JP2011166865A - 単相誘導電動機及び密閉型圧縮機 - Google Patents

単相誘導電動機及び密閉型圧縮機 Download PDF

Info

Publication number
JP2011166865A
JP2011166865A JP2010023874A JP2010023874A JP2011166865A JP 2011166865 A JP2011166865 A JP 2011166865A JP 2010023874 A JP2010023874 A JP 2010023874A JP 2010023874 A JP2010023874 A JP 2010023874A JP 2011166865 A JP2011166865 A JP 2011166865A
Authority
JP
Japan
Prior art keywords
rotor
slot
induction motor
phase induction
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010023874A
Other languages
English (en)
Other versions
JP5159807B2 (ja
Inventor
Isato Yoshino
勇人 吉野
Kazuhiko Baba
和彦 馬場
Koji Yabe
浩二 矢部
Tomoaki Oikawa
智明 及川
Takahiro Tsutsumi
貴弘 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010023874A priority Critical patent/JP5159807B2/ja
Publication of JP2011166865A publication Critical patent/JP2011166865A/ja
Application granted granted Critical
Publication of JP5159807B2 publication Critical patent/JP5159807B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Machinery (AREA)

Abstract

【課題】スロット断面積の異なる二種類の回転子大スロット及び回転子小スロットとを具備し、回転子大スロットを所定個数所定の位置に連続して並べて配置することで、起動特性を改善させた単相誘導電動機を提供する。
【解決手段】この発明に係る単相誘導電動機は、所定の形状に打ち抜いた電磁鋼板を所定枚数積層して製作される固定子鉄心の内周縁に沿って形成される複数の固定子スロットに挿入される主巻線と、補助巻線とを有する固定子と、固定子の内周側に空隙を介して配置される回転子とを備えた単相誘導電動機であって、回転子は、所定の形状に打ち抜いた電磁鋼板を所定枚数積層して製作される回転子鉄心と、回転子鉄心の外周縁に沿って形成されるとともに導電性材料が充填され、スロット断面積の異なる二種類の回転子大スロット及び回転子小スロットとを具備し、回転子大スロットを所定個数連続して配置したものである。
【選択図】図1

Description

この発明は、形状が異なる二種類以上の回転子スロットを有する単相誘導電動機に関する。また、その単相誘導電動機を搭載した密閉型圧縮機に関する。
従来、かご形回転子のスロット高調波による振動や騒音を低減させることを目的として、円形の薄鉄板の外周に複数の歯部を設け、この歯部の幅を徐々に変化させて、スロット間隔が徐々に小さくなるように不均等にスロットが形成されるようにし、さらに円周上にスロットを不均等に設けることによる動的アンバランスを低減させるため、スロットの断面積も徐々に変化させて形成するかご形回転子が提案されている(例えば、特許文献1参照)。
特開平7−274457号公報
しかしながら、上記特許文献1のかご形回転子を単相誘導電動機に使用した場合、単相誘導電動機の始動時の固定子巻線(主巻線、補助巻線)に電流を流すことにより発生する回転磁界が楕円磁界であるため、かご形回転子の停止位置によっては、起動トルクが低くなり、起動特性が悪化する課題があった。
この発明は、上記のような課題を解決するためになされたもので、スロット断面積の異なる二種類の回転子大スロット及び回転子小スロットとを具備し、回転子大スロットを所定個数所定の位置に連続して並べて配置することで、起動特性を改善させた単相誘導電動機及びその単相誘導電動機を用いた密閉型圧縮機を提供する。
この発明に係る単相誘導電動機は、所定の形状に打ち抜いた電磁鋼板を所定枚数積層して製作される固定子鉄心の内周縁に沿って形成される複数の固定子スロットに挿入される主巻線と、補助巻線とを有する固定子と、固定子の内周側に空隙を介して配置される回転子とを備えた単相誘導電動機であって、
回転子は、
所定の形状に打ち抜いた電磁鋼板を所定枚数積層して製作される回転子鉄心と、
回転子鉄心の外周縁に沿って形成されるとともに導電性材料が充填され、スロット断面積の異なる二種類の回転子大スロット及び回転子小スロットと、を具備し、
回転子大スロットを所定個数連続して配置したものである。
この発明に係る単相誘導電動機は、回転子大スロットを所定個数連続して並べて配置することで、起動トルクを改善することができるという効果がある。
実施の形態1を示す図で、単相誘導電動機100の横断面図。 図1のA部拡大図。 実施の形態1を示す図で、固定子12の横断面図。 実施の形態1を示す図で、固定子12の巻線20の1極分を示す図。 実施の形態1を示す図で、固定子鉄心12aの横断面図。 実施の形態1を示す図で、回転子11の横断面図。 実施の形態1を示す図で、回転子鉄心11aの横断面図。 実施の形態1を示す図で、(a)は回転子大スロット40aの横断面図、(b)は回転子小スロット40bの横断面図。 実施の形態1を示す図で、回転子11の斜視図。 実施の形態1を示す図で、単相誘導電動機100の角度αに対する起動トルク特性図。 実施の形態1を示す図で、ロータリ圧縮機500の縦断面図。 図11のA−A断面図。 実施の形態1を示す図で、角度αの位置に円形(小)の風穴部11b−1を設けた回転子11の横断面図。 実施の形態1を示す図で、角度αの位置に円形(大)の風穴部11b−2を設けた回転子11の横断面図。 実施の形態1を示す図で、角度αの位置に四角形の風穴部11b−3を設けた回転子11の横断面図。 実施の形態1を示す図で、角度αの位置に楕円の風穴部11b−4を設けた回転子11の横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット40cを設けた回転子11の横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット40cを設けた回転子鉄心11aの横断面図。 実施の形態1を示す図で、(a)は回転子大スロット40cの横断面図、(b)は回転子小スロット40bの横断面図。 実施の形態1を示す図で、変形例1の単相誘導電動機200の横断面図。 実施の形態1を示す図で、回転子211の横断面図。 実施の形態1を示す図で、回転子鉄心211aの横断面図。 実施の形態1を示す図で、角度αに対する起動トルク特性図。 実施の形態1を示す図で、径方向に長い回転子大スロット40cを設けた回転子211の横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット40cを設けた回転子鉄心211aの横断面図。 実施の形態1を示す図で、変形例2の単相誘導電動機300の横断面図。 図26のB部拡大図。 図26のC部拡大図。 実施の形態1を示す図で、偏心位置βに対する起動トルク特性図。 実施の形態1を示す図で、径方向に長い回転子大スロット40cを設けた変形例2の単相誘導電動機300の横断面図。 図30のD部拡大図。 図30のE部拡大図。 実施の形態1を示す図で、変形例3の単相誘導電動機400の横断面図。 実施の形態1を示す図で、回転子411の横断面図。 実施の形態1を示す図で、回転子鉄心411aの横断面図。 実施の形態1を示す図で、(a)は回転子大スロット440aの横断面図、(b)は回転子小スロット440bの横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット440cを設けた変形例3の単相誘導電動機400の横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット440cを設けた変形例3の回転子411の横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット440cを設けた変形例3の回転子鉄心411aの横断面図。 実施の形態1を示す図で、(a)は径方向に長い回転子大スロット440cの横断面図、(b)は回転子小スロット440bの横断面図。 実施の形態1を示す図で、変形例4の単相誘導電動機600の横断面図。 実施の形態1を示す図で、回転子611の横断面図。 実施の形態1を示す図で、回転子鉄心611aの横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット440cを設けた変形例4の単相誘導電動機600の横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット440cを設けた変形例4の回転子611の横断面図。 実施の形態1を示す図で、径方向に長い回転子大スロット440cを設けた変形例4の回転子鉄心611aの横断面図。 実施の形態1を示す図で、変形例5の単相誘導電動機700の横断面図。 図47のF部拡大図。 図47のG部拡大図。 実施の形態1を示す図で、径方向に長い回転子大スロット440cを設けた変形例5の単相誘導電動機700の横断面図。 図50のH部拡大図。 図50のJ部拡大図。
実施の形態1.
図1乃至図10は実施の形態1を示す図で、図1は単相誘導電動機100の横断面図、図2は図1のA部拡大図、図3は固定子12の横断面図、図4は固定子12の巻線20の1極分を示す図、図5は固定子鉄心12aの横断面図、図6は回転子11の横断面図、図7は回転子鉄心11aの横断面図、図8(a)は回転子大スロット40aの横断面図、図8(b)は回転子小スロット40bの横断面図、図9は回転子11の斜視図、図10は単相誘導電動機100の角度αに対する起動トルク特性図である。
図1乃至図9により、単相誘導電動機100の構成を説明する。
単相誘導電動機100は、固定子12と回転子11とを備える。
単相誘導電動機100を、以下、単にモータまたは電動機と呼ぶ場合もある。
固定子12は、固定子鉄心12aと、固定子鉄心12aの固定子スロット12bに挿入される主巻線20b及び補助巻線20aとを備える。主巻線20b及び補助巻線20aには一般的に、銅線の外側に絶縁被膜が施されたマグネットワイヤなどが用いられる。
尚、固定子スロット12bには、巻線20(主巻線20b及び補助巻線20a)と固定子鉄心12aとの間に、電気的に絶縁を確保するために絶縁材(例えば、スロットセル、ウェッジ、セパレータ等)が挿入されるが、ここでは図示を省略している。
固定子鉄心12aは、板厚が0.1〜1.5mmの電磁鋼板を所定の形状に打ち抜いた後、所定枚数軸方向(積層方向)に積層し、抜きカシメや溶接等により固定して製作される。
固定子鉄心12aには、内周縁に沿って固定子スロット12bが形成されている。固定子スロット12bは、周方向にほぼ等間隔に配置される。図1の例では、固定子スロット12bはすべて同じ形状であるが、一部の大きさを変更した大小スロットで構成しても良い。例えば、固定子鉄心12aの外周縁に切欠きが形成される場合には、コアバックの磁路面積を確保するために、外周縁に切欠きがある箇所の固定子スロットを、外周縁に切欠きがない箇所の固定子スロットよりも小さくする(径方向の寸法が小さい)。
図5に示すように、固定子スロット12bの間の鉄心部をティース12eという。ティース12eは、周方向の幅が略等しく径方向に延びている。図5に示す例では、ティース12eの数は、固定子スロット12bと同数の、24個である。また、固定子鉄心12aの外周部は、略円筒状のコアバック12dになっている。この略円筒状のコアバック12dから、複数(図5では、24個)のティース12eが放射状に、周方向に略等間隔に内側に延びている。
固定子スロット12bは、半径方向に延在している。固定子スロット12bは、内周縁に開口している。この開口部をスロットオープニングと言う。このスロットオープニングから主巻線20b及び補助巻線20aが挿入される。図1の例では、固定子鉄心12aは、24個の固定子スロット12bを備える。但し、固定子スロット12bの数は、24個に限定されない。
主巻線20bは、二極の同心巻方式の巻線である。図1の例では、固定子スロット12b内の内周側(回転子11に近い側)に、主巻線20bが配置される。ここでは、同心巻方式の主巻線20bは、大きさ(特に周方向の長さ)が異なる5個(5段)のコイルから構成される。そして、それらの5個のコイルの中心が同じ位置になるように固定子スロット12bに挿入される。そのため、同心巻方式と呼ばれる。主巻線20bが5個のコイルのものを示したが、一例であって、その数は問わない。
主巻線20bの5個のコイルを、大きい方(固定子スロット12bのスロットピッチが11のもの、図4の#1〜#12(もしくは#13〜#24)に跨って巻かれるもの)から順にM1、M2(固定子スロット12bのスロットピッチが9、図4の#2〜#11(もしくは#14〜#23)に跨って巻かれる)、M3(固定子スロット12bのスロットピッチが7、図3の#3〜#10(もしくは#15〜#22)に跨って巻かれる)、M4(固定子スロット12bのスロットピッチが5、図4の#4〜#9(もしくは#16〜#21)に跨って巻かれる)、M5(固定子スロット12bのスロットピッチが3、図4の#5〜#8(もしくは#17〜#20)に跨って巻かれる)とする。それら(M1〜M5コイル)の分布(巻数の分布)が略正弦波になるように選択される。主巻線20bに主巻線電流が流れた場合に発生する主巻線磁束が正弦波になるようにするためである。即ち、M1〜M5の巻数は、通常は、M1≧M2≧M3>M4>M5である。
主巻線20bは、固定子スロット12b内の内周側、外周側のどちらに配置しても良い。但し、主巻線20bを固定子スロット12b内の内周側に配置すると、固定子スロット12bの外周側に配置する場合に比べて、巻線(コイル)周長が短くなる。また、主巻線20bを固定子スロット12b内の内周側に配置すると、固定子スロット12b内の外周側に配置する場合に比べて、漏れ磁束が少なくなる。よって、主巻線20bを固定子スロット12b内の内周側に配置すると、固定子スロット12b内の外周側に配置する場合に比べて、主巻線20bのインピーダンス(抵抗値、漏れリアクタンス)が小さくなる。そのため、単相誘導電動機100の特性が良くなる。
主巻線20bに主巻線電流を流すことで、主巻線磁束が生成される。この主巻線磁束の向きは、図1の左右方向である。前述したように、この主巻線磁束の波形ができるだけ正弦波になるように、主巻線20bの5個のコイル(M1、M2、M3、M4、M5)の巻数が選ばれる。主巻線20bに流れる主巻線電流は交流であるから、主巻線磁束も流れる主巻線電流に従って大きさと向きを変える。
また、固定子スロット12bには、主巻線20bと同様に同心巻方式の補助巻線20aが挿入される。図1では、補助巻線20aは、固定子スロット12b内の外側に配置されている。補助巻線20aに補助巻線電流を流すことで補助巻線磁束が生成される。この補助巻線磁束の向きは、主巻線磁束の向きに直交する(図1の上下方向)。つまり、補助巻線20aは主巻線20bに対して、90度ずれた位置に配置されている。補助巻線20aに流れる補助巻線電流は交流であるから、補助巻線磁束も電流に従って大きさと向きを変える。
一般的には主巻線磁束と補助巻線磁束のなす角度が電気角で90度(ここでは極数が二極であるため、機械角も90度である)になるように、主巻線20bと補助巻線20aとが固定子スロット12bに挿入される。
図1の例では、補助巻線20aは大きさ(周方向の長さが特に)が異なる3個のコイルから構成される。補助巻線20aの3個のコイルを、大きい方(固定子スロット12bのスロットピッチが11のもの、図4の#7〜#18(もしくは#6〜#19)に跨って巻かれるもの)から順にA1、A2(固定子スロット12bのスロットピッチが9、図4の#8〜#17(もしくは#5〜#20)に跨って巻かれる)、A3(固定子スロット12bのスロットピッチが7、図4の#9〜#16(もしくは#4〜#21)に跨って巻かれる)とする。その分布が、略正弦波になるように選択される。補助巻線20aに補助巻線電流が流れた場合に発生する補助巻線磁束が正弦波になるようにするためである。
そして、それらの3個のコイル(A1、A2、A3)の中心が同じ位置になるように固定子スロット12bに挿入される。
補助巻線磁束の波形ができるだけ正弦波になるように、補助巻線20aの3個のコイル(A1、A2、A3)の巻線が選ばれる。通常は、A1>A2>A3である。
補助巻線20aと直列に運転コンデンサ(図示せず)を接続したものに主巻線20bを並列に接続させる。その両端に単相交流電源へ接続する。運転コンデンサを補助巻線20aに直列に接続することにより、補助巻線20aに流れる補助巻線電流の位相を主巻線20bに流れる主巻線電流の位相に対して約90度進めることができる。
主巻線20bと補助巻線20aの固定子鉄心12aにおける位置を電気角で90度ずらし、且つ主巻線20bと補助巻線20aの電流の位相を約90度異なるようにすることで、二極の回転磁界が発生する。
固定子鉄心12aの外周面には、外周円形状を略直線状に切り欠いた略直線部をなす固定子切欠12cが四ヶ所に設けられている。四ヶ所の固定子切欠12cは、隣り合うもの同士が略直角に配置される。従って、四ヶ所の固定子切欠12cを通る直線により略四角形が形成される。但し、これは一例であり、固定子切欠12cの数、配置は任意でよい。
密閉型圧縮機に図1の単相誘導電動機100を搭載する場合、固定子12は密閉型圧縮機の円筒状の密閉容器の内周に焼き嵌めされる。密閉型圧縮機の内部では、冷媒(冷凍機油も含む)が単相誘導電動機100を通過する。そのため、単相誘導電動機100には、冷媒の通路が必要である。
略直線部の固定子切欠12cを設けることにより、固定子12と密閉容器との間に冷媒の通路が形成される。単相誘導電動機100の冷媒の通路には、この固定子鉄心12aの外周面の固定子切欠12cによるもの以外に、例えば、回転子11の風穴部11b(図6参照)、固定子12と回転子11のと間の空隙60(図2参照)がある。
例えば、後述するロータリ圧縮機の場合、密閉容器の内部に圧縮要素と電動機が収納され、且つ電動機が上部に、圧縮要素が下部に配置される。圧縮要素は、密閉容器の底部に貯留する冷凍機油を吸い上げ、冷凍機油で圧縮要素の摺動部を潤滑し、冷凍機油の一部は圧縮要素から吐出される冷媒とともに電動機を通過する。このとき、冷凍機油を含む冷媒は、電動機の回転子の風穴、固定子と回転子の間の空隙、固定子鉄心の外周面の固定子切欠等を通過する。電動機を通過した冷凍機油を含む冷媒は、電動機の上部において、油分離機等により冷媒から冷凍機油が分離され、冷凍機油は主に固定子鉄心の外周面の固定子切欠から密閉容器の底部に戻る。冷媒は、密閉容器の外部の冷凍サイクルへ吐出される。
また、固定子12の内周側には空隙60(図2参照)を介して回転子11が設けられ、回転子11は回転子鉄心11aとかご形二次導体(バー(例えば、アルミバー)と、エンドリングとで構成される)を備える。固定子12と回転子11との間の空隙60は、例えば、径方向寸法が0.2〜2.0mm程度である。
回転子鉄心11aは、固定子鉄心12aと同様に板厚が0.1〜1.5mmの電磁鋼板を所定の形状に打ち抜き、軸方向に積層して製作される。通常、固定子鉄心12aの内側(内周側)の部分の電磁鋼板を利用する。
一般的に回転子鉄心11aは固定子鉄心12aと同一の材料から打ち抜くことが多いが、回転子鉄心11aは固定子鉄心12aと材料を変えても構わない。
回転子鉄心11aには半径方向外周側に、回転子鉄心11aの外周縁に沿って設けられる回転子小スロット40bと、回転子大スロット40aからなる回転子スロットを有する。
図1(図7)の例では、回転子スロットの数は、回転子小スロット40b(図8(b)参照)が26個、回転子大スロット40a(図8(a)参照)が4個であり、合わせて30個である。結局、図1の単相誘導電動機100は、固定子鉄心12aのスロット数が24、回転子鉄心11aの総スロット数が30の組合せである。但し、これは一例であり、固定子鉄心12aのスロット数と、回転子鉄心11aのスロット数の組合せは、この限りではない。
かご形誘導電動機は、同期トルク、非同期トルク、振動・騒音等の異常現象があることが知られている。かご形誘導電動機の異常現象は、空隙磁束密度の空間高調波によって起きるものであることは明白であるが、その空間高調波が生じる原因としては次の二つが考えられる。一つは巻線配置に起因する起磁力に含まれる高調波であり、他は固定子スロット、回転子スロットが存在するために空隙のパーミアンス(磁気抵抗の逆数)が一様でないことから生じる、空隙磁束密度中に含まれる高調波である。
このように、かご形誘導電動機では、固定子のスロット数と回転子のスロット数との組合せが、同期トルク、非同期トルク、振動・騒音等の異常現象に密接に関係する。そのため、固定子のスロット数と回転子のスロット数との組合せは、慎重に選ばれる。
回転子大スロット40a、回転子小スロット40bには、共に導電性材料であるアルミが鋳込まれており(アルミダイキャスティング)、アルミバー30a,30b(図6参照)を形成する。導電性材料は、アルミが一般的であるが、銅を用いても良い。また、ダイキャスティング以外に、バーを回転子スロットに挿入後、エンドリングをバーに接合する方法もある。
アルミバー30a,30bは、回転子11の積層方向両端面に設けられたエンドリング32(図9参照)と共にかご形二次導体を形成する。一般的にアルミバー30a,30bとエンドリング32はダイキャスティングにより同時にアルミを鋳込むことで製作される。
図1及び図6に示すように、補助巻線20aで生成された補助巻線磁束の向きを下向き、主巻線20bで生成された主巻線磁束の向きを右向き、回転子11の回転方向を時計回りとした場合、連続して配置される4個の回転子大スロット40aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置に並べて配置している(角度α=45度)。単相誘導電動機100の停止時、もしくは始動時に上記位置関係になるようにしている。
また、図10に示す起動トルク特性図は、図6に示す角度αに対する起動トルク比率を表しており、縦軸の起動トルク比は、回転子スロットが、全て回転子小スロット40bで構成された場合の起動トルクに対する比率を示している。
図10において、角度αを変更すると起動トルク特性が変化しており、αが約45度及び約225度の位置で起動トルク(起動トルク比)が最大となり、またαが約135度及び約315度の位置で起動トルク(起動トルク比)が最小となることがわかる。二極の単相誘導電動機100であるため、180度毎に周期性を持つ。
単相誘導電動機の場合、起動時において、補助巻線20aに流れる補助巻線電流に対して、主巻線20bに流れる主巻電電流が非常に大きく、つまり、補助巻線20aで生成された補助巻線磁束に対して、主巻線20bで生成された主巻線磁束が大きくなり、それぞれの合成磁界からなる二極の回転磁界は、交番磁界に近い楕円磁界となる傾向がある。
楕円磁界の影響により、回転子スロットを、回転子大スロット40aと回転子小スロット40bからなる非対称に配置することにより、図10に示すように、角度αに対する起動トルク特性が変化することになる。
本実施の形態では、角度αが約45度の位置になるように、回転子大スロット40aを配置することで、起動トルク特性が良好となり、信頼性の高い単相誘導電動機100を得ることができる。
図10に示すように、角度αが約45度の位置で起動トルク(起動トルク比)が最大となり、最も良好な起動特性を示しているが、角度αは、20〜70度の範囲であれば、良好な起動特性を得ることが可能である。
前述の通り、起動トルク特性は180度の周期性を持つため、角度αは、200〜250度の範囲に設定しても同様の特性を示す。
また、回転子スロットを非対称に配置することにより起動トルクが改善するが、回転子スロットが全て同じ形状であるものと同等の起動トルクで良い場合は、固定子鉄心12a及び回転子鉄心11aの積層枚数(積層厚さ)を少なくすることが可能である。
固定子鉄心12a及び回転子鉄心11aの積層枚数が少なくなると、電磁鋼板の使用量が減ると共に、主巻線20b及び補助巻線20aの周長が減ることに伴う、巻線の使用量も削減することができ、低コストな単相誘導電動機100を得ることができる。更には、電磁鋼板及び巻線の使用量削減による、軽量な単相誘導電動機100を得ることができる。
この単相誘導電動機100を密閉型圧縮機に搭載した場合、回転子11の回転軸50は密閉型圧縮機の圧縮要素に連結され、圧縮要素の圧力がバランスして停止しているときは一般的に、回転子11は所定の回転位置で停止する。例えば、密閉型圧縮機がロータリ圧縮機の場合、圧縮要素の圧力がバランスして停止しているときは、ローリングピストンが下死点に位置する傾向がある。従って、図1及び図6の角度α=45度(連続して配置される4個の回転子大スロット40aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置)の位置と、圧縮要素の下死点(後述する)の位置とが略一致するように、ロータリ圧縮機を組立れば、ロータリ圧縮機の起動性を改善することができ、信頼性の高いロータリ圧縮機を得ることができる。角度α=45度が最も好ましいが、角度α=20〜70度でもよい。
ここで、ロータリ圧縮機について、説明する。図11、図12は実施の形態1を示す図で、図11はロータリ圧縮機500の縦断面図、図12は図11のA−A断面図である。
図11に示すロータリ圧縮機500の一例は、密閉容器70内が高圧の縦型のものである。密閉容器70内の下部に圧縮要素501が収納される。密閉容器70内の上部で、圧縮要素501の上方に圧縮要素501を駆動する電動要素である単相誘導電動機100(図1参照)が収納される。
密閉容器70内の底部に、圧縮要素501の各摺動部を潤滑する冷凍機油90が貯留されている。
先ず、圧縮要素501の構成を説明する。内部に圧縮室が形成されるシリンダ1は、外周が平面視略円形で、内部に平面視略円形の空間であるシリンダ室1bを備える。シリンダ室1bは、軸方向両端が開口している。シリンダ1は、側面視で所定の軸方向の高さを持つ。
シリンダ1の略円形の空間であるシリンダ室1bに連通し、半径方向に延びる平行なベーン溝1aが軸方向に貫通して設けられる。
また、ベーン溝1aの背面(外側)に、ベーン溝1aに連通する平面視略円形の空間である背圧室1cが設けられる。
シリンダ1には、冷凍サイクルからの吸入ガスが通る吸入ポート(図示せず)が、シリンダ1の外周面からシリンダ室1bに貫通している。
シリンダ1には、略円形の空間であるシリンダ室1bを形成する円の縁部付近(単相誘導電動機100側の端面)を切り欠いた吐出ポート(図示せず)が設けられる。
シリンダ1の材質は、ねずみ鋳鉄、焼結、炭素鋼等である。
ローリングピストン2が、シリンダ室1b内を偏心回転する。ローリングピストン2はリング状で、ローリングピストン2の内周が回転軸50の偏心軸部50aに摺動自在に嵌合する。
ローリングピストン2の外周と、シリンダ1のシリンダ室1bの内壁との間は、常に一定の隙間があるように組立られる。
ローリングピストン2の材質は、クロム等を含有した合金鋼等である。
ベーン3がシリンダ1のベーン溝1a内に収納され、背圧室1cに設けられるベーンスプリング8でベーン3が常にローリングピストン2に押し付けられている。ロータリ圧縮機500は、密閉容器70内が高圧であるから、運転を開始するとベーン3の背面(背圧室1c側)に密閉容器70内の高圧とシリンダ室1bの圧力との差圧による力が作用するので、ベーンスプリング8は主にロータリ圧縮機500の起動時(密閉容器70内とシリンダ室1bの圧力に差がない状態)に、ベーン3をローリングピストン2に押し付ける目的で使用される。
ベーン3の形状は、平たい(周方向の厚さが、径方向及び軸方向の長さよりも小さい)略直方体である。
ベーン3の材料には、高速度工具鋼が主に用いられている。
主軸受け4は、回転軸50の主軸部50b(偏心軸部50aより上の部分で、回転子11に嵌合する部分)に摺動自在に嵌合するとともに、シリンダ1のシリンダ室1b(ベーン溝1aも含む)の一方の端面(単相誘導電動機100側)を閉塞する。
主軸受け4は、吐出弁(図示せず)を備える。但し、主軸受け4、副軸受け5のいずれか一方、または、両方に付く場合もある。
主軸受け4は、側面視略逆T字状である。
副軸受け5が、回転軸50の副軸部50c(偏心軸部50aより下の部分)に摺動自在に嵌合するとともに、シリンダ1のシリンダ室1b(ベーン溝1aも含む)の他方の端面(冷凍機油90側)を閉塞する。
副軸受け5は、側面視略T字状である。
主軸受け4、副軸受け5の材質は、シリンダ1の材質と同じで、ねずみ鋳鉄、焼結、炭素鋼等である。
主軸受け4には、その外側(単相誘導電動機100側)に吐出マフラ7が取り付けられる。主軸受け4の吐出弁から吐出される高温・高圧の吐出ガスは、一端吐出マフラ7に入り、その後吐出マフラ7から密閉容器70内に放出される。但し、副軸受け5側に吐出マフラ7を持つ場合もある。
密閉容器70の横に、冷凍サイクルからの低圧の冷媒ガスを吸入し、液冷媒が戻る場合に液冷媒が直接シリンダ1のシリンダ室に吸入されるのを抑制する吸入マフラ21が設けられる。吸入マフラ21は、シリンダ1の吸入ポートに吸入管22を介して接続する。吸入マフラ21本体は、溶接等により密閉容器70の側面に固定される。
密閉容器70には、電力の供給源である電源に接続する端子24(ガラス端子という)が、溶接により固定されている。図1の例では、密閉容器70の上面に端子24が設けられる。端子24には、電動要素である単相誘導電動機100からのリード線23が接続される。
密閉容器70の上面に、両端が開口した吐出管25が嵌挿されている。圧縮要素501から吐出される吐出ガスは、密閉容器70内から吐出管25を通って外部の冷凍サイクルへ吐出される。
ロータリ圧縮機500の一般的な動作について説明する。端子24、リード線23から電動要素である単相誘導電動機100の固定子12に電力が供給されることにより、回転子11が回転する。すると回転子11に固定された回転軸50が回転し、それに伴いローリングピストン2はシリンダ1のシリンダ室1b内で偏心回転する。シリンダ1のシリンダ室1bとローリングピストン2との間の空間は、ベーン3によって2分割されている。回転軸50の回転に伴い、それらの2つの空間の容積が変化し、片側はだんだん容積が広がることにより吸入マフラ21より冷媒を吸入し、他側は容積が除々に縮小することにより、中の冷媒ガスが圧縮される。圧縮された吐出ガスは、吐出マフラ7から密閉容器70内に一度吐出され、更に電動要素である単相誘導電動機100を通過して密閉容器70の上面にある吐出管25より密閉容器70外へ吐出される。
電動要素である単相誘導電動機100を通過する吐出ガスは、例えば、図1、図2、図6に示すように、単相誘導電動機100の回転子11の風穴部11b(貫通孔)、固定子鉄心12aのスロットオープニング(図示せず、スロット開口部ともいう)含む空隙60、固定子鉄心12aの外周に配置された固定子切欠12c等を通る。
ロータリ圧縮機500が上記運転動作を行う場合、部品同士が摺動する摺動部が以下に示すように複数ある。
(1)第1の摺動部:ローリングピストン2の外周2aとベーン3の先端3a(内側);
(2)第2の摺動部:シリンダ1のベーン溝1aとベーン3の側面部3b(両側面);
(3)第3の摺動部:ローリングピストン2の内周2bと回転軸50の偏心軸部50a;
(4)第4の摺動部:主軸受け4の内周と回転軸50の主軸部50b;
(5)第5の摺動部:副軸受け5の内周と回転軸50の副軸部50c。
圧縮要素501に設けられる、摺動部を構成する部品をまとめる。
(1)シリンダ1;
(2)ローリングピストン2;
(3)ベーン3;
(4)主軸受け4;
(5)副軸受け5;
(6)回転軸50。
既に述べたように、ロータリ圧縮機500の場合、圧縮要素501の圧力がバランスして停止しているときは、ローリングピストン2が下死点に位置する傾向がある(図12の状態)。従って、図1及び図6の角度α=45度(連続して配置される4個の回転子大スロット40aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置)の位置と、圧縮要素の下死点の位置とが略一致するように、ロータリ圧縮機500を組立れば、ロータリ圧縮機500の起動性を改善することができ、信頼性の高いロータリ圧縮機500を得ることができる。
上記のように、停止時の回転方向の位置(下死点)が略一定の負荷(この場合はロータリ圧縮機500の圧縮要素501)と本実施の形態の単相誘導電動機100を組み合わせることで、図1及び図6の角度α=45度(連続して配置される4個の回転子大スロット40aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置)で起動トルクが最大になるという特徴を生かすことができる。
停止時の回転方向の位置が一定しない負荷(例えば、送風ファン等)と、本実施の形態の単相誘導電動機100を組み合わせても、図10のどの角度αで起動するか決まらないので、本実施の形態の単相誘導電動機100の特徴を生かすことができない。
図1及び図6の角度α=45度(連続して配置される4個の回転子大スロット40aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置)の位置と、圧縮要素501の下死点の位置とが略一致するように、ロータリ圧縮機500を組立るために、例えば、以下に示す方法がある。即ち、図1(図3、図5)に示すように、固定子鉄心12aの外周縁の角度αの位置に切欠12fを設ける。この切欠12fは、例えば、略半円形のものを示すが、形状は任意でよい。四角、三角、楕円、台形、楔状等どのような形状でもよい。
さらに、圧縮要素501側では、シリンダ1の外周縁の下死点の位置に切欠1dを設ける。この切欠1dは、例えば、略半円形のものを示すが、形状は任意でよい。四角、三角、楕円、台形、楔状等どのような形状でもよい。
ロータリ圧縮機500の組立時に、圧縮要素501と固定子12とが密閉容器70に焼き嵌めされる。密閉容器70を加熱して、密閉容器70の内径を常温よりも大きくし、その状態で圧縮要素501と固定子12とを密閉容器70に挿入し、密閉容器70の温度が常温もしくは常温に近づけば、密閉容器70の内径が高温の状態よりも小さくなって、圧縮要素501と固定子12とを固定される。このとき、シリンダ1の切欠1d(外周縁の下死点の位置)と、固定子12の切欠12fとを周方向において一致するようにすれば、先ず、固定子12の角度αの位置とシリンダ1の下死点の位置とを合わせることができる。
図13は実施の形態1を示す図で、角度αの位置に円形(小)の風穴部11b−1を設けた回転子11の横断面図である。回転子11の角度αの位置とシリンダ1の下死点の位置とを合わせるためには、回転軸50の偏心軸部50aの偏心方向が回転子11の角度αの位置と一致させる必要がある。そのために、図13に示すように、回転子11の角度αの位置にある風穴部11b−1の形状を他の風穴部11bの形状と異なるようにする。
そして、回転軸50の主軸部50b(偏心軸部50aより上の部分で、回転子11に嵌合する部分)に回転子11に嵌合するときに、回転軸50の偏心軸部50aの偏心方向が風穴部11b−1の位置(周方向)と一致するようにする。
そのように構成することにより、回転子11の角度αの位置とシリンダ1の下死点の位置とを合わせることができる。
尚、回転子11の角度αの位置にある風穴の形状は、他の風穴部11bの形状と異なるようにすればよいので、どのような形状でもよい。
図14乃至図16は実施の形態1を示す図で、図14は角度αの位置に円形(大)の風穴部11b−2を設けた回転子11の横断面図、図15は角度αの位置に四角形の風穴部11b−3を設けた回転子11の横断面図、図16は角度αの位置に楕円の風穴部11b−4を設けた回転子11の横断面図である。
回転子11の角度αの位置にある風穴の形状は、図13の円形(小)の風穴部11b−1以外に、図14に示すように、円形(大)の風穴部11b−2としてもよい。また、図15に示すように、四角形の風穴部11b−3としてもよい。さらに、図16に示すように、楕円の風穴部11b−4としてもよい。
以上のように、単相誘導電動機100の回転子11のスロット(ここでは、一例として、30スロット)を、回転子大スロット40a(例えば、4個)と、回転子小スロット40b(例えば、26個)とで構成し、且つ回転子11の回転方向を時計回りとした場合、連続して配置される4個の回転子大スロット40aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置(反時計方向)に並べて配置した位置(角度α)とする。さらに、ロータリ圧縮機500の圧縮要素501の下死点の位置を、単相誘導電動機100の回転子11の上記角度αと一致するようにする。そのように構成することにより、通常、ロータリ圧縮機500が高低圧がバランスして停止した場合、圧縮要素501の下死点の位置で停止するので、起動トルクが大きくなる回転子11の上記角度αの位置と圧縮要素501の下死点とを略一致させることにより、ロータリ圧縮機500の起動性を改善することができる。
ロータリ圧縮機500の組立時の、圧縮要素501と固定子12とが密閉容器70に焼き嵌めされるときに、シリンダ1の切欠1d(外周縁の下死点の位置)と、固定子12の切欠12fとを周方向において一致するようにすれば、固定子12の角度αの位置とシリンダ1の下死点の位置とを合わせることができる。また、回転軸50の主軸部50b(偏心軸部50aより上の部分で、回転子11に嵌合する部分)に回転子11に嵌合するときに、回転軸50の偏心軸部50aの偏心方向が風穴部11b−1の位置(周方向)と一致するようにすることにより、回転子11の角度αの位置とシリンダ1の下死点の位置とを合わせることができる。それにより、起動トルクが大きくなる回転子11の上記角度αの位置と圧縮要素501の下死点とを略一致させることが可能になる。
尚、図7に示す回転子鉄心11aは、回転子小スロット40bに対して、回転子大スロット40aを周方向の幅を広げて面積を大きくしたが、径方向の長さを長くして面積を大きくしてもよい。
図17乃至図19は実施の形態1を示す図で、図17は径方向に長い回転子大スロット40cを設けた回転子11の横断面図、図18は径方向に長い回転子大スロット40cを設けた回転子鉄心11aの横断面図、図19(a)は回転子大スロット40cの横断面図、図19(b)は回転子小スロット40bの横断面図である。
図17に示す回転子11は、回転子鉄心11aの半径方向外周側に、回転子鉄心11aの外周縁に沿って設けられる回転子小スロット40bと、回転子大スロット40cからなる回転子スロットを有する。
図17の例でも、回転子スロットの数は、回転子小スロット40b(図19(b)参照)が26個、回転子大スロット40c(図19(a)参照)が4個であり、合わせて30個である。
回転子大スロット40a(図8(a)参照)は回転子小スロット40bに対して周方向に面積を拡大しているが、回転子大スロット40c(図19(a)参照)は、回転子小スロット40bに対して径方向に面積を拡大している。
回転子小スロット40b、回転子大スロット40cには、共に導電性材料であるアルミが鋳込まれており(アルミダイキャスティング)、アルミバー30b,30c(図17参照)を形成する。この場合も、導電性材料は、アルミが一般的であるが、銅を用いても良い。
図17のような構成でも、図10に示す起動トルク特性と略同等の特性が得られる。
次に、変形例1の単相誘導電動機200について、図20乃至図23を参照しながら説明する。
図20乃至図23は実施の形態1を示す図で、図20は変形例1の単相誘導電動機200の横断面図、図21は回転子211の横断面図、図22は回転子鉄心211aの横断面図、図23は角度αに対する起動トルク特性図である。
図20乃至図22に示す変形例1の単相誘導電動機200は、図1に示す単相誘導電動機100と比べると、回転子211の形状が異なる(図21参照)。
回転子211は、角度α=45度(補助巻線20aで生成された補助巻線磁束の向きを下向き、主巻線20bで生成された主巻線磁束の向きを右向き、回転子211の回転方向を時計回りとした場合、連続して配置される4個の回転子大スロット40aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置に並べて配置している)に4個並べて配置された回転子大スロット40aを、180度ずれた位置にも4個並べて配置させている。つまり、回転子大スロット40aが合計8個、回転子小スロット40bが合計22個で、合わせて30個の回転子スロットを有している。
また、図23に示す起動トルク特性図は、図21等に示す角度αに対する起動トルク比率を表しており、縦軸の起動トルク比は、回転子スロットが、全て回転子小スロット40bで構成された場合の起動トルクに対する比率を示している。
図23において、前述の図10と同様に、角度αを変更すると起動トルク特性が変化しており、αが約45度及び約225度の位置で起動トルク(起動トルク比)が最大となっている。図10の特性図と比べても、更に大きな起動トルク特性を持つことがわかる。
本実施の形態では、角度αが約45度の位置になるように、回転子大スロット40aを180度ずれた位置にも配置することで、更に起動トルク特性が良好となり、交流電源の電圧が低くなった状態でも起動が可能な、信頼性の高い単相誘導電動機200を得ることができる。
図24、図25は実施の形態1を示す図で、図24は径方向に長い回転子大スロット40cを設けた回転子211の横断面図、図25は径方向に長い回転子大スロット40cを設けた回転子鉄心211aの横断面図である。
変形例1の単相誘導電動機200においても、回転子大スロット40cは、周方向だけではなく、回転子小スロット40bよりも径方向に長い形状にしてもよい。
図24に示す回転子211は、回転子鉄心211a(図25)の半径方向外周側に、回転子鉄心11aの外周縁に沿って設けられる回転子小スロット40bと、径方向に長い回転子大スロット40cからなる回転子スロットを有する。
図24、図25の例でも、回転子スロットの数は、回転子小スロット40b(図19(b)参照)が22個、回転子大スロット40c(図19(a)参照)が8個であり、合わせて30個である。
図24のような構成でも、図23に示す起動トルク特性と略同等の特性が得られる。
次に、変形例2の単相誘導電動機300について、図26乃至図29を参照しながら説明する。
図26乃至図29実施の形態1を示す図で、図26は変形例2の単相誘導電動機300の横断面図、図27は図26のB部拡大図、図28は図26のC部拡大図、図29は偏心位置βに対する起動トルク特性図である。
図26に示す変形例2の単相誘導電動機300は、図1に示す単相誘導電動機100と比べると、固定子12の中心軸に対して、回転子11の中心軸(回転軸)が右下にずれた位置(偏心)に設けられている。回転子11の形状は図1と同一であり、回転子大スロット40a及び回転子小スロット40bからなる非対称配置の回転子スロットを有しており、図1に示すように、角度αは45度である。
図26において、回転子11が時計回りに回転する場合、図中下向きの補助巻線磁束に対して、回転子11の偏心位置をβと設定すると、図26に示す単相誘導電動機300はβ=45度である。
固定子12に対して回転子11を偏心させた位置に配置しているため、固定子12と回転子11の間の空隙寸法が一定ではなく、図27、図28に示すように、空隙60a(図26のB部、図27に拡大図を示す)と空隙60b(図26のC部、図28に拡大図を示す)の径方向寸法が異なる。例えば、空隙60aの径方向寸法を0.7mm、空隙60bの径方向寸法を0.3mmに設定するが、この寸法は一例であり、この限りではない。
図29に示す起動トルク特性は、偏心位置βに対するものであり、縦軸の起動トルク比は、図1に示す固定子12の中心軸と、回転子11の中心軸(回転軸)が一致している、偏心がない場合の起動トルクに対する比率である。
図29において、偏心位置βを変更することで、起動トルクが変化しており、偏心位置β=45度の位置、つまり回転子大スロット40aが配置された位置に回転子11を偏心させることで起動トルクを更に大きくすることができる。
図26の例では、偏心位置β=45度の場合について説明したが、βは0〜60度程度の範囲であれば、起動特性が良好な単相誘導電動機300を得ることができる。
起動トルクが改善するということは、単相誘導電動機300に印加される交流電源の電圧が低くなった場合でも起動することが可能な、信頼性の高い単相誘導電動機300を得ることができる。
図30乃至図32は実施の形態1を示す図で、図30は径方向に長い回転子大スロット40cを設けた変形例2の単相誘導電動機300の横断面図、図31は図30のD部拡大図、図32は図30のE部拡大図である。
図30に示す径方向に長い回転子大スロット40cを設けた変形例2の単相誘導電動機300は、図26に示す単相誘導電動機300と比べると、回転子大スロットの形状が異なる。図26に示す単相誘導電動機300では、回転子大スロット40aが回転子小スロット40bよりも周方向の幅が大きい構成であるが、図30に示す径方向に長い回転子大スロット40cを設けた変形例2の単相誘導電動機300では、回転子大スロット40cが回転子小スロット40bよりも径方向の長さが長い構成である。
このように、回転子小スロット40bよりも径方向の長さが長い回転子大スロット40cを用い、固定子12に対して回転子11を偏心させた位置に配置し、固定子12と回転子11の間の空隙寸法が一定ではなく、図31、図32に示すように、空隙60a(図30のD部、図31に拡大図を示す)と空隙60b(図30のE部、図31に拡大図を示す)の径方向寸法が異なる。例えば、空隙60aの径方向寸法を0.7mm、空隙60bの径方向寸法を0.3mmに設定する。このような構成においても、図29に示す起動トルク特性と略同等の起動トルク特性が得られる。
図33乃至図36は実施の形態1を示す図で、図33は変形例3の単相誘導電動機400の横断面図、図34は回転子411の横断面図、図35は回転子鉄心411aの横断面図、図36(a)は回転子大スロット440aの横断面図、図36(b)は回転子小スロット440bの横断面図である。
図33に示す変形例3の単相誘導電動機400は、回転子が単相誘導電動機100(図1)と異なる。単相誘導電動機100(図1)の回転子11は普通かご形であるが、変形例3の単相誘導電動機400の回転子411は、二重かご形である。
変形例3の単相誘導電動機400は、固定子12と、回転子411とを備える。固定子12は、単相誘導電動機100(図1)のものと同じである。回転子411は、回転子鉄心411aと、二重かご形導体とを備える。
回転子鉄心411aには半径方向外周側に、回転子鉄心411aの外周縁に沿って設けられる回転子小スロット440bと、回転子大スロット440aからなる回転子スロット40を有する。
図33(図35)の例では、回転子スロットの数は、回転子小スロット440b(図36(b)参照)が26個、回転子大スロット440a(図36(a)参照)が4個であり、合わせて30個である。結局、図33の単相誘導電動機400は、固定子鉄心12aのスロット数が24、回転子鉄心411aの総スロット数が30の組合せである。
回転子大スロット440a、回転子小スロット440bには、共に導電性材料であるアルミが鋳込まれており(アルミダイキャスティング)、アルミバー430a,430b(図34参照)を形成する。アルミバー430aは、外層アルミバー430a−1と、内層アルミバー430a−2とを有する。また、アルミバー430bは、外層アルミバー430b−1と、内層アルミバー430b−2とを有する。導電性材料は、アルミが一般的であるが、銅を用いても良い。
アルミバー430a,430bは、回転子411の積層方向両端面に設けられたエンドリング32(図9参照)と共に二重かご形二次導体を形成する。一般的にアルミバー430a,430bとエンドリング32はダイキャスティングにより同時にアルミを鋳込むことで製作される。
回転子大スロット440aは、回転子鉄心411aの外周縁に沿って設けられる外層スロット440a−1と、外層スロット440a−1の内周側に設けられた内層スロット440a−2と、外層スロット440a−1と内層スロット440a−2を連結する連結スロット440a−3とからなる(図36(a)参照)。外層スロット440a−1に、外層アルミバー430a−1が形成されるとともに、内層スロット440a−2に、内層アルミバー430a−2が形成される。連結スロット440a−3にも、アルミが鋳込まれる。
また、回転子小スロット440bは、回転子鉄心411aの外周縁に沿って設けられる外層スロット440b−1と、外層スロット440b−1の内周側に設けられた内層スロット440b−2と、外層スロット440b−1と内層スロット440b−2を連結する連結スロット440b−3とからなる(図36(b)参照)。外層スロット440b−1に、外層アルミバー430b−1が形成されるとともに、内層スロット440b−2に、内層アルミバー430b−2が形成される。連結スロット440b−3にも、アルミが鋳込まれる。
図33乃至図35に示すように、補助巻線20aで生成された補助巻線磁束の向きを下向き、主巻線20bで生成された主巻線磁束の向きを右向き、回転子411の回転方向を時計回りとした場合、連続して配置される4個の回転子大スロット440aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置に並べて配置している(角度α=45度)。
二重かご形状の回転子411を有する単相誘導電動機400は、以下に示すような一般的な特徴を有する。即ち、起動時はすべり周波数(回転磁界の周波数と回転子411の回転数との差)が高くなる。内層アルミバー(例えば、内層アルミバー430a−2,430b−2)の漏れ磁束は、外層アルミバー(例えば、外層アルミバー430a−1,430b−1)の漏れ磁束より多くなる。すべり周波数が大きい起動時には、リアクタンス分により電流分布が決まり、二次電流は外層アルミバー(例えば、外層アルミバー430a−1,430b−1)に主に流れる。そのため、二次抵抗が大きくなることにより起動トルクが増大して起動特性が改善される。
また通常運転時は、すべり周波数が低いので、二次電流はアルミバー全体に流れるため、アルミ断面積が大きくなり、二次抵抗が小さくなる。従って、二次銅損が低くなることで、高効率化が実現できるという特性を有している。
それに加えて、変形例3の単相誘導電動機400は、図33乃至図35に示すように、補助巻線20aで生成された補助巻線磁束の向きを下向き、主巻線20bで生成された主巻線磁束の向きを右向き、回転子411の回転方向を時計回りとした場合、連続して配置される4個の回転子大スロット440aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置に並べて配置している(角度α=45度)ので、図10に示した起動トルク特性を有し、さらに起動トルク特性が改善される。
図37乃至図40は実施の形態1を示す図で、図37は径方向に長い回転子大スロット440cを設けた変形例3の単相誘導電動機400の横断面図、図38は径方向に長い回転子大スロット440cを設けた変形例3の回転子411の横断面図、図39は径方向に長い回転子大スロット440cを設けた変形例3の回転子鉄心411aの横断面図、図40(a)は径方向に長い回転子大スロット440cの横断面図、図40(b)は回転子小スロット440bの横断面図である。
図33に示す変形例3の単相誘導電動機400は、回転子大スロット440aを周方向に面積を拡大したが、径方向に長い形状にしてもよい。
図37乃至図40により、径方向に長い回転子大スロット440cを設けた変形例3の単相誘導電動機400について説明する。
図37に示す径方向に長い回転子大スロット440cを設けた変形例3の単相誘導電動機400は、固定子12と、回転子411とを備え、回転子411は、回転子鉄心411aと、径方向に長い回転子大スロット440cを有する二重かご形導体とを備える。
回転子411は、回転子鉄心411aの半径方向外周側に、回転子鉄心411aの外周縁に沿って設けられる回転子小スロット440bと、径方向に長い回転子大スロット440cからなる回転子スロットを有する。
図38(図39)の例でも、回転子スロットの数は、回転子小スロット440b(図40(b)参照)が26個、回転子大スロット440c(図40(a)参照)が4個であり、合わせて30個である。
回転子大スロット440a(図36(a)参照)は回転子小スロット440bに対して周方向に面積を拡大しているが、回転子大スロット440c(図40(a)参照)は、回転子小スロット440bに対して径方向に面積を拡大している。
回転子大スロット440cは、回転子鉄心411aの外周縁に沿って設けられる外層スロット440c−1と、外層スロット440c−1の内周側に設けられた内層スロット440c−2と、外層スロット440c−1と内層スロット440c−2を連結する連結スロット440c−3とからなる(図40(a)参照)。外層スロット440c−1に、外層アルミバー430c−1が形成されるとともに、内層スロット440c−2に、内層アルミバー430c−2が形成される。連結スロット440c−3にも、アルミが鋳込まれる。
また、回転子小スロット440bは、回転子鉄心411aの外周縁に沿って設けられる外層スロット440b−1と、外層スロット440b−1の内周側に設けられた内層スロット440b−2と、外層スロット440b−1と内層スロット440b−2を連結する連結スロット440b−3とからなる(図40(b)参照)。外層スロット440b−1に、外層アルミバー430b−1が形成されるとともに、内層スロット440b−2に、内層アルミバー430b−2が形成される。連結スロット440b−3にも、アルミが鋳込まれる。
回転子小スロット440b、回転子大スロット440cには、共に導電性材料であるアルミが鋳込まれており(アルミダイキャスティング)、アルミバー430b,430c(図38参照)を形成する。この場合も、導電性材料は、アルミが一般的であるが、銅を用いても良い。
図37に示す径方向に長い回転子大スロット440cを設けた変形例3の単相誘導電動機400も、図33に示す周方向に面積を拡大した回転子大スロット440aを設けた変形例3の単相誘導電動機400と略同等の起動トルク特性が得られる。
図41乃至図43は実施の形態1を示す図で、図41は変形例4の単相誘導電動機600の横断面図、図42は回転子611の横断面図、図43は回転子鉄心611aの横断面図である。
図41乃至図43を参照しながら、変形例4の単相誘導電動機600について説明する。
図41に示す変形例4の単相誘導電動機600は、図33に示す単相誘導電動機400と比べると、回転子611の形状が異なる(図42参照)。回転子鉄心611aについては、図43参照。
回転子611は、角度α=45度(補助巻線20aで生成された補助巻線磁束の向きを下向き、主巻線20bで生成された主巻線磁束の向きを右向き、回転子611の回転方向を時計回りとした場合、連続して配置される4個の回転子大スロット440aの中央部を、補助巻線磁束の向きに対して、45度遅れた位置に並べて配置している)に4個並べて配置された回転子大スロット440aを、180度ずれた位置にも4個並べて配置させている。つまり、回転子大スロット440aが合計8個、回転子小スロット440bが合計22個で、合わせて30個の回転子スロットを有している。
本実施の形態では、角度αが約45度の位置になるように、回転子大スロット440aを180度ずれた位置にも配置することで、更に起動トルク特性が良好となり、交流電源の電圧が低くなった状態でも起動が可能な、信頼性の高い単相誘導電動機600を得ることができる。
図44乃至図46は実施の形態1を示す図で、図44は径方向に長い回転子大スロット440cを設けた変形例4の単相誘導電動機600の横断面図、図45は径方向に長い回転子大スロット440cを設けた変形例4の回転子611の横断面図、図46は径方向に長い回転子大スロット440cを設けた変形例4の回転子鉄心611aの横断面図である。
変形例4の単相誘導電動機600においても、周方向ではなく、回転子小スロット440bよりも径方向に長い形状の回転子大スロット440cにしてもよい。
図44に示す径方向に長い回転子大スロット440cを設けた変形例4の単相誘導電動機600は、固定子12と、径方向に長い回転子大スロット440cを設けた回転子611とを備える。
図45に示す回転子611は、回転子鉄心611a(図46)の半径方向外周側に、回転子鉄心11aの外周縁に沿って設けられる回転子小スロット440bと、径方向に長い回転子大スロット440cからなる回転子スロットを有する。
図45、図46の例でも、回転子スロットの数は、回転子小スロット440b(図40(b)参照)が22個、回転子大スロット440c(図40(a)参照)が8個であり、合わせて30個である。
図44乃至図46のような構成でも、周方向に面積を拡大した回転子大スロット440aを設けた変形例4の単相誘導電動機600と略同等の起動トルク特性が得られる。
図47乃至図49は実施の形態1を示す図で、図47は変形例5の単相誘導電動機700の横断面図、図48は図47のF部拡大図、図49は図47のG部拡大図である。
図47に示す変形例5の単相誘導電動機700は、図33に示す変形例3の単相誘導電動機400と比べると、固定子12の中心軸に対して、回転子411の中心軸(回転軸)が右下にずれた位置(偏心)に設けられている。回転子411の形状は図33と同一であり、回転子大スロット440a及び回転子小スロット440bからなる非対称配置の回転子スロットを有しており、図33に示すように、角度αは45度である。
図47において、回転子411が時計回りに回転する場合、図中下向きの補助巻線磁束に対して、回転子411の偏心位置をβと設定すると、図47に示す単相誘導電動機700はβ=45度である。
固定子12に対して回転子411を偏心させた位置に配置しているため、固定子12と回転子411の間の空隙寸法が一定ではなく、図48、図49に示すように、空隙60a(図47のF部、図48に拡大図を示す)と空隙60b(図47のG部、図49に拡大図を示す)の径方向寸法が異なる。例えば、空隙60aの径方向寸法を0.7mm、空隙60bの径方向寸法を0.3mmに設定するが、この寸法は一例であり、この限りではない。
変形例2の単相誘導電動機300と同様、偏心位置βを変更することで、偏心位置β=45度の位置、つまり回転子大スロット440aが配置された位置に回転子411を偏心させることで起動トルクが更に大きくすることができる。
図47の例では、偏心位置β=45度の場合について説明したが、βは0〜60度程度の範囲であれば、起動特性が良好な単相誘導電動機700を得ることができる。
図50乃至図52は実施の形態1を示す図で、図50は径方向に長い回転子大スロット440cを設けた変形例5の単相誘導電動機700の横断面図、図51は図50のH部拡大図、図52は図50のJ部拡大図である。
図50に示す径方向に長い回転子大スロット440cを設けた変形例5の単相誘導電動機700は、図47に示す単相誘導電動機700と比べると、回転子大スロットの形状が異なる。図47に示す単相誘導電動機300では、回転子大スロット440aが回転子小スロット440bよりも周方向の幅が大きい構成であるが、図50に示す径方向に長い回転子大スロット440cを設けた単相誘導電動機700では、回転子大スロット440cが回転子小スロット440bよりも径方向の長さが長い構成である。
このように、回転子小スロット440bよりも径方向の長さが長い回転子大スロット440cを用い、固定子12に対して回転子411を偏心させた位置に配置し、固定子12と回転子411の間の空隙寸法が一定ではなく、図51、図52に示すように、空隙60a(図50のH部、図51に拡大図を示す)と空隙60b(図50のJ部、図52に拡大図を示す)の径方向寸法が異なる。例えば、空隙60aの径方向寸法を0.7mm、空隙60bの径方向寸法を0.3mmに設定する。このような構成においても、図47に示す回転子大スロット440aが回転子小スロット440bよりも周方向の幅が大きい構成の単相誘導電動機700と略同等の起動トルク特性が得られる。
以上の説明は、二極の単相誘導電動機についてのものであるが、本発明は二極の単相誘導電動機に限定されるものではない。極数を問わず、回転子の回転方向を時計回りとした場合、連続して配置される複数個の回転子大スロットの中央部を、補助巻線磁束の向きに対して、好ましくは45度(電気角)遅れた位置に並べて配置すればよい。それにより、起動トルク特性を改善できる。また、45度(電気角)は最適値であり、20〜70度の範囲であれば、良好な起動特性を得ることが可能である。
本発明の活用例として、密閉型圧縮機に用いられる単相誘導電動機がある。
1 シリンダ、1a ベーン溝、1b シリンダ室、1c 背圧室、1d 切欠、2 ローリングピストン、2a 外周、2b 内周、3 ベーン、3a 先端、3b 側面部、4 主軸受け、5 副軸受け、7 吐出マフラ、8 ベーンスプリング、11 回転子、11a 回転子鉄心、11b 風穴部、11b−1 風穴部、11b−2 風穴部、11b−3 風穴部、11b−4 風穴部、11c 軸孔、12 固定子、12a 固定子鉄心、12b 固定子スロット、12c 固定子切欠、12d コアバック、12e ティース、12f 切欠、20 巻線、20a 補助巻線、20b 主巻線、21 吸入マフラ、22 吸入管、23 リード線、24 端子、25 吐出管、30a アルミバー、30b アルミバー、32 エンドリング、40 回転子スロット、40a 回転子大スロット、40b 回転子小スロット、40c 回転子大スロット、50 回転軸、50a 偏心軸部、50b 主軸部、50c 副軸部、60 空隙、60a 空隙、60b 空隙、70 密閉容器、90 冷凍機油、100 単相誘導電動機、200 単相誘導電動機、211 回転子、211a 回転子鉄心、300 単相誘導電動機、400 単相誘導電動機、411 回転子、411a 回転子鉄心、430a アルミバー、430a−1 外層アルミバー、430a−2 内層アルミバー、430b アルミバー、430b−1 外層アルミバー、430b−2 内層アルミバー、430c−1 外層アルミバー、430c−2 内層アルミバー、440a 回転子大スロット、440a−1 外層スロット、440a−2 内層スロット、440a−3 連結スロット、440b 回転子小スロット、440b−1 外層スロット、440b−2 内層スロット、440b−3 連結スロット、500 ロータリ圧縮機、501 圧縮要素、600 単相誘導電動機、611 回転子、611a 回転子鉄心、700 単相誘導電動機。

Claims (6)

  1. 所定の形状に打ち抜いた電磁鋼板を所定枚数積層して製作される固定子鉄心の内周縁に沿って形成される複数の固定子スロットに挿入される主巻線と、補助巻線とを有する固定子と、前記固定子の内周側に空隙を介して配置される回転子とを備えた単相誘導電動機であって、
    前記回転子は、
    所定の形状に打ち抜いた電磁鋼板を所定枚数積層して製作される回転子鉄心と、
    前記回転子鉄心の外周縁に沿って形成されるとともに導電性材料が充填され、スロット断面積の異なる二種類の回転子大スロット及び回転子小スロットと、を具備し、
    前記回転子大スロットを所定個数連続して配置したことを特徴とする単相誘導電動機。
  2. 当該単相誘導電動機の起動時において、
    前記補助巻線に流れる電流により生成される補助巻線磁束の方向から、複数個の前記回転子大スロットの中央部を、前記回転子の回転方向に対して、電気角で20度から70度の範囲で遅れた位置に設定されることを特徴とする請求項1記載の単相誘導電動機。
  3. 前記固定子の中心軸に対して、前記回転子の回転軸を偏心させて配置したことを特徴とする請求項1又は請求項2記載の単相誘導電動機。
  4. 前記補助巻線に流れる電流により生成される補助巻線磁束の方向から、前記回転子の回転方向に対して、電気角で0度から60度の範囲で遅れた位置に偏心させたことを特徴とする請求項3記載の単相誘導電動機。
  5. 請求項1乃至請求項4のいずれかに記載の単相誘導電動機を備えたことを特徴とする密閉型圧縮機。
  6. ロータリ式の圧縮要素を備えた密閉型圧縮機であって、
    回転軸の偏心軸部の偏心方向と前記回転子大スロットの位置が略一致するとともに、前記偏心軸部の偏心方向と前記主巻線及び前記補助巻線とが所定の位置関係に設定されることを特徴とする請求項5記載の密閉型圧縮機。
JP2010023874A 2010-02-05 2010-02-05 単相誘導電動機及び密閉型圧縮機 Expired - Fee Related JP5159807B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023874A JP5159807B2 (ja) 2010-02-05 2010-02-05 単相誘導電動機及び密閉型圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023874A JP5159807B2 (ja) 2010-02-05 2010-02-05 単相誘導電動機及び密閉型圧縮機

Publications (2)

Publication Number Publication Date
JP2011166865A true JP2011166865A (ja) 2011-08-25
JP5159807B2 JP5159807B2 (ja) 2013-03-13

Family

ID=44596882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023874A Expired - Fee Related JP5159807B2 (ja) 2010-02-05 2010-02-05 単相誘導電動機及び密閉型圧縮機

Country Status (1)

Country Link
JP (1) JP5159807B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029529A1 (ja) * 2013-09-02 2015-03-05 三菱電機株式会社 かご型回転子およびかご型回転子の製造方法
DE102015001313A1 (de) * 2015-02-05 2016-08-11 Sew-Eurodrive Gmbh & Co Kg Elektromaschine, insbesondere LSPM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595163B (zh) * 2013-11-18 2016-04-20 广东美芝制冷设备有限公司 单相感应电动机和具有它的密封式压缩机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164482U (ja) * 1983-04-15 1984-11-05 三洋電機株式会社 誘導電動機
JPH06113514A (ja) * 1992-09-30 1994-04-22 Mitsubishi Electric Corp リラクタンス電動機の回転子
JPH07274457A (ja) * 1994-03-30 1995-10-20 Kusatsu Denki Kk かご形回転子
JPH08163825A (ja) * 1995-04-10 1996-06-21 Satake Eng Co Ltd 可変速誘導電動機の冷却装置
JPH09308195A (ja) * 1996-05-13 1997-11-28 Meidensha Corp 回転電機の回転子
JPH10112949A (ja) * 1996-10-04 1998-04-28 Sanyo Electric Co Ltd アンモニア冷媒電動圧縮装置
JP2005045877A (ja) * 2003-07-24 2005-02-17 Techno Takatsuki Co Ltd 誘導同期モータ
JP2005269707A (ja) * 2004-03-16 2005-09-29 Toyu Technica Co Ltd 誘導電動機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164482U (ja) * 1983-04-15 1984-11-05 三洋電機株式会社 誘導電動機
JPH06113514A (ja) * 1992-09-30 1994-04-22 Mitsubishi Electric Corp リラクタンス電動機の回転子
JPH07274457A (ja) * 1994-03-30 1995-10-20 Kusatsu Denki Kk かご形回転子
JPH08163825A (ja) * 1995-04-10 1996-06-21 Satake Eng Co Ltd 可変速誘導電動機の冷却装置
JPH09308195A (ja) * 1996-05-13 1997-11-28 Meidensha Corp 回転電機の回転子
JPH10112949A (ja) * 1996-10-04 1998-04-28 Sanyo Electric Co Ltd アンモニア冷媒電動圧縮装置
JP2005045877A (ja) * 2003-07-24 2005-02-17 Techno Takatsuki Co Ltd 誘導同期モータ
JP2005269707A (ja) * 2004-03-16 2005-09-29 Toyu Technica Co Ltd 誘導電動機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029529A1 (ja) * 2013-09-02 2015-03-05 三菱電機株式会社 かご型回転子およびかご型回転子の製造方法
CN105493387A (zh) * 2013-09-02 2016-04-13 三菱电机株式会社 鼠笼式转子和鼠笼式转子的制造方法
JP5959751B2 (ja) * 2013-09-02 2016-08-02 三菱電機株式会社 かご型回転子およびかご型回転子の製造方法
US10003244B2 (en) 2013-09-02 2018-06-19 Mitsubishi Electric Corporation Squirrel-cage rotor and method for manufacturing squirrel-cage rotor
DE102015001313A1 (de) * 2015-02-05 2016-08-11 Sew-Eurodrive Gmbh & Co Kg Elektromaschine, insbesondere LSPM

Also Published As

Publication number Publication date
JP5159807B2 (ja) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5042365B2 (ja) 誘導電動機及び密閉型圧縮機
JP5143166B2 (ja) 単相誘導電動機及び密閉型圧縮機
JP5591099B2 (ja) 圧縮機および冷凍サイクル装置
JP5401204B2 (ja) 自己始動型永久磁石同期電動機、及び、これを用いた圧縮機と冷凍サイクル
JP6377128B2 (ja) 回転子の製造方法
JP6422566B2 (ja) モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
JP5478461B2 (ja) 電動機及び圧縮機
JP6742402B2 (ja) 電動機、圧縮機、及び冷凍サイクル装置
JPWO2007116431A1 (ja) 単相電動機及び密閉型圧縮機
WO2011028353A2 (en) Electric machine
JP6305535B2 (ja) 回転子、電動機、圧縮機、及び送風機
JP4762301B2 (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
JP2010081659A (ja) 電動機及びそれを用いた電動圧縮機
JP2010226830A (ja) 電動機及びそれを搭載した圧縮機
JP5159807B2 (ja) 単相誘導電動機及び密閉型圧縮機
JP5230574B2 (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
JP4193726B2 (ja) 同期誘導電動機の回転子及び圧縮機
JP6331938B2 (ja) 積層コア、同期電動機、および電動圧縮機
JP2004274995A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP2015112011A (ja) 誘導電動機、圧縮機および冷凍サイクル装置
WO2019146030A1 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP4969216B2 (ja) 永久磁石同期電動機及び圧縮機
CN112564321A (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
JP2013051881A (ja) 誘導電動機、圧縮機および冷凍サイクル装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees