その成分が液晶材料中に溶け出して液晶汚染を引き起こすことがないため液晶表示において色ムラが少ないことから、特に滴下工法による液晶表示装置の製造に最適である液晶表示素子用硬化性樹脂組成物、これを用いた液晶表示素子用シール剤、液晶表示素子用封口剤、液晶表示素子用上下導通材料及び液晶表示装置に関する。 The present invention relates to a liquid crystal display element and a component that dissolves in the liquid crystal material when used as at least one of a sealing agent for liquid crystal display elements, a sealing agent for liquid crystal display elements, and a vertical conduction material for liquid crystal display elements. Since there is little color unevenness in the liquid crystal display since it does not cause liquid crystal contamination, a curable resin composition for a liquid crystal display element that is particularly suitable for manufacturing a liquid crystal display device by a dropping method, and a liquid crystal display element using the same The present invention relates to a sealing agent for liquid crystal, a sealing agent for liquid crystal display element, a vertical conduction material for liquid crystal display element, and a liquid crystal display device.

従来、液晶表示セル等の液晶表示素子は、2枚の電極付き透明基板を、所定の間隔をおいて対向させ、その周囲を硬化性樹脂組成物からなるシール剤で封着してセルを形成し、その一部に設けられた液晶注入口からセル内に液晶を注入し、その液晶注入口をシール剤又は封口剤を用いて封止することにより作製されていた。 Conventionally, a liquid crystal display element such as a liquid crystal display cell forms a cell by facing two transparent substrates with electrodes facing each other at a predetermined interval and sealing the periphery with a sealing agent made of a curable resin composition. However, the liquid crystal was injected into the cell from a liquid crystal injection port provided in a part of the cell, and the liquid crystal injection port was sealed using a sealing agent or a sealing agent.

この方法では、まず、2枚の電極付き透明基板のいずれか一方に、スクリーン印刷により熱硬化性シール剤を用いた液晶注入口を設けたシールパターンを形成し、60〜100℃でプリベイクを行いシール剤中の溶剤を乾燥させる。次いで、スペーサーを挟んで2枚の基板を対向させてアライメントを行い貼り合わせ、110〜220℃で10〜90分間熱プレスを行いシール近傍のギャップを調整した後、オーブン中で110〜220℃で10〜120分間加熱しシール剤を本硬化させる。次いで、液晶注入口から液晶を注入し、最後に封口剤を用いて液晶注入口を封止して、液晶表示素子を作製していた。 In this method, first, a seal pattern provided with a liquid crystal injection port using a thermosetting sealant is formed on one of two transparent substrates with electrodes by screen printing, and prebaked at 60 to 100 ° C. Dry the solvent in the sealant. Next, alignment is performed with the two substrates facing each other with a spacer interposed therebetween, and the gap in the vicinity of the seal is adjusted by performing hot pressing at 110 to 220 ° C. for 10 to 90 minutes, and then in an oven at 110 to 220 ° C. Heat for 10 to 120 minutes to fully cure the sealant. Next, liquid crystal was injected from the liquid crystal injection port, and finally, the liquid crystal injection port was sealed using a sealing agent to produce a liquid crystal display element.

しかし、この作製方法によると、熱歪により位置ズレ、ギャップのバラツキ、シール剤と基板との密着性の低下等が発生する;残留溶剤が熱膨張して気泡が発生しギャップのバラツキやシールパスが発生する;シール硬化時間が長い;プリベイクプロセスが煩雑;溶剤の揮発によりシール剤の使用可能時間が短い;液晶の注入に時間がかかる等の問題があった。とりわけ、近年の大型の液晶表示装置にあっては、液晶の注入に非常に時間がかかることが大きな問題となっていた。 However, according to this manufacturing method, positional displacement, gap variation, and decrease in adhesion between the sealing agent and the substrate occur due to thermal strain; residual solvent thermally expands to generate bubbles, resulting in gap variation and seal path. The seal curing time is long; the pre-baking process is complicated; the usable time of the sealant is short due to the volatilization of the solvent; and it takes time to inject liquid crystal. In particular, in a large liquid crystal display device in recent years, it takes a very long time to inject liquid crystal.

これに対して、光硬化熱硬化併用型シール剤を用いた滴下工法と呼ばれる液晶表示素子の製造方法が検討されている。滴下工法では、まず、2枚の電極付き透明基板の一方に、スクリーン印刷により長方形状のシールパターンを形成する。次いで、シール剤未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに他方の透明基板を重ねあわせ、シール部に紫外線を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができる。今後はこの滴下工法が液晶表示装置の製造方法の主流となると期待されている。 On the other hand, a manufacturing method of a liquid crystal display element called a dripping method using a photocuring / thermosetting sealant has been studied. In the dropping method, first, a rectangular seal pattern is formed on one of the two transparent substrates with electrodes by screen printing. Next, fine droplets of liquid crystal are dropped onto the entire surface of the transparent substrate in an uncured state, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with ultraviolet rays for temporary curing. After that, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency. In the future, this dripping method is expected to become the mainstream of liquid crystal display manufacturing methods.

従来のシール剤として用いられる硬化性樹脂組成物としては、例えば、特許文献1に、ビスフェノールA型エポキシ樹脂の部分(メタ)アクリル化物を主成分とする接着剤が開示されている。また、特許文献2、特許文献3、特許文献4、特許文献5等に開示されており、特許文献6には、(メタ)アクリル酸エステル樹脂を主成分とするものが開示されている。 As a curable resin composition used as a conventional sealing agent, for example, Patent Document 1 discloses an adhesive mainly composed of a partial (meth) acrylate of a bisphenol A type epoxy resin. Moreover, it is disclosed by patent document 2, patent document 3, patent document 4, patent document 5, etc., and patent document 6 discloses what has (meth) acrylic acid ester resin as a main component.

しかしながら、これらの硬化性樹脂組成物は、液晶材料と近い極性値を示す傾向があり、両者は親和しやすい性質を持つ。したがって、これらの硬化性樹脂組成物からなるシール剤を用いて組み立てられた液晶表示素子では、液晶中にシール剤の成分が溶出し、シール剤の周辺部に液晶の配向乱れが生じ、色ムラ等の表示不良を引き起こすことがある。とりわけ、滴下工法では未硬化のシール剤が直接液晶と接する工程があることから、このようなシール剤成分による液晶汚染が大きな問題となっていた。また、シール剤と同様の硬化性樹脂組成物を用いて上下導通材料とした場合にも、シール剤と同様の問題があった。 However, these curable resin compositions tend to exhibit a polarity value close to that of a liquid crystal material, and both have a property of being easily compatible. Therefore, in a liquid crystal display element assembled using a sealing agent comprising these curable resin compositions, the components of the sealing agent are eluted in the liquid crystal, resulting in disordered alignment of the liquid crystal in the periphery of the sealing agent, resulting in color unevenness. May cause display defects. In particular, in the dropping method, since there is a process in which an uncured sealant directly contacts liquid crystal, liquid crystal contamination due to such a sealant component has been a serious problem. In addition, when the curable resin composition similar to that of the sealing agent is used as the vertical conduction material, there is a problem similar to that of the sealing agent.

特開平6−160872号公報Japanese Patent Laid-Open No. 6-160872 特開平1−243029号公報JP-A-1-243029 特開平7−13173号公報JP 7-13173 A 特開平7−13174号公報Japanese Patent Laid-Open No. 7-13174 特開平7−13175号公報Japanese Patent Laid-Open No. 7-13175 特開平7−13174号公報Japanese Patent Laid-Open No. 7-13174

本発明は、上記現状に鑑み、液晶表示素子並びにその製造において液晶表示素子用シール剤、液晶表示素子用封口剤及び液晶表示素子用上下導通材料の少なくとも一つとして用いた場合に、その成分が液晶材料中に溶け出して液晶汚染を引き起こすことがないため液晶表示において色ムラが少ないことから、特に滴下工法による液晶表示装置の製造に最適である液晶表示素子用硬化性樹脂組成物、これを用いた液晶表示素子用シール剤、液晶表示素子用封口剤、液晶表示素子用上下導通材料及び液晶表示装置を提供することを目的とする。 In view of the present situation, the present invention, when used as at least one of a liquid crystal display element and a liquid crystal display element sealing agent, a liquid crystal display element sealing agent, and a liquid crystal display element vertical conduction material in the production thereof, Since there is little color unevenness in the liquid crystal display because it does not dissolve in the liquid crystal material and cause liquid crystal contamination, a curable resin composition for a liquid crystal display element that is particularly suitable for manufacturing a liquid crystal display device by a dropping method, It aims at providing the used sealing agent for liquid crystal display elements, sealing agent for liquid crystal display elements, the vertical conduction material for liquid crystal display elements, and a liquid crystal display device.

本発明は、結晶性エポキシ樹脂と(メタ)アクリル酸とを反応させてなる(メタ)アクリル酸変性エポキシ樹脂を含有する液晶表示素子用硬化性樹脂組成物である。
なお、本明細書において(メタ)アクリル酸とは、アクリル酸又はメタクリル酸のことをいう。また、本明細書において結晶性樹脂とは、示差走査熱量計により示差熱を測定したときに、鋭く明瞭な融点ピークを示し、結晶化度が10%を超える樹脂を意味し、非結晶性樹脂とは、示差走査熱量計により示差熱を測定したときに、鋭く明瞭な融点ピークを示さず、結晶化度が10%以下である樹脂を意味する。
以下に本発明を詳述する。
The present invention is a curable resin composition for a liquid crystal display element containing a (meth) acrylic acid-modified epoxy resin obtained by reacting a crystalline epoxy resin and (meth) acrylic acid.
In this specification, (meth) acrylic acid means acrylic acid or methacrylic acid. In the present specification, the crystalline resin means a resin having a sharp and clear melting point peak when the differential heat is measured by a differential scanning calorimeter, and having a crystallinity exceeding 10%. The term “resin” means a resin having no sharp and clear melting point peak and a crystallinity of 10% or less when differential heat is measured by a differential scanning calorimeter.
The present invention is described in detail below.

本発明の液晶表示素子用硬化性樹脂組成物(以下、単に硬化性樹脂組成物ともいう)は、硬化性樹脂成分として(メタ)アクリル酸変性エポキシ樹脂を含有する。
上記(メタ)アクリル酸変性エポキシ樹脂は、分子内に(メタ)アクリル基とエポキシ基とを有することから、光によっても熱によっても硬化させることができる。従って、本発明の液晶表示素子用硬化性樹脂組成物を用いれば、例えば、いったん光を照射して仮止めした後に、加熱して本硬化させるような使用ができ、滴下工法により液晶表示素子の製造する場合におけるシール剤に好適である。
The curable resin composition for liquid crystal display elements of the present invention (hereinafter also simply referred to as curable resin composition) contains a (meth) acrylic acid-modified epoxy resin as a curable resin component.
Since the (meth) acrylic acid-modified epoxy resin has a (meth) acryl group and an epoxy group in the molecule, it can be cured by light or heat. Therefore, if the curable resin composition for a liquid crystal display element of the present invention is used, it can be used, for example, by temporarily irradiating with light and then temporarily curing by heating. It is suitable for a sealing agent in the case of manufacturing.

上記(メタ)アクリル酸変性エポキシ樹脂は、エポキシ樹脂と(メタ)アクリル酸とを反応させることにより製造することができる。
本発明者らは、鋭意検討の結果、原料となるエポキシ樹脂として結晶性エポキシ樹脂を用いれば、得られる液晶表示素子用硬化性樹脂組成物の液晶非汚染性を向上させることが出来ることを見出し、本発明を完成するに至った。
これは、一般に結晶性エポキシ樹脂は純度が高く不純物の含有量が小さいこと、及び、結晶性エポキシ樹脂を原料とすることにより得られる(メタ)アクリル酸変性エポキシ樹脂の結晶性が高まり分子間の相互作用が強くなることから、滴下工法において未硬化の樹脂と液晶とが接しても液晶を汚染しにくいためと考えられる。
The (meth) acrylic acid-modified epoxy resin can be produced by reacting an epoxy resin and (meth) acrylic acid.
As a result of intensive studies, the present inventors have found that if a crystalline epoxy resin is used as an epoxy resin as a raw material, the liquid crystal non-contamination property of the resulting curable resin composition for liquid crystal display elements can be improved. The present invention has been completed.
This is because the crystalline epoxy resin generally has a high purity and a small content of impurities, and the crystallinity of the (meth) acrylic acid-modified epoxy resin obtained by using the crystalline epoxy resin as a raw material is increased. Since the interaction becomes strong, the liquid crystal is hardly contaminated even when the uncured resin and the liquid crystal come into contact with each other in the dropping method.

上記結晶性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、スルフィド型エポキシ樹脂、エーテル型エポキシ樹脂、ナフタレン型エポキシ樹脂、及び、それらの誘導体等が挙げられる。 Examples of the crystalline epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydroquinone type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, sulfide type epoxy resin, and ether type. Examples thereof include epoxy resins, naphthalene type epoxy resins, and derivatives thereof.

上記結晶性エポキシ樹脂は、融点が140℃以下であることが好ましい。140℃を超えると、変性反応の際にゲル化してしまうことがある。より好ましい上限は120℃である。また、好ましい下限は40℃である。40℃未満であると、結晶性が低下してしまうことがある。 The crystalline epoxy resin preferably has a melting point of 140 ° C. or lower. If the temperature exceeds 140 ° C., gelation may occur during the denaturation reaction. A more preferred upper limit is 120 ° C. Moreover, a preferable minimum is 40 degreeC. If it is lower than 40 ° C., the crystallinity may be lowered.

上記(メタ)アクリル酸以外で、(メタ)アクリル酸と同様な効果を奏する反応性二重結合を有するものとしては特に限定されず、例えば、クロトン酸、桂皮酸、ソルビン酸等が挙げられる。 Other than the above (meth) acrylic acid, the reactive double bond having the same effect as (meth) acrylic acid is not particularly limited, and examples thereof include crotonic acid, cinnamic acid, and sorbic acid.

上記結晶性エポキシ樹脂と(メタ)アクリル酸とを反応させる方法としては特に限定されず、従来公知の方法により行うことができる。
上記結晶性エポキシ樹脂と(メタ)アクリル酸とを反応させる際には、塩基性の触媒を用いることが好ましく、上記塩基触媒としては特に限定されず、例えば、N,N−ジメチルフェニルアミン、トリエチルアミン、トリフェニルフォスフィン、塩化鉄、塩化亜鉛、塩化バナジウム等が挙げられる。
また、上記結晶性エポキシ樹脂と(メタ)アクリル酸とを反応させる際、上記塩基触媒の存在下で、エポキシ基1当量に対して、(メタ)アクリル酸を1〜0.5当量反応させることが好ましい。
The method of reacting the crystalline epoxy resin with (meth) acrylic acid is not particularly limited, and can be performed by a conventionally known method.
When the crystalline epoxy resin and (meth) acrylic acid are reacted, it is preferable to use a basic catalyst, and the basic catalyst is not particularly limited, and examples thereof include N, N-dimethylphenylamine and triethylamine. , Triphenylphosphine, iron chloride, zinc chloride, vanadium chloride and the like.
Moreover, when making the said crystalline epoxy resin and (meth) acrylic acid react, 1-0.5 equivalent of (meth) acrylic acid is made to react with respect to 1 equivalent of epoxy groups in presence of the said base catalyst. Is preferred.

上記(メタ)アクリル酸変性エポキシ樹脂は、結晶性(メタ)アクリル酸変性エポキシ樹脂であることが好ましい。(メタ)アクリル酸変性エポキシ樹脂が結晶性であるときには、分子間の相互作用が強くなることから、滴下工法において未硬化の樹脂と液晶とが接しても液晶を汚染しにくい。 The (meth) acrylic acid-modified epoxy resin is preferably a crystalline (meth) acrylic acid-modified epoxy resin. When the (meth) acrylic acid-modified epoxy resin is crystalline, the interaction between molecules becomes strong. Therefore, even if the uncured resin and the liquid crystal come into contact with each other in the dropping method, the liquid crystal is hardly contaminated.

上記(メタ)アクリル酸変性エポキシ樹脂は、融点が80℃以下であることが好ましい。80℃を超えると、配合時に高温で加熱する必要があるのて、ゲル化等の問題が発生することがある。好ましい下限は40℃である。40℃未満であると、凝集力が低下して本発明の硬化性樹脂組成物を硬化させた硬化物の密着性が低下することがある。 The (meth) acrylic acid-modified epoxy resin preferably has a melting point of 80 ° C. or lower. If it exceeds 80 ° C., it may be necessary to heat at a high temperature during compounding, which may cause problems such as gelation. A preferred lower limit is 40 ° C. When the temperature is lower than 40 ° C., the cohesive force is lowered, and the adhesiveness of the cured product obtained by curing the curable resin composition of the present invention may be lowered.

上記(メタ)アクリル酸変性エポキシ樹脂は、樹脂骨格中における硫黄原子と酸素原子との総計が5〜10であることが好ましい。5未満であると、分子としての極性が低くなって液晶を汚染しやすいことがあり、10を超えると、耐湿性に劣ることがある。 The (meth) acrylic acid-modified epoxy resin preferably has a total of 5 to 10 sulfur atoms and oxygen atoms in the resin skeleton. If it is less than 5, the polarity as a molecule is low and the liquid crystal is likely to be contaminated. If it exceeds 10, moisture resistance may be inferior.

上記(メタ)アクリル酸変性エポキシ樹脂は、樹脂骨格中の硫黄原子と酸素原子との総計を総原子数で除した値の好ましい下限が0.08、好ましい上限が0.14である。0.08未満であると、極性が低くなって液晶を汚染しやすいことがあり、0.14を超えると、耐湿性に劣ることがある。 In the (meth) acrylic acid-modified epoxy resin, the preferable lower limit of the value obtained by dividing the total of sulfur atoms and oxygen atoms in the resin skeleton by the total number of atoms is 0.08, and the preferable upper limit is 0.14. If it is less than 0.08, the polarity may be low and the liquid crystal may be easily contaminated. If it exceeds 0.14, the moisture resistance may be inferior.

