JP2011160067A - 手振れ補正装置及び方法、並びにカメラモジュール、携帯電話機 - Google Patents

手振れ補正装置及び方法、並びにカメラモジュール、携帯電話機 Download PDF

Info

Publication number
JP2011160067A
JP2011160067A JP2010018195A JP2010018195A JP2011160067A JP 2011160067 A JP2011160067 A JP 2011160067A JP 2010018195 A JP2010018195 A JP 2010018195A JP 2010018195 A JP2010018195 A JP 2010018195A JP 2011160067 A JP2011160067 A JP 2011160067A
Authority
JP
Japan
Prior art keywords
camera shake
correction
shake correction
current position
target position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010018195A
Other languages
English (en)
Inventor
Hisao Ito
久男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010018195A priority Critical patent/JP2011160067A/ja
Publication of JP2011160067A publication Critical patent/JP2011160067A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

【課題】手振れ補正装置の手振れ補正動作時における駆動開始及び停止の回数を減らして駆動音を低下させる。
【解決手段】手振れ補正装置の静音性が望まれる動画撮影時には、手振れ補正を行うレンズユニットをレンズ位置「0」から目標位置LMに向かう一方向のみ移動させ、レンズユニットの現在位置LNが目標位置LMを越えたときに、その過剰補正位置でレンズユニットを停止させる。これにより、手振れ補正装置から駆動音が発生しやすい、現在位置LNの経路線上での屈曲点が大幅に少なくなるので、駆動音が小さくなる。
【選択図】図9

