JP2011167967A - 機能性フィルムの製造方法 - Google Patents

機能性フィルムの製造方法 Download PDF

Info

Publication number
JP2011167967A
JP2011167967A JP2010034813A JP2010034813A JP2011167967A JP 2011167967 A JP2011167967 A JP 2011167967A JP 2010034813 A JP2010034813 A JP 2010034813A JP 2010034813 A JP2010034813 A JP 2010034813A JP 2011167967 A JP2011167967 A JP 2011167967A
Authority
JP
Japan
Prior art keywords
film
support
laminate
organic
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010034813A
Other languages
English (en)
Other versions
JP5198493B2 (ja
Inventor
Eijiro Iwase
英二郎 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010034813A priority Critical patent/JP5198493B2/ja
Priority to US13/030,757 priority patent/US9067381B2/en
Publication of JP2011167967A publication Critical patent/JP2011167967A/ja
Priority to US13/859,120 priority patent/US8597765B2/en
Application granted granted Critical
Publication of JP5198493B2 publication Critical patent/JP5198493B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】生産性の高い、高品質の機能性フィルムの製造方法を提供する。
【解決手段】有機膜成膜装置22により裏面側に第1のラミネートフィルムが付与され自己支持性を有する長尺の支持体12を送り出し、支持体12を搬送しながら、その表面側に有機膜を形成し、有機膜の表面に第2のラミネートフィルム82を付与し、支持体12をフィルムロール42にして巻き取る。 フィルムロール42を真空成膜装置24内に装填し、フィルムロール42から連続的に第1のラミネートフィルムと第2のラミネートフィルム82が付与された支持体12を送り出す。支持体12を搬送しながら、第2のラミネートフィルム82を剥離し、支持体12の有機膜上に無機膜を形成し、支持体12をフィルムロール48に巻き取る。
【選択図】 図2