本発明の硬化性樹脂組成物における上記(メタ)アクリル酸変性エポキシ樹脂の配合量の好ましい下限は10重量%、好ましい上限は50重量%である。10重量%未満であると、硬化させた硬化物の密着性が低下することがあり、50重量%を超えると、組成物が結晶化してしまうことがある。 The preferable lower limit of the amount of the (meth) acrylic acid-modified epoxy resin in the curable resin composition of the present invention is 10% by weight, and the preferable upper limit is 50% by weight. If it is less than 10% by weight, the adhesiveness of the cured product may be lowered, and if it exceeds 50% by weight, the composition may be crystallized.

本発明の硬化性樹脂組成物は、更に、光重合開始剤、熱硬化剤、フィラー、カップリング剤等を含有してもよい。
上記光重合開始剤としては、光照射により上記(メタ)アクリル酸変性エポキシ樹脂を重合させるものであれば特に限定されないが、反応性二重結合と光反応開始部とを有するものが好適である。このような光重合開始剤は、本発明の硬化性樹脂組成物に配合した場合に充分な反応性を付与することができるとともに、液晶中に溶出し液晶を汚染することがない。なかでも、反応性二重結合と水酸基及び/又はウレタン結合とを有するベンゾイン(エーテル)類化合物が好適である。なお、ベンゾイン(エーテル)類化合物とは、ベンゾイン類及びベンゾインエーテル類を表す。
The curable resin composition of the present invention may further contain a photopolymerization initiator, a thermosetting agent, a filler, a coupling agent, and the like.
The photopolymerization initiator is not particularly limited as long as it can polymerize the (meth) acrylic acid-modified epoxy resin by light irradiation, but those having a reactive double bond and a photoreaction initiation part are suitable. . Such a photopolymerization initiator can give sufficient reactivity when blended in the curable resin composition of the present invention and does not elute into the liquid crystal and contaminate the liquid crystal. Of these, benzoin (ether) compounds having a reactive double bond and a hydroxyl group and / or a urethane bond are preferred. The benzoin (ether) compounds represent benzoins and benzoin ethers.

上記反応性二重結合としては、アリル基、ビニルエーテル基、(メタ)アクリル基等の残基が挙げられるが、本発明の硬化性樹脂組成物の光重合開始剤として用いる場合には、反応性の高さから(メタ)アクリル残基が好適である。このような反応性二重結合を有することにより、硬化性樹脂組成物に配合した際に耐候性が向上する。 Examples of the reactive double bond include residues such as an allyl group, a vinyl ether group, and a (meth) acryl group. When used as a photopolymerization initiator of the curable resin composition of the present invention, the reactive double bond is reactive. A (meth) acrylic residue is preferred because of its height. By having such a reactive double bond, the weather resistance is improved when blended into the curable resin composition.

上記ベンゾイン(エーテル)類化合物は、水酸基とウレタン結合とのどちらか1つを有していればよく、両方を有していてもよい。上記ベンゾイン(エーテル)類化合物が水酸基とウレタン結合のいずれも有していない場合には、硬化性樹脂組成物に配合した際に、硬化前に液晶へ溶出してしまうことがある。 The said benzoin (ether) type compound should just have any one of a hydroxyl group and a urethane bond, and may have both. When the benzoin (ether) compound does not have either a hydroxyl group or a urethane bond, it may be eluted into the liquid crystal before curing when blended in the curable resin composition.

上記ベンゾイン(エーテル)類化合物において、上記反応性二重結合及び水酸基及び/又はウレタン結合はベンゾイン(エーテル)骨格のどの部分に位置していてもよいが、下記一般式(1)で表される分子骨格を有するものが好適である。かかる分子骨格を有する化合物を、光重合開始剤として用いれば、残存物が少なくなり、アウトガスの量を少なくすることができる。 In the benzoin (ether) compounds, the reactive double bond and hydroxyl group and / or urethane bond may be located at any part of the benzoin (ether) skeleton, but are represented by the following general formula (1). Those having a molecular skeleton are preferred. If a compound having such a molecular skeleton is used as a photopolymerization initiator, the residue is reduced and the amount of outgas can be reduced.

Figure 0004022194
Figure 0004022194

式中、Rは水素、炭素数4以下の脂肪族炭化水素残鎖を表す。Rが炭素数4を超える脂肪族炭化水素残鎖であると、光重合開始剤を配合したときの保存安定性は増加するものの、置換基の立体障害により反応性が低下することがある。
一般式(1)で表される分子骨格を有するベンゾイン(エーテル)類化合物としては、例えば、下記一般式(2)で表される化合物が挙げられる。
In the formula, R represents hydrogen or a residual aliphatic hydrocarbon chain having 4 or less carbon atoms. When R is an aliphatic hydrocarbon residual chain having more than 4 carbon atoms, the storage stability when a photopolymerization initiator is added increases, but the reactivity may decrease due to steric hindrance of the substituent.
Examples of the benzoin (ether) compounds having a molecular skeleton represented by the general formula (1) include compounds represented by the following general formula (2).

Figure 0004022194
Figure 0004022194

式中、Rは水素又は炭素数4以下の脂肪族炭化水素残基を表し、Xは炭素数13以下の2官能イソシアネート誘導体の残基を表し、Yは炭素数4以下の脂肪族炭化水素残基又は残基を構成する炭素と酸素の原子数比が3以下の残基を表す。Xが炭素数13を超える2官能イソシアネート誘導体の残基であると、液晶に溶解しやすくなることがあり、Yが炭素数4を超える脂肪族炭化水素残基又は炭素と酸素の原子数比が3を超える残基であると、液晶に溶解しやすくなることがある。 In the formula, R represents hydrogen or an aliphatic hydrocarbon residue having 4 or less carbon atoms, X represents a residue of a bifunctional isocyanate derivative having 13 or less carbon atoms, and Y represents an aliphatic hydrocarbon residue having 4 or less carbon atoms. This represents a residue having an atomic ratio of carbon and oxygen constituting a group or residue of 3 or less. When X is a residue of a bifunctional isocyanate derivative having more than 13 carbon atoms, it may be easily dissolved in the liquid crystal, and Y may be an aliphatic hydrocarbon residue having more than 4 carbon atoms or an atomic ratio of carbon to oxygen. If the residue is more than 3, it may be easily dissolved in the liquid crystal.

上記光重合開始剤としては他の、例えば、ベンゾフェノン、2,2−ジエトキシアセトフェノン、ベンジル、ベンゾイルイソプロピルエーテル、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、チオキサントン、フェニル−2−ヒドロキシ−2−プロピルケトン等の単独又は2種以上と併用してもよい。 Other examples of the photopolymerization initiator include benzophenone, 2,2-diethoxyacetophenone, benzyl, benzoyl isopropyl ether, benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, thioxanthone, phenyl-2-hydroxy-2-propyl You may use together single or 2 types or more, such as a ketone.

上記光重合開始剤の配合量の好ましい下限は、上記(メタ)アクリル酸変性エポキシ樹脂100重量部に対して0.1重量部、好ましい上限は10重量部である。0.1重量部未満であると、光重合を開始する能力が不足して効果が得られないことがあり、10重量部を超えると、未反応の光重合開始剤が多く残ることがあり、耐候性が悪くなることがある。より好ましい下限は1重量部、より好ましい上限は5重量部である。 The minimum with the preferable compounding quantity of the said photoinitiator is 0.1 weight part with respect to 100 weight part of said (meth) acrylic acid modified epoxy resins, and a preferable upper limit is 10 weight part. If it is less than 0.1 parts by weight, the ability to initiate photopolymerization may be insufficient and the effect may not be obtained. If it exceeds 10 parts by weight, a large amount of unreacted photopolymerization initiator may remain, Weather resistance may deteriorate. A more preferred lower limit is 1 part by weight, and a more preferred upper limit is 5 parts by weight.

上記熱硬化剤は、加熱により(メタ)アクリル酸変性エポキシ樹脂中の熱硬化性の官能基であるエポキシ基やアクリル基等を反応させ、架橋させるためのものであり、硬化後の硬化物の接着性、耐湿性を向上させる役割を有する。上記熱硬化剤としては、融点が100℃以上の潜在性硬化剤が好適に用いられる。融点が100℃未満の硬化剤を使用すると保存安定性が著しく悪くなることがある。 The above-mentioned thermosetting agent is for reacting and crosslinking epoxy groups and acrylic groups which are thermosetting functional groups in the (meth) acrylic acid-modified epoxy resin by heating. It has the role of improving adhesiveness and moisture resistance. As the thermosetting agent, a latent curing agent having a melting point of 100 ° C. or higher is preferably used. When a curing agent having a melting point of less than 100 ° C. is used, the storage stability may be remarkably deteriorated.