Description

本発明は、手振れなどの振動による画像のブレを光学的に抑える手振れ補正装置及び方法と、手振れ補正装置を備えたカメラモジュールと、このカメラモジュールを備えた携帯電話機に関する。
デジタルカメラなどの撮影装置で手持ち撮影をする際に、撮影装置に生じた微小な振動により撮影レンズの光軸が被写体に対して相対的に移動し、撮影した画像に「手振れ(カメラぶれ)」と呼ばれる被写体像のぶれが生じることがある。このような手振れを補正する装置として、手振れ補正装置が知られている。
手振れ補正装置は、撮影した画像のデータを処理して手振れを補正する電子補正方式と、撮影光学系の少なくとも一部あるいはイメージセンサ、または撮影光学系とイメージセンサとを一体化したカメラモジュール全体などを移動させて手振れを補正する光学補正方式とがある。電子補正方式では、撮影画面全体から得られる画像データの一部が有効に利用できない不利があるため、特に高精細な撮影画像を得ようとする場合には光学補正方式の手振れ補正装置が用いられている。
光学補正方式の手振れ補正装置は、撮影装置に生じた振動を角速度センサまたはジャイロスコープなどの手振れ検出器に検出させ、所定のサンプリング周期ごとに手振れ検出器から手振れ変位に応じた変位信号を読み取り、この変位信号に基づいて、手振れを補正する補正手段である補正レンズ等の目標位置を算出する。また、補正レンズ等の現在位置を検出する現在位置検出器には、サンプリング周期よりも短い現在位置検出周期ごとに補正レンズの現在位置を検出させ、フィードバック制御によりアクチュエータを制御して補正レンズを現在位置から目標位置に向けて移動させている(例えば、特許文献1参照)。
光学補正方式の手振れ補正装置は、アクチュエータによって補正レンズやイメージセンサなどの補正手段を移動させているため、手振れ補正動作にあたって駆動音が生じることになる。デジタルカメラで静止画撮影をする際に手振れ補正装置から僅かな駆動音が発生しても大きな問題とはならない。しかし、音声の録音を伴う動画撮影では、手振れ補正装置の駆動音がノイズとして録音されてしまう。手振れ補正装置の駆動音を小さくするため、手振れ補正装置に供給する駆動電流を通常時よりも低くした撮影装置が発明されている(例えば、特許文献2参照)。
特開2008−089803号公報 特開2006−074652号公報
手振れ補正装置から発生する駆動音の原因を探るため、特許文献1に示されたように、圧電素子と、圧電素子の伸縮に応じて往復動する駆動軸と、駆動軸に摩擦係合して移動する被駆動体とからなる駆動機構によって手振れ補正を行う手振れ補正装置に、駆動と休止とを10msごとに繰り返し行わせ、その際に発生する駆動音のレベルをオシロスコープで観測した。図13は、その観測結果の波形を示すグラフであり、実線と破線で駆動開始及び駆動停止を表している。この観測結果から明らかなように、手振れ補正装置は、駆動開始時と駆動停止時に大きな駆動音を発しており、手振れ補正装置が連続的に駆動している間の駆動音は比較的小さい。したがって、手振れ補正装置の駆動音を小さくするには、駆動開始及び停止の回数を減らせばよいことが分る。しかしながら、特許文献2記載の手振れ補正装置では、駆動電流を低下させても駆動開始及び停止の回数は減少しない。
本発明は、上記事情を考慮してなされたもので、その目的は、手振れ補正装置の手振れ補正動作時における駆動開始及び停止の回数を減らして、駆動音を低下させることにある。
本発明の手振れ補正装置は、手振れ検出手段、現在位置検出手段及び手振れ制御手段を備えている。手振れ検出手段は、光学機器に生じた手振れを検出して手振れ変位に応じた変位信号を出力する。現在位置検出手段は、光学機器の撮影光軸に直交する方向に移動して手振れ補正を行う補正手段の現在位置を検出する。手振れ制御手段は、手振れ検出手段から変位信号をサンプリング周期ごとに読み込み、変位信号に基づいて補正手段を移動させる目標位置を算出し、現在位置検出手段に補正手段の現在位置を現在位置検出周期ごとに検出させ、目標位置と現在位置との比較結果に基づいて補正手段を目標位置に向かう第1の方向に移動させ、補正手段が目標位置を越えた過剰補正位置に達したときに補正手段の移動を停止させる第1の手振れ補正モードを有している。
また、手振れ制御手段により、過剰補正位置と目標位置との間の距離である通過距離と、予め設定されている通過距離の閾値とを比較し、通過距離が閾値以下であるときに補正手段を過剰補正位置で停止させておくのが好ましい。
また、手振れ制御手段により、通過距離が閾値を超えるときに、通過距離が閾値以下となるように補正手段を第1の方向と反対側の第2の方向に移動させてもよい。また、通過距離が閾値を超えるときには、電子補正方式の手振れ補正処理を行う電子手振れ補正手段により、光学機器のイメージセンサにより撮像された画像を手振れ補正処理させてもよい。
手振れ制御手段により、光学機器の動作モードが動画撮影モードであるときに第1の手振れ補正モードに切り換え、動作モードが静止画撮影モードであるときには、補正手段を第1の方向と第1の方向と反対側の第2の方向とに移動させて補正手段を目標位置に停止させる第2の手振れ補正モードに切り換えてもよい。
また、手振れ制御手段により、第1の手振れ補正モード時に補正手段の移動速度を第2の手振れ補正モード時よりも遅くしてもよい。
本発明の手振れ補正方法は、光学機器に生じた手振れを検出して手振れ変位に応じた変位信号を出力する手振れ検出手段から変位信号をサンプリング周期ごとに読み込むステップと、光学機器の撮影光軸に直交する方向に移動して手振れ補正を行う補正手段の目標位置を変位信号に基づいて算出するステップと、現在位置検出手段に補正手段の現在位置を現在位置検出周期ごとに検出させるステップと、目標位置と現在位置とを比較し、その比較結果に基づいて補正手段を目標位置に向かう第1の方向に移動させ、補正手段が目標位置を越えた過剰補正位置に達したときに補正手段の移動を停止させるステップとを備えている。
また、過剰補正位置と目標位置との間の距離である通過距離と、予め設定されている通過距離の閾値とを比較するステップを設け、通過距離が閾値以下であるときに補正手段を過剰補正位置で停止させておくのが好ましい。
また、通過距離が閾値を超えるときに、通過距離が閾値以下になるように補正手段を第1の方向と反対側の第2の方向に移動させるステップを設けてもよい。また、通過距離が閾値を超えるときに、電子補正方式の手振れ補正処理を行う電子手振れ補正手段に、光学機器のイメージセンサにより撮像された画像を手振れ補正処理させるステップを備えてもよい。
本発明のカメラモジュールは、複数枚のレンズを組み合わせた撮影光学系を円筒状の鏡筒に組み込んだレンズユニットと、撮影光学系で結像された光学像を撮像するイメージセンサとを備えており、上述した手振れ補正装置を有しており、手振れ補正を行う補正手段としてレンズユニットを移動させる。本発明のカメラモジュールに使用するイメージセンサの画素数は、5Mピクセル以上であることが好ましい。また、本発明のカメラモジュールを備えた携帯電話機も本発明に含まれる。
本発明によれば、補正手段を第1の方向にのみ移動させて手振れ補正を行うので、手振れ補正装置の駆動開始及び停止の回数が減り、手振れ補正装置の駆動音を小さくすることができる。
携帯電話機の表裏を示す外観図である。 フロントカバーを外した状態のカメラモジュール外観図である。 カメラモジュールの要部分解斜視図である。 第一アクチュエータの駆動軸と第一フレームとの連結部を示す要部垂直断面図である。 第一アクチュエータの駆動軸と第一フレームとの連結部を示す要部水平断面図である。 手振れ補正用の駆動軸の配置を示す説明図である。 カメラモジュールの電気的構成の要部を示すブロック図である。 手振れ補正用の変位信号の読込み周期を示すタイミングチャートである。 手振れ補正時のレンズユニットの移動処理を示す説明図である。 手振れ補正処理を示すフローチャートである。 手振れ補正処理の別の例を示す部分フローチャートである。 手振れ補正処理のさらに別の例を示す部分フローチャートである。 手振れ補正装置の駆動音の観測結果を示すグラフである。
本発明のカメラモジュールを内蔵した携帯電話機の外観を図1に示す。同図(A)が正面側、同図(B)が背面側の外観で、表示パネル2の下方に設けられた操作部から入力操作を行うと表示パネル2に操作メニューが表示される。表示パネル2はタッチパネルになっており、以後は表示パネル2に表示された適宜のアイコンに指先を触れてダイヤル通話操作などを行うことができる。
図1(B)に示すように、携帯電話機の背面側に撮影窓3が設けられ、その奥にカメラモジュール5が組み込まれている。表示パネル2へのタッチ操作によりカメラモードで起動すると、撮影窓3を通してカメラモジュール5で撮影された画像がリアルタイムで表示パネル2にスルー画像として表示される。このスルー画像を観察しながらフレーミングを行い、適宜のタイミングでレリーズ操作すれば静止画の撮影を行うことができる。カメラモードで起動した後、動画モードを選択すれば動画の撮影も可能となる。カメラモジュール5は、その外装体形状が略直方体形状をなし、正面視のサイズがほぼ13mm×13mm□で、厚みはほぼ10mmである。
カメラモジュール5の外観を示す図2において、外装体の要部となるフロントカバー6とセンサ基板7との間にカメラモジュール5の機構部8が組み込まれている。符号9はフレキシブルプリント板からなる配線材を示し、機構部8の所要部に引き出された端子に接続される。センサ基板7にはエリア型のイメージセンサが設けられるほか、カメラモジュール5の変位を検出するジャイロセンサを内蔵したジャイロIC11、イメージセンサを駆動し、また得られた撮像信号に各種の信号処理を行うドライブIC12、配線材9が接続されるコネクタ13が設けられている。