Description

本発明は機能性フィルムの製造方法において、特に、支持体上に有機膜と無機膜が成膜される機能性フィルムの製造方法に関する。
光学素子、液晶ディスプレイや有機ELディスプレイなどの表示装置、半導体装置、薄膜太陽電池など、各種の装置に、ガスバリアフィルム、保護フィルム、光学フィルタや反射防止フィルム等の光学フィルムなど、各種の機能性フィルムが利用されている。
機能性フィルムを製造するため、スパッタリングやプラズマCVD等の真空成膜法による成膜が利用されている。機能性フィルム(例えば、バリアフィルム)の製造方法の一例として、連続走行する支持体上にアクリレートモノマー等を塗布し、乾燥、硬化を経てロールに巻き取り、有機膜が形成されたロールを真空成膜装置に送り出し、有機膜上に無機膜を成膜することが知られている(特許文献1)。
特開平8−92727号公報
特許文献1は、無機膜を成膜する際の巻きずれを防止して機能性フィルムの品質を均一にするため、真空成膜装置に巻硬度70〜95のフィルムロールを送出し部にセットし、支持体上に無機膜を連続的に成膜する方法を開示する。
しかしながら、特許文献1に記載されているように有機膜が形成されたフィルムロールを巻硬度70〜95で巻き取ったとしても、フィルムロールは支持体を巻き取る際に同伴エアーを巻き込んでしまう。同伴エアーを巻き込んだフィルムロールを減圧された真空成膜装置の送出し部にセットすると、フィルムロール内の同伴エアーが抜け出す。
これにより、フィルムロール内部の巻取り時の応力(張力、摩擦力)のバランスが崩れ、フィルムロールが「巻き締まり(ロール径収縮)」の動きを起こしてしまう。
この「巻き締まり」を起こすと、フィルムロールでは、支持体上の有機膜が上部にある支持体の裏面と擦れ、また、支持体の裏面に付着したゴミとの接触を起こす。そのため、有機膜は微小な膜の破裂を発生させ、平滑性を失う。この後に支持体を搬送し、有機膜上に無機膜を成膜すると、成膜不良が発生し、無機膜の割れ/抜けの問題を起こす。
また、真空成膜装置内で有機膜、又は無機膜が成膜された支持体をガイドローラにより搬送するとき、有機膜、又は無機膜とガイドローラとが接触すると機能性フィルムの性能に影響する。真空成膜装置内では、大気中に比べ同伴エアーが存在しないために、ガイドローラとの接触、つまり摩擦、が大きくなる。無機膜の成膜前に有機膜がガイドローラに接触すると、微小な膜破壊を起こす。無機膜の成膜後、無機膜がガイドローラに接触すると、無機膜が非常に薄膜であるゆえに微小なキズが発生し、バリア性能を損なうことが問題となる。
使用する支持体が薄く、柔らかい場合、搬送に必要なテンションよっては幅方向にたわみ、縦皺を発生しやすくなる。その結果、ガイドローラと支持体が局所的に接触する場所ではより力が加わることになり、有機膜や無機膜が壊れやすくなる。また、支持体に折れ発生すると、有機膜や無機膜にクラックを起こしやすくなるという問題がある。
これらを解決するために、支持体の端部のみを支持し、成膜面を非接触で搬送する方法が考えられる。支持体が薄い場合ではテンションによる支持体の縦皺が増大するため、非常に遅く搬送するか、支持する部分の領域を大きくするなど生産性を大きく落とすことが必要になる。
一方、生産性・コストや使用用途のために支持体の種類・厚みに関しては薄層化のニーズが非常に高い。また、バリア膜等の無機膜の成膜方法において、支持体が熱源に暴露される工程を有する。そのため支持体を成膜側と反対面(裏面)から冷却する必要がある。冷却は、冷却ドラムと支持体を密着させて行なわれるため、搬送時の支持体のテンションの制御は重要となる。
本発明はこのような事情に鑑みてなされたもので、生産性が高く高品質の機能性フィルムの製造方法を提供する。
前記目的を達成するために、本発明の機能性フィルムの製造方法は、裏面側に第1のラミネートフィルムが付与され自己支持性を有する長尺の支持体を送り出し、前記支持体を搬送しながら、前記支持体の表面側に有機膜を形成し、前記有機膜の表面に第2のラミネートフィルムを付与し、前記支持体をフィルムロールにして巻き取る第1の工程と、前記フィルムロールを真空成膜装置内に装填し、前記フィルムロールから連続的に前記第1のラミネートフィルムと前記第2のラミネートフィルムが付与された前記支持体を送り出し、前記支持体を搬送しながら、前記第2のラミネートフィルムを剥離し、前記支持体の前記有機膜上に無機膜を形成し、前記支持体をフィルムロールに巻き取る第2の工程と、を含むことを特徴とする。
本発明によれば、支持体は裏面側に第1のラミネートフィルムを備えているので、支持体は自己支持性を有する。張力を掛けて支持体を搬送しても、この自己支持性により、支持体に縦皺や折れが生じにくい。したがって、縦皺や折れに起因する有機膜や無機膜の抜け/割れ等の欠陥が発生するのを防止できる。また、縦皺や折れに起因する支持体とガイドローラとの局所接触を防止できる。欠陥の少ない高品質の機能性フィルムを得ることができる。
本発明によれば、支持体上に有機膜を形成した後、有機膜の表面に第2のラミネートフィルムが付与され、フィルムロールとして巻き取られる。第2のラミネートフィルムを有するフィルムロールが真空成膜装置にセットされる。真空排気されフィルムロールに巻き締まりが生じても、第2のラミネートフィルムにより保護されているので有機膜がダメージを受けることがない。無機膜が成膜されるまで、第2のラミネートフィルムにより有機膜を保護した状態で支持体を真空成膜装置内を搬送するので、有機膜は搬送によるダメージを受けることがない。つまり、平滑な有機膜上に無機膜を形成することができる。
本発明の機能性フィルムの製造方法は、前記発明において、前記第1のラミネートフィルムと前記支持体との総厚みが75μm以上であることが好ましい。
本発明の機能性フィルムの製造方法は、前記発明において、前記第1のラミネートフィルムは0.01N/25mm以上の粘着力であることが好ましい。
本発明の機能性フィルムの製造方法は、前記発明において、前記第2のラミネートフィルムは0.06N/25mm以下の粘着力であることが好ましい。
本発明の機能性フィルムの製造方法は、前記発明において、前記第1の工程、及び前記第2の工程において、前記支持体の裏面側、及び前記支持体の表面側の端部の少なくとも一方をパスローラにより支持して、前記支持体を搬送することが好ましい。
本発明の機能性フィルムの製造方法は、前記発明において、前記支持体に無機膜を成膜する前に、さらに前記支持体と前記第1のラミネートフィルムとの間の密着性を改善する工程を有することが好ましい。
本発明の機能性フィルムの製造方法は、前記発明において、前記無機膜が5nm以上200nm以下の厚みを有することが好ましい。
本発明の機能性フィルムの製造方法は、前記発明において、前記無機膜が金属、金属酸化物、金属窒化物、金属炭化物、金属フッ化物、若しくはその複合物から成る群から選択された一つを含むことが好ましい。
本発明の機能性フィルムの製造方法は、前記発明において、前記有機膜が放射線硬化性のモノマー、及びオリゴマーの一つを含むことが好ましい。
本発明の製造方法によれば、生産性が高く、高品質の機能性フィルムを得ることができる。
機能性フィルムの構成図。 機能性フィルムの製造方法を実施する装置の一例を示す図。 段差付きローラによる搬送状態を示す概念図。 実施例の結果を示す表図。
以下、添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱すること無く、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。従って、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。また、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を含む範囲を意味する。