このような硬化剤としては、1,3−ビス[ヒドラジノカルボノエチル−5−イソプロピルヒダントイン]等のヒドラジド化合物、ジシアンジアミド、グアニジン誘導体、1−シアノエチル−2−フェニルイミダゾール、N−[2−(2−メチル−1−イミダゾリル)エチル]尿素、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、N,N’−ビス(2−メチル−1−イミダゾリルエチル)尿素、N,N’−(2−メチル−1−イミダゾリルエチル)−アジポアミド、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等のイミダゾール誘導体、変性脂肪族ポリアミン、テトラヒドロ無水フタル酸、エチレングリコール−ビス(アンヒドロトリメリテート)等の酸無水物、各種アミンとエポキシ樹脂との付加生成物等が挙げられる。これらは、単独で用いてもよく、2種類以上を併用してもよい。 Examples of such a curing agent include hydrazide compounds such as 1,3-bis [hydrazinocarbonoethyl-5-isopropylhydantoin], dicyandiamide, guanidine derivatives, 1-cyanoethyl-2-phenylimidazole, N- [2- ( 2-methyl-1-imidazolyl) ethyl] urea, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, N, N′-bis (2-methyl- 1-imidazolylethyl) urea, N, N ′-(2-methyl-1-imidazolylethyl) -adipamide, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole Imidazole derivatives such as modified aliphatic polyamines, tetrahydrophthalic anhydride, ethylene glycol Scan anhydride such as (anhydrotrimellitate), addition products such as the various amines and epoxy resins. These may be used alone or in combination of two or more.

上記熱硬化剤の配合量の好ましい下限は、上記(メタ)アクリル酸変性エポキシ樹脂100重量部に対して1重量部、好ましい上限は50重量部である。この範囲外であると、硬化物の接着性、耐薬品性が低下し、高温高湿動作試験での液晶の特性劣化が早まることがある。より好ましい下限は4重量部、より好ましい上限は30重量部である。
また、上記熱硬化剤としては、固体硬化剤粒子の表面が微粒子等により被覆されている被覆硬化剤を用いる場合には、本発明の硬化性樹脂組成物を一液タイプとした場合でも非常に高い保存安定性が得られることから特に好適である。
The minimum with the preferable compounding quantity of the said thermosetting agent is 1 weight part with respect to 100 weight part of said (meth) acrylic acid modified epoxy resins, and a preferable upper limit is 50 weight part. If it is out of this range, the adhesiveness and chemical resistance of the cured product will be lowered, and the liquid crystal characteristics may be deteriorated in a high temperature and high humidity operation test. A more preferred lower limit is 4 parts by weight, and a more preferred upper limit is 30 parts by weight.
Further, as the thermosetting agent, when using a coating curing agent in which the surface of the solid curing agent particle is coated with fine particles or the like, even when the curable resin composition of the present invention is a one-pack type, This is particularly preferable because high storage stability can be obtained.

上記フィラーとしては特に限定されないが、例えば、含水硅酸マグネシウム、炭酸カルシウム、酸化アルミニウム及びシリカからなる群より選択される少なくとも1種の無機充填材が好適である。これらのフィラーの粒子径は、1.5μm以下であることが好ましい。この場合、本発明の硬化性樹脂組成物中における上記フィラーの配合量の好ましい下限は8重量%、好ましい上限は20重量%である。 Although it does not specifically limit as said filler, For example, the at least 1 sort (s) of inorganic filler selected from the group which consists of a hydrous magnesium oxalate, a calcium carbonate, an aluminum oxide, and a silica is suitable. The particle size of these fillers is preferably 1.5 μm or less. In this case, the preferable minimum of the compounding quantity of the said filler in the curable resin composition of this invention is 8 weight%, and a preferable upper limit is 20 weight%.

上記シランカップリング剤は、主に硬化性樹脂組成物とガラス基板等とを良好に接着するための接着助剤としての役割を有する。また、本発明の硬化性樹脂組成物が、応力分散効果による接着性の改善、線膨張率の改善等の目的に、少量の非導電性フィラーを含有する場合においては、非導電性フィラーと樹脂との相互作用を向上させるために、非導電性フィラーの表面をシランカップリング剤で処理する方法に用いられることもある。 The silane coupling agent mainly serves as an adhesion aid for favorably bonding the curable resin composition and the glass substrate or the like. In the case where the curable resin composition of the present invention contains a small amount of non-conductive filler for the purpose of improving adhesiveness due to stress dispersion effect, improving linear expansion coefficient, etc., the non-conductive filler and the resin In order to improve the interaction with the silane, it may be used in a method of treating the surface of the non-conductive filler with a silane coupling agent.

上記シラン化合物としては、下記A群で示される少なくとも1つの官能基と下記B群で示される少なくとも1つの官能基とを有するものが好適である。 As said silane compound, what has at least 1 functional group shown by the following A group and at least 1 functional group shown by the following B group is suitable.

Figure 0004022194
Figure 0004022194

具体的には、例えば、γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシラン化合物は単独で用いてもよく、2種以上を併用してもよい。 Specific examples include γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-isocyanatopropyltrimethoxysilane. These silane compounds may be used alone or in combination of two or more.

このような構造のシラン化合物をシランカップリング剤として用いることにより、本発明の硬化性樹脂組成物は、基板等との接着性を向上することができるとともに、B群で示される官能基を介してシラン化合物が上記(メタ)アクリル酸変性エポキシ樹脂と化学結合することにより、液晶中への流出を防止することができる。
なお、本発明の硬化性樹脂組成物がこのようなシランカップリング剤を配合する場合には、シランカップリング剤配合後に、加熱処理を行う。加熱処理により、上記シラン化合物が(メタ)アクリル酸変性エポキシ樹脂とB群で示される官能基を介して化学結合する。
By using the silane compound having such a structure as a silane coupling agent, the curable resin composition of the present invention can improve the adhesion to a substrate and the like, and through the functional group shown in Group B. Thus, the silane compound can be chemically bonded to the (meth) acrylic acid-modified epoxy resin to prevent outflow into the liquid crystal.
In addition, when the curable resin composition of this invention mix | blends such a silane coupling agent, heat processing are performed after a silane coupling agent mixing | blending. By the heat treatment, the silane compound is chemically bonded to the (meth) acrylic acid-modified epoxy resin via the functional group represented by Group B.

本発明の硬化性樹脂組成物は、硬化後において体積抵抗値が1×1013Ω・cm以上であることが好ましい。1×1013Ω・cm未満であると、硬化性樹脂組成物がイオン性の不純物を含有していることを意味し、通電時にイオン性不純物が液晶中に溶出し、液晶駆動電圧に影響を与え、表示ムラの原因となることがある。 The curable resin composition of the present invention preferably has a volume resistance of 1 × 10 13 Ω · cm or more after curing. If it is less than 1 × 10 13 Ω · cm, it means that the curable resin composition contains ionic impurities, and the ionic impurities are eluted into the liquid crystal when energized, affecting the liquid crystal driving voltage. Giving rise to display unevenness.

本発明の硬化性樹脂組成物は、硬化後において100kHzにおける誘電率(比誘電率)が3以上であることが好ましい。液晶の誘電率は、通常ε//(パラレル)が10、ε⊥(垂直)が3.5程度であることから、誘電率が3未満であると、硬化性樹脂組成物が液晶中に溶出し、液晶駆動電圧に影響を与え、表示ムラの原因となることがある。 The curable resin composition of the present invention preferably has a dielectric constant (relative dielectric constant) of 3 or more at 100 kHz after curing. The dielectric constant of the liquid crystal is usually about 10 for ε // (parallel) and about 3.5 for ε⊥ (vertical). Therefore, if the dielectric constant is less than 3, the curable resin composition is eluted in the liquid crystal. However, this may affect the liquid crystal driving voltage and cause display unevenness.

本発明の硬化性樹脂組成物は、硬化後におけるガラス転移温度の好ましい下限が80℃、好ましい上限が150℃である。80℃未満であると、耐湿性(耐高温高湿性)に劣ることがあり、150℃を超えると、剛直になりすぎ基板との密着性に劣ることがある。 In the curable resin composition of the present invention, the preferable lower limit of the glass transition temperature after curing is 80 ° C., and the preferable upper limit is 150 ° C. If it is less than 80 ° C., it may be inferior in moisture resistance (high temperature and humidity resistance), and if it exceeds 150 ° C., it may become too rigid and inferior in adhesion to the substrate.

本発明の硬化性樹脂組成物は、硬化前において抽出水イオン伝導度が50μS/cm以下であることが好ましい。50μS/cmを超えると、本発明の硬化性樹脂組成物がイオン性の不純物を含有していることを意味し、イオン性不純物が液晶中に溶出し、液晶駆動電圧に影響を与え、表示ムラの原因となる。より好ましくは30μS/cm以下である。
なお、上記抽出水イオン伝導度は、樹脂組成物を溶媒に溶解させ、その溶液を純水で抽出し、その純水の伝導率を導電率計(例えば、堀場製作所社製ES−12等)を用いて測定することにより得ることができる。
The curable resin composition of the present invention preferably has an extraction water ion conductivity of 50 μS / cm or less before curing. If it exceeds 50 μS / cm, it means that the curable resin composition of the present invention contains ionic impurities, and the ionic impurities are eluted in the liquid crystal, affecting the liquid crystal driving voltage and causing display unevenness. Cause. More preferably, it is 30 μS / cm or less.
The extracted water ion conductivity is obtained by dissolving the resin composition in a solvent, extracting the solution with pure water, and measuring the conductivity of the pure water with a conductivity meter (for example, ES-12 manufactured by Horiba, Ltd.). It can obtain by measuring using.

また、本発明の硬化性樹脂組成物は、硬化前における比抵抗値が1.0×10 〜1.0×1010Ω・cmであることが好ましい。1.0×10 Ω・cm未満であると、これらが液晶に溶出した場合、液晶駆動電圧に影響を与え、表示ムラの原因となる。1.0×1010Ω・cmを超えると、液晶への溶出が大きくなったり、基板との密着性に劣ったりすることがある。 Further, the curable resin composition of the present invention preferably has a specific resistance before curing is 1.0 × 10 6 ~1.0 × 10 10 Ω · cm. If it is less than 1.0 × 10 6 Ω · cm, when these are eluted into the liquid crystal, the liquid crystal driving voltage is affected, causing display unevenness. If it exceeds 1.0 × 10 10 Ω · cm, elution into the liquid crystal may increase or adhesion to the substrate may be poor.

本発明の硬化性樹脂組成物を製造する方法としては特に限定されず、上記(メタ)アクリル酸変性エポキシ樹脂と、必要に応じて配合される上記光開始剤、熱硬化剤、フィラー、カップリング剤等の所定量とを、従来公知の方法により混合する方法等が挙げられる。この際、含有するイオン性不純物を除去するために、イオン吸着性固体と接触させてもよい。 It does not specifically limit as a method to manufacture the curable resin composition of this invention, The said photoinitiator, thermosetting agent, filler, coupling which are mix | blended with the said (meth) acrylic-acid modified epoxy resin as needed. Examples include a method of mixing a predetermined amount of an agent and the like by a conventionally known method. At this time, in order to remove the ionic impurities contained, it may be contacted with an ion-adsorbing solid.

本発明の硬化性樹脂組成物は、上記(メタ)アクリル酸変性エポキシ樹脂を硬化性樹脂成分として含有することから、液晶表示素子用シール剤や液晶表示素子用封口剤として用いた場合、液晶を汚染することが少ない。とりわけ、滴下工法により液晶表示装置を製造する場合に好適である。
本発明の硬化性樹脂組成物を用いてなる液晶表示素子用シール剤及び液晶表示素子用封口剤もまた、本発明の1つである。
Since the curable resin composition of the present invention contains the above (meth) acrylic acid-modified epoxy resin as a curable resin component, when used as a sealing agent for liquid crystal display elements or a sealing agent for liquid crystal display elements, liquid crystal is used. Less contaminated. In particular, it is suitable for manufacturing a liquid crystal display device by a dropping method.
The sealing agent for liquid crystal display elements and the sealing agent for liquid crystal display elements which use the curable resin composition of this invention are also one of this invention.

また、液晶表示装置には、一般的に、2枚の透明基板上の対向する電極間を上下導通させるために、上下導通材料が使用されている。上記上下導通材料は通常、硬化性樹脂組成物に導電性微粒子が含有されて構成されている。
本発明の硬化性樹脂組成物と導電性微粒子とを含む液晶表示素子用上下導通材料もまた、本発明の1つである。
In addition, in the liquid crystal display device, a vertical conduction material is generally used in order to make vertical conduction between opposing electrodes on two transparent substrates. The vertical conduction material is usually configured by containing conductive fine particles in a curable resin composition.
The vertical conduction material for a liquid crystal display element comprising the curable resin composition of the present invention and conductive fine particles is also one aspect of the present invention.

上記導電性微粒子としては特に限定されず、例えば、金属微粒子;樹脂基材微粒子に金属メッキを施したもの(以下、金属メッキ微粒子という);樹脂基材微粒子に金属メッキを施した後樹脂等で被覆したもの(以下、被覆金属メッキ微粒子という);更にこれらの金属微粒子、金属メッキ微粒子、被覆金属メッキ微粒子で表面に突起を有するもの等が挙げられる。なかでも、樹脂組成物中への均一分散性や導電性に優れることから、金メッキを施した金属メッキ微粒子や被覆金属メッキ微粒子が好ましい。 The conductive fine particles are not particularly limited. For example, metal fine particles; those obtained by subjecting resin substrate fine particles to metal plating (hereinafter referred to as metal plating fine particles); Those coated (hereinafter referred to as coated metal plated fine particles); and those metal fine particles, metal plated fine particles, and coated metal plated fine particles having protrusions on the surface. Especially, since it is excellent in the uniform dispersibility in a resin composition and electroconductivity, the metal plating fine particle and covering metal plating fine particle which gave gold plating are preferable.

上記導電性微粒子の、上記硬化性樹脂組成物100重量部に対する配合量の好ましい下限は0.2重量部、好ましい上限は5重量部である。 The minimum with the preferable compounding quantity with respect to 100 weight part of the said curable resin composition of the said electroconductive fine particles is 0.2 weight part, and a preferable upper limit is 5 weight part.

本発明の液晶表示素子用上下導通材料を製造する方法としては特に限定されず、例えば、上記硬化性樹脂組成物、上記導電性微粒子等を所定の配合量となるように配合し、真空遊星式攪拌装置等で混合する方法等が挙げられる。 The method for producing the vertical conduction material for a liquid crystal display element of the present invention is not particularly limited. For example, the curable resin composition, the conductive fine particles and the like are blended so as to have a predetermined blending amount, and a vacuum planetary type is used. The method of mixing with a stirring apparatus etc. is mentioned.

更に、本発明の液晶表示素子用シール剤、本発明の液晶表示素子用封口剤、及び本発明の液晶表示素子用上下導通材料の少なくとも一つを用いてなる液晶表示装置もまた、本発明の1つである。 Furthermore, a liquid crystal display device using at least one of the sealing agent for liquid crystal display elements of the present invention, the sealing agent for liquid crystal display elements of the present invention, and the vertical conduction material for liquid crystal display elements of the present invention is also included in the present invention. One.

本発明の液晶表示素子用シール剤、本発明の液晶表示素子用封口剤、及び本発明の液晶表示素子用上下導通材料の少なくとも一つを用いて本発明の液晶表示装置を製造する方法としては特に限定されず、例えば、以下の方法により製造することができる。
まず、ITO薄膜等の2枚の電極付き透明基板(無機ガラス又はプラスチック板)の何れか一方に、本発明の液晶表示素子用シール剤を液晶注入口が解放された所定のパターンとなるように塗布する。塗布方法としては、スクリーン印刷、ディスペンサー塗布等が挙げられる。更に、もう一方の透明基板に、本発明の液晶表示素子用上下導通材料を所定の電極上に塗布する。塗布方法としては、スクリーン印刷、ディスペンサー塗布等が挙げられる。なお、上下導通材料を用いる代わりにシール剤に導電性微粒子を含有させ、上下導通を図ることも可能である。次いで、上記2枚の透明基板をスペーサーを介して対向させ、位置合わせを行いながら重ね合わせる。その後、透明基板のシール部及び上下導通材料部に紫外線を照射して仮留めし、更に100〜200℃のオーブン中で1時間加熱硬化させて硬化を完了させる。最後に液晶注入口より液晶を注入し、本発明の液晶表示素子用封口剤を用いて注入口を塞ぎ、液晶表示装置を作製する。
As a method for producing the liquid crystal display device of the present invention using at least one of the sealing agent for liquid crystal display elements of the present invention, the sealing agent for liquid crystal display elements of the present invention, and the vertical conduction material for liquid crystal display elements of the present invention. It is not specifically limited, For example, it can manufacture with the following method.
First, on one of two transparent substrates with electrodes (inorganic glass or plastic plate) such as an ITO thin film, the liquid crystal display element sealant of the present invention is formed into a predetermined pattern in which the liquid crystal inlet is released. Apply. Examples of the application method include screen printing and dispenser application. Furthermore, the vertical conduction material for a liquid crystal display element of the present invention is applied onto a predetermined electrode on the other transparent substrate. Examples of the application method include screen printing and dispenser application. Instead of using a vertical conduction material, it is possible to incorporate conductive fine particles in the sealant to achieve vertical conduction. Next, the two transparent substrates are opposed to each other via a spacer, and are overlapped while aligning. Thereafter, the sealing portion and the vertical conduction material portion of the transparent substrate are temporarily fixed by irradiation with ultraviolet rays, and further cured by heating in an oven at 100 to 200 ° C. for 1 hour to complete the curing. Finally, liquid crystal is injected from the liquid crystal injection port, and the injection port is closed using the sealing agent for a liquid crystal display element of the present invention to produce a liquid crystal display device.