機構部8の要部を分解して示す図3において、センサ基板7にホルダを介してイメージセンサ15が固定されている。イメージセンサ15には画素数5Mピクセルの1/2.5型CMOSセンサが用いられている。センサ基板7の前面には、矩形状をしたイメージセンサ15の周囲を取り囲むように矩形枠状のベースフレーム16が固着される。ベースフレーム16の縦辺及び横辺はそれぞれ約13mmで、天面側と底面側に一対の第一ガイド軸18a,18bが水平に挿通され固定される。なお、CMOSセンサの代わりにCCD型イメージセンサを用いることも可能であるが、携帯電話機の電源容量を考慮するとCMOS型の方が有利である。
一対の第一ガイド軸18a,18bの支持により、ベースフレーム16に対して第一フレーム20が水平方向に移動自在に組み付けられる。第一フレーム20はベースフレーム16よりも一回り小さく、水平方向の移動範囲はベースフレーム16の左右の側壁内面に接しない範囲にしてある。第一フレーム20を水平方向に移動させるために、第一アクチュエータ22がベースフレーム16に一体成形された枠部16aに組み込まれる。
第一アクチュエータ22は、後端に慣性が大きい錘22aが固定されたピエゾ素子22bと、ピエゾ素子22bに接着され水平に延びた断面円形の駆動軸22cとからなる。ピエゾ素子22bにはフレキシブルプリント板が接続され、ピエゾ素子22bは駆動パルスの入力により軸方向に細かく伸縮し、その伸縮運動が駆動軸22cに伝達される。ピエゾ素子22bの伸縮運動の速度は入力される駆動パルスの波形に応じて伸長時と収縮時とで異なり、その遅い方の運動が駆動軸22cを介して第一フレーム20を移動させる推進力として伝達される。したがって、ピエゾ素子22bに入力される駆動パルスの波形を切替え制御することによって、駆動軸22cからは水平方向の左右いずれか一方への推進力が得られるようになる。なお、アクチュエータの駆動源としてピエゾ素子の代わりにVCM(ボイスコイルモータ)やSTM(ステッピングモータ)を利用することも可能であるが、細径で小型化しやすいこと、応答が高速で移動制御を高精度に行い得る点でピエゾ素子を用いる方が有利である。
駆動軸22cの先端側は、第一フレーム20の受け部20aに挿通される。そして、図4及び図5に示すように、駆動軸22cの軸方向への機械的な往復運動が第一フレーム20に的確に伝達されるように、駆動軸22cの前側の外周面に平板状の押圧板24が押し付けられる。受け部20aの内部には、押圧板24に対向する位置に水平な折り線でバネ板をV字形に屈曲させた受け板23が組み込まれている。そして、ブラケット25を圧縮バネ26とともに受け部20aに前面側から組み付けると、駆動軸22cは受け板23と押圧板24との間に弾性的に挟持される。受け板23は水平方向に移動しないように第一フレーム20に組み込まれているから、駆動軸22cから伝達される推進力は第一フレーム20を水平な第一方向に移動させるように作用する。
ベースフレーム16に対する第一フレーム20の水平方向への移動量を検知するために、ベースフレーム16にマグネット対28が固着されている。マグネット対28は、水平方向にN極とS極とが並ぶように微小な永久磁石を配列したもので、これと対向するように第一フレーム20に第一ホール素子29が固着されている。この第一ホール素子29からの出力はマグネット対28との相対位置に応じて変化し、したがって第一ホール素子29からは第一フレーム20の水平方向における現在の位置信号が得られるようになる。
ベースフレーム16によって水平方向に移動自在に支持された第一フレーム20には、垂直に延びた一対のガイド軸31a,31bを介して第二フレーム32が移動自在に支持される。左側のガイド軸31aは、第二フレーム32,第一フレーム20,第二フレーム32の順に挿通され、第二フレーム32に固着される。右側のガイド軸31bは、第一フレーム20に固着され、その上端側が第二フレーム32のガイド溝に挿通される。
第二フレーム32を垂直方向に移動させるために、第二アクチュエータ34が第二フレーム32に一体成形された枠部32aに組み込まれる。第二アクチュエータ34は第一アクチュエータ22と同様に、後端に錘34aが固定されたピエゾ素子34bと、ピエゾ素子34bに接着され垂直上方に延びた断面円形の駆動軸34cとからなる。ピエゾ素子34bにはフレキシブルプリント板を通して駆動パルスが入力され、駆動軸34cを介してその機械的な伸縮運動が第一フレーム20に伝達されるが、第一フレーム20はガイド軸18a,18bで水平な第一方向にのみ移動自在に支持されているから、第二フレーム32は第一フレーム20から逆向きの推進力を受けるようになる。
駆動軸34cの先端側は第一フレーム20の受け部20bに挿通され、図5にも示すように駆動軸34cの機械的な往復運動が第一フレーム20に伝達されるように、駆動軸34cの前側の外周面に平板状の押圧板36が押し付けられる。受け部20bの内部には押圧板36に対向する位置に、垂直な折り線でバネ板をV字形に屈曲させた受け板37が組み込まれている。ブラケット38を圧縮バネ39とともに受け部20bの前面側から組み付けると、前述の駆動軸22cと同様に駆動軸34cが受け板37と押圧板36との間に挟持され、駆動軸34cからの推進力は的確に第一フレーム20に伝達される。前述のように第一フレーム20はガイド軸18a,18bによって垂直方向には移動できないように支持されているため、駆動軸34cの機械的振動により第二フレーム32が垂直方向への推進力を受けて駆動パルスの波形に応じて上下いずれかに移動する。
第一フレーム20に対する第二フレーム32の垂直方向への移動量を検知するために、第一フレーム20にマグネット対40が固着されている。マグネット対40は、垂直方向にN極とS極とが並ぶように微小な永久磁石を配列したもので、これと対向するように第二フレーム32に第二ホール素子41が固着されている。第二フレーム32が第一フレーム20に対して垂直方向に移動すると、第二ホール素子41からは第二フレーム32の垂直方向における位置信号が得られる。
第二フレーム32には背面側から第三アクチュエータ45が組み付けられる。第三アクチュエータ45も前述した第一、第二アクチュエータ22,34と同様、後端に錘45aを固定したピエゾ素子45bに駆動軸45cを連結したもので、その駆動軸45cは光軸Pと平行に第二フレーム32の前方に突出する。また、光軸Pに関し、駆動軸45cの反対側にはガイドピン46が光軸Pと平行に突出して設けられている。
駆動軸45cとガイドピン46は、円筒状の鏡筒48に撮影光学系を組み込んだレンズユニット50を光軸Pに沿って移動自在に支持する。このため鏡筒48の外周の一部には、駆動軸45cを受け入れる受け部50aと、ガイドピン46を受け入れるフォーク状の受け部50bとが設けられている。受け部50aには、光軸Pと平行な折り線でバネ板をV字形に屈曲させた、前述の受け板23,37と同様の受け板が組み込まれ、駆動軸45cの外周面を左側から受ける。また、レンズユニット50には、先端部に同様のV字形屈曲部を整形した板バネ51が組み込まれ、そのV字形の先端部で駆動軸45cの外周面右側を前記受け板に向かって押圧するから、駆動軸45cは受け板と板バネ51の先端部との間に弾性的に挟持される。
駆動軸45cの往復運動の一方はレンズユニット50を光軸P方向に移動させる駆動力となり、駆動パルスの波形に応じてレンズユニット50は光軸Pに沿って進退移動する。よく知られるように、イメージセンサ15から出力される一画面分の撮像信号に含まれる各画素間のコントラストの積分値は、レンズユニット50に組み込まれた撮影光学系の合焦状態と相関をもっているから、前記積分値の変化を監視しながらレンズユニット50を光軸方向に移動させることによって、ピント合わせを自動化することができる。
なお、レンズユニット50の上面には信号板53が固着され、第二フレーム32に固定された反射型のフォトセンサ54で信号板53を光電監視することにより、レンズユニット50がピント合わせのホームポジョンに位置していること、あるいは規定のピント調節範囲内に位置していることなどを確認することができる。
第二フレーム32及びレンズユニット50の前面を覆うように、第二フレーム32にはシャッタユニット55が組み付けられる。シャッタユニット55は、その上下面に第二フレーム32に向けて突出された一対の係合片55c、55dを備えており、これらの係合片55c、55dが第二フレーム32の上下面に設けられた係合爪32c,32dにそれぞれ係合される。シャッタユニット55には、レンズユニット50に組み込まれた撮影光学系に被写体光を通過させる撮影開口55aが形成され、さらに撮影開口55aを開閉するシャッタ羽根58(図7参照)と、シャッタ羽根58を開閉動作させる例えばロータリソレノイドなどのシャッタアクチュエータが組み込まれている。シャッタアクチュエータはフレキシブルプリント板55b(図3参照)を介して入力される開閉信号を受けて動作する。
そして図2に示すように、上記機構部8は、センサ基板7とともにこのカメラモジュール5の外装体となる四角筒形状のフロントカバー6でカバーされ、全体としてほぼ直方体形状にまとめられる。このため、図1に示すように携帯電話機に組み込む際に電話機筐体の内部に複雑な形状の組み込みスペースを確保せずに済み、メーカーや機種によらず、様々な携帯電話機に適用しやすくなる利点がある。なお、センサ基板7の裏面にジャイロIC11、ドライブIC12、コネクタ13を固着することも可能で、この場合にはカメラモジュール5を完全な直方体形状あるいは立方体形状にまとめることも可能となる。
イメージセンサ15とドライブIC12との電気的接続、及びジャイロIC11とドライブICとの電気的接続はセンサ基板7に形成されたプリント配線によって行われる。また、このカメラモジュール5の機構部8で用いられている各アクチュエータ類とセンサ類から引き出されたフレキシブルプリント板は、その信号端子が配線材9の所要部に接続され、さらに配線材9の入出力端子はコネクタ13を経由してドライブIC12に接続される。そして、ドライブIC12に実装されたシステムコントローラの管制下で各アクチュエータ類及びセンサ類が適宜のタイミングで制御される。
カメラモジュール5の機構部8の中で、手振れ補正のための構造を図6に模式的に示す。第一フレーム20は、ベースフレーム16で保持された一対のガイド軸18a,18bにより水平方向に移動自在である。また、レンズユニット50を光軸方向に移動自在に保持した第二フレーム32は、第一フレーム20との間に設けられた一対のガイド軸31a,31bにより第一フレーム20に対して垂直方向に移動自在である。
ベースフレーム16に組み込まれた第一アクチュエータ22の駆動軸22cは、カメラモジュール5を正面視したときに、ガイド軸18aと前後に重なるように水平方向に延び、第一フレーム20の受け部20aで摩擦係合している。同様に、第二フレーム32に組み込まれた第二アクチュエータ34の駆動軸34cは、ガイド軸31aと前後に重なるように垂直方向に延び、第一フレーム20の受け部20bで摩擦係合している。そして図示のように、駆動軸22c,34cのそれぞれの軸芯線22x,34xはレンズユニット50の外周輪郭の外側に位置し、かつ光軸Pからの距離A,Bがほぼ等しくなる位置に設けられている。
上記のように、駆動軸22c,34cに対して光軸Pを挟む位置に設けられたガイド軸18b,31bのほかに、駆動軸22c,34cに接近して同方向に延びるガイド軸18a,31aを設けておくことにより、駆動軸22c,34cの駆動力が回転モーメントとして第一フレーム20,第二フレーム32に伝わることを防ぎ、各フレーム20,32を円滑に水平,垂直に移動させることができ、また駆動音を小さく抑える効果もある。
さらに、軸芯線22x,34xを互いに直交させたレイアウトで、軸方向に細長い第一,第二アクチュエータ22,34を組み込むに際しては、上記のように第一,第二アクチュエータ22,34それぞれの長手方向をフロントカバー6の天面と側面に平行にするのがスペース効率の点で最善で、カメラモジュール5全体のコンパクト化に有利である。しかも、これらの組み込み位置をほぼ円筒形状をしたレンズユニット50の外周輪郭の外側することにより、カメラモジュール5の厚み方向でのコンパクト化を図ることができる。
また、図示した形態では、ベースフレーム16に組み込んだ第一アクチュエータ22の駆動により第一フレーム20を第一方向に移動させ、第二フレーム32に組み込んだ第二アクチュエータ34の駆動により、第二方向への移動が阻止された第一フレーム20を衝にした反作用で第二フレーム32を第二方向に移動させる構造であるが、第二フレーム32を第二方向に移動させるには、第一フレーム20に第二アクチュエータ34を組み込んでその駆動で第二フレーム32を移動させる構造を採ることも可能である。ただし、第一,第二アクチュエータ22,34の駆動源として特にピエゾ素子を用いる場合には、その伸縮運動に伴う機械的な振動や摩擦音を軽減するとともに、第一,第二フレーム20,32を円滑かつ高精度に移動させる上では図示の形態の方が有利である。
以下、カメラモジュール5の電気的構成を概略的に示す図7及び図8に示すタイミングチャートを参照しながら、撮影処理及び手振れ補正処理について説明する。携帯電話機を静止画撮影モードで作動させると、カメラモジュール5のシーケンシャル動作を管制するシステムコントローラ62からの起動信号を受けてシャッタドライバ56が作動し、シャッタアクチュエータ57によりシャッタ羽根58が撮影開口55aを全開する位置で保持される。
鏡筒48に組み込まれた4枚構成の撮影光学系60を通して被写体像がイメージセンサ15の光電面に結像される。また、CMOSドライバ63からイメージセンサ15をスルー画像取り込み用の駆動信号が供給される。これにより、イメージセンサ15はローリングシャッタ方式で駆動され、シャッタ羽根58を全開状態に維持したまま一画面分の撮像信号が順次に読み出される。ローリングシャッタ方式で撮像信号の読出しが行われるときには、図8に示すようにイメージセンサ15の画素配列のラインごとに順次にリセット信号が送出された後、露光時間T0経過後に画素配列のラインごとに順次に撮像信号の読出しが行われる。したがって、イメージセンサ15の全画素に同時に露光が行われることはなく、線順次式に露光と撮像信号の読み出しが行われることになる。
こうして読み出された撮像信号は画像信号処理回路に入力される。画像信号処理回路64は、一画面単位で画素ごとに入力される撮像信号に対して初段増幅,ゲイン調節,A/D変換など公知の信号処理を施し、デジタル化した画像データとしてバスライン65に供給する。バスライン65に供給された一画面分の画像データは、一旦、フラッシュメモリ66に格納された後、画像データ処理IC67によって読み出され、マトリクス演算,信号補間,γ補正,輝度・色差変換,データ圧縮などの画像処理が施される。そして一画面分の画像データはモニタドライバ68により順次に表示パネル2に送られ、表示パネル2にはスルー画が表示される。
スルー画像の表示を行っている間には、一画面分の画像データが順次に読み込まれるから、次画面の明るさを前画面の輝度情報に応じて調節することができる。この調節のためには、露光時間T0を変えるだけでなく、絞りの開口径の調節、NDフィルタの挿脱、撮像信号の増幅率の調節などで対応することが可能である。また、一画面分ごとの画像データに基づいてAF処理部69はAF評価値を算出する。システムコントローラ62は一画面ごとに算出されるAF評価値を監視し、AF評価値が最大値となるようにAF−PZドライバ70にAF制御信号を送る。
AF−PZドライバ70は、入力されるAF制御信号に応答して第三アクチュエータ45に駆動パルスを送る。これにより、第二フレーム32で保持されたレンズユニット50が駆動パルスの入力波形に応じて光軸P方向に進退し、フィードバック方式で自動的にピント合わせが行われる。なお、撮影光学系60のレンズ構成によっては、その一部のレンズを光軸方向に移動してピント合わせを行うことも可能ではあるが、構造的には複雑化しやすくコンパクト化には不向きであるから、上記のようにシャッタユニット55を含めてレンズユニット50の全体を移動してピント合わせを行う方がよい。
表示パネル2に表示されているスルー画を観察しながらフレーミングを行い、適宜のタイミングで静止画撮影用に割り当てられたレリーズボタンを押圧操作すると、バスライン65を経てシステムコントローラ62にレリーズ信号が入力される。レリーズ信号が入力されると、システムコントローラ62はシャッタドライバ56とCMOSドライバ63が本撮影シーケンスで作動するように制御する。
本撮影シーケンスでは、スルー画の撮影時のローリングシャッタに変えてシャッタ羽根58を利用したメカシャッタによる撮影が行われる。図8に示すように、レリーズ信号の入力に応答し、まずCMOSドライバ63によりイメージセンサ15の全画素を一斉にリセットするグローバルリセット処理が行われる。このグローバルリセット処理は、スルー画撮影時のローリングシャッタによる撮影に割り込む形で強制的に行われる。したがって、表示パネル2にはそれ以前に読み込まれた一画面分の画像データによる被写体像が表示されたままとなる。
グローバルリセット処理が完了した直後からイメージセンサ15の全画素には同時に露光が開始され、露光時間T1の経過後にシャッタ羽根58が閉じる。露光時間T1は、一般にはレリーズ信号が入力される直前に読み込まれた一画面分の露光時間と一致するように決められる。シャッタ羽根58が閉じられることによって、イメージセンサ15の全画素に対する露光は同時に終了する。したがってローリングシャッタによる撮影時と異なり、全画素は同時に露光を開始して同時に露光を終了する。
シャッタ羽根58が閉じることによって露光が終了するが、シャッタ羽根58は引き続き一定時間T2は閉じ位置で保持される。この一定時間T2が経過する間に、露光時間T1で撮影された本撮影一画面分の撮像信号の読出しが行われる。撮像信号は画素配列のラインごとに線順次式に読み出されるが、その間シャッタ羽根58は全閉しているから、全画素は遮光状態となっている。読み出された撮像信号は、スルー画の撮影時と同様に画像信号処理回路64を経て画像データ処理IC67に送られ、本撮影一画面分の画像データはフラッシュメモリ66の所定アドレス領域に確保されたメモリエリアに記録される。こうして記録された本撮影画像は全画素同時露光によるものであるから、たとえ動きを伴う被写体であっても記録された画像に目立った変形が生じることはない。
本撮影で得られた一画面分の撮像信号の読出しの完了を待ってシャッタ羽根58が全開する。シャッタ羽根58が全開すると、システムコントローラ62は当初のスルー画の撮影シーケンスに戻り、ローリングシャッタによる撮影を行うようになる。
一方、静止画撮影モードで作動が開始されると手振れ補正処理が並行して行われる。本実施形態の手振れ補正処理には、動画撮影モードにおいて実行される第1手振れ補正モードと、静止画撮影モードにおいて実行される第2手振れ補正モードとがある。第1手振れ補正モードは静音性に重点を置いたモードであり、第2手振れ補正モードは手振れ補正の性能に重点を置いたモードである。本発明の手振れ制御手段に相当するシステムコントローラ62は、現在の撮影モードに応じて手振れ補正モードを切り換える。
以下、第2手振れ補正モードについて説明する。ジャイロIC11は、内蔵するジャイロセンサを作動させて携帯電話機の筐体に加わる手振れ変位の加速度に応じた変位信号をバスライン65に送出する。こうして入力される変位信号は、図8に示すように、システムコントローラ62によってサンプリング周期Taごとに読み込まれる。手振れ補正処理が行われる間には、変位信号の読込みを行うサンプリング周期Taに対し、さらに短い現在位置検出周期Tkでレンズユニット50の現在位置の検出が行われる。レンズユニット50の現在位置は、ホール素子29,41から個別に得られる水平位置信号と垂直位置信号とを合成した位置信号として検出することができる。例えば変位信号読込みのサンプリング周期Taが1msecであるとき、レンズユニット50の現在位置は0.1msec周期で検出され、その一検出周期ごとにレンズユニット50の位置調節が行われる。
図10のフローチャートに示すように、システムコントローラ62は、初期設定されたサンプリング周期Taごとに読み込まれる変位信号に基づき、その変位に伴う撮像光学系60の光軸ブレを補正するために必要なレンズユニット50の目標位置LMを算出する。続いて第一,第二ホール素子29,41からの信号が読み込まれレンズユニット50の現在位置LNが検出される。現在位置LNが検出されると目標位置LMとの比較が行われ、その差分の絶対値に応じて第一,第二アクチュエータ22,34に供給する駆動パルスの個数が決められる。なお、駆動パルスの供給個数は、現在位置LNの検出一周期の間に例えば最大で10個に設定され、目標位置LMに対して現在位置LNが離れているほど最大個数に近く、現在位置LNが目標位置LMに近づくほど少なくなる。
第一,第二ピエゾ素子22b,34bは、駆動パルスが一個入力されるごとに一回の伸縮を行い、駆動パルスの波形に応じて伸長期間または収縮期間のいずれか一方で駆動力を発生する。第一,第二ピエゾ素子22b,34bが発生する駆動力は、第一,第二駆動軸22c,34cに伝達され、それぞれ受け部20a,20bを介して第一,第二フレーム20,32を駆動パルス一個あたり一定距離だけ移動させる。したがって、第一,第二アクチュエータ22,34に供給される駆動パルスの個数によって、現在位置LNの検出一周期の間の移動距離が決まり、供給される駆動パルスの波形により移動方向が決まる。ただし、第一,第二駆動軸22c,34cは受け部20a,20bに組み込まれた受け板及び押圧板との摩擦係合により第一,第二フレーム20,32を移動させるため、移動量に関しては誤差を伴うことが避けられない。そこで、上述したように現在位置LNを周期的に検出しながらレンズユニット50の移動調節を行うようにしている。
システムコントローラ62は、以上のように現在位置LNを監視しながら目標位置LMとの差分をチェックし、X−PZドライバ74,Y−PZドライバ75を駆動する。そして、現在位置LNが目標位置LMに達するまでは第一,第二アクチュエータ22,34をフォワード(FWD)駆動し、現在位置LNが目標位置LMを越えた後はリバース(REV)駆動する。もちろん、水平方向または垂直方向のいずれか一方の現在位置が目標位置を越えた後は、その一方だけがREV駆動に切り替えられる。
次周期の現在位置LNが検出されると同様に目標位置LMと比較され、両者が合致した時点で第一,第二アクチュエータ22,34の駆動が停止される。最初のサンプリング周期Taの経過を待って再び新たな変位信号が読み込まれ、同様の手順が繰り返される。この様子を図9(A)に示す。「0」時点で読み込まれた変位信号に基づき、目標位置LMが算出されると、少なくともサンプリング周期Ta(1msec)が経過するまでに現在位置LNが目標位置LMと合致するように、光軸と垂直な面内でレンズ位置の調節処理が行われる。この調節処理は、破線で示す現在位置LNの現在位置検出周期Tkごとに行われる。
「0」時点では、現在位置LN(=L0位置)と目標位置LM(=L1位置)との差が大きいため、現在位置LNの検出一周期の間に、最大個数である10個の駆動パルスが第一,第二アクチュエータ22,34に入力される。この結果、レンズユニット50は最大の移動量で移動する。続いて「n1」時点で検出される現在位置LNも目標位置LMからは大きく離れているので、同様に10個の駆動パルスによりレンズユニット50は同様に最大の移動量で直線的にL1位置に向けて移動される。
「n2」時点で検出された現在位置LNは目標位置LMに近いため、駆動パルスの供給個数が制限され、例えば5個の駆動パルスが供給された後に駆動パルスの供給が断たれる。このため、レンズユニット50は次に現在位置LNの検出が行われる「n3」時点までは移動せずに停止したままとなる。ただし図示の例では、この停止した位置がすでに目標位置LMを越えており、したがって「n3」時点で検出される現在位置LNは目標位置LMをわずかに越えたものとして検出される。
このため「n3」時点以降に入力される駆動パルスはREV駆動の波形に切り替わり、また目標位置LMとの差分もわずかであるから、例えば4個の駆動パルスでREV駆動される。このように、現在位置LNの検出周期ごとにFWD駆動とREV駆動が繰り返されることによって、レンズユニット50の現在位置LNが目標位置LMと合致し、それ以降は新たに現在位置LNの検出が行われてもレンズユニット50は停止したままとなる。
最初の現在位置LNの検出が行われた「0」時点から1msec経過した時点で変位信号の読込み周期Taが経過し、次の新たな変位信号の読込みが行われる。一般に、手振れ変位の周期に対して変位信号の読込み周期Ta(=1msec)は十分に短く設定されているから、新たに読み込まれる変位信号は直前に読み込まれた変位信号とほとんど差がでない。したがって、新たに読み込まれた変位信号に基づいて決まる目標位置LMは、図9(A)に一点鎖線で示す直線上の位置L2になるから、レンズユニット50は前回と同様の経路でL2位置に移動して位置調節が行われる。このような移動調節処理をサンプリング周期Ta及び現在位置検出周期Tkが経過するごとに繰り返すことにより、多様な手振れが筐体に加わったとしても、細かい周期で順次に読み込まれる変位信号及び、さらに細かい周期で順次に検出される現在位置信号に追随してレンズユニット50が移動調節され、良好な手振れ補正機能を得ることができる。
手振れ補正処理は、第一,第二ピエゾ素子22b,34bの伸縮を第一,第二駆動軸22c,34cに機械的な振動として伝達し、これらの駆動軸の振動で第一,第二フレーム20,32を移動させることによって行われるため、機械的な駆動音が発生しやすい。図11のグラフを用いて説明したように、手振れ補正装置は、静止している状態で第一,第二ピエゾ素子22b,34bに駆動パルスを入力した直後や、入力する駆動パルスの波形を切り替えた直後は、第一,第二フレーム20,32に加わる加速度が大きく変化するため振動音も大きくなる。このことは、図9(A)に示す現在位置LNの経路線上での屈曲点で駆動音が発生しやすいことを意味する。
こうして発生する駆動音はそれほど大きいものではないにしても、例えば動画の撮影と並行して録音を行う場合には騒音として記録されるという不都合があるから、手振れ補正時に生じる駆動音もできるだけ小さくしておくことが好ましい。そこで、本実施形態では、携帯電話機が動画撮影モードにセットされた際に、静音性に優れた第1手振れ補正モードを実行するようにしている。以下、第1の手振れ補正モードについて説明する。
駆動音を減らすには、移動調節の過程で現在位置LNの経路線上に現れる屈曲点の個数を減らし、また移動調節の速さを抑えて加速度の変化を小さくするとよい。そのためには、図10に示すように、現在位置LNが目標位置LMを越えた時点で手振れ補正モードが第1手振れ補正モードと第2手振れ補正モードのいずれであるかを判別し、第1手振れ補正モードが選択されている場合に限ってREV駆動は行われず、その時点でレンズユニット50の移動調節を終了する。また、例えば、現在位置検出周期Tk内の駆動パルスの供給個数の上限を第2手振れ補正モードの10個から5個に変更し、レンズユニット50の移動速度を遅くする。
上記処理によれば、第1手振れ補正モード下では図9(B)に示すように「n7」時点で検出される現在位置LNが目標位置LMを越えているから、それ以降は現在位置LNの検出も省略され、1msec後の新たな変位信号の読み取りまでレンズユニット50は停止したままとなる。そして、新たに変位信号の読込みがなされた後は同様の処理が行われ、やはり現在位置LNが目標位置LMを越えた時点でレンズユニット50の移動調節が終了する。
なお、現在位置LNが目標位置LMを越える直前の移動処理時には、LNが目標位置LMに接近している場合がほとんどである。したがって、第一,第二ピエゾ素子22b,34bに入力される駆動パルスの個数には制限が加わり、レンズユニット50の停止位置が目標位置LMを大きく越えることはないから、その時点で移動調節を中断しても調節位置としては実用的には十分に利用可能である。このようにREV駆動を禁止すれば、サンプリング周期Taの2周期分に相当する2msecの間に現在位置LNの経路線上に現れる屈曲点の個数は「4」個になり、振動音を抑えることができる。
上述した第1手振れ補正モード下でのレンズ移動処理では、レンズユニット50が目標位置を越えた過剰補正位置で停止されその位置が現在位置となるが、図11の部分フローチャートに示すように、過剰補正後の現在位置と目標位置との差分である通過距離を予め設定した閾値Δと比較し、通過位置が閾値Δ以下であるときには、レンズユニット50を過剰補正位置で停止させておくのが好ましい。なお、図11の部分フロー以外は、図10に示すフローチャートが共通に用いられる。

また、通過距離が閾値Δを越えた場合に限っては、REV駆動を行うようにしてもよい。この場合、現在位置LNの屈曲点が増えるのを抑えるため、通過距離が閾値Δ以下になる時点でREV駆動を停止するのが好ましい。
また、図12の部分フローチャートに示すように、通過距離が上記閾値Δを越えていたときに、REV駆動する代わりに電子補正方式で手振れ補正を行ってもよい。この場合、電子補正方式による手振れ補正は、例えば、図7に示す画像データ処理IC67に行わせる。
電子補正方式による手振れ補正は、イメージセンサ15の撮像エリア全体から読み出される撮像信号に基づく全画像データの中から記録対象となる一画面分の画像データを切り出すときに、レンズユニット50の現在位置と目標位置との差分に応じて切り出し範囲を調節することによって手振れに伴う画面のズレを調整するもので、第一,第二アクチュエータ22,34の駆動は行われない。したがって手振れ補正処理の一部を電気的な画像データ処理だけですませることができ、機械的な振動音の発生を減らすことが可能となる。
なお、電子補正方式による手振れ補正を行う場合には、イメージセンサ15の撮像エリア全体から得られる撮像信号の一部が記録対象となる一画面分の画像データに利用することができなくなる。このため、画像の鮮明度を高めようとするうえでは不利にはなるが、画素数が5Mピクセル以上のイメージセンサ15を用いたカメラモジュールであれば、その一部を手振れ補正処理に用いても画像の鮮明度を大きく劣化させることもない。
上記実施形態では、第1手振れ補正モード時に第2手振れ補正モードよりもレンズユニット50の移動速度を遅くしたが、各手振れ補正モードでレンズユニット50の同じ移動速度を用いてもよい。また、補正手段として撮影レンズ全体を含むレンズユニット50を移動させたが、撮影レンズの一部のレンズを補正レンズとし、この補正レンズのみを移動させてもよい。また、本発明は、イメージセンサ15を移動させる手振れ補正装置にも適用可能である。更に、カメラモジュールの手振れ補正機構として説明したが、本発明は、デジタルカメラ等の撮影装置に直接組み込まれる手振れ補正装置にも適用可能である。
また、本発明に用いられるイメージセンサ15としてCCD型のものを用いることも可能である。CCDイメージセンサを用いる場合には、イメージセンサ自体がいわゆる電子シャッタ機能を有するので、メカシャッタは不要となる。また、手振れ補正用の第一,第二アクチュエータ22,34にしても、細長い形状を有しその長手方向(軸方向)に第一,第二フレーム20,32を移動させるアクチュエータであれば、VCM(ボイスコイルモータ)、STM(ステッピングモータ)などを利用する場合でも本発明を効果的に利用することができる。なお、手振れ補正を行うための変位信号読込みのサンプリング周期Taや現在位置検出周期Tkは、上記実施形態で例示した値に限られず、第一,第二アクチュエータの構造や機構部8の構造などに応じて適宜に設定可能である。
5 カメラモジュール
11 ジャイロIC
15 イメージセンサ
22 第一アクチュエータ
34 第二アクチュエータ
50 レンズユニット
62 システムコントローラ

Claims (13)

  1. 光学機器に生じた手振れを検出し、手振れ変位に応じた変位信号を出力する手振れ検出手段と、
    前記光学機器の撮影光軸に直交する方向に移動して手振れ補正を行う補正手段の現在位置を検出する現在位置検出手段と、
    前記手振れ検出手段から前記変位信号をサンプリング周期ごとに読み込み、前記変位信号に基づいて前記補正手段を移動させる目標位置を算出し、前記現在位置検出手段に前記補正手段の現在位置を現在位置検出周期ごとに検出させ、前記目標位置と現在位置との比較結果に基づいて前記補正手段を前記目標位置に向かう第1の方向に移動させ、前記補正手段が前記目標位置を越えた過剰補正位置に達したときに前記補正手段の移動を停止させる第1の手振れ補正モードを有する手振れ制御手段とを備えていることを特徴とする手振れ補正装置。
  2. 前記手振れ制御手段は、前記過剰補正位置と前記目標位置との間の距離である通過距離と、予め設定されている前記通過距離の閾値とを比較し、前記通過距離が前記閾値以下であるときに前記補正手段を前記過剰補正位置で停止させておくことを特徴とする請求項1記載の手振れ補正装置。
  3. 前記手振れ制御手段は、前記通過距離が前記閾値を超えるときに、前記通過距離が前記閾値以下になるように前記補正手段を前記第1の方向と反対側の第2の方向に移動させることを特徴とする請求項2記載の手振れ補正装置。
  4. 電子補正方式の手振れ補正処理を行う電子手振れ補正手段を備えており、
    前記手振れ制御手段は、前記通過距離が前記閾値を超えるときに、前記電子手振れ補正手段に前記光学機器のイメージセンサにより撮像された画像を手振れ補正処理させることを特徴とする請求項2記載の手振れ補正装置。
  5. 前記手振れ制御手段は、前記光学機器の動作モードが動画撮影モードであるときに前記第1の手振れ補正モードに切り換え、前記動作モードが静止画撮影モードであるときには、前記補正手段を前記第1の方向と前記第1の方向と反対側の第2の方向とに移動させて前記補正手段を前記目標位置に停止させる第2の手振れ補正モードに切り換えることを特徴とする請求項1〜4いずれか記載の手振れ補正装置。
  6. 前記手振れ制御手段は、前記第1の手振れ補正モード時に前記補正手段の移動速度を前記第2の手振れ補正モード時よりも遅くすることを特徴とする請求項5記載の手振れ補正装置。
  7. 光学機器に生じた手振れを検出して手振れ変位に応じた変位信号を出力する手振れ検出手段から前記変位信号をサンプリング周期ごとに読み込むステップと、
    前記光学機器の撮影光軸に直交する方向に移動して手振れ補正を行う補正手段の目標位置を前記変位信号に基づいて算出するステップと、
    現在位置検出手段に前記補正手段の現在位置を現在位置検出周期ごとに検出させるステップと、
    前記目標位置と前記現在位置とを比較し、その比較結果に基づいて前記補正手段を前記目標位置に向かう第1の方向に移動させ、前記補正手段が前記目標位置を越えた過剰補正位置に達したときに前記補正手段の移動を停止させるステップとを備えたことを特徴とする手振れ補正方法。
  8. 前記過剰補正位置と前記目標位置との間の距離である通過距離と、予め設定されている前記通過距離の閾値とを比較するステップを備えており、前記通過距離が前記閾値以下であるときに前記補正手段を前記過剰補正位置で停止させておくことを特徴とする請求項7記載の手振れ補正方法。
  9. 前記通過距離が前記閾値を超えるときに、前記通過距離が前記閾値以下になるように前記補正手段を前記第1の方向と反対側の第2の方向に移動させるステップを含むことを特徴とする請求項8記載の手振れ補正方法。
  10. 前記通過距離が前記閾値を超えるときに、電子補正方式の手振れ補正処理を行う電子手振れ補正手段に、前記光学機器のイメージセンサにより撮像された画像を手振れ補正処理させるステップを含むことを特徴とする請求項8記載の手振れ補正方法。
  11. 複数枚のレンズを組み合わせた撮影光学系を円筒状の鏡筒に組み込んだレンズユニットと、前記撮影光学系で結像された光学像を撮像するイメージセンサとを備えたカメラモジュールにおいて、
    請求項1〜6いずれか記載の手振れ補正装置を有し、前記補正手段として前記レンズユニットを移動させることを特徴とするカメラモジュール。
  12. 前記イメージセンサの画素数は、5Mピクセル以上であることを特徴とする請求項11記載のカメラモジュール。
  13. 請求項11または12記載の前記カメラモジュールを備えたことを特徴とする携帯電話機。
JP2010018195A 2010-01-29 2010-01-29 手振れ補正装置及び方法、並びにカメラモジュール、携帯電話機 Pending JP2011160067A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018195A JP2011160067A (ja) 2010-01-29 2010-01-29 手振れ補正装置及び方法、並びにカメラモジュール、携帯電話機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018195A JP2011160067A (ja) 2010-01-29 2010-01-29 手振れ補正装置及び方法、並びにカメラモジュール、携帯電話機

Publications (1)

Publication Number Publication Date
JP2011160067A true JP2011160067A (ja) 2011-08-18

Family

ID=44591682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018195A Pending JP2011160067A (ja) 2010-01-29 2010-01-29 手振れ補正装置及び方法、並びにカメラモジュール、携帯電話機

Country Status (1)

Country Link
JP (1) JP2011160067A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160995A (ja) * 2012-02-07 2013-08-19 Nidec Copal Corp レンズ駆動装置
JP2015138132A (ja) * 2014-01-22 2015-07-30 キヤノン株式会社 撮像装置
WO2017014071A1 (ja) * 2015-07-22 2017-01-26 ソニー株式会社 カメラモジュール、固体撮像素子、電子機器、および撮像方法
JP2018018017A (ja) * 2016-07-29 2018-02-01 Tdk株式会社 レンズ駆動装置
JP2018018019A (ja) * 2016-07-29 2018-02-01 Tdk株式会社 レンズ駆動装置
JP2018018020A (ja) * 2016-07-29 2018-02-01 Tdk株式会社 レンズ駆動装置
JP2018072731A (ja) * 2016-11-02 2018-05-10 Tdk株式会社 レンズ駆動装置
JP2018072815A (ja) * 2016-10-26 2018-05-10 Tdk株式会社 レンズ駆動装置
JP2018101118A (ja) * 2016-12-22 2018-06-28 キヤノン株式会社 撮像装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160995A (ja) * 2012-02-07 2013-08-19 Nidec Copal Corp レンズ駆動装置
JP2015138132A (ja) * 2014-01-22 2015-07-30 キヤノン株式会社 撮像装置
JPWO2017014071A1 (ja) * 2015-07-22 2018-06-07 ソニー株式会社 カメラモジュール、固体撮像素子、電子機器、および撮像方法
WO2017014071A1 (ja) * 2015-07-22 2017-01-26 ソニー株式会社 カメラモジュール、固体撮像素子、電子機器、および撮像方法
KR102526794B1 (ko) * 2015-07-22 2023-04-28 소니그룹주식회사 카메라 모듈, 고체 촬상 소자, 전자 기기 및 촬상 방법
CN107852462B (zh) * 2015-07-22 2020-12-18 索尼公司 相机模块、固体摄像元件、电子设备和摄像方法
US10498962B2 (en) 2015-07-22 2019-12-03 Sony Corporation Camera module that corrects for camera shake and optical-system distortion
CN107852462A (zh) * 2015-07-22 2018-03-27 索尼公司 相机模块、固体摄像元件、电子设备和摄像方法
KR20180032529A (ko) * 2015-07-22 2018-03-30 소니 주식회사 카메라 모듈, 고체 촬상 소자, 전자 기기 및 촬상 방법
JP2018018019A (ja) * 2016-07-29 2018-02-01 Tdk株式会社 レンズ駆動装置
CN107664850A (zh) * 2016-07-29 2018-02-06 Tdk株式会社 透镜驱动装置
JP2018018020A (ja) * 2016-07-29 2018-02-01 Tdk株式会社 レンズ駆動装置
CN107664850B (zh) * 2016-07-29 2021-03-02 Tdk株式会社 透镜驱动装置
JP2018018017A (ja) * 2016-07-29 2018-02-01 Tdk株式会社 レンズ駆動装置
JP2018072815A (ja) * 2016-10-26 2018-05-10 Tdk株式会社 レンズ駆動装置
JP2018072731A (ja) * 2016-11-02 2018-05-10 Tdk株式会社 レンズ駆動装置
JP2018101118A (ja) * 2016-12-22 2018-06-28 キヤノン株式会社 撮像装置

Similar Documents

Publication Publication Date Title
JP4751695B2 (ja) 手ぶれ補正機能付き撮像装置
JP2011160067A (ja) 手振れ補正装置及び方法、並びにカメラモジュール、携帯電話機
EP1986423B1 (en) Image pickup apparatus
KR101082615B1 (ko) 이미지 블러 보정 장치 및 이를 구비한 촬상 장치
US7940306B2 (en) Camera capable of displaying moving image and control method of the same
US20090027510A1 (en) Imaging Device
JP4728086B2 (ja) 手ぶれ補正機能付き撮像装置
JP4755477B2 (ja) 手ぶれ補正機能付き撮像装置
KR101068181B1 (ko) 촬상 장치 및 전자 장치
JP4513879B2 (ja) 像ぶれ補正装置、レンズ鏡筒装置及びカメラ装置
JP5038664B2 (ja) 像振れ補正装置及び撮像装置
JP2007129700A (ja) 手ぶれ補正機能を有する撮像装置
JP2011158551A (ja) カメラモジュール及び携帯電話機
JP2011158552A (ja) カメラモジュール及び携帯電話機
JP2006343698A (ja) 塵埃除去装置及び撮像装置
JP4500236B2 (ja) 撮影装置
JP2006074652A (ja) 撮像装置
JP2007094320A (ja) 手ぶれ補正機能付き撮像装置
JP4718498B2 (ja) 撮像装置および撮像方法
JP5020568B2 (ja) 手ぶれ補正機能付き撮像装置及び撮像装置の手ぶれ補正方法
JP2012220648A (ja) 光学機器
JP7398573B2 (ja) 光学画像システム、光学画像安定化を実行するための方法
JP5001014B2 (ja) 撮像装置および撮像方法
JP2013174635A (ja) 焦点調節装置及び光学機器
JP2007271996A (ja) レンズ装置およびカメラシステム