図1は、本発明の製造方法により製造される機能性フィルムの構成図の一例を示す。図1に示すように、機能性フィルム10は、支持体12の表面に成膜された有機膜14と、有機膜14の上に成膜された無機膜16を有する。図1に示す機能性フィルム10は、有機膜14と無機膜16の2層の組み合わせを、繰り返しの単位として、これを3回繰り返したものである。機能性フィルム10は最外層に有機膜18を有する。支持体12の表面側に成膜される有機膜14と無機膜16の構造は、上述の構造に限定されない。支持体12の表面側に無機膜/有機膜の順で成膜することができる。
支持体12の裏面側に第1のラミネートフィルム20が貼り付けられる。第1のラミネートフィルム20を貼り付けることにより、支持体12と第1のラミネートフィルム20との複合材に自己支持性が付与される。支持体12と第1のラミネートフィルム20との総厚みtは75μm以上であることが好ましい。総厚みtが75μm以上であれば、支持体12と第1のラミネートフィルム20との複合材の自己支持性を確保することができる。
ここで、自己支持性とは、フィルムのコシの強さ(剛性)であり、その大きさはヤング率(GPa)とフィルム厚み(μm)の3乗の積で定義される。なお、支持体にラミネートフィルムが貼り付けられた複合体の場合、支持体のヤング率(GPa)とラミネートフィルムのヤング率(GPa)の平均値(GPa)と複合体の総厚み(μm)の3乗の積で定義される。本実施の形態において必要な自己支持性の範囲は、2(GPa)×100(μm)〜6(GPa)×200(μm)となる。
有機膜14および真空成膜による無機膜16の成膜が可能なものであれば、支持体12として、特に限定はなく、PETフィルム等の各種の樹脂フィルム、アルミニウムシートなどの各種の金属シートなど、機能性フィルムに利用されている各種の支持体を使用することができる。
支持体12に自己支持性を付与できるものであれば、第1のラミネートフィルム20として、PE,PET、PEN、PC、COP等を使用することができる。後述するように、第1のラミネートフィルム20は、真空成膜による無機膜16を成膜時に、支持体12の裏面に備えていればよい。第1のラミネートフィルム20を支持体12から剥離する場合、支持体12と第1のラミネートフィルム20との接着力は、支持体12の表面側に成膜される有機膜14又は無機膜16と支持体12との接着力より弱くすることが好ましい。なお、第1のラミネートフィルム20は0.01N/25mm以上の粘着力を有することが好ましい。第1のラミネートフィルム20の粘着力が弱いと、搬送中に第1のラミネートフィルム20が剥がれ、搬送に支障をきたす場合がある。第1のラミネートフィルム20の粘着力を上述の値以上にすることで、搬送中に第1のラミネートフィルム20が剥がれるのを防止することができる。
有機膜14には、例えば、密着性を向上させるためのアンカーコート層、大気圧プラズマで成膜される酸化膜、熱硬化性や紫外線硬化性の有機膜等の無機膜が成膜される前に成膜される全ての膜が含まれる。
無機膜16は、金属、金属酸化物、金属窒化物、金属炭化物、金属フッ化物もしくはその複合物を、少なくとも一つを含む物であることが好ましい。
無機膜16、または無機膜16と有機膜14との積層体を支持体12の表面側に形成することにより、所定の機能を有する機能性フィルム10を得ることができる。
以下、実施形態に係る機能性フィルムの製造方法について説明する。機能性フィルムを製造するための製造装置は、例えば、支持体12の表面に有機膜を成膜する有機膜成膜装置22と、有機膜上に無機膜を成膜する真空成膜装置24とで構成される。
図2(A)に、有機膜成膜装置22の一例を概念的に示す。有機膜成膜装置22は、塗布手段26、加熱手段28、および、UV照射装置30を有する。この有機膜成膜装置22は、ロール・ツー・ロールによって有機膜を成膜するものである。第1に、フィルムロール40が送出し機32に装填される。次いで、引取ローラ36によりフィルムロール40から支持体12が長手方向に搬送される。塗布手段26により、例えば、予め調製された放射線硬化性のモノマー又はオリゴマーを含有する塗布液が支持体12に塗布される。加熱手段28により塗布液を乾燥し、溶剤を蒸発させる。UV照射装置30で、乾燥後の塗布液に紫外線を照射し、重合反応を開始させる。有機膜が硬膜化し、支持体12上に成膜される。第2のラミネートフィルム82がラミネートフィルム送出し機81から送り出される。一対のニップローラ38により第2のラミネートフィルム82が有機膜の表面に貼り付けられる。支持体12は、フィルムロール42として巻取り機34に巻き取られる。このとき、支持体12の巻き取りテンションは制御される。
本実施の形態において、裏面に第1のラミネートフィルムを備え、自己支持性を有する支持体12がロール状に巻き取られ、フィルムロール40として準備される。第1のラミネートフィルムにより自己支持性が支持体12に付与されている。したがって、送出し機32から巻取り機34に搬送される間、支持体12には縦皺、折れ等が発生しない。これにより、支持体12上に成膜される有機膜が破壊されるのを防止できる。特に、無機膜の成膜の前の有機膜の破壊を防止することで、無機膜に成膜不良領域(つまり、欠陥)が発生するのを防止できる。
本実施の形態では、第1のラミネートフィルムは有機膜の塗布前に支持体に貼り付けられている。第1のラミネートフィルムを有機膜の塗布後に支持体に貼り付けることもできる。一旦、第1のラミネートフィルムが支持体の裏面側に貼り付けられると、支持体上に必要な層数の有機膜及び無機膜が積層されるまで、第1のラミネートフィルは支持体から剥離されない。
有機膜の成膜後に第2のラミネートフィルム82が貼り付けられ、有機膜の表面が第2のラミネートフィルム82により保護される。第2のラミネートフィルム82は0.06N/25mm以下の粘着力であることが好ましい。第2のラミネートフィルム82は無機膜の成膜前に剥離される。0.06N/25mm以下の粘着力とすることにより、第2のラミネートフィルム82を確実に剥離することができる。
第2のラミネートフィルム82の材料として、PE(高密度のPE、低密度のPE),PET等を使用することができる。特に、価格・生産性の観点からPEを使用することが好ましい。
図2(B)に示すように、真空成膜装置24は、有機膜成膜装置22と同様に、ロール・ツー・ロールによる無機膜の成膜を行なう装置である。真空成膜装置24は、供給室50と、成膜室52と、巻取り室54とを備える。供給室50の送出し機56によりフィルムロール42から支持体12が送り出される。支持体12を長手方向に搬送しながら、成膜室52内で無機膜が支持体12の有機膜上に成膜される。有機膜と無機膜とで構成される積層体が成膜された支持体12が巻取り室54の巻取り機58によってフィルムロール48に巻き取られる。
次に、無機膜の成膜方法について説明する。真空成膜装置24の供給室50は、送出し機56と、ガイドローラ60と、真空排気手段61と、ラミネートフィルム巻取り機83を有する。有機膜成膜装置22で有機膜の成膜と第2のラミネートフィルム82が貼り付けられた支持体12を巻回したフィルムロール42が送出し機56に装填される。供給室50は真空排気手段61により減圧される。減圧によりフィルムロール42の巻きしまりが生じる。本実施の形態では、有機膜の表面に第2のラミネートフィルム82が貼り付けられているので、巻き締まりに起因する擦れのキズから有機膜を保護することができる。
送出し機56によりフィルムロール42から支持体12が送り出される。支持体12が成膜室52に搬送される前に、ラミネートフィルム巻取り機83により支持体12から第2のラミネートフィルム82が巻き取られる。有機膜が露出した支持体12が、ガイドローラ60によって所定の経路を経て、隔壁74のスリット74aを通過し、成膜室52に搬送される。供給室50内では、図示しない駆動源によって送出し機56を図中時計方向に回転する。支持体12は裏面側に第1のラミネートフィルムが貼り付けられているので、支持体12は自己支持性を有する。
成膜室52内で、支持体12の表面、すなわち有機膜の表面に、無機膜が成膜される。図2(B)に示すように、成膜室52は、ドラム62と、成膜手段64a,64b、64c、および64dと、ガイドローラ68および70と、真空排気手段72とを有する。なお、成膜室52が、スパッタリングやプラズマCVD等による成膜をおこなうものである場合、成膜室52には、さらに、高周波電源等も設置される。
成膜室52のドラム62は、中心線を中心に図示しない駆動源によって、図中反時計方向に回転する。ガイドローラ68によって所定の経路に案内された支持体12は、ドラム62の周面の所定領域に掛け回されて、ドラム62に支持/案内されつつ、所定の搬送経路を搬送され、成膜手段64a〜64dによって、有機膜上に無機膜が成膜される。このとき成膜される無機膜は、5nm〜200nmの厚さを有することが好ましい。
成膜手段64a〜64dは、真空成膜法によって、支持体12の表面に無機膜を成膜する装置である。成膜手段として限定はなく、CVD、プラズマCVD、スパッタリング、真空蒸着、イオンプレーティング等、公知の真空成膜法(気相堆積法)が、全て、利用することができる。
従って、成膜手段64a〜64dは、実施する真空成膜法に応じた、各種の部材で構成される。例えば、成膜室52がICP−CVD法(誘導結合型プラズマCVD)によって無機膜の成膜を行なうものであれば、成膜手段64a〜64dは、誘導磁場を形成するための誘導コイルや、成膜領域に反応ガスを供給するためのガス供給手段等を有して構成される。
また、成膜室52が、CCP−CVD法(容量結合型プラズマCVD)によって無機膜の成膜を行なうものであれば、成膜手段64a〜64dは、中空状でドラム62に対向する面に多数の小孔を有し反応ガスの供給源に連結される、高周波電極および反応ガス供給手段として作用するシャワー電極等を有して構成される。
また、成膜室52が、CVD法によって気相成膜により無機膜の成膜を行なうものであれば、成膜手段64a〜64dは、反応ガスの導入手段等を有して構成される。
さらに、成膜室52が、スパッタリングによって無機膜の成膜を行なうものであれば、成膜手段64a〜64dは、ターゲットの保持手段や高周波電極、スパッタガスの供給手段等を有して構成される。
真空排気手段72は、成膜室52内を真空排気して、真空成膜法による無機膜の成膜に応じた真空度とするものである。真空排気手段72は、特に限定はなく、ターボポンプ、メカニカルブースターポンプ、ロータリーポンプなどの真空ポンプ、さらには、クライオコイル等の補助手段、到達真空度や排気量の調整手段等を利用する、真空成膜装置に用いられている公知の(真空)排気手段が、各種利用可能である。
成膜手段64a〜64dによって無機膜が成膜された支持体12は、ガイドローラ70及び78によって、隔壁75のスリット75aに案内され、巻取り室54に搬送される。巻取り室54には真空排気手段80が設けられる。真空排気手段80によって、巻取り室54内が所定圧力となるよう減圧される。巻取り室54内に設けられた巻取り機58によって、支持体12がフィルムロール48に巻き取られる。
なお、供給室50には、図示した部材に加えて、一対の搬送ローラや、支持体12の幅方向の位置を規制するガイド部材など、支持体12を所定の経路で搬送するための搬送手段が設置されてもよい。
支持体12の裏面に第1のラミネートフィルムを付与することで、無機膜が成膜される支持体12に適度な剛性を持たせることができる。真空成膜装置24を搬送する(もしくは複数回往復させる)際に、縦皺や折れを発生させることなく支持体12を搬送することができる。成膜不良に起因する欠陥が無機膜に発生するのを防止でき、品質の優れた無機膜を得ることができる。
図3は、真空成膜装置内での支持体の搬送状態を示す。真空成膜装置内では、支持体12の端部(搬送方向と直交する方向(幅方向)の端部)のみに接触する段差付きのガイドローラにより支持体12を搬送することが好ましい。一般的に、支持体上に各種の膜を有する機能性フィルムは、端部まで全てが製品として使用されることは無く、端部近傍は切断され、あるいは、使用されても機能性フィルムとして作用する必要が無い。つまり、機能性フィルムの端部は、性能や特性が劣化あるいは低下していても、製品として問題が生じることは無いからである。
図3(A)は、供給室50内での無機膜の成膜前の支持体12の搬送状態を示す。段差付きのガイドローラ60は、ローラの両端部の径が中央部に比べて大きい。有機膜14に貼り付けられた第2のラミネートフィルム82はガイドローラ60の両端部でのみ接触し、実際に製品として使用される領域(機能発現部)はガイドローラ60と接触しない。特に、支持体12の裏面にラミネートフィルム20が貼り付けられているので、張力を加えても支持体12に縦皺や折れが発生し難い。機能発現部の有機膜14の性能や特性は低下せず、優れた表面平滑性および表面性状を有する。したがって、有機膜14上に成膜される無機膜16はその性能を損なわない。また、第2のラミネートフィルム82により有機膜14が保護されているので、支持体12の搬送中に有機膜14がダメージを受けるのを防止することができる。
図3(B)は、無機膜の成膜後の支持体12の搬送状態を示す。段差付きのガイドローラ70,78は、ローラの両端部の径が中央部に比べて大きい。無機膜16はガイドローラ70,78の両端部でのみ接触し、無機膜16の機能発現部はガイドローラ70,78と接触しない。支持体12の裏面に第1のラミネートフィルム20が貼り付けられているので、支持体12に縦皺や折れが発生し難い。したがって、機能発現部の無機膜16は、欠け等による性能や特性の低下を生じない。
第1のラミネートフィルムにより自己支持性が支持体に付与されているので、段差付きのガイドローラの端部のみで支持体を支持する場合でも、支持体の搬送速度を上げることができる。また、安定性を飛躍的に向上することができる。
一般的に、段差付きのガイドロールを使用する場合、段差があるので搬送のテンションを上げることができない。特に、支持体に自己支持性がない場合、簡単に中央部でたわむので、テンションの上限値はより低くなる。一方で、搬送を早くするためにはスリップを無くすためにもテンションを上げる必要がある。支持体の裏面側の第1のラミネートフィルムによって自己支持性を上げることで、テンションをかけてもたわまないようにすることができ、支持体の搬送速度を上げることができる。また、自己支持性が高いので、段差部での変形が少なくなり、蛇行やテンション変動が無くなり搬送の安定性(精度)が向上する。
図2(B)で示すように、無機膜が成膜された支持体12が巻取り室54内でフィルムロール48に巻き取られる。このフィルムロール48は有機膜成膜装置22の送出し機32にフィルムロール40としてセットされ、無機膜上に有機膜が成膜される。有機膜/無機膜/有機膜が成膜された支持体12に第2のラミネートフィルム82が貼り付けられる。第2のラミネートフィルム82により最上層にあたる有機膜の表面が保護される。第2のラミネートフィルム82が貼り付けられた後、支持体12はフィルムロール42として巻取り機34に巻き取られる。
次いで、フィルムロール42は真空成膜装置24の供給室50に装填される。支持体12上に無機膜が成膜される。複数回の有機膜の成膜工程、無機膜の成膜工程を経て、所望の機能性フィルムが製造される。有機材料の成膜と無機材料の成膜が、3回繰り返し実行され、さらに最外層に有機材料が成膜され図1に示す機能性フィルムが製造される。
なお、支持体上に所定の有機膜/無機膜が成膜された後は、支持体から第1のラミネートフィルムを剥離することができる。第1のラミネートフィルムを支持体の裏面に貼り付ける目的が、支持体の保護ではなく、成膜工程中の自己支持性の確保にあるからである。
支持体を厚くして自己支持性を付与する形態に比べて、第1のラミネートフィルムを貼り付けて自己支持性を付与しているので、機能性フィルム作成後、製品加工時に剥がすことができ、支持体の厚みを調整できる。また、単価の高い支持体自身を厚くする形態に比べて、第1のラミネートフィルムを貼り付けて自己支持性を付与する場合、支持体を厚くしないので低コストで機能性フィルムを製造することができる。また、支持体の厚さを薄くすることが要求される場合、第1のラミネートフィルムを貼り付けて自己支持性を付与しているので、搬送速度を上げることができ、生産効率を落とすことなく製造することができる。
特に、無機膜を成膜する前の支持体上の平滑面において異物が付着することがその後の無機膜の形成不慮に対して大きく影響する。支持体上の平滑面とは、支持体に有機膜が成膜される場合は有機膜の表面を意味する。無機膜を成膜する前の支持体をいかに保護するかのために搬送精度を上げることが求められる。そしてその搬送精度を上げるためには、保護の観点で貼るだけではなく、自己支持性(剛性)に注目し、支持体の厚みと第1のラミネートフィルムの厚みの総厚みも重要となる。さらに、有機膜の表面が第2のラミネートフィルムにより保護されているので、無機膜形成前の有機膜の表面の平滑性を保持することができる。
無機膜を成膜する前に、支持体と第1のラミネートフィルムとの接着力を改善するための工程を通過させることが好ましい。接着力を改善するための工程として、加熱ゾーン、紫外線硬化ゾーンを通過させることが好ましい。加熱ゾーン、紫外線硬化ゾーンを真空成膜装置の前に設置し、第1のラミネートフィルムを有する支持体を通過させてもよいし、図2(A)に示される有機膜成膜装置22の加熱手段28、及びUV照射装置30を接着力改善工程として利用してもよい。その際、搬送装置にて一定のテンション(およそ50〜500N/m)をかけながら、巻取り機34で巻き取る。熱をかけながら巻き取られた支持体と第1のラミネートフィルムとの密着性が向上し、真空成膜時のハンドリングでの剥れや変形を起こしにくくなる。
一方、第2のラミネートフィルムは真空成膜装置内で剥離されるので、第2のラミネートフィルムの密着性が低いほうが好ましい。したがって、第1のラミネートフィルムに対する密着性改善工程後に、第2のラミネートフィルムを貼り付けることが好ましい。
有機膜の材料として、例えば、密着性を向上させるためのアンカーコート層、大気圧プラズマで成膜される酸化膜、熱硬化性や紫外線硬化性の有機膜を、無機膜の成膜前に使用できるものであれば良い。
例えば、具体的には、使用されるモノマー又はオリゴマーとしては、エチレン性不飽和二重結合を2個以上有し、光の照射によって付加重合するモノマー又はオリゴマーであることが好ましい。
例えば、有機膜として紫外線硬化性樹脂を適用することによって、強度や表面平滑性を向上させることができる。紫外線硬化樹脂の例として、共栄社化学製の重合性モノマー、BEPGA 15g、大阪有機化学工業株式会社製の重合性モノマーV−3PA 5gの混合物、紫外線重合開始剤(Lamberti社製、商品名:EsacureKTO−46)1.5g、2−ブタノン190gの混合溶液を支持体に塗布し、有機膜とすることができる。
また、BEPGAやV−3PAに代えて、アクリル単量体:カヤラッドDPHA(日本化薬(株)製)やKAYARAD TMPTA(日本火薬株式会社製)を使用することもできる。
例えば、有機膜として熱硬化性樹脂を適用することによって、密着性を向上させることができる。熱硬化性樹脂の例として、熱硬化性樹脂(エポキシ樹脂 DIC社製 EPICLON840‐S(ビスフェノールA型液状))をメチルエチルケトンで希釈し、固形分濃度が5%になるよう調整した後、支持体に塗布し、有機膜とすることができる。また、他にはポリエステル樹脂〔東洋紡(株)製、バイロン200〕を使用することができる。
有機膜の成膜方法としては、通常の溶液塗布法、あるいは真空成膜法等を挙げることができる。溶液塗布法としては、例えばディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法、或いは、米国特許第2681294号明細書に記載のホッパ−を使用するエクストル−ジョンコート法により塗布することができる。
例えば、機能性フィルムとして、ガスバリアフィルム(水蒸気バリアフィルム)を製造する際には、無機膜として、窒化ケイ素膜、酸化アルミニウム膜、酸化ケイ素膜等を成膜することが好ましい。
機能性フィルムとして、有機ELディスプレイや液晶ディスプレイのような表示装置など、各種のデバイスや装置の保護フィルムを製造する際には、無機膜として、酸化ケイ素膜等を成膜することが好ましい。
さらに、光反射防止フィルム、光反射フィルム、各種のフィルタ等の機能性フィルムを製造する際には、無機膜として、目的とする光学特性を有する、あるいは発現する材料からなる膜を成膜することが好ましい。
以上、本発明の機能性フィルムの製造方法について詳細に説明したが、本発明は、上記実施形態に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよい。
以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。但し、これらに限定されるものではない。
支持体には1000mm幅で厚みの異なるPETベースを使用した。自己支持性を付与するために幾つかの厚みを持つ第1のラミネートフィルムを準備した。PETベースの裏面に第1のラミネートフィルムを貼り合せて、支持体を準備した。アクリレート系モノマーと光重合開始材を有機溶剤で溶解させ、ダイコーターにより支持体上に塗布した。塗膜を乾燥し、さらに塗膜を紫外線硬化により硬膜させ、支持体上に有機膜を成膜した。巻き径に応じて巻き取りテンションが一定になるように制御しながらフィルムロールを作成した。支持体への送液量を制御し、有機膜の厚みは完全に硬化した状態で1μmとした。
有機膜の形成後、つまり硬膜後に有機膜の表面に第2のラミネートフィルムを貼り合わせた。具体的には、UV照射装置後、一対のニップロールにより支持体と第2のラミネートフィルムを挟み込み、有機膜の表面に第2のラミネートフィルムを貼り付けた。このとき、熱を与えることなく、第2のラミネートフィルムにある粘着層の力のみで有機膜の表面に貼り付けた。
ニップさせるロールとの間にスパイラルロールを配置した。スパイラルロールにより第2のラミネートフィルムを幅方向に伸ばしながら、有機膜の表面に第2のラミネートフィルムを均一に貼り付けた。第2のラミネートフィルムが均一に貼られていないと、真空化に暴露された場合、第2のラミネートフィルムと有機層の間の空気が均一に抜けなくなり、内部残存空気によって支持体が変形し、支持体にシワ等のダメージを与えてしまうからである。
使用する第2のラミネートフィルムは粘着力の異なるものを用意し、複数種張り合わせた。第2のラミネートフィルムと有機層間の空気をできるだけ排除するため、各種条件で形成された有機膜が成膜された支持体を巻き回したフィルムロールを1時間以上大気化に放置した。大気化に放置することでフィルムロールの自重により、第2のラミネートフィルムと有機層間の空気を抜くことができる。その後、フィルムロールを真空製膜装置にセットした。真空成膜装置を真空排気した後、供給室内もしくは成膜ドラムの直前にて第2のラミネートフィルムを剥離し、有機膜の表面に無機膜を成膜した。第2のラミネートフィルムを剥離する際、真空化での密着力の向上を考慮し、トルクの制御を行いながら、第2のラミネートフィルムを支持体から剥離した。具体的にはトルクの制御により、剥離・巻き取り部のフィルムロールの動きをコントロールした。
無機膜はアルミをターゲットとし、反応性スパッタによりアルミナ膜を形成し、機能性フィルムを得た。このようにして製造された機能性フィルムの性能について、水蒸気透過性を用いることで性能の評価を行った。なお、水蒸気透過性は表1の基準にしたいがい行なった。
Figure 2011167967
図4の表は試験1〜18に関して、製造条件と評価結果をまとめたものである。
[試験1]
支持体の厚さ25μmとし、支持体の両面にラミネートフィルムを貼り付けなかった。真空成膜装置内での支持体の搬送に、段差のないガイドローラを使用した。有機膜上に50nmの無機膜を成膜した。
[試験2]
支持体の厚さを50μmとした以外は、試験1と同様の条件とした。
[試験3]
支持体の厚さを100μmとした以外は、試験1と同様の条件とした。
[試験4]
厚さ50μmの支持体の裏面に厚さ5μmのラミネートフィルムを有機材料の塗布前に貼り合せ、フィルムロールとした。なお、ラミネートフィルムの厚さは粘着層を含めた厚さとした。フィルムロールを有機膜成膜装置内にセットし、支持体上の有機材料に紫外線を照射して硬化させた後(つまり有機膜の成膜後)、有機膜の表面にラミネートフィルムを貼り合せ、フィルムロールに巻き取った。裏面側のラミネートフィルムの粘着力を0.005(N/25mm)とし、有機膜面側のラミネートフィルムの粘着力を0.002(N/25mm)とした。フィルムロールを真空成膜装置内にセットし、有機面側のラミネートフィルムを無機膜の成膜直前で剥離し、露出した有機膜上に50nmの無機膜を成膜した。支持体の搬送に、段差のないガイドローラを使用した。「成膜直前」とは、真空成膜装置の成膜室に配置されたドラムの直前の位置を意味する。
[試験5]
裏面側のラミネートフィルムの厚さを25μmとした以外は、試験4と同様とした。
[試験6]
裏面側のラミネートフィルムの厚さを50μmとした以外は、試験4と同様とした。
[試験7]
有機膜側のラミネートフィルムの粘着力を0.01(N/25mm)とした以外は、試験6と同様とした。
[試験8]
有機膜側のラミネートフィルムの粘着力を0.04(N/25mm)とした以外は、試験6と同様とした。
[試験9]
有機膜側のラミネートフィルムの粘着力を0.06(N/25mm)とした以外は、試験6と同様とした。
[試験10]
有機膜側のラミネートフィルムの粘着力を0.07(N/25mm)とした以外は、試験6と同様とした。
[試験11]
裏面側のラミネートフィルムの粘着力を0.01(N/25mm)とした以外は、試験6と同様とした。
[試験12]
裏面側のラミネートフィルムの粘着力を0.02(N/25mm)とした以外は、試験6と同様とした。
[試験13]
裏面側のラミネートフィルムの粘着力を0.06(N/25mm)とした以外は、試験6と同様とした。
[試験14]
有機膜側のラミネートフィルムの剥離位置を「成膜送り出し」とした以外は、試験6と同様とした。「成膜送り出し」とは、真空成膜装置の供給室に配置された送出し機から送り出された直後の位置を意味する。
[試験15]
裏面側のラミネートフィルムの貼り付け位置を塗布後とした以外は、試験6と同様とした。「塗布後」とは、有機膜成膜装置のUV照射装置を通過した後の位置を意味する。
[試験16]
段差付きのガイドローラで支持体の搬送した以外は、試験1と同様とした。
[試験17]
段差付きのガイドローラで支持体の搬送した以外は、試験6と同様とした。
[試験18]
有機膜側にラミネートフィルムを貼り合せなかった以外は、試験6と同様とした。
<評価>
試験1〜3について、ラミネートフィルムが支持体の両面に貼り合わされていない。その結果、試験1、2について、支持体の厚さが50μm以下で両面にラミネートフィルムが貼り付けられていないので、バリア性の評価は×であった。これは、搬送でのシワにより、バリア膜が壊れたことが理由と考えられる。試験3について、支持体が100μmの厚さを有していたので、バリア性の評価は△であった。試験3は支持体の厚さが厚いので、薄いものよりも搬送は安定したが、塗布面が保護されていないので微小に傷が発生する問題がある。
試験4〜6について、支持体の両面にラミネートフィルムが貼り合わされている。その結果、評価は△以上であった。試験4〜6から裏面のラミネートフィルムが厚いほど、評価結果が良いことが理解できる。支持体と裏面のラミネートフィルムの総厚が75μm以上で良好な結果が得られた。
試験6〜10の結果から、有機膜側のラミネートフィルムの粘着力は低い方が良好な結果が得られた。これは、有機膜側のラミネートフィルムを剥離するときに、有機膜を壊さないからと考えられる。真空中では、大気の状態にくらべ空気が無いので、ラミネートフィルムと塗布膜(有機膜)との粘着力が増加する。したがって低粘着のものの方が真空での剥離に適する。
試験6と11〜12から、裏面側のラミネートフィルムの粘着力が高い方が良好な結果が得られた。これは、支持体の搬送中に裏面側のラミネートフィルムが剥離せず、支持体の自己支持性を維持できるからと考えられる。
試験6と14から、有機膜側のラミネートフィルムの剥離位置が成膜直前、つまり有機膜側と接触するパスローラを全て通過してからである方が、良好な結果が得られた。これは、有機膜側のラミネートフィルムが、有機膜とパスローラとが直接接触するのを防止するので、有機膜の破壊を防止できるからである。
試験6と15から、塗布前に支持体の裏面にラミネートフィルムが存在する方が良好な結果が得られた。塗布時に裏面にラミネートフィルムが存在しないと、支持体の自己支持性が低くなり、搬送エラーを起こしやすくなるからである。
試験1,2,6と16〜18の結果から、支持体の両面にラミネートフィルムを貼り合せた場合、段差付きガイドローラを使用してもバリア性は○以上の結果が得られた。試験16によれば、支持体が薄い場合、段差付きガイドローラを使用して機能性領域を非接触にしても、縦皺等によりバリア性を悪化させることが理解できる。つまり、段差付きガイドローラを使用して機能性領域を非接触にした場合、バリア性を良好にするには支持体に自己支持性を付与することが重要である。また、試験18によれば、裏面側のラミネートフィルムにより支持体に自己支持性を付与しても、有機膜側にラミネートフィルムがないと巻取りでのダメージが防げず性能が低下することが理解できる。
支持体の両面にラミネートフィルムを貼り合せることが重要であると理解できる。
10…機能性フィルム、12…支持体、14…有機膜、16…無機膜、18…有機膜、20…第1のラミネートフィルム、22…有機膜成膜装置、24…真空成膜装置、26…塗布手段、28…加熱手段、30…UV照射装置、34…巻取り機、36…引取ローラ、38…ニップローラ、50…供給室、52…成膜室、54…巻取り室、60,68,70,78…ガイドローラ、61,72,80…真空排気手段、64a,64b,64c,64d…成膜手段、82…第2のラミネートフィルム、83…ラミネートフィルム巻取り機

Claims (9)

  1. 裏面側に第1のラミネートフィルムが付与され自己支持性を有する長尺の支持体を送り出し、前記支持体を搬送しながら、前記支持体の表面側に有機膜を形成し、前記有機膜の表面に第2のラミネートフィルムを付与し、前記支持体をフィルムロールにして巻き取る第1の工程と、
    前記フィルムロールを真空成膜装置内に装填し、前記フィルムロールから連続的に前記第1のラミネートフィルムと前記第2のラミネートフィルムが付与された前記支持体を送り出し、前記支持体を搬送しながら、前記第2のラミネートフィルムを剥離し、前記支持体の前記有機膜上に無機膜を形成し、前記支持体をフィルムロールに巻き取る第2の工程と、
    を含む機能性フィルムの製造方法。
  2. 請求項1記載の機能性フィルムの製造方法であって、前記第1のラミネートフィルムと前記支持体との総厚みが75μm以上である機能性フィルムの製造方法。
  3. 請求項1又は2記載の機能性フィルムの製造方法であって、前記第1のラミネートフィルムは0.01N/25mm以上の粘着力である機能性フィルムの製造方法。
  4. 請求項1〜3の何れか記載の機能性フィルムの製造方法であって、前記第2のラミネートフィルムは0.06N/25mm以下の粘着力である機能性フィルムの製造方法。
  5. 請求項1〜4の何れか記載の機能性フィルムの製造方法であって、前記第1の工程、及び前記第2の工程において、前記支持体の裏面側、及び前記支持体の表面側の端部の少なくとも一方をパスローラにより支持して、前記支持体を搬送する機能性フィルムの製造方法。
  6. 請求項1〜5の何れか記載の機能性フィルムの製造方法であって、前記支持体に無機膜を成膜する前に、さらに前記支持体と前記第1のラミネートフィルムとの間の密着性を改善する工程を有する機能性フィルムの製造方法。
  7. 請求項1〜6の何れか記載の機能性フィルムの製造方法であって、前記無機膜が5nm以上200nm以下の厚みを有する機能性フィルムの製造方法。
  8. 請求項1〜7の何れか記載の機能性フィルムの製造方法であって、前記無機膜が金属、金属酸化物、金属窒化物、金属炭化物、金属フッ化物、若しくはその複合物から成る群から選択された一つを含む機能性フィルムの製造方法。
  9. 請求項1〜8の何れか記載の機能性フィルムの製造方法であって、前記有機膜が放射線硬化性のモノマー、及びオリゴマーの一つを含む機能性フィルムの製造方法。
JP2010034813A 2010-02-19 2010-02-19 機能性フィルムの製造方法 Active JP5198493B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010034813A JP5198493B2 (ja) 2010-02-19 2010-02-19 機能性フィルムの製造方法
US13/030,757 US9067381B2 (en) 2010-02-19 2011-02-18 Manufacturing method of functional film and functional film
US13/859,120 US8597765B2 (en) 2010-02-19 2013-04-09 Functional film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010034813A JP5198493B2 (ja) 2010-02-19 2010-02-19 機能性フィルムの製造方法

Publications (2)

Publication Number Publication Date
JP2011167967A true JP2011167967A (ja) 2011-09-01
JP5198493B2 JP5198493B2 (ja) 2013-05-15

Family

ID=44682583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010034813A Active JP5198493B2 (ja) 2010-02-19 2010-02-19 機能性フィルムの製造方法

Country Status (1)

Country Link
JP (1) JP5198493B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116442A (ja) * 2011-12-02 2013-06-13 Mitsubishi Plastics Inc 積層多孔フィルムの製造方法
JP2015224373A (ja) * 2014-05-28 2015-12-14 コニカミノルタ株式会社 ガスバリア性フィルムの製造方法
KR20160045824A (ko) 2013-09-30 2016-04-27 후지필름 가부시키가이샤 기능성 필름 및 기능성 필름의 제조 방법
JP2016182744A (ja) * 2015-03-26 2016-10-20 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法
JP2018525243A (ja) * 2015-06-29 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー 極薄バリア積層体及びデバイス
JPWO2020050112A1 (ja) * 2018-09-05 2021-08-26 富士フイルム株式会社 成膜方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892727A (ja) * 1994-09-29 1996-04-09 Mitsubishi Chem Corp 透明なガスバリア性フィルムの製造方法
JP2008189957A (ja) * 2007-02-02 2008-08-21 Kobe Steel Ltd 連続成膜装置
JP2009179853A (ja) * 2008-01-31 2009-08-13 Fujifilm Corp 機能性フィルムの製造方法
JP2011084776A (ja) * 2009-10-15 2011-04-28 Fujifilm Corp 機能性フィルム及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892727A (ja) * 1994-09-29 1996-04-09 Mitsubishi Chem Corp 透明なガスバリア性フィルムの製造方法
JP2008189957A (ja) * 2007-02-02 2008-08-21 Kobe Steel Ltd 連続成膜装置
JP2009179853A (ja) * 2008-01-31 2009-08-13 Fujifilm Corp 機能性フィルムの製造方法
JP2011084776A (ja) * 2009-10-15 2011-04-28 Fujifilm Corp 機能性フィルム及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116442A (ja) * 2011-12-02 2013-06-13 Mitsubishi Plastics Inc 積層多孔フィルムの製造方法
KR20160045824A (ko) 2013-09-30 2016-04-27 후지필름 가부시키가이샤 기능성 필름 및 기능성 필름의 제조 방법
JP2015224373A (ja) * 2014-05-28 2015-12-14 コニカミノルタ株式会社 ガスバリア性フィルムの製造方法
JP2016182744A (ja) * 2015-03-26 2016-10-20 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法
JP2018525243A (ja) * 2015-06-29 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー 極薄バリア積層体及びデバイス
JPWO2020050112A1 (ja) * 2018-09-05 2021-08-26 富士フイルム株式会社 成膜方法
JP7109554B2 (ja) 2018-09-05 2022-07-29 富士フイルム株式会社 成膜方法

Also Published As

Publication number Publication date
JP5198493B2 (ja) 2013-05-15

Similar Documents

Publication Publication Date Title
US8597765B2 (en) Functional film
JP5371680B2 (ja) 機能性フィルムの製造方法
JP5579465B2 (ja) 機能性フィルムの製造方法
JP5198493B2 (ja) 機能性フィルムの製造方法
JP2013031794A (ja) 機能性フィルムの製造方法および機能性フィルム
JP5318020B2 (ja) 機能性フィルムの製造方法
JP5364001B2 (ja) 機能性フィルムの製造方法
KR101819402B1 (ko) 기능성 필름 및 기능성 필름의 제조 방법
JP5331740B2 (ja) 機能性フィルム
JP5274342B2 (ja) 機能性フィルムの製造方法
JP2009269193A (ja) 積層体及びその製造方法
KR101730780B1 (ko) 기능성 필름 및 기능성 필름의 제조 방법
JP5507335B2 (ja) 機能性フィルムの製造方法及び製造装置
WO2015198701A1 (ja) 機能性フィルムの製造方法
JP2015231667A (ja) 機能性フィルム
JP5335720B2 (ja) 機能性フィルムの製造方法
JP5461245B2 (ja) 積層体の製造方法
JP2011184770A (ja) 機能性フィルムの製造方法
JP2010070309A (ja) 光学フィルム及びその製造方法
JP2010194814A (ja) 機能性フィルムの製造方法、及び製造装置
JP2013208855A (ja) 機能性フィルムの製造方法、及びその製造装置
JP4321396B2 (ja) 保護フィルムの製造方法およびその製造方法で製造された保護フィルム
JP2010069693A (ja) 積層体及びその製造装置
JP2010229520A (ja) 機能性フィルムの製造方法、及び製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250