また、滴下工法による液晶表示装置の製造方法としては、例えば、ITO薄膜等の2枚の電極付き透明基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する。更に、もう一方の透明基板に、本発明の液晶表示素子用上下導通材料をスクリーン印刷、ディスペンサー塗布等により所定の電極上に上下導通用パターンを形成する。なお、上下導通材料を用いる代わりにシール剤に導電性微粒子を含有させ、上下導通を図ることも可能である。次いで、シール剤未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに他方の透明基板を上下導通材料未硬化の状態で重ねあわせ、シール部及び上下導通材料部に紫外線を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示装置を作製する。 Moreover, as a manufacturing method of the liquid crystal display device by a dripping method, for example, the liquid crystal display element sealant of the present invention is formed into a rectangular shape by screen printing, dispenser application, etc. on one of two transparent substrates with electrodes such as an ITO thin film. The seal pattern is formed. Further, a vertical conduction pattern is formed on a predetermined electrode on the other transparent substrate by screen printing, dispenser application or the like of the vertical conduction material for a liquid crystal display element of the present invention. Instead of using a vertical conduction material, it is possible to incorporate conductive fine particles in the sealant to achieve vertical conduction. Next, a liquid crystal micro-droplet is dropped onto the entire surface of the transparent substrate frame in an uncured state of the sealant, and the other transparent substrate is immediately overlapped in an uncured state of the vertically conductive material, and the seal portion and the vertically conductive material portion Preliminary curing is performed by irradiating with UV rays. After that, heating is performed at the time of liquid crystal annealing and main curing is performed to manufacture a liquid crystal display device.

本発明によれば、液晶表示素子並びにその製造において液晶表示素子用シール剤、液晶表示素子用封口剤及び液晶表示素子用上下導通材料の少なくとも一つとして用いた場合に、その成分が液晶材料中に溶け出して液晶汚染を引き起こすことがないため液晶表示において色ムラが少ないことから、特に滴下工法による液晶表示装置の製造に最適である液晶表示素子用硬化性樹脂組成物、これを用いた液晶表示素子用シール剤、液晶表示素子用封口剤、液晶表示素子用上下導通材料及び液晶表示装置を提供できる。 According to the present invention, when used as at least one of a liquid crystal display element and a sealing agent for liquid crystal display elements, a sealing agent for liquid crystal display elements, and a vertical conduction material for liquid crystal display elements in the production thereof, the component is contained in the liquid crystal material. Since there is little color unevenness in the liquid crystal display because it does not dissolve in the liquid crystal and cause liquid crystal contamination, a curable resin composition for a liquid crystal display element that is particularly suitable for manufacturing a liquid crystal display device by a dropping method, and a liquid crystal using the same A sealing agent for a display element, a sealing agent for a liquid crystal display element, a vertical conduction material for a liquid crystal display element, and a liquid crystal display device can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

参考例1
下記一般式(3)で表される結晶性エポキシ樹脂(新日鐵化学社製:YSLV−80XY、融点78℃)1000重量部、重合禁止剤としてp−メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、アクリル酸200重量部を、空気を送り込みながら、90℃で還流攪拌しながら5時間反応させ、非結晶性(メタ)アクリル酸変性エポキシ樹脂(50%部分アクリル化物)を得た。
( Reference Example 1 )
1000 parts by weight of a crystalline epoxy resin represented by the following general formula (3) (manufactured by Nippon Steel Chemical Co., Ltd .: YSLV-80XY, melting point 78 ° C.), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, and triethylamine as a reaction catalyst 2 parts by weight and 200 parts by weight of acrylic acid were reacted at 90 ° C. with stirring under reflux for 5 hours while feeding air, to obtain an amorphous (meth) acrylic acid-modified epoxy resin (50% partially acrylated product).

Figure 0004022194
Figure 0004022194

式中、Gはグリシジル基を表す。 In the formula, G represents a glycidyl group.

トリメチロールプロパン134重量部、重合開始剤としてBHT0.2重量部、反応触媒としてジブチル錫ジラウリレート0.01重量部、イソホロンジイソシアネート666重量部を加え、60℃で還流攪拌しながら2時間反応させた。次に、2−ヒドロキシエチルアクリレート25.5重量部及びグリシドール111重量部を加え、空気を送り込みながら90℃で還流攪拌しながら2時間反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、シリチンV85)10重量部が充填されたカラムで濾過し、ウレタン変性部分アクリル化物を得た。 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization initiator, 0.01 part by weight of dibutyltin dilaurate and 666 parts by weight of isophorone diisocyanate as reaction catalysts were added and reacted at 60 ° C. with stirring under reflux for 2 hours. Next, 25.5 parts by weight of 2-hydroxyethyl acrylate and 111 parts by weight of glycidol were added, and the mixture was reacted for 2 hours while stirring at 90 ° C. while feeding air. 100 parts by weight of the obtained resin was filtered through a column packed with 10 parts by weight of a natural combination of quartz and kaolin (manufactured by Hoffman Mineral Co., Ltd., Siritin V85) in order to adsorb ionic impurities in the reaction product. A modified partially acrylated product was obtained.

得られた(メタ)アクリル酸変性エポキシ樹脂40重量部、ウレタン変性部分アクリル化物20重量部、潜在性熱硬化剤としてヒドラジド系硬化剤(味の素ファインテクノ社製、アミキュアVDH)15重量部、光重合開始剤として2,2−ジエトキシアセトフェノン1重量部、シリカ粒子(平均粒径1.5μm)23重量部、γ−グリシドキシプロピルトリメトキシシラン1重量部を、三本ロールを用いて均一な液になるまで充分に混合して硬化性樹脂組成物を得た。 40 parts by weight of the obtained (meth) acrylic acid-modified epoxy resin, 20 parts by weight of urethane-modified partially acrylated product, 15 parts by weight of hydrazide-based curing agent (Ajinomoto Fine Techno Co., Amicure VDH) as a latent thermosetting agent, photopolymerization As an initiator, 1 part by weight of 2,2-diethoxyacetophenone, 23 parts by weight of silica particles (average particle size 1.5 μm), and 1 part by weight of γ-glycidoxypropyltrimethoxysilane were uniformly mixed using three rolls. The mixture was sufficiently mixed until it became a liquid to obtain a curable resin composition.

得られた硬化性樹脂組成物を液晶表示素子用シール剤として液晶表示装置を作製した。
即ち、透明電極付きの2枚の透明基板の一方に、シール剤を長方形の枠を描く様にディスペンサーで塗布した。続いて、液晶(チッソ社製、JC−5004LA)の微小滴を透明基板の枠内全面に滴下塗布し、すぐに他方の透明基板を重ねあわせて、シール部に高圧水銀ランプを用い紫外線を50mW/cmの強度で60秒照射した。その後、液晶アニールを120℃にて1時間行い熱硬化させ、液晶表示装置を得た。
A liquid crystal display device was produced using the obtained curable resin composition as a sealant for liquid crystal display elements.
That is, the sealing agent was applied to one of the two transparent substrates with transparent electrodes with a dispenser so as to draw a rectangular frame. Subsequently, fine droplets of liquid crystal (manufactured by Chisso Corporation, JC-5004LA) are dropped onto the entire surface of the transparent substrate frame, and the other transparent substrate is immediately overlaid. Irradiated for 60 seconds at an intensity of / cm 2 . After that, liquid crystal annealing was performed at 120 ° C. for 1 hour for thermosetting to obtain a liquid crystal display device.

実施例1
下記一般式(4)で表される結晶性エポキシ樹脂(新日鐵化学社製:YSLV−80DE、融点79℃)1000重量部、重合禁止剤としてp−メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、アクリル酸200重量部を、空気を送り込みながら、90℃で還流攪拌しながら5時間反応させ、結晶性(メタ)アクリル酸変性エポキシ樹脂(50%部分アクリル化物)を得た。
非結晶性(メタ)アクリル酸変性エポキシ樹脂(50%部分アクリル化物)の代わりにこの結晶性(メタ)アクリル酸変性エポキシ樹脂(50%部分アクリル化物)を用いた以外は参考例1と同様の方法により、硬化性樹脂組成物を調製し、これをシール剤として液晶表示装置を作製した。
( Example 1 )
1000 parts by weight of a crystalline epoxy resin represented by the following general formula (4) (manufactured by Nippon Steel Chemical Co., Ltd .: YSLV-80DE, melting point 79 ° C.), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, and triethylamine as a reaction catalyst 2 parts by weight and 200 parts by weight of acrylic acid were reacted at 90 ° C. for 5 hours while feeding air, to obtain a crystalline (meth) acrylic acid-modified epoxy resin (50% partially acrylate).
The same as Reference Example 1 except that this crystalline (meth) acrylic acid-modified epoxy resin (50% partially acrylated) was used instead of the amorphous (meth) acrylic acid-modified epoxy resin (50% partially acrylated). A curable resin composition was prepared by the method, and a liquid crystal display device was produced using this as a sealant.

Figure 0004022194
Figure 0004022194

式中、Gはグリシジル基を表す。 In the formula, G represents a glycidyl group.

(比較例1)
下記一般式(5)で表されるウレタンアクリレート(共栄社化学社製、AH−600)35重量部、2−ヒドロキシブチルアクリレート15重量部、イソボニルアクリレート50重量部、ベンゾフェノン3重量部からなる硬化性樹脂組成物を均一な液となるように混合し、光硬化型のシール剤を得、これを用いて液晶表示装置を作製した。
(Comparative Example 1)
Curability comprising 35 parts by weight of urethane acrylate represented by the following general formula (5) (manufactured by Kyoeisha Chemical Co., AH-600), 15 parts by weight of 2-hydroxybutyl acrylate, 50 parts by weight of isobornyl acrylate, and 3 parts by weight of benzophenone. The resin composition was mixed so as to be a uniform liquid to obtain a photocurable sealing agent, and a liquid crystal display device was produced using this.

Figure 0004022194
Figure 0004022194

式中、Rは炭素数5のアルキル鎖を表す。 In the formula, R 1 represents an alkyl chain having 5 carbon atoms.

(比較例2)
下記一般式(6)で表されるビスフェノールAエポキシ樹脂(ジャパンエポキシレジン社製、エピコート828US)50重量部、ヒドラジド系硬化剤(日本ヒドラジン工業社製、NDH)25重量部からなる硬化性樹脂組成物を均一な液となるように三本ロールを用いて充分に混合し、シール剤を得、これを用いて液晶表示装置を作製した。
(Comparative Example 2)
A curable resin composition comprising 50 parts by weight of a bisphenol A epoxy resin represented by the following general formula (6) (Epicoat 828US, manufactured by Japan Epoxy Resin Co., Ltd.) and 25 parts by weight of a hydrazide-based curing agent (manufactured by Nippon Hydrazine Kogyo Co., Ltd., NDH). The product was sufficiently mixed using a three roll so as to be a uniform liquid to obtain a sealant, and a liquid crystal display device was produced using this.

Figure 0004022194
Figure 0004022194

参考例1実施例1及び比較例1、2で作製した液晶表示装置について、60℃、95%RH、500時間放置前後に、シール部周辺の液晶に生じる色ムラを目視で観察し、◎(色ムラが全くない)、○(色ムラが微かにある)、△(色ムラが少しある)、×(色ムラがかなりある)の4段階で液晶汚染性の評価を行った。なお、ここでは1区につきサンプル数5で行った。
結果を表1に示した。
About the liquid crystal display devices produced in Reference Example 1 , Example 1 and Comparative Examples 1 and 2, color unevenness generated in the liquid crystal around the seal portion was visually observed before and after being left at 60 ° C. and 95% RH for 500 hours. Liquid crystal contamination was evaluated in four stages (no color unevenness at all), ○ (color unevenness slightly), Δ (color unevenness a little), and x (color unevenness considerably). Here, the number of samples was 5 per section.
The results are shown in Table 1.

Figure 0004022194
Figure 0004022194

参考例2
参考例1と同様にして得られた硬化性樹脂組成物を均一な液となるように三本ロールを用いて充分に混合した後、硬化性樹脂組成物100重量部に対して、導電性微粒子として金メッキを施した金属メッキ微粒子(積水化学工業社製、ミクロパールAU−206)2重量部を配合し、真空遊星式攪拌装置で混合して、液晶表示素子用上下導通材料を作製した。
( Reference Example 2 )
After thoroughly mixing the curable resin composition obtained in the same manner as in Reference Example 1 using three rolls so as to form a uniform liquid, the conductive fine particles are used with respect to 100 parts by weight of the curable resin composition. 2 parts by weight of gold-plated metal plating fine particles (manufactured by Sekisui Chemical Co., Ltd., Micropearl AU-206) were mixed and mixed with a vacuum planetary stirrer to prepare a vertical conduction material for a liquid crystal display element.

透明基板に、得られた上下導通材料をディスペンサー塗布により上下導通用の電極上に上下導通用パターンを形成したこと以外は参考例1と同様にして液晶表示装置を作製した。 A liquid crystal display device was produced in the same manner as in Reference Example 1 except that a vertical conduction pattern was formed on a vertical conduction electrode on a transparent substrate by applying the obtained vertical conduction material to a transparent substrate.

得られた液晶表示装置について、60℃、95%RH、500時間放置前後に、上下導通材料周辺の液晶に生じる色ムラを目視で観察したところ、○(色ムラが微かにある)の評価結果であった。また、導通性も良好であった。 When the obtained liquid crystal display device was visually observed for color unevenness occurring in the liquid crystal around the vertical conduction material before and after being left at 60 ° C., 95% RH for 500 hours, the evaluation result of ○ (the color unevenness is slight) Met. Also, the conductivity was good.

本発明によれば、液晶表示素子並びにその製造において液晶表示素子用シール剤、液晶表示素子用封口剤及び液晶表示素子用上下導通材料の少なくとも一つとして用いた場合に、その成分が液晶材料中に溶け出して液晶汚染を引き起こすことがないため液晶表示において色ムラが少ないことから、特に滴下工法による液晶表示装置の製造に最適である液晶表示素子用硬化性樹脂組成物、これを用いた液晶表示素子用シール剤、液晶表示素子用封口剤、液晶表示素子用上下導通材料及び液晶表示装置を提供できる。 According to the present invention, when used as at least one of a liquid crystal display element and a sealing agent for liquid crystal display elements, a sealing agent for liquid crystal display elements, and a vertical conduction material for liquid crystal display elements in the production thereof, the component is contained in the liquid crystal material. Since there is little color unevenness in the liquid crystal display because it does not dissolve in the liquid crystal and cause liquid crystal contamination, a curable resin composition for a liquid crystal display element that is particularly suitable for manufacturing a liquid crystal display device by a dropping method, and a liquid crystal using the same A sealing agent for a display element, a sealing agent for a liquid crystal display element, a vertical conduction material for a liquid crystal display element, and a liquid crystal display device can be provided.

Claims (12)

結晶性エポキシ樹脂と(メタ)アクリル酸とを反応させてなる(メタ)アクリル酸変性エポキシ樹脂を含有する液晶表示素子用硬化性樹脂組成物であって、前記結晶性エポキシ樹脂はエーテル型エポキシ樹脂であることを特徴とする液晶表示素子用硬化性樹脂組成物。 A curable resin composition for a liquid crystal display element comprising a (meth) acrylic acid-modified epoxy resin obtained by reacting a crystalline epoxy resin and (meth) acrylic acid , wherein the crystalline epoxy resin is an ether type epoxy resin A curable resin composition for a liquid crystal display element. エーテル型エポキシ樹脂は、下記一般式(4)で表されるものであることを特徴とする請求項1記載の液晶表示素子用硬化性樹脂組成物
Figure 0004022194
式(4)中、Gはグリシジル基を表す。
The curable resin composition for a liquid crystal display element according to claim 1, wherein the ether type epoxy resin is represented by the following general formula (4) .
Figure 0004022194
In formula (4), G represents a glycidyl group.
結晶性エポキシ樹脂の融点が140℃以下であることを特徴とする請求項1又は2記載の液晶表示素子用硬化性樹脂組成物。 3. The curable resin composition for a liquid crystal display device according to claim 1, wherein the crystalline epoxy resin has a melting point of 140 ° C. or lower. (メタ)アクリル酸変性エポキシ樹脂は、結晶性(メタ)アクリル酸変性エポキシ樹脂であることを特徴とする請求項1、2又は3記載の液晶表示素子用硬化性樹脂組成物。 4. The curable resin composition for a liquid crystal display element according to claim 1, wherein the (meth) acrylic acid-modified epoxy resin is a crystalline (meth) acrylic acid-modified epoxy resin. (メタ)アクリル酸変性エポキシ樹脂は、融点が80℃以下であることを特徴とする請求項1、2、3又は4記載の液晶表示素子用硬化性樹脂組成物。 5. The curable resin composition for a liquid crystal display element according to claim 1, wherein the (meth) acrylic acid-modified epoxy resin has a melting point of 80 ° C. or less. (メタ)アクリル酸変性エポキシ樹脂は、樹脂骨格中における硫黄原子と酸素原子との総計が5〜10であることを特徴とする請求項1、2、3、4又は5記載の液晶表示素子用硬化性樹脂組成物。 6. The (meth) acrylic acid-modified epoxy resin has a total number of sulfur atoms and oxygen atoms in the resin skeleton of 5 to 10, for a liquid crystal display element according to claim 1, 2, 3, 4 or 5 Curable resin composition. (メタ)アクリル酸変性エポキシ樹脂は、樹脂骨格中の硫黄原子と酸素原子との総計を総原子数で除した値が0.08〜0.14であることを特徴とする請求項1、2、3、4、5又は6記載の液晶表示素子用硬化性樹脂組成物。 (Meth) acrylic acid-modified epoxy resins, claim value obtained by dividing the total number of atoms of the total of sulfur and oxygen atoms in the resin skeleton, characterized in that a 0.08 to 0.14 1,2 The curable resin composition for a liquid crystal display element according to 3, 4, 5, or 6 . (メタ)アクリル酸変性エポキシ樹脂の配合量が10〜50重量%であることを特徴とする請求項1、2、3、4、5、6又は7記載の液晶表示素子用硬化性樹脂組成物。 8. The curable resin composition for a liquid crystal display device according to claim 1 , wherein the amount of the (meth) acrylic acid-modified epoxy resin is 10 to 50% by weight. . 請求項1、2、3、4、5、6、7又は8記載の液晶表示素子用硬化性樹脂組成物を用いてなることを特徴とする液晶表示素子用シール剤。 A sealing agent for a liquid crystal display element, comprising the curable resin composition for a liquid crystal display element according to claim 1, 2, 3, 4, 5, 6, 7 or 8 . 請求項1、2、3、4、5、6、7又は8記載の液晶表示素子用硬化性樹脂組成物を用いてなることを特徴とする液晶表示素子用封口剤。 A sealing agent for a liquid crystal display element comprising the curable resin composition for a liquid crystal display element according to claim 1, 2, 3, 4, 5, 6, 7 or 8 . 請求項1、2、3、4、5、6、7又は8記載の液晶表示素子用硬化性樹脂組成物と導電性微粒子とを含むことを特徴とする液晶表示素子用上下導通材料。 A vertical conducting material for a liquid crystal display element comprising the curable resin composition for a liquid crystal display element according to claim 1, 2, 3, 4, 5, 6, 7, or 8 , and conductive fine particles. 請求項9記載の液晶表示素子用シール剤、請求項10記載の液晶表示素子用封口剤、及び請求項11記載の液晶表示素子用上下導通材料の少なくとも一つを用いてなることを特徴とする液晶表示装置。 A sealing agent for a liquid crystal display element according to claim 9 , a sealing agent for a liquid crystal display element according to claim 10 , and a vertical conduction material for a liquid crystal display element according to claim 11 are used. Liquid crystal display device.
JP2003394615A 2003-06-04 2003-11-25 Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device Expired - Lifetime JP4022194B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2003394615A JP4022194B2 (en) 2003-06-04 2003-11-25 Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device
CN 200810214942 CN101367982B (en) 2003-06-04 2004-06-04 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
TW102143740A TWI504667B (en) 2003-06-04 2004-06-04 A hardened resin composition, a sealant for a liquid crystal display element, and a liquid crystal display element
PCT/JP2004/007811 WO2004108790A1 (en) 2003-06-04 2004-06-04 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
TW099125906A TWI509015B (en) 2003-06-04 2004-06-04 A hardened resin composition, a sealant for a liquid crystal display element, and a liquid crystal display element
US10/559,529 US20060240198A1 (en) 2003-06-04 2004-06-04 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
KR1020097014852A KR101180600B1 (en) 2003-06-04 2004-06-04 Method for producing curing resin composition
CN200480015573.6A CN1798786B (en) 2003-06-04 2004-06-04 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
EP04745587A EP1640396A1 (en) 2003-06-04 2004-06-04 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
KR1020097014851A KR100952263B1 (en) 2003-06-04 2004-06-04 Curing resin composition
TW093116052A TW200508314A (en) 2003-06-04 2004-06-04 A liquid crystal display device and curing resin composition, sealing material for the same
CN2008102149439A CN101369098B (en) 2003-06-04 2004-06-04 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
KR1020057023184A KR100935774B1 (en) 2003-06-04 2004-06-04 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
US12/273,403 US20090093562A1 (en) 2003-06-04 2008-11-18 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
US12/274,103 US20090134358A1 (en) 2003-06-04 2008-11-19 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003159905 2003-06-04
JP2003394615A JP4022194B2 (en) 2003-06-04 2003-11-25 Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2005018022A JP2005018022A (en) 2005-01-20
JP4022194B2 true JP4022194B2 (en) 2007-12-12

Family

ID=34196743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394615A Expired - Lifetime JP4022194B2 (en) 2003-06-04 2003-11-25 Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4022194B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074699B2 (en) * 2005-03-25 2012-11-14 積水化学工業株式会社 Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
WO2007132724A1 (en) * 2006-05-11 2007-11-22 Nippon Kayaku Kabushiki Kaisha Reactive carboxylate compound, curable resin composition using the same, and use thereof
KR101274622B1 (en) * 2006-09-26 2013-06-14 삼성디스플레이 주식회사 Sealant and liquid crystal display apparatus using the same
JP5109324B2 (en) * 2006-10-10 2012-12-26 Dic株式会社 Photocurable composition for sealant, liquid crystal sealant, and liquid crystal panel
KR101341137B1 (en) * 2007-07-30 2013-12-13 삼성디스플레이 주식회사 Sealant and display apparatus using the same
JP5320164B2 (en) * 2009-05-26 2013-10-23 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5393292B2 (en) * 2009-06-26 2014-01-22 日本化薬株式会社 Liquid crystal sealing agent for liquid crystal dropping method and liquid crystal display cell using the same
WO2015071976A1 (en) 2013-11-13 2015-05-21 Dic株式会社 Liquid crystal display device
US9823517B2 (en) 2014-01-21 2017-11-21 Dic Corporation Liquid crystal display device
US10078247B2 (en) 2014-08-01 2018-09-18 Dic Corporation Liquid crystal display
KR20220133967A (en) 2020-05-29 2022-10-05 미쓰이 가가쿠 가부시키가이샤 Sealing agent for display devices

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221417A (en) * 1984-04-18 1985-11-06 Nippon Kayaku Co Ltd Novel epoxy polyacrylate composition
JPH01296241A (en) * 1988-05-24 1989-11-29 Unitika Ltd Photosensitive resin composition
JPH03710A (en) * 1989-05-30 1991-01-07 Nippon Shokubai Kagaku Kogyo Co Ltd Resin composition and molding material for sealing and casting of members made of different kind of material using the same resin composition
JPH03244615A (en) * 1990-02-23 1991-10-31 Nippon Kayaku Co Ltd Resin composition and cured product thereof
JPH05140264A (en) * 1990-07-05 1993-06-08 Dainippon Ink & Chem Inc Production of thermosetting resin composition and laminated board
JPH06332169A (en) * 1993-05-19 1994-12-02 Unitika Ltd Resist ink composition
JPH09157340A (en) * 1995-12-08 1997-06-17 Kyoeisha Chem Co Ltd Novel heat-resistant resin
JPH103084A (en) * 1996-06-18 1998-01-06 Sumitomo Bakelite Co Ltd Sealing material composition for liquid crystal display element, and liquid crystal display element formed by using the same
JPH10251499A (en) * 1997-03-13 1998-09-22 Hitachi Chem Co Ltd Vinyl ester resin composition and nongel-coated cast artificial marble
JPH10292096A (en) * 1997-04-17 1998-11-04 Nippon Oil Co Ltd Resin composition for prepreg
JP4344894B2 (en) * 1999-05-28 2009-10-14 三菱瓦斯化学株式会社 Epoxy acrylate compound
JP4812974B2 (en) * 2001-07-12 2011-11-09 新日鐵化学株式会社 Curable resin, curable resin composition and cured product thereof
JP2003119249A (en) * 2001-10-17 2003-04-23 Mitsui Chemicals Inc Liquid crystal sealing resin composition
JP2004061925A (en) * 2002-07-30 2004-02-26 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same

Also Published As

Publication number Publication date
JP2005018022A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4427085B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
WO2004108790A1 (en) Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
WO2008004455A1 (en) Liquid crystal sealing agent and liquid crystal display cell using the same
JP2007316624A (en) Sealing material for liquid crystal dispensing method, vertically conducting material, and liquid crystal display device
JP4022194B2 (en) Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device
JPWO2007138870A1 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2008003260A (en) Sealant for liquid crystal dripping methods, top-bottom conducting material, and liquid crystal display element
JP2006023580A (en) Curable resin composition for liquid crystal display element, sealing material for liquid crystal dispenser method, vertically conducting material, and liquid crystal display element
JP4974344B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2007003911A (en) Sealing agent for liquid crystal instillation method, vertical conduction material, and liquid crystal display device
JP4532883B2 (en) Photocurable resin composition, liquid crystal display element sealing agent, liquid crystal display element sealing agent, liquid crystal display element vertical conduction material, and liquid crystal display device
JP4668538B2 (en) Curable resin composition, sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP3826144B2 (en) Curable resin composition for liquid crystal display element, sealing agent for liquid crystal dropping method, material for vertical conduction and liquid crystal display element
JP2005054164A (en) Photo- and heat-curable resin composition, sealing agent for liquid crystal display element, opening-sealing agent for the liquid crystal display element, vertically-conducting material for the liquid crystal display element, and liquid crystal display device
JP3857281B2 (en) Curable resin composition for liquid crystal display element
JP4452530B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2005025156A (en) Hardening resin composition for liquid crystal display device, sealing agent for liquid crystal display device, end-sealing agent for liquid crystal display device, vertical conducting material for liquid crystal display device, and liquid crystal display device
JP4117256B2 (en) Curable resin composition for liquid crystal display element, sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP3784394B2 (en) Curable resin composition for liquid crystal display element, sealing agent for liquid crystal dropping method, material for vertical conduction and liquid crystal display element
JP2005060651A (en) Curable resin composition, sealing agent for liquid crystal display element, mouth-sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element and liquid crystal display element
JP3840484B2 (en) Curable resin composition for liquid crystal display element, sealing agent for liquid crystal display element, material for vertical conduction, and liquid crystal display element
JP2005234130A (en) Hardening resin composition for liquid crystal display element, sealing material for liquid crystal dropping construction method, vertical conduction material, and liquid crystal display element
JP2005195977A (en) Curing resin composition for liquid crystal display element, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP4656890B2 (en) Sealant for liquid crystal display element for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2011209734A (en) Sealing material for liquid crystal dropping method, vertical conductive material, and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4022194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

EXPY Cancellation because of completion of term