JP2011165846A - 有機圧電素子の製造方法、積層体および有機圧電素子 - Google Patents

有機圧電素子の製造方法、積層体および有機圧電素子 Download PDF

Info

Publication number
JP2011165846A
JP2011165846A JP2010026228A JP2010026228A JP2011165846A JP 2011165846 A JP2011165846 A JP 2011165846A JP 2010026228 A JP2010026228 A JP 2010026228A JP 2010026228 A JP2010026228 A JP 2010026228A JP 2011165846 A JP2011165846 A JP 2011165846A
Authority
JP
Japan
Prior art keywords
piezoelectric
layer
electrode
organic
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010026228A
Other languages
English (en)
Inventor
Yuichi Nishikubo
雄一 西久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2010026228A priority Critical patent/JP2011165846A/ja
Publication of JP2011165846A publication Critical patent/JP2011165846A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】本発明の目的は、低コストで、効率的で、かつ圧電特性に優れた、有機圧電体材料が複数積層された並列型有機圧電素子を与える有機圧電素子の製造方法を提供することにある。
【解決手段】有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する有機圧電素子の製造方法であって、圧電体層と電極層とを積層して積層体を形成する工程であり、隣り合う圧電体層間に電極層を有さない不電極領域aが一層おきに重なる端部Aが形成され、該不電極領域aとは別の、隣り合う圧電体層間に電極層を有さない不電極領域bが、不電極領域aとは1層ずつずれて、一層おきに重なる端部Bが形成されるように、圧電体層と電極層とを積層する積層工程と、該端部Aおよび端部Bの各々を、加熱および加圧して、積層された電極の一層おきに、電極を接続する加熱接着工程とを有することを特徴とする圧電素子の製造方法。
【選択図】図2

Description

本発明は、超音波を送信、受信して超音波検査を行う超音波探触子に用いられる有機圧電素子の製造方法に関する。
超音波探蝕子などのセンサーに用いられる圧電体としては、無機圧電体および有機圧電体が知られている。
無機圧電体を用いた無機圧電材料としては、例えば水晶、LiNbO、LiTaO、KNbOなどの単結晶、ZnO、AlNなどの薄膜、Pb(Zr,Ti)O系などの焼結体を分極処理した無機圧電材料が知られている。
しかしながら、これら無機材質の圧電材料は、弾性スティフネスが高く、機械的損失係数が高い、密度が高く誘電率も高いなどの性質がある。
有機圧電体を用いた有機圧電材料としては、例えば、フッ化ビニリデンの重合体あるいは共重合体、シアン化ビニリデンの重合体あるいは共重合体を用いた有機圧電材料が知られている。
また、蒸着重合で得られたポリ尿素膜からなる有機圧電材料、尿素樹脂、ポリエステルなどの非フッソ系樹脂とフッ化ビニリデンの重合体などのフッソ系重合体の微粒子とを含有する有機圧電材料などが知られている。
有機圧電体は、無機材質の圧電体に対して、薄膜化、大面積化等の加工性に比較的優れ、任意の形状、形態の物が作ることができ、弾性率が低い、誘電率が低い等の特徴を持つため、センサーとしての使用に際しては、高感度な検出を可能とする特徴を持っている。
他方、近年では、超音波探触子から被検体内へ送信された超音波の周波数(基本周波数)成分ではなく、その高調波周波数成分によって被検体内の内部状態の画像を形成するハーモニックイメージング(Harmonic Imaging)技術が研究、開発されている。
このハーモニックイメージング技術は、(1)基本周波数成分のレベルに比較してサイドローブレベルが小さく、S/N比(signal to noise ratio)が良くなってコントラスト分解能が向上すること、(2)周波数が高くなることによってビーム幅が細くなって横方向分解能が向上すること、(3)近距離では音圧が小さくて音圧の変動が少ないために多重反射が抑制されること、および、(4)焦点以遠の減衰が基本波並みであり高周波を基本波とする場合に較べて深速度を大きくとれることなどの様々な利点を有しており、高精度な診断を可能としている。
そして、有機圧電体は、高周波特性、広帯域特性を必要とする上記ハーモニックイメージング技術における圧電材料に用いられる圧電体として適している。
また、上記のような有機圧電体の音響インピーダンスは生体のそれに近いという特徴があり、被検体が生体の場合、音響整合がとりやすいという利点を有している。
他方、圧電体を用いた超音波トランスデューサにおいて送受波性能を向上するには、トランスデューサと電気処理回路の電気インピーダンス整合は電気信号を高S/N比で伝送するための重要な因子である。そのためには、圧電材料を電気的に並列で複数積層して(以降、複数積層した場合は電気的に並列であることを意味する)用いることが有利であり圧電材料を複数積層した並列型圧電素子が知られている。
圧電材料を複数積層する場合、複数積層された各々の圧電材料に接触する電極として、1層おきに連続して形成された陽極と1層おきに連続して形成された陰極とを形成する必要がある。
1層おきに連続して形成された電極としては、例えば無機圧電材料においては特開2008−147247号明細書に記載のように圧電体材料と共に電極を焼結して形成された電極、1層おきに貫通する孔を設けこの孔に設けられた電極、圧電体が積層された積層体の側面に金属を蒸着して形成された電極などが知られている。
有機圧電体を用いた圧電素子においては、無機圧電体に比較して、膜厚が薄い、熱物性の面から、焼結などの方法は採用できないなどの制約があり、例えば圧電体と電極とを有する素子を積層した積層体の側面に、側面の電極パターンに対応した電極パターンを有する外部電極シートを接着剤で貼り付ける方法などで作製していた(特許文献1参照)。
しかしながら、これらの方法では、電極パターンに対応する電極パターンを有する電極を作製するためのコストを要する、電極の接続が充分でない場合があるなど、簡単に低いコストで良好な圧電特性を有する圧電素子を作製することは難しかった。
また、積層体の側面に蒸着で、電極を形成する方法も考えられるが、これも側面電極の作製に蒸着装置を必要とする、複雑なパターンを有するマスクを作製する、などの問題があり、簡単に、低いコストで良好な圧電特性を有する並列型有機圧電素子を作製することは難しかった。
特開2009−267528号公報
本発明の目的は、低コストで、効率的で、かつ圧電特性に優れる、有機圧電体材料が複数積層された並列型有機圧電素子を与える、有機圧電素子の製造方法を提供することにある。
本発明の上記課題は、以下の手段により解決される。
1.有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する有機圧電素子の製造方法であって、
圧電体層と電極層とを積層して積層体を形成する工程であり、隣り合う圧電体層間に電極層を有さない不電極領域aが、一層おきに、積層方向に重なる端部Aが形成され、該不電極領域aとは別の、隣り合う圧電体層間に電極層を有さない不電極領域bが、不電極領域aとは1層ずつずれて、一層おきに、積層方向に重なる端部Bが形成されるように、圧電体層と電極層とを積層する積層工程と、
該端部Aおよび端部Bの各々を、加熱および加圧して、積層された電極の一層おきに、電極を接続する加熱接着工程と、
を有することを特徴とする有機圧電素子の製造方法。
2.前記積層工程の前に、圧電体膜上に、電極層が形成されない部分を残して電極層を形成し電極付き圧電体層を作製する工程、を有することを特徴とする前記1に記載の有機圧電素子の製造方法。
3.有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する積層体であって、隣り合う圧電体層間に電極層を有さない不電極領域aが、一層おきに、積層方向に重なる端部Aが形成され、該不電極領域aとは別の、隣り合う圧電体層間に電極層を有さない不電極領域bが、不電極領域aとは1層ずつずれて、一層おきに、積層方向に重なる端部Bを有することを特徴とする積層体。
4.有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する有機圧電素子であって、該圧電体層は該有機圧電素子の端部の一つである端部1において、1層おきに連結しており、該端部1とは別の端部2において、端部1とは1層ずつずれて、1層おきに連結していることを特徴とする有機圧電素子。
5.前記端部1および端部2において、前記電極層は各々1層おきに連結していることを特徴とする前記4に記載の有機圧電素子。
本発明の上記構成により、低コストで、効率的で、かつ圧電特性に優れる、有機圧電体材料が複数積層された並列型有機圧電素子を与える、有機圧電素子の製造方法が提供できる。
積層工程で積層された積層体の概略断面図である。 本発明の製造方法により得られる有機圧電素子の例の模式断面図である。 加熱接着工程を説明する模式断面図である。
本発明は、有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する有機圧電素子の製造方法であって、圧電体層と電極層とを積層して積層体を形成する工程であり、隣り合う圧電体層間に電極層を有さない不電極領域aが、一層おきに、積層方向に重なる端部Aが形成され、該不電極領域aとは別の、隣り合う圧電体層間に電極層を有さない不電極領域bが、不電極領域aとは1層ずつずれて、一層おきに、積層方向に重なる端部Bが形成されるように、圧電体層と電極層とを積層する積層工程と、該端部Aおよび端部Bの各々を、加熱および加圧して、積層された電極の一層おきに、電極を接続する加熱接着工程、とを有することを特徴とする。
本発明では、特に、並列型の有機圧電素子の取り出し電極を、有機圧電体の端部を加熱接着することにより作製することで、簡易で、低コストである有機圧電素子の作製方法が得られる。
(圧電素子)
本発明に係る有機圧電素子は、有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構造を有し、電気信号を機械的な振動に、また機械的な振動を電気信号に変換可能で超音波の送受信が可能な素子である。
(有機圧電体)
有機圧電体は、圧電特性を有する有機物であり、有機圧電体としては、フッ素を含むフッ素系の樹脂とフッ素を含まない非フッ素系の樹脂とを挙げることができる。
非フッ素系の樹脂としては、尿素樹脂、ポリアミド樹脂、ポリエステル樹脂等が代表的な樹脂として挙げることができる。特に極性基−NHCO−基を有する尿素樹脂とポリアミド樹脂が好ましくもちいることができる。
尿素樹脂の合成は、ジイソシアナート化合物とジアミン化合物の付加反応により得ることができる。原料とする好ましいジアミン化合物として以下の化合物を挙げることができる。
ジアミン化合物として、例えば、ビス−(3−アミノプロピル)エーテル、1,2−ビス−(3−アミノプロポキシ)エタン、1,3−ビス−(3−アミノプロポキシ)−2,2−ジメチルプロパン、ビス−(3−アミノプロピル)−ジエチレングリコールエーテル、ビス−(3−アミノプロピル)−ジプロピレングリコールエーテル等の脂肪族ジアミン;ビスアミノプロピルポリエチレングリコールエーテル、ビスアミノプロピルポリプロピレングリコールエーテル、ビスアミノプロピルポリテトラメチレングリコールエーテル、ジアミノポリエチレングリコール、ジアミノポリプロピレングリコール、ジアミノポリテトラメチレングリコール、ポリアミノポリエチレングリコール、ポリアミノポリプロピレングリコール、ポリアミノポリテトラメチレングリコール等のポリアルキレンポリエーテルジアミン;ジアミノジフェニルエーテル等を挙げることができる。
また、脂肪族ジアミンとして、例えば、エチレンジアミン、1,2−プロピレンジアミン、1,3−プロピレンジアミン、1,4−ブタンジアミンもしくは、ヘキサメチレンジアミン等が挙げられる。脂環式ジアミンとしては、例えば、イソホロンジアミン、ジシクロヘキシルメタンジアミン、メチルシクロヘキサンジアミン、イソプロピリデンビス−4−シクロヘキシルジアミン、1,4−シクロヘキサンジアミン等が挙げられる。複素環式ジアミンとして、例えば、ピペラジン、メチルピペラジン、アミノエチルピペラジン等が挙げられる。
イソシアナート化合物(イソシアナト基、即ち、−N=C=O基を有する化合物)としては、例えば、ヘキサメチレンジイソシアネート、2,4−ジイソシアネート−1−1−メチルシクロヘキサン、ジイソシアネートシクロブタン、テトラメチレンジイソシアネート、o−、m−もしくはp−キシリレンジイソシアネート、水添キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ジメチルジシクロヘキシルメタンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、ドデカンジイソシアネート、テトラメチルキシレンジイソシアネートまたはイソホロンジイソシアネート等の脂肪族イソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,6−ジイソシアネート、ジフェニルメタン−4,4′−ジイソシアネート、3−メチルジフェニルメタン−4,4′−ジイソシアネート、m−もしくはp−フェニレンジイソシアネート、クロロフェニレン−2,4−ジイソシアネート、ナフタリン−1,5−ジイソシアネート、ジフェニル−4,4′−ジイソシアネート、3,3′−ジメチルジフェニル−1,3,5−トリイソプロピルベンゼン−2,4−ジイソシアネートカーボジイミド変性ジフェニルメタジイソシアネート等の芳香族イソシアネート、フェニルエーテルジイソシアネート等のイソシアネートモノマー類等が挙げられる。
なお少なくとも一方は脂肪族構造を主成分とするモノマーであることが望ましい。
樹脂にするための合成に際しての有機溶剤は、例えば、酢酸メチル、酢酸エチル、酢酸(イソ)プロピル、酢酸(イソ)ブチル、エチレングリコールジエチルエステル如きエステル系溶剤;メチルセロソルブ、セロソルブ、ブチルセロソルブ、イソブチルセロソルブ、t−ブチルセロソルブ、イソプロピルセロソルブ、ヘキシルセロソルブ、メトキシブタノール、3−メチル−3−メトキシブタノール、メチルカルビトール、カルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、メチルグリコールアセテート、酢酸セロソルブ、ブチルグリコールアセテート、酢酸メトキシプロピル、酢酸メトキシブチル、酢酸カルビトール、酢酸ブチルカルビトール、ソルフィットアセテート等のグリコールエーテル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、エチルアミルケトン等のケトン系溶剤;メタノール、エタノール、n(イソ)−プロパノール、n(イソ)−ブタノール、t−ブタノール等のアルコール系溶剤;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶剤、ヘキサン、ヘプタン、オクタン、ノナンもしくはデカン等のパラフィン系炭化水素溶剤、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン等のナフテン系炭化水素溶剤等が挙げられる。
上記ジイソシアナート化合物と上記ジアミン化合物をそのまま無溶媒で重合してもよいし、DMF、DMSO、アセトン、MEK等の極性溶媒に溶解して重合することもできる。重合は室温から上記溶媒の沸点までの温度範囲で重合反応を進めることができる。
ポリアミド樹脂は代表的なものは市販品で入手可能である。例えば、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミドMXD6、ポリアミド11、ポリアミド12、ポリアミド46、メトキシ化ポリアミド(既存化学句物質(7)−383)等である。ポリイミドは、NASAが開発した既存化学物質番号(7)−2211(CASNo.611−79−0)を挙げることができる。
ポリエスエル樹脂は、代表的なものは、ポリエチレンテレフタレート(PET)およびポリナフタレンフタレート(PEN)等である。ポリオレフィン樹脂としては、ポリエチレンおよびポリプロピレン等である。その他のポリエステル樹脂としては、圧電性を高める芳香族ジカルボン酸(ベンゼン環、ナフタレン環)、ヘテロ環含有ジカルボン酸などがある。
フッ素系の樹脂としては、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン/三フッ化エチレン共重合体P(VDF/TrFE)、フッ化ビニリデン/四フッ化エチレン共重合体P(VDF/TeFE)、シアン化ビニリデン/酢酸ビニル共重合体P(VDCN/VA)、フッ化ビニル/三フッ化エチレン共重合体P(VF/TrFE)、フッ化ビニル/三フッ化エチレン共重合体P(VF/TrFE)に第三成分としてフッ化ビニリデン、四フッ化エチレン、ヘキサフルオロアセトンおよびヘキサフルオロプロピレンなどを加えた共重合体、を挙げることができる。
(圧電体膜)
圧電体層は、上記の有機圧電体を含有する圧電体膜からなる。
有機圧電体を含有する圧電体膜の形成は、有機圧電体を含有する溶媒からなる塗布液を基材上に塗布、乾燥し、基材から剥離することによって膜を形成する方法が好ましい。塗布方法として、例えば、スピンコート法、ソルベントキャスト法、メルトキャスト法、メルトプレス法、ロールコート法、フローコート法、プリント法、ディップコート法、バーコート法等が挙げられる。圧電体層の厚さは5〜200μmであることが好ましい。また、有機圧電体の圧電体層中の含有量は80〜100質量%であることが好ましい。
(電極)
電極は、圧電体層の間に設けられた導電性膜であり、材料としては、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、スズ(Sn)などの金属材料のほかに、ポリチオフェン、ポリピロールなどの有機導電性高分子、さらに導電性粒子、カーボンナノチューブ、グラファイトなどの導電性材料を含有する高分子材料、イオン性物質をドープした高分子材料などを用いることができる。
電極を形成する方法としては、上記金属元素を主体とする金属およびそれらの合金からなる金属材料をスパッタ法、蒸着法で形成する方法が挙げられる。
その他の電極材料における電極設置方法では、微粉末の金属粉末と低融点ガラスとを混合した導電ペーストをスクリーン印刷やディッピング法、溶射法で形成する方法、適当な溶媒に溶解して塗布する方法が挙げられる。なお、電極の厚みとしては、本発明においては有機圧電膜上に電極を形成するため、電極材料と圧電材料の音響インピーダンス整合の観点から、圧電体層の厚さの0.25〜5%であることが好ましい。
(分極処理)
本発明に係る圧電素子は、分極処理されていること好ましく、分極処理における分極処理方法としては、従来公知の種々の方法が適用され得る。
例えば、エレクトレット処理法による場合には、両面に電極を形成した圧電膜を平面状の絶縁基板ではさみ、電極の一方をシグナル側、他方をグランド側に接続し、印加電圧を徐々に大きくしていくことで分極処理を行うことができる。印加電圧条件としては、機器や処理環境、圧電膜の膜厚、物性により異なるので適宜条件を選択することが好ましいが、印加電界としては1〜150MV/mの範囲で行うことが好ましい。なお印加方法は直流、交流どちらでも構わない。
また、分極中に温調を行う場合もあり、作製した圧電体膜を挟んでいる絶縁基板に温調器を設置することで達成できる。
また例えば、コロナ放電処理法による場合には、コロナ放電処理は、市販の高電圧電源と電極からなる装置を使用して処理することができる。
放電条件は、機器や処理環境により異なるので適宜条件を選択することが好ましいが、高電圧電源の電圧としては−1〜−20kV、電流としては1〜80mA、電極間距離としては1〜10cmが好ましく、印加電圧は0.5〜2.0MV/mであることが好ましい。
分極に用いられる電極としては、従来から用いられている針状電極、線状電極(ワイヤー電極)、網状電極が好ましいが、本発明ではこれらに限定されるものではない。
(積層工程)
積層工程は、圧電体層と電極層を積層して積層体を形成する工程であり、積層体が、上記のように圧電体層間に電極層を有さない構成を一部有するように積層体を形成する工程である。
(積層体)
本発明に係る積層体を図1で説明する。
図1は、積層体の概略断面図である。
本発明に係る積層体は、以下のように端部Aと端部Bが形成されるように積層されて形成されたものである。
積層体は、隣り合う圧電体層間例えば、圧電体層21と圧電体層22との間に電極層を有さない不電極領域a1を有する。また、圧電体層23と圧電体層24との間に電極層を有さない不電極領域a2を有する。同様に、a3を有する。
これら不電極領域a1、不電極領域a2および不電極領域a3は、一層おきに、即ち圧電体層22と圧電体層23との間の電極3、圧電体層24と圧電体層25との間の電極3を挟んで一層おきに、積層方向に重なっている。
端部Aは、積層体の不電極領域a1〜a3、電極3の端部および圧電体層21〜25の端部を含む、図1中点線で囲まれた部分である。
端部Bは、端部Aと異なる部分であり、端部Aとは、一層ずつずれて、端部Aと同様に不電極領域が形成された端部である。
本発明に係る積層体を得るには、積層工程に先立ち、圧電体膜上に、電極層が形成されない部分を残して電極層を形成し電極付き圧電体層を作製する工程を有することにより行うことができる。
電極層が形成されない部分を残して電極層を形成した電極付き圧電体層は、例えば電極形成後に図1の不電極領域a1〜a3、b1〜b3が生じるように、圧電体膜を不電極領域a1〜a3、b1〜b3に対応する部分を遮蔽するための成形加工を施したマスクに挟み、先に記載の電極形成方法で電極成膜することで得ることができる。
マスクのパターンとしては、1種類に限定されることはなく、積層接着後のすべての層が互いに異なる電極パターンを持つこともある。
なお、端部に関しては加圧プレスを行うため、中央部に比べて厚い電極層を形成することが好ましい。さらに電極の厚みは不連続に変化することは音響特性上好ましくなく、中央部から端部にかけて、連続的に緩やかに変化するような電極が好ましい。
電極付き圧電体層としては、片面側だけに電極が設けられていてもよいし、両面側に設けられていても良い。
両面側に設けられている圧電体層を用いる場合には、積層体は、電極付き圧電体層と、電極が設けられていない圧電体層を用いて構成することができる。
図2は、積層される状態の例と、その端部が、加熱圧着されて作製された圧電素子の例の模式断面図である。図2は、圧電体層を3層を用いる場合の例である。
電極付き圧電体層の中でも例えば、図2の上図の20のように、圧電体層の両側に電極を有し、異なる端部に各々、電極層が形成されない部分が残っている圧電体層を形成する方法が好ましく用いられる。
(加熱接着工程)
図3は、加熱接着工程を説明する模式断面図である。
加熱接着工程においては、端部Aおよび端部Bの各々を、加熱および加圧して、積層された電極の一層おきに、電極を接続する。
下記に、加熱接着工程の好ましい態様を例に説明する。
圧電体層2の端部AおよびBのうち、不電極領域が表面に出ている部分には、圧電素子との接触部が常温に維持されたプレス用ジグである加熱加圧部材60を、電極領域が表面に出ている部分には、圧電素子との接触部が高温に維持されたプレス用ジグである加熱加圧部材70を接触させ、図の矢印方向に力を加え、加圧することで電極が接続され、一層おきに連続した電極が形成される。
ここで高温とは、常温よりも高い温度であり、この高温の温度R(℃)の範囲としては、圧電体膜の融点をT(℃)とすると、
T(℃)−15(℃)≦R(℃)≦T(℃)+5(℃)
であることが好ましい。
このように、積層体を挟んで、加熱および加圧する加熱加圧部材の組み合わせとしては、端部の一方の面のみに加熱された加熱加圧部材を用いる態様が好ましい態様である。
加圧条件は、圧電体層の材料により異なるが、加圧プレス加熱加圧部材による急激な厚み変化防止のためには、厚み変化は、0.1〜2μm/minであることが、好ましい。
ここで用いる加熱加圧部材は、圧電体素子との接触面が互いに平行でもよいし、プレス後厚みが中心部から端部にかけて段階的に変化するように、側部方向に傾斜していてもよい。さらに加熱加圧部材の接触面は一定の表面粗さを有していることも好ましい。
上記のように、加熱接着工程を経た、有機圧電体素子は、以下のような構成を有する。
即ち、電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する有機圧電素子であって、この圧電体層は有機圧電素子の端部の一つである端部1(例えば図1の端部A)において、1層おきに連結しており、該端部1とは別の端部2(図1の端部B)において、端部1とは1層ずつずれて、1層おきに連結している。
さらに本発明の有機圧電素子は、図2に示すように、端部1および端部2において(図示せず)、電極層は1層おきに各々連結していることを特徴とする請求項4に記載の有機圧電素子。
また、これらの有機圧電体素子に用いられる電極層として、導電性接着剤を用いることも本発明の好ましい態様である。
(超音波探触子)
本発明に係る圧電素子は、超音波探触子に用いられる。
超音波探触子は、超音波画像診断装置の主要構成部品であって、超音波を発生するとともに、超音波ビームを送受信する機能を有するものである。超音波探触子の内部の構成は、種々の態様を採り得るが、一般的構成としては、先端(被検体である生体に接する面)部分から「音響レンズ」、「音響整合層」、「圧電素子」、「バッキング層」という順に並置された態様の構成を採り得る。
超音波探触子は、超音波送信用振動子と超音波受信用振動子を具備する超音波医用画像診断装置用探触子(プローブ)であり、受信用振動子として、上記超音波受信用振動子を用いる。
超音波の送受信の両方をひとつの振動子で担ってもよいが、より好ましくは、送信用と受信用で振動子は分けて探触子内に構成される。
送信用振動子を構成する圧電材料としては、従来公知のセラミックス無機圧電材料でも、有機圧電材料でもよい。
超音波探触子においては、送信用振動子の上もしくは並列に本発明の有機圧電素子を配置することができる。
より好ましい実施形態としては、超音波送信用振動子の上に本発明の有機圧電素子を積層する構造が良く、その際には、本発明の圧電素子は他の高分子材料(支持体として上記の比誘電率が比較的低い高分子(樹脂)フィルム、例えば、ポリエステルフィルム)の上に添合した形で送信用振動子の上に積層してもよい。その際の受信用振動子と他の高分子材料と合わせた膜厚は、探触子の設計上好ましい受信周波数帯域に合わせることが好ましい。
(音響整合層)
振動子(圧電素子)と生体組織の音響インピーダンスの差が大きいために境界面での反射が大きくなり、自由振動が長く続いてしまう。これを補正するために振動子と生体組織との間に両者の中間的な音響インピーダンスを持つ整合層を入れることにより、反射が軽減され自由振動がすみやかに集束し、探触子で送受信される超音波パルス幅が短くなり、生体内に超音波が効果的に伝搬される。音響整合層に用いられる、材料としてはアルミ、アルミ合金(たとえばAL−Mg合金)、マグネシウム合金、マコールガラス、ガラス、溶融石英、カーボングラファイト、コッパーグラファイト、ポリエチレン(PE)やポリプロピレン(PP)、ポリカーボネート(PC)、ABC樹脂、ポリフェニレンエーテル(PPE)、ABS樹脂、AAS樹脂、AES樹脂、ナイロン(PA6,PA6−6)、PPO(ポリフェニレンオキシド)、PPS(ポリフェニレンスルフィド:ガラス繊維入りも可)、PPE(ポリフェニレンエーテル)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、PETP(ポリエチレンテレフタレート)、PC(ポリカーボネート)、エポキシ樹脂、ウレタン樹脂等を用いることができる。好ましくはエポキシ樹脂等の熱硬化性樹脂に充填剤として亜鉛華、酸化チタン、シリカやアルミナ、ベンガラ、フェライト、酸化タングステン、酸化イットリビウム、硫酸バリウム、タングステン、モリブデン等を入れて成形したものを用いることができる。
音響整合層は、単層でもよいし複数層から構成されてもよいが好ましくは2層以上である。音響整合層の層厚は、超音波の波長をλとすると、λ/4となるように定める必要がある。これを満たさない場合、本来の共振周波数とは異なる周波数ポイントに複数の不要スプリアスが出現し、基本音響特性が大きく変動してしまう。結果、残響時間の増加、反射エコーの波形歪みによる感度やS/Nの低下を引き起こしてしまい好ましくない。このような音響整合層の厚さとしては、概ね30μm〜500μmの範囲で用いられる。
(バッキング層)
超音波探触子としては、超音波振動子の背面に配置し、後方への超音波の伝搬を抑制することを目的としてバッキング層を備えることも好ましい態様である。これにより、パルス幅を短くすることができる。バッキング層は、圧電素子を支持し、不要な超音波を吸収し得る超音波吸収体である。バッキング層に用いられるバッキング材としては、天然ゴム、フェライトゴム、エポキシ樹脂に酸化タングステンや酸化チタン、フェライト等の粉末を入れてプレス成形した材料、塩化ビニル、ポリビニルブチラール(PVB)、ABS樹脂、ポリウレタン(PUR)、ポリビニルアルコール(PVAL)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアセタール(POM)、ポリエチレンテレフタレート(PETP)、フッ素樹脂(PTFE)ポリエチレングリコール、ポリエチレンテレフタレート−ポリエチレングリコール共重合体などの熱可塑性樹脂などを用いることができる。
好ましいバッキング材としては、ゴム系複合材料およびまたはエポキシ樹脂複合材からなるものであり、その形状は圧電体や圧電体を含むプローブヘッドの形状に応じて、適宜選択することができる。
ゴム系複合材としては、ゴム成分および充填剤を含有する物が好ましく、JIS K6253に準拠したスプリング硬さ試験機(デュロメータ硬さ)におけるタイプAデュロメータでA70からタイプDデュロメータでD70までの硬さを有するものであり、さらに、必要に応じて各種の他の配合剤を添加することもできる。ゴム成分としては、たとえば、エチレンプロピレンゴム(EPDMまたはEPM)、水素化ニトリルゴム(HNBR)、クロロプレンゴム(CR)、シリコーンゴム、EPDMとHNBRのブレンドゴム、EPDMとニトリルゴム(NBR)のブレンドゴム、NBRおよび/またはHNBRと高スチレンゴム(HSR)のブレンドゴム、EPDMとHSRブレンドゴムなどが好ましい。より好ましくは、エチレンプロピレンゴム(EPDMまたはEPM)、水素化ニトリルゴム(HNBR)、EPDMとHNBRのブレンドゴム、EPDMとニトリルゴム(NBR)のブレンドゴム、NBRおよび/またはHNBRと高スチレンゴム(HSR)のブレンドゴム、EPDMとHSRブレンドゴムなどが挙げられる。本発明のゴム成分は、加硫ゴムおよび熱可塑性エラストマーなどのゴム成分の1種を単独で使用してもよいが、ブレンドゴムのように2種以上のゴム成分をブレンドしたブレンドゴムを用いてもよい。
ゴム成分に添加される充填剤としては、通常使用されているものから比重の大きいものに至るまでその配合量と共に様々な形で選ぶことが出来る。たとえば、亜鉛華、チタン白、ベンガラ、フェライト、アルミナ、三酸化タングステン、酸化イットリビウムなどの金属酸化物、炭酸カルシウム、ハードクレイ、ケイソウ土などのクレイ類、炭酸カルシウム、硫酸バリウムなどの金属塩類、ガラス粉末などやタングステン、モリブデン等の各種の金属系微粉末類、ガラスバルーン、ポリマーバルーン等の各種バルーン類が挙げられる。これらの充填剤は、種々の比率で添加することができるが、好ましくはゴム成分100質量部に対して50〜3000質量部、より好ましくは100〜2000質量部、または300〜1500質量部程度が好ましい。また、これらの充填剤は1種または2種以上を組み合わせて添加してもよい。
ゴム系複合材料には、さらに他の配合剤を必要に応じて添加することができ、このような配合剤としては、加硫剤、架橋剤、硬化剤、それらの助剤類、劣化防止剤、酸化防止剤、着色剤などが挙げられる。たとえば、カーボンブラック、二酸化ケイ素、プロセスオイル、イオウ(加硫剤)、ジクミルパーオキサイド(Dicup、架橋剤)、ステアリン酸などを配合することができる。これらの配合剤は必要に応じて使用されるものであるが、その使用量は、一般にゴム成分100質量部に対しそれぞれ1〜100質量部程度であるが全体的バランスや特性によって適宜変更することもできる。
エポキシ樹脂複合剤としては、エポキシ樹脂成分および充填剤を含有するのが好ましく、さらに必要に応じて各種の配合剤を添加することもできる。エポキシ樹脂成分としては、たとえばビスフェノールAタイプ、ビスフェノールFタイプ、レゾールノボラックタイプ、フェノール変性ノボラックタイプ等のノボラック型エポキシ樹脂、ナフタレン構造含有タイプ、アントラセン構造含有タイプ、フルオレン構造含有タイプ等の多環芳香族型エポキシ樹脂、水添脂環型エポキシ樹脂、液晶性エポキシ樹脂などが挙げられる。本発明のエポキシ樹脂成分は単独で用いても良いが、ブレンド樹脂のように2種類以上のエポキシ樹脂成分を混合して用いても良い。
エポキシ成分に添加される充填剤としては、上記ゴム成分に混合する充填剤と同様のものから、上記ゴム系複合剤を粉砕しさく作製した複合粒子までいずれも好ましく使用することができる。複合粒子としては、たとえばシリコーンゴム中にフェライトを充填したものを、粉砕器にて粉砕し200μm程度の粒径にしたものが挙げることができる。
エポキシ樹脂複合剤を使用する際にはさらに架橋剤を添加する必要があり、たとえばジエチレントリアミン、トリエチレンテトラミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン等の鎖状脂肪族ポリアミン、N−アミノエチルピペラジン、メンセンジアミン、イソフォロンジアミン等の環状脂肪族ポリアミン、m−キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等の芳香族アミン、ポリアミド樹脂、ピペリジン、N,N−ジメチルピペラジン、トリエチレンジアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール等の2級および3級アミン等、2−メチルイミダゾール、2−エチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウム・トリメリテート等のイミダゾール類、液状ポリメルカプタン、ポリスルフィド、無水フタル酸、無視トリメリット酸、メチルテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、メチルヘキサヒドロフタル酸等の酸無水物が挙げることができる。
バッキング材の厚さは、概ね1〜10mmが好ましく、特に1〜5mmであることが好ましい。
(音響レンズ)
音響レンズは、屈折を利用して超音波ビームを集束し分解能を向上するために配置されている。音響レンズの被検体表面に近い領域に、励起光を照射することにより発光する物質すなわち発光物質が添加されていることを特徴とする。
音響レンズは、超音波を収束するとともに、生体とよく密着して生体の音響インピーダンス(密度×音速;(1.4〜1.6)×10kg/m・sec)と整合させ、超音波の反射を少なくしうること、レンズ自体の超音波減衰量が小さいことが必要条件とされている。
すなわち、超音波ビームを集束するため人体と接触する部分に、従来ゴム等の高分子材料をベースにして作られた音響レンズが設けられている。ここに用いられるレンズ材料としては、その音速が人体のそれより十分小さくて、減衰が少なく、又、音響インピーダンスが人体の皮膚の値に近いものが望まれる。レンズ材が、音速が人体のそれより十分小さければ、レンズ形状を凸状となすことができ、診断を行う際に滑りが良くなり、安全に行えるし、また、減衰が少なくなれば、感度良く超音波の送受信が行え、さらに、音響インピーダンスが人体の皮膚の値に近いものであれば、反射が小さくなり、換言すれば、透過率が大きくなるので、同様に超音波の送受信感度が良くなるからである。
音響レンズを構成する素材としては、従来公知のシリコンゴム、フッ素シリコンゴム、ポリウレタンゴム、エピクロルヒドリンゴム等のホモポリマー、エチレンとプロピレンとを共重合させてなるエチレン−プロピレン共重合体ゴム等の共重合体ゴム等を用いることができる。これらのうち、シリコン系ゴムを用いることが好ましい。
シリコン系ゴムとしては、シリコンゴム、フッ素シリコンゴム等が挙げられる。就中、レンズ材の特性上、シリコンゴムを使用することが好ましい。シリコンゴムとは、Si−O結合からなる分子骨格を有し、そのSi原子に複数の有機基が主結合したオルガノポリシロキサンをいい、通常は、その主成分はメチルポリシロキサンで、全体の有機基のうち90%以上はメチル基である。メチル基に代えて水素原子、フェニル基、ビニル基、アリル基等を導入したものも使用することができる。当該シリコンゴムは、例えば、高重合度のオルガノポリシロキサンに過酸化ベンゾイルなどの硬化剤(加硫剤)を混練し、加熱加硫し硬化させることにより得ることができる。必要に応じてシリカ、ナイロン粉末等の有機又は無機充填剤、硫黄、酸化亜鉛等の加硫助剤等を添加してもよい。
ブタジエン系ゴムとしては、ブタジエン単独又はブタジエンを主体としこれに少量のスチロール又はアクリロニトリルが共重合した共重合ゴム等が挙げられる。就中、レンズ材の特性上、ブタジエンゴムを使用することが好ましい。ブタジエンゴムとは、共役二重結合を有するブタジエンの重合により得られる合成ゴムをいう。ブタジエンゴムは、共役二重結合を有するブタジエン単独が1,4又は1.2重合することにより得ることができる。ブタジエンゴムは、硫黄等により加硫させたものが使用できる。
音響レンズにおいては、シリコン系ゴムとブタジエン系ゴムとを混合し加硫硬化させることにより得ることができる。例えば、シリコンゴムとブタジエンゴムとを適宜割合で、混練ロールにより、混合し、過酸化ベンゾイルなどの加硫剤を添加し、加熱加硫し架橋(硬化)させることにより得ることができる。その際に、加硫助剤として、酸化亜鉛を添加することが好ましい。酸化亜鉛は、レンズ特性を落とさずに、加硫促進を促し、加硫時間を短縮できる。他に、着色剤や音響レンズの特性を損なわない範囲内で他の添加剤を添加してもよい。シリコン系ゴムとブタジエン系ゴムとの混合割合は、その音響インピーダンスが人体に近似しているとともに、その音速が人体より小さく、減衰が少ないものを得るには、通常、1:1が好ましいが、当該混合割合は適宜変更可能である。
シリコーンゴムは、市販品として入手することができ、たとえば信越化学社製、KE742U、KE752U、KE931U、KE941U、KE951U、KE961U、KE850U、KE555U、KE575U等や、モメンティブパフォーマンスマテリアル社製のTSE221−3U、TE221−4U、TSE2233U、XE20−523−4U、TSE27−4U、TSE260−3U、TSE−260−4Uやダウコーニング東レ社製のSH35U、SH55UA、SH831U、SE6749U、SE1120USE4704Uなどを用いることができる。なお、上記シリコン系ゴム等のゴム素材をベース(主成分)として、音速調整、密度調整等の目的に応じ、シリカ、アルミナ、酸化チタンなどの無機充填剤や、ナイロンなどの有機樹脂等を配合することもできる。
以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定されない。
実施例1
PVDF/3FE(組成比3:1)のポリマーをメチルエチルケトンに溶解し、コーターで乾燥膜厚40μmになるように塗布、乾燥を行い、フィルムを作製した。その後、表裏で異なるパターンを有するマスクに挟み、定法に従い、電極を蒸着後、分極処理を行い、エポキシ接着剤(DP−460:3M社製)を用いて積層接着を行い、短軸方向端部を長軸方向にダイシングし、面出しを行った。こうして10枚積層型圧電膜1を作製した。
10枚積層型圧電膜1を用い、表1に記載の方法で、電極の接続を行い、それぞれの方法について下記評価を行った。
この構造の長軸方向の断面図は図1に示すとおりである。
以下に表1に記載の電極の接続方法を記載する。
(焼結性銀ペースト(比較))
10枚積層型圧電膜1の側部に低温度焼結性銀ペースト(住友金属鉱山株式会社製CKRF)を塗布し、粗乾燥した。その後180℃で本乾燥を行った。
(スルーホール(比較))
10枚積層型圧電膜1を厚み2mmのセラミック基板に接着積層し、3枚積層型圧電膜1部分の側部に100μmピッチで直径80μmのスルーホールを形成した。その後形成したスルーホールに銀ペーストを注入し、十分乾燥させた。
(側面蒸着(比較))
10枚積層型圧電膜1の側部だけを露出するようにマスキングテープで覆い、定法に従いCr下地(0.1μm)、Au(0.2μm)の順に蒸着した。
(側面導電シート接着(比較))
10枚積層型圧電膜1の側部だけを露出するようにマスキングテープで覆い、導電性接着剤を塗布し、幅1mmのAl箔を側面に載せ、加圧し硬化させた。
(加熱加圧接着(本発明))
10枚積層型圧電膜1の側部を積層圧電体の不電極領域が表面に出ている部分には、常温に維持されたプレス用ジグを、電極領域が表面に出ている部分には、150℃に維持されたプレス用ジグを接触させ、1.5MPaで加圧し、平均厚み15μmになるまで続けた。
(評価)
(歩留り)
電極を接続(設置)後、振動子の長軸方向に150μmピッチでダイシング加工し、100素子作製し、各々の電気容量を測定し、導通不良の個数を求め、下記ランクで評価した。
○:0〜3
△:4〜10
×:11以上
(コスト)
ひとつの振動子を作製するのに必要な費用を算出し、本発明の製造方法(加熱加圧接着)を基準(○)とし、下記ランクで評価した。
○:基準
△:コスト≦基準の2倍量
×:コスト>基準の2倍量
(圧電特性)
作製した素子のうち導通が確保できる素子について、各々電気機械結合定数を求め、それらの平均値を求め、下記ランクで評価した。測定にはインピーダンスアナライザー(PRECISION IMPEDANCE ANALYZER 4294A、Agilent社製)を用いて共振周波数:fm、反共振周波数:fnを求め、以下の式で電気機械結合定数ktを算出した。
Figure 2011165846
○:基準(kt=0.25〜0.26)
△:0.2≦kt<0.25
×:kt<0.2
評価結果を下記表1に示す。
Figure 2011165846
表1から、本発明の加熱接着による方法は、歩留りが高く効率的であり、低コストであって、かつ圧電特性に優れた有機圧電素子を与えることが分かる。
1 積層体
2 圧電体層
3 電極層
10 圧電素子
20 電極付き圧電体層
30 電極付き圧電体層
40 電極付き圧電体層
60 加熱加圧部材
70 加熱加圧部材
a 不電極部
A 端部
b 不電極部
B 端部

Claims (5)

  1. 有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する有機圧電素子の製造方法であって、
    圧電体層と電極層とを積層して積層体を形成する工程であり、隣り合う圧電体層間に電極層を有さない不電極領域aが、一層おきに、積層方向に重なる端部Aが形成され、該不電極領域aとは別の、隣り合う圧電体層間に電極層を有さない不電極領域bが、不電極領域aとは1層ずつずれて、一層おきに、積層方向に重なる端部Bが形成されるように、圧電体層と電極層とを積層する積層工程と、
    該端部Aおよび端部Bの各々を、加熱および加圧して、積層された電極の一層おきに、電極を接続する加熱接着工程と、
    を有することを特徴とする有機圧電素子の製造方法。
  2. 前記積層工程の前に、圧電体膜上に、電極層が形成されない部分を残して電極層を形成し電極付き圧電体層を作製する工程、を有することを特徴とする請求項1に記載の有機圧電素子の製造方法。
  3. 有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する積層体であって、隣り合う圧電体層間に電極層を有さない不電極領域aが、一層おきに、積層方向に重なる端部Aが形成され、該不電極領域aとは別の、隣り合う圧電体層間に電極層を有さない不電極領域bが、不電極領域aとは1層ずつずれて、一層おきに、積層方向に重なる端部Bを有することを特徴とする積層体。
  4. 有機圧電体を含有する圧電体膜からなる圧電体層と電極層とが交互に積層された積層構成を有する有機圧電素子であって、該圧電体層は該有機圧電素子の端部の一つである端部1において、1層おきに連結しており、該端部1とは別の端部2において、端部1とは1層ずつずれて、1層おきに連結していることを特徴とする有機圧電素子。
  5. 前記端部1および端部2において、前記電極層は各々1層おきに連結していることを特徴とする請求項4に記載の有機圧電素子。
JP2010026228A 2010-02-09 2010-02-09 有機圧電素子の製造方法、積層体および有機圧電素子 Pending JP2011165846A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026228A JP2011165846A (ja) 2010-02-09 2010-02-09 有機圧電素子の製造方法、積層体および有機圧電素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026228A JP2011165846A (ja) 2010-02-09 2010-02-09 有機圧電素子の製造方法、積層体および有機圧電素子

Publications (1)

Publication Number Publication Date
JP2011165846A true JP2011165846A (ja) 2011-08-25

Family

ID=44596187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026228A Pending JP2011165846A (ja) 2010-02-09 2010-02-09 有機圧電素子の製造方法、積層体および有機圧電素子

Country Status (1)

Country Link
JP (1) JP2011165846A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148371A1 (ja) * 2013-03-19 2014-09-25 国立大学法人東北大学 静電誘導型の振動発電装置及びその製造方法
JP2015061039A (ja) * 2013-09-20 2015-03-30 タツタ電線株式会社 圧電フィルム積層体
WO2017005958A1 (en) * 2015-07-06 2017-01-12 Aalto University Foundation Acoustic wave transducer construction and method for accomplishing mechanical waves
JPWO2016027614A1 (ja) * 2014-08-18 2017-05-25 株式会社村田製作所 圧電素子及び曲げ検出センサ
KR20170106594A (ko) * 2016-03-11 2017-09-21 한국전자통신연구원 유연 압전 콤포지트 및 이를 포함하는 압전 장치
CN113066924A (zh) * 2021-03-18 2021-07-02 业成科技(成都)有限公司 薄膜压电感应元件及其制造方法、感测装置以及终端
US11932558B1 (en) * 2020-03-02 2024-03-19 University Of Rhode Island Board Of Trustees Piezocatalysis using piezoelectric polymers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148371A1 (ja) * 2013-03-19 2014-09-25 国立大学法人東北大学 静電誘導型の振動発電装置及びその製造方法
JPWO2014148371A1 (ja) * 2013-03-19 2017-02-16 国立大学法人東北大学 静電誘導型の振動発電装置及びその製造方法
US9929679B2 (en) 2013-03-19 2018-03-27 Sendai Smart Machines Co., Ltd. Electrostatic induction-type vibration power generation device and method of manufacturing the same
JP2015061039A (ja) * 2013-09-20 2015-03-30 タツタ電線株式会社 圧電フィルム積層体
JPWO2016027614A1 (ja) * 2014-08-18 2017-05-25 株式会社村田製作所 圧電素子及び曲げ検出センサ
WO2017005958A1 (en) * 2015-07-06 2017-01-12 Aalto University Foundation Acoustic wave transducer construction and method for accomplishing mechanical waves
KR20170106594A (ko) * 2016-03-11 2017-09-21 한국전자통신연구원 유연 압전 콤포지트 및 이를 포함하는 압전 장치
KR102339058B1 (ko) * 2016-03-11 2021-12-16 한국전자통신연구원 유연 압전 콤포지트 및 이를 포함하는 압전 장치
US11932558B1 (en) * 2020-03-02 2024-03-19 University Of Rhode Island Board Of Trustees Piezocatalysis using piezoelectric polymers
CN113066924A (zh) * 2021-03-18 2021-07-02 业成科技(成都)有限公司 薄膜压电感应元件及其制造方法、感测装置以及终端

Similar Documents

Publication Publication Date Title
JP2011165846A (ja) 有機圧電素子の製造方法、積層体および有機圧電素子
JP6149425B2 (ja) 超音波探触子の製造方法
US9375754B2 (en) Laminated piezoelectric body, laminated piezoelectric body manufacturing method, and ultrasound transducer and ultrasound diagnostic device using laminated piezoelectric body
JP5633509B2 (ja) 有機圧電材料、超音波探触子及び超音波画像検出装置
JP5644729B2 (ja) 超音波振動子、超音波探触子及び超音波画像診断装置
US20110257532A1 (en) Ultrasonic probe and method of preparing ultrasonic probe
WO2010137366A1 (ja) 有機圧電材料、超音波振動子、超音波探触子及び超音波医用画像診断装置
JP2011072702A (ja) 超音波探触子用音響レンズおよび超音波探触子
US8141216B2 (en) Method of manufacturing ultrasound probe
JP6641723B2 (ja) 超音波振動子およびその製造方法、超音波探触子ならびに超音波撮像装置
JP5392090B2 (ja) 超音波受信用振動子、その製造方法、超音波探触子及び超音波医用画像診断装置
JP2016192666A (ja) 超音波振動子およびその製造方法ならびに超音波探触子
JP2012034160A (ja) 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP5131012B2 (ja) 積層型圧電素子の製造方法
JP2014188009A (ja) 超音波探触子、超音波画像診断装置及び超音波探触子の製造方法
JP5488036B2 (ja) 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP6277899B2 (ja) 超音波振動子、超音波探触子および超音波撮像装置
JP2011176420A (ja) 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP2011155573A (ja) 超音波振動子、それを用いた超音波探触子、及び超音波医用画像診断装置
JP5423540B2 (ja) 超音波トランスデューサおよび超音波診断装置
JP5545056B2 (ja) 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP6424736B2 (ja) 圧電体、その製造方法、圧電組成物、超音波トランスデューサーおよび超音波撮像装置
JP2012000220A (ja) 超音波診断装置
JP6582370B2 (ja) 圧電体の製造方法、超音波トランスデューサーおよび超音波撮像装置
JP6264220B2 (ja) 超音波振動子、超音波探触子および超音波撮像装置