JP2011151428A - 裏面オーミックコンタクトを備えた縦型の半導体デバイス - Google Patents

裏面オーミックコンタクトを備えた縦型の半導体デバイス Download PDF

Info

Publication number
JP2011151428A
JP2011151428A JP2011108544A JP2011108544A JP2011151428A JP 2011151428 A JP2011151428 A JP 2011151428A JP 2011108544 A JP2011108544 A JP 2011108544A JP 2011108544 A JP2011108544 A JP 2011108544A JP 2011151428 A JP2011151428 A JP 2011151428A
Authority
JP
Japan
Prior art keywords
semiconductor device
carrier concentration
substrate
semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011108544A
Other languages
English (en)
Inventor
David B Slater Jr
スレイター,デーヴィッド・ビー,ジュニアー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Inc filed Critical Cree Inc
Publication of JP2011151428A publication Critical patent/JP2011151428A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】オーミックコンタクトを有する半導体デバイスを、経済的に製造できるようにする。
【解決手段】半導体デバイス10は、半導体基板12と、該半導体基板の表面上にあり、半導体基板の解離温度未満の解離温度を有するエピタキシャル層14と、半導体基板内に形成された漸増キャリヤー濃度帯16と、金属層18とから構成される。漸増キャリヤー濃度帯は、約1000Åの厚さを有し、エピタキシャル層と反対の半導体基板の表面から該表面と反対側の表面に向かって伸びており、該反対側の表面に向かってドーパントの濃度が漸次低下している。金属層は、漸増キャリヤー濃度帯との境界20においてオーミックコンタクトを形成する。
【選択図】図1

Description

発明の技術分野
本発明は、半導体材料に対するオーミックコンタクトに関する。詳しくは、本発明は、複数の半導体材料を含むデバイスに対してオーミックコンタクトを形成する技術に関する。
マイクロエレクトロニクスの分野では、回路は半導体デバイスの連続接続から作られる。一般に、半導体デバイスは、特定の回路内における電流の流れによって動作し、且つ電流の流れを制御して、特定の仕事を達成する。回路において半導体デバイスを接続するために、適当なコンタクトを半導体に対して作らなければならない。半導体デバイスの高い導電率及び他の化学的特性の故に、前記デバイスに対してコンタクトを作るための最も有用で便利な材料は金属である。
半導体デバイスと回路の間にある金属コンタクトは、半導体デバイス又は回路の動作を、ほんの僅かしか妨害しないか、又は好ましくはまったく妨害しないようにするべきである。更に、金属コンタクトは、当該コンタクトが作られるか又は付着される半導体材料と物理的及び化学的に適合していなければならない。これらの所望の特性を示すコンタクトのタイプは「オーミックコンタクト」として公知である。
オーミックコンタクトは、通常、半導体の体抵抗又は収束抵抗と比較して無視できるコンタクト抵抗を有する金属・半導体コンタクトと定義される(Sze, Physics of Semiconductor Devices, Second Edition, 1981, page 304)。更に前記引例に記載されているように、適当なオーミックコンタクトは、当該コンタクトが付着されるデバイスの性能を有意に変化させず、且つ当該デバイスの活性領域にわたる電圧低下と比較して適度に低い電圧低下で任意の必要な電流を供給することができる。
オーミックコンタクト及び当該オーミックコンタクトを製造する方法は当業において公知である。そのすべての内容が参照として本明細書に取り入れられる例えば、Glass らに与えられた米国特許第5,409,859号及び第5,323,022号(Glass 特許)は、白金とp型炭化珪素とから形成されるオーミックコンタクト構造及び当該オーミック構造を作る方法について考察している。オーミックコンタクトとそれらを作る方法は公知であるが、オーミックコンタクト、特に炭化珪素基板を用いて製造されるオーミックコンタクトを製造するための公知の方法は、適正に行われた場合でも難しい。
オーミックコンタクトの作製に関する問題は無数にあり漸増している。正孔又は電子の濃度が低いことによる半導体の限定された導電率は、オーミックコンタクトの形成を妨げるか又は阻止するかもしれない。同様に、半導体内の正孔又は電子の移動度が低いことによっても、オーミックコンタクトの形成が妨げられるか又は阻止される可能性がある。Glass特許で考察されているように、コンタクト金属と半導体との間の仕事関数の違いは、印加電圧に対して整流(非オーミック)電流を示すコンタクトをもたらすポテンシャル障壁を誘発するかもしれない。大きく異なる電子・正孔濃度と密接にコンタクトしている2つの同じ半導体材料の間にも、オーミックコンタクトではなく整流を導くポテンシャル障壁(ビルトインポテンシャル)が存在しているかもしれない。Glass特許では、これらの問題には、p型SiC基板とコンタクト金属との間に別のp型ドープトSiC層を挿入することによって対処した。
より新しい世代のガリウム及びインジウムに基づく半導体デバイスのためのオーミックコンタクトを形成するとき、更に困難な問題に直面する。半導体と金属との間にオーミックコンタクトを形成する場合には、それらの界面において半導体とコンタクト金属との適正な合金形成(correct alloying)が必要である。オーミックコンタクト金属が堆積される半導体表面において正孔/電子濃度を選択的に増加させることは、オーミックコンタクトを達成するためのコンタクトプロセスを向上させる有効な手段として知られている。このプロセスは、典型的には、珪素及び炭化珪素のテクノロジーにおいて選択的ドーピング技術として十分に認識されているイオン注入によって達成される。しかしながら、炭化珪素の場合、イオン注入は、通常、高温(典型的には>600℃)で行って、炭化珪素の結晶格子に対する損傷を最小にする。所望の高いキャリヤー濃度を達成するために注入原子を「活性化する」には、しばしば珪素過圧力において1600℃を超えるアニール温度がしばしば必要である。このイオン注入技術に要する装置は特殊で高価である。
高温イオン注入及びその後のアニール後に、注入された基板表面上にコンタクト金属を堆積し、900℃を超える温度でアニールする。窒化ガリウム又は窒化インジウムガリウムを組込んでいる半導体デバイス上にコンタクトを形成するこの方法は、これらの化合物が高温で解離することから、実行不可能である。
この問題に対する1つの理論的答えは、半導体デバイスを完成するのに必要な壊れやすいエピタキシャル層(例えば、窒化ガリウム層)を成長させる前に、基板上にオーミックコンタクトを形成することであると考えられる。しかしながら、このアプローチは望ましくない。なぜならば、エピタキシャル成長システム中に望ましくない汚染物質を、すなわちコンタクト金属を挿入するからである。その汚染金属は、格子成長、ドーピング、反応速度又はこれらの因子の全てを妨害することによってエピタキシャル成長を引き起こし得る。更に、金属不純物は、エピタキシャル層の光学的及び電気的特性を劣化させることがある。
同様に、例えば金属酸化物半導体電界効果トランジスタ(「MOSFETS」)のような多くの半導体デバイスは、半導体酸化物(例えば、二酸化珪素)の層を必要とする。従来のイオン注入技術と、注入金属又はコンタクト金属アニールプロセスとに関連する高温によって、酸化物層にストレスがかかり、酸化物層、半導体・酸化物界面及びデバイスそれ自体が損傷されることがある。その代わりの方法として、酸化物層を作る前にオーミックコンタクトを形成する方法があるが、この方法も、酸化物層を形成するために用いられる酸化環境がオーミックコンタクトに悪影響を与えるので実用的ではない。
而して、既に考察した製造問題を示さない半導体デバイスと共に用いるオーミックコンタクトを形成するための実用的且つ経済的な方法に関するニーズが存在する。また、経済的に製造すること以外に、オーミックコンタクトを組込んでいるタイプの半導体デバイスに関するニーズも存在する。
したがって、本発明の目的は、上記したニーズを満たす半導体デバイスを提供することである。
また、炭化珪素とオーミックコンタクトとを含む半導体デバイスを提供することは本発明の更なる目的である。さらに、経済的に製造されるオーミックコンタクトを組込んでいる半導体デバイスを提供することは本発明の更に別の目的である。さらにまた、オーミックコンタクトを組込んでいる半導体デバイスを形成する方法を提供することは本発明の更にもう一つ別の目的である。
本発明は、半導体デバイスのための金属・半導体オーミックコンタクトを形成する方法によって上記目的を達成する。本方法は、初期の導電型を有する半導体基板の表面に選択ドーパント材料を注入する工程を含む。注入ドーパントは、半導体基板と同じ導電型を提供する。ドーパント注入後、まず最初に、注入ドーパント原子を活性化し、且つ有効キャリヤー濃度を増加させるのに充分な温度で且つ充分な時間、注入された半導体基板をアニールする。その最初のアニール後に、半導体材料の注入表面上に金属を堆積させる。その後、金属と、注入された半導体材料とをアニールする。この再度のアニールは、当該基板上に配置された任意のエピタキシャル層が有意に劣化すると考えられる温度未満で行われるが、注入された半導体材料と堆積された金属との間にオーミックコンタクトを形成するのには充分に高い温度である。
また、本発明は、第一表面、第二表面及び第一導電型を有する半導体基板を含む半導体デバイスによって、上記目的を達成する。また、当該デバイスは、半導体基板の第一表面上で成長される又は第一表面上に配置される少なくとも1つのエピタキシャル層も含む。更に、半導体基板は、第二表面(エピタキシャル層に相対している表面)から第一表面の方へと延びている当該基板に漸増キャリヤー濃度帯を有するものと定義される。当該デバイスは、金属と漸増キャリヤー濃度帯との界面にオーミックコンタクトを形成するための、当該基板の第二表面上に堆積された金属層を更に含む。
本発明にしたがう半導体デバイスに関する概略横断面図である。 本発明にしたがう方法で用いられるドーパント注入の概略横断面図である。
本発明は、オーミックコンタクトを組込んでいる半導体デバイス、及び当該オーミックコンタクトを形成する方法である。
n型又はp型の炭化珪素("SiC")を用いて半導体デバイス及びオーミックコンタクトを作る場合、本発明が最も有用であることは、例えばSiCのようなバンドギャップの広い半導体及びそれらから形成される半導体デバイスに精通している当業者には理解されるだろう。而して、本発明と実施例とに関する以下の説明により、SiCを用いる本発明の態様は容易に説明される。しかしながら、当業者は、例えば珪素、窒化ガリウム、窒化アルミニウムガリム、及び窒化インジウムガリウムのような他の半導体材料と共に用いるために、本発明が難なく適合されることを容易に認識するだろう。本明細書で用いているように、窒化アルミニウムガリム及び窒化インジウムガリウムは、アルミニウム及びガリウム又はインジウム及びガリウムのモル%が1に等しい化合物を含む。
広範な面において、本発明は、初期導電型を付与するドーパントの初期濃度を有する半導体基板を含む半導体デバイスである。当該半導体基板はn型又はp型であっても良い。また、当該デバイスは、当該半導体基板の1つの表面に隣接して配置された少なくとも1つのエピタキシャル層も含む。
本発明の半導体デバイスは、半導体基板が、エピタキシャル層に相対している当該基板の表面から、当該エピタキシャル層に隣接している表面の方へと延びている漸増キャリヤー濃度帯によって画定されることを更なる特徴とする。金属層は、当該金属と基板との界面においてオーミックコンタクトを形成するために、漸増キャリヤー濃度帯にある基板上に堆積される。
図1には、本発明による半導体デバイス10の概略図が示してある。該デバイス10は、説明のためにSiCである半導体基板12を含む。しかしながら、本発明の実施において、例えば珪素のような他の半導体材料を基板として用いても良いことを理解すべきである。SiC基板12はp型又はn型であることができる。
半導体デバイスを完成させるために必要な追加の成分14をSiC基板12に隣接して配置する。例えば、図1に示してあるように、半導体デバイスは、p型及びn型の半導体材料の連続エピタキシャル層14a,14b及び14cを有する発光ダイオード("LED")であるかもしれない。好ましい態様では、本発明は、半導体基板に隣接して配置された複数のエピタキシャル層から成る、例えばLED、金属酸化物半導体電界効果トランジスタ("MOSFET")、レーザー、又はショットキー整流器のような縦型半導体デバイスである。以下で考察するように、本発明にしたがうデバイスは、低い融点又は低い解離温度を有する材料を含む縦型半導体デバイスに特に適する。そのような材料としては、窒化ガリウム、窒化インジウムガリウム及び窒化アルミニウムガリムが挙げられる。
本発明の半導体デバイスは更に、半導体基板の裏面上に漸増キャリヤー濃度帯16を有することを特徴とする。換言すれば、当該半導体基板(この場合はSiC)においては、エピタキシャル層に相対する当該基板の表面近傍のキャリヤー濃度は、当該基盤の残りの部分のキャリヤー濃度に比べて高い。
漸増キャリヤー濃度帯16に対して境界として働くラインは、基板12におけるキャリヤー濃度が突然変化する明確な境界は存在しない事実を表すために破線で示してある。キャリヤー濃度は、基板の裏面からの距離が大きくなるにつれて、キャリヤー濃度が初期キャリヤー濃度に等しくなるまで低下する。以下で考察するように、漸増キャリヤー濃度帯は、p型及びn型の半導体材料と通常関連のあるドーパントを用いて室温イオン注入技術によって形成する。
例えば、図1において、特許請求されるデバイスの好ましい態様は、窒素でドーピングされたn型SiC基板を含む。様々なタイプのp型SiCと共に他のn型ドーパントから形成されたn型SiCも本発明にしたがって用いても良いことを理解すべきである。SiC基板12には、好ましくは僅かなドーピングから高度なドープングが施され、約1×1015cm-3 〜 約1×1019cm-3の初期キャリヤー濃度を有する。「僅かな」及び「高度な」という用語は、不正確であり、初期キャリヤー濃度が著しく変化するかもしれないことを示すために意図的に用いている。初期キャリヤー濃度は著しく変化するかもしれないが、試験からは、初期において、適度なドーピングから高度なドーピングが施される基板は良好な結果を与えることが分かった。エピタキシャル層14に相対する表面に対する選択ドーパント材料(例えば、窒素)のイオン注入によって、基板12の残りの部分に比べてより高いキャリヤー濃度を含む帯16が創り出される。好ましくは、イオン注入は、基板の裏面上に漸増キャリヤー濃度帯16を創り出すレベルで、すなわち約1×1018cm-3 〜 約1×1020cm-3のキャリヤー濃度を示し、且つ初期キャリヤー濃度に比べて常に高いレベルで行う。
当業者は、上記した漸増キャリヤー濃度帯も基板の成長中に形成される可能性があることを理解するだろう。しかしながら、必要とされるドーパントの可変供給速度と関連のある問題及び結晶成長法と典型的に関連のある他の問題により、このアプローチは実用的ではない。
漸増キャリヤー濃度帯16を形成するときに用いるのに好ましいn型ドーパントは窒素、砒素及び燐である。漸増キャリヤー濃度帯16を形成するときに用いるのに好ましいp型ドーパントはアルミニウム、硼素及びガリウムである。
本出願人は特定の理論に束縛されることを望まないが、証拠は、漸増キャリヤー濃度帯16によってオーミック特性を示す金属コンタクトが創出されることを示唆している。好ましい態様では、全ての半導体デバイスと共に用いるのに適する融点、蒸気圧、物理的及び化学的性質を有する選択コンタクト金属18を、漸増キャリヤー濃度帯16におけるSiC基板の表面に堆積して、当該金属と基板との間に界面20を形成する。好ましい金属としてはニッケル、パラジウム、白金、アルミニウム及びチタンが挙げられ、最も好ましくはニッケルである。次に、金属と基板を含むデバイスを、デバイス及び特に任意のエピタキシャル層に対して損傷を与えない程度に充分に低い温度で、しかし金属と基板との界面においてオーミックコンタクトを形成するのに充分な高い温度でアニールする。
本出願人は特定の理論に束縛されることを望まないが、漸増キャリヤー濃度帯を創出して、コンタクト金属のための受容体として機能させることは有用であると考えられる。而して、別の態様では、本発明は、上記半導体デバイスで用いられるオーミックコンタクトを形成する方法を含む。
広範な面では、本発明は、半導体デバイスのための金属・半導体コンタクトを形成する方法である。当該方法は、第一導電型を有する半導体基板に選択ドーパント材料を注入する工程を含む。注入ドーパントは基板と同じ導電型を提供する。この考察のために、半導体基板がSiC基板であり、且つドーパント材料がSiC基板の表面に堆積されることが仮定される。しかしながら、当業者は、他の半導体材料と共に用いるために本発明を容易に適合させ得ることを難なく認識するだろう。選択ドーパント材料の注入後に、アニール工程を行う。このアニール工程では、注入ドーパント原子を活性化して、SiC基板における注入ドーパント原子のキャリヤー濃度を効率的に増大させるのに充分な温度及び時間、注入SiC基板をアニールする。次に、SiC基板の注入表面上にコンタクト金属を堆積させる。その堆積されたコンタクト金属と、SiC基板の注入表面とをアニールする。この再度のアニールは、基板上に配置された任意のエピタキシャル層が有意な劣化を経験すると考えられる温度未満で、しかし注入SiCと堆積された金属との間にオーミックコンタクトを形成するのに充分に高い温度で行う。
好ましい態様では、半導体基板は、僅かな、適度な、又は高度なドーパント濃度を有することができるn型又はp型の基板を含んでいても良い。例えば、n型SiCが基板である場合、SiC基板は、約1×1015cm-3(僅かにドーピングした)〜 1×1019cm-3(高度にドーピングした)の初期ドーパント濃度を有していても良い。「僅か」、「適度」及び「高度」という用語は、不正確であり、基板材料におけるドーパントの初期濃度が変化するかもしれないことを示すために用いている。試験により、適度から高度にドーピングされた基板は本発明によって最良の結果を達成することが分かった。
次に、選択ドーパント材料を半導体基板に注入し、当該基板をアニールする。好ましくは、ドーパント注入は室温で行い、その後のアニールは約800℃〜約1300℃で行う。基板の導電型と通常関連のあるドーパントを、注入工程のためのドーパントとして用いても良い。例えば、窒素で初期にドーピングされたn型SiCが基板であるとき、窒素は注入ドーパントとして機能することができる。同様に、アルミニウムで初期にドーピングされたp型SiCが基板であるとき、アルミニウムは注入ドーパントとして機能することができる。他の可能なn型ドーパントは砒素及び燐である。硼素及びガリウムは別のp型ドーパントとして機能することができる。
当業者には、ドーパント材料の注入は高温で行っても良いことが容易に認識されるであろう。実際に、SiC格子構造の損傷を軽減するために、SiCでは、高温注入が典型的に好ましい。しかしながら、SiCの文脈においては、高温イオン注入は、本発明の商業的使用を制約する。注入中にSiC基板を加熱できるイオン注入装置は、典型的ではなく、高価であるので、低コスト大量用途のためというよりは研究開発用である。更に、SiC基板を高温まで加熱するときは、製造プロセスを遅延させる破損を生じさせない速度で加熱及び冷却しなければならない。
本発明で用いるには、室温注入が好ましい注入法である。ドーパントの室温注入工程、及びその後に行われる、1300℃の温度にまで達することができ且つ100個以上の基板を保持できる単純なベント式の炉(simple vented furnace)におけるアニール工程によって、申し分のない結果が達成され、処理量が大きく増加することを発見した。
ドーパントの室温注入は、好ましくは、半導体基板の注入表面近傍に漸増ドーパント濃度帯が創出されるように行う。図2は、本発明にしたがう注入法に関する概略図である。この実施例では、約1×1018cm-3の初期ドーパント濃度を有するn型SiC基板22に対して、1×1013cm-2以上のドーズ量、10 〜 60keVのエネルギーで、原子窒素又は二原子窒素24を注入する。いくつかの場合では、1つ以上の注入エネルギーを用いて、より段階的なキャリヤー濃度分布を創出しても良い。注入プロセスは、約1×1019cm-3 〜 約1×1020cm-3の総化学的ドーパント濃度を有する深さ約1000オングストロームのSiC基板の注入表面の近傍に帯26を生成させる。注入ドーパントの濃度は、注入表面からの距離が離れるにつれて低下する。漸増ドーパント濃度帯26の外側のドーパント濃度は、実質的に、初期のドーパント濃度と同じままである。漸増キャリヤー濃度帯26の境界は、破線で示してあり、帯26と基板の残部との間のキャリヤー濃度の変化が一線を画すものではなく段階的なものであることを示している。当業者は、注入エネルギー又はドーズ量を容易に変化させて、所望の濃度及び厚さを達成できることを認識すべきである。
既に説明したように、注入された基板をアニールすることが必要である。アニールは、注入直後に、注入ドーパントイオンのいくらかは「活性」ではない故に必要である。「活性」という用語は、注入された基板の総キャリヤー濃度に寄与する注入イオンの有効性を説明するために用いている。
注入中、SiC基板の結晶格子に対してドーパントイオンによって実質的に衝撃が与えられる。これらのイオンは結晶格子に衝突し、結晶格子に保持される。この衝撃では、存在している結晶格子中へのドーパントイオンの完全な挿入は得られない。ドーパントイオンの多くの初期配置は、イオンが結晶格子中で「活性」な存在になることを妨げ、ドーパントイオンそれ自体が衝撃によって損傷を受ける可能性がある。注入SiC基板をアニールすると(すなわち、加熱すると)、注入イオンと基板の結晶格子とが、より規則正しい様式で再配置され、ドーパント注入中に受けた損傷から回復する機構が提供される。
説明のためのみに概数を用いると、注入プロセスは次のように考えられるかもしれない。すなわち、x個の窒素原子の初期濃度を有するn型SiC基板に100個の窒素イオンを注入する場合、注入直後に、その基板は「x+ 10」個の窒素イオンを有する基板と関連のある特性を示すことができる。しかしながら、次に、その基板をアニールし、注入イオンが結晶格子中の位置に定着できる場合、当該基板は「x+ 90」個の窒素イオンを有する基板と関連のある特性を示すことができる。而して、アニール工程により、注入イオンの約80個が「活性化」された。
試験から、約2時間以下の間、約1000℃ 〜 1300℃の温度で、室温注入されたSiC基板をアニールすると、申し分のない結果が得られることが分かる。温度及び時間は、注入ドーズ量を更に完全に活性化するために、容易に調節することができる。
上記の注入された基板を含む半導体デバイスは少なくとも1つのエピタキシャル層を有する。エピタキシャル層は、当業者に公知の任意の手段で成長させることができる。本発明の一つの好ましい態様では、基板に対してドーパントを注入する前に、エピタキシャル層を堆積させる。しかしながら、所望のエピタキシャル層又はその後に二次加工されるデバイスは、注入された基板の高温アニールに耐えることができる材料(例えば、窒化ガリウム又は酸化珪素)から作ることができ、又は当該材料から構成される。この場合、エピタキシャル層は、ドーパント注入後に形成しても良い。
半導体基板に対して注入し、充分にアニールされた漸増ドーパント濃度帯を確立し、任意のエピタキシャル層を当該基板上に配置した後、オーミックコンタクトを形成するために選択金属を、漸増キャリヤー濃度帯における基板の表面に対して施用する。金属は、適度に高い融点及び蒸気圧を有し、且つ基板材料と不利な相互作用をしない電気コンタクトを形成する場合に典型的に用いられる殆ど任意の金属であることができる。好ましい金属としては、ニッケル、パラジウム、白金、チタン及びアルミニウムが挙げられ、最も好ましくはニッケルである。
好ましくは、コンタクト金属を基板表面上に堆積させて、厚さ300オングストローム以上の層を形成させる。その堆積後には再度アニールを行う。しかしながら、このアニールは高温で長時間のアニールではない。このアニールは、好ましくは約1000℃未満の温度で、最も好ましくは約800℃未満の温度で、20分以下、最も好ましくは5分以下の時間行う。これらの温度及び時間は、基板上に存在する任意のエピタキシャル層に損傷を与えない程度に充分に低く短い。半導体基板に対してコンタクト金属をアニールすることにより、金属と基板との界面においてオーミックコンタクトが形成される。
本発明の更に特定の態様では、まず最初に窒素原子のドーズ量3×1014cm-2を50keVのエネルギーで注入し、次にドーズ量5×1014cm-2を25keVのエネルギーで注入したn型SiC基板を用いて、本発明にしたがう金属半導体を作製した。注入後に、炉において、アルゴン雰囲気下、60〜 90分間、1300℃で活性化アニールを行った。次に、コンタクト金属、すなわちニッケルを2500オングストロームの厚さで注入表面上に堆積させた。更に次に、コンタクトアニールをアルゴン下で2分間800℃で行った。得られたオーミックコンタクトは申し分のないオーミック特性を示した。
当業者は、エピタキシャル成長によってその場でコンタクトアニールを行うことができることも認識すべきである。
本発明は、例えば光検出器、発光ダイオード(LED)、レーザーのような縦型デバイスに関して、例えば金属酸化物半導体電界効果トランジスタ(MOSFET)、絶縁ゲートバイポーラートランジスタ(IGBT)、pn接合及びショットキー整流器のような電力デバイスに関して、及び例えばSIT(静電誘導トランジスタ)のようなマイクロ波デバイスに関して実質的な利点を提供する。検出器、LED及びレーザーの場合では、エピタキシャル成長させた窒化ガリウム層及び窒化インジウムガリウム層は、当該層を極度に損傷すると考えられる温度でアニールすべきではない。窒化インジウムガリウムの場合では、高温での時間は、合金のインジウム組成が増加するので更に重要となる。裏面コンタクトアニール温度を低下させると、SiC基板上に成長させた歪ヘテロエピタキシャル膜におけるインジウム成分又はガリウム成分が亀裂又は解離する確率も低下する。
SiCのホモエピタキシャル膜を基板上に成長させ、そして熱成長させるか又は熱再成長させる(再酸化又はアニールする)電力デバイスの場合、酸化物はデバイス性能において不可欠な役割を有し、またより低いアニール温度が有利である。裏面金属コンタクトは、SiC・二酸化珪素界面を成長させるのに必要な酸化環境に晒すことができないので、裏面オーミックコンタクトは、二酸化珪素を成長(再酸化又は再成長)させた後に、堆積及びアニールしなければならない。残念なことに、基板の裏に対してコンタクトを引き続いて形成するために必要とされる約850℃以上の従来技術のアニール温度は、熱膨張の速度で不整合が生じるので、SiC・二酸化珪素界面において欠陥が生じる。これは、MOSFET及びIGBTにとって特に悪い。
SiC技術は発展の初期段階にあり、多くの提案されたデバイス及び材料構造は、未だ試験又は開発段階である。このプロセスの更なる発展により、アニール温度はよりずっと低くなり、究極的には堆積時に(アニールなし)金属と半導体との間にオーミックコンタクトが生じる。
過度の実験を行わずに読者が本発明を実施できるように、ある種の好ましい態様に関して本発明を詳細に説明してきた。しかしながら、当業者は、本発明の範囲及び精神から逸脱せずに、成分及びパラメーターの多くをある程度まで変化又は改良できることを容易に認識するだろう。更に、発明の名称、見出しなどを提供して、この明細書に関する読者の理解を高めているが、本発明の範囲を限定するものと解釈すべきではない。而して、本発明の知的所有権は、上記の請求の範囲と、妥当な拡張及び均等物とによってのみ規定される。

Claims (13)

  1. 半導体デバイス(10)であって、
    第1表面及び第2表面を有し、第1導電型を有する半導体基板(12)と、
    該半導体基板の第1表面上にある少なくとも1つのエピタキシャル層であって、半導体基板の解離温度未満の解離温度を有する材料で形成されるエピタキシャル層(14)と、
    半導体基板の第2表面から第1表面に向かって伸びており、第2の表面から第1の表面に向かってドーパントの濃度が漸次低下している漸増キャリヤー濃度帯であって、約1000Åの厚さを有する漸増キャリヤー濃度帯(16)と、
    半導体基板の第2表面上に堆積された金属層であって、該金属層と漸増キャリヤー濃度帯との境界(20)においてオーミックコンタクトを形成する、金属層(18)と
    からなることを特徴とする半導体デバイス。
  2. 請求項1記載の半導体デバイスにおいて、半導体基板は、炭化珪素であることを特徴とする半導体デバイス。
  3. 請求項1又は2記載の半導体デバイスにおいて、注入されるドーパント材料は、窒素、アルミニウム、砒素、燐、硼素及びガリウムから成る群より選択されることを特徴とする半導体デバイス。
  4. 請求項2記載の半導体デバイスにおいて、炭化珪素における初期キャリヤー濃度が、1×1015cm-3〜1×1019cm-3であることを特徴とする半導体デバイス。
  5. 請求項4記載の半導体デバイスにおいて、漸増キャリヤー濃度帯におけるキャリヤー濃度が、1×1018cm-3〜1×1020cm-3であり、炭化珪素における初期キャリヤー濃度に比べて高いことを特徴とする半導体デバイス。
  6. 請求項1〜5いずれかに記載の半導体デバイスにおいて、エピタキシャル層は、窒化ガリウム、窒化アルミニウムガリウム、窒化インジウムガリウム、並びに、珪素、ガリウム、アルミニウム及びインジウムの酸化物から成る群より選択されることを特徴とする半導体デバイス。
  7. 請求項1〜6いずれかに記載の半導体デバイスにおいて、堆積された金属層は、ニッケル、パラジウム、白金、アルミニウム及びチタンから成る群より選択されることを特徴とする半導体デバイス。
  8. 半導体デバイス(10)であって、
    第1表面及び第2表面を有し、初期導電型を付与する初期濃度のドーパントを有する半導体基板(12)と、
    該半導体基板の第1表面上にある少なくとも1つのエピタキシャル層(14)と、
    半導体基板の第2表面から第1表面に向かって伸びている漸増キャリヤー濃度帯であって、第2表面から第1表面に向かってドーパント濃度が漸次低下しており、1000Åの厚さを有する漸増キャリヤー濃度帯(16)と、
    半導体基板の第2表面上のニッケルからなるオーミックコンタクト(18)と
    からなることを特徴とする半導体デバイス。
  9. 請求項8記載の半導体デバイスにおいて、注入されるドーパント材料は、窒素、アルミニウム、砒素、燐、硼素及びガリウムから成る群より選択されることを特徴とする半導体デバイス。
  10. 請求項8又は9記載の半導体デバイスにおいて、炭化珪素における初期キャリヤー濃度が、1×1015cm-3〜1×1019cm-3であることを特徴とする半導体デバイス。
  11. 請求項10記載の半導体デバイスにおいて、漸増キャリヤー濃度帯におけるキャリヤー濃度が、1×1018cm-3〜1×1020cm-3であり、炭化珪素における初期キャリヤー濃度に比べて高いことを特徴とする半導体デバイス。
  12. 請求項8〜11いずれかに記載の半導体デバイスにおいて、エピタキシャル層は、窒化ガリウム、窒化アルミニウムガリウム、窒化インジウムガリウム、並びに、珪素、ガリウム、アルミニウム及びインジウムの酸化物から成る群より選択されることを特徴とする半導体デバイス。
  13. 請求項8〜12いずれかに記載の半導体デバイスにおいて、該半導体デバイスは縦型デバイスであることを特徴とする半導体デバイス。
JP2011108544A 1998-09-16 2011-05-13 裏面オーミックコンタクトを備えた縦型の半導体デバイス Pending JP2011151428A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10054698P 1998-09-16 1998-09-16
US60/100,546 1998-09-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000570823A Division JP4785249B2 (ja) 1998-09-16 1999-09-16 縦型デバイスのための裏面オーミックコンタクトの低温形成

Publications (1)

Publication Number Publication Date
JP2011151428A true JP2011151428A (ja) 2011-08-04

Family

ID=22280313

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000570823A Expired - Lifetime JP4785249B2 (ja) 1998-09-16 1999-09-16 縦型デバイスのための裏面オーミックコンタクトの低温形成
JP2011108544A Pending JP2011151428A (ja) 1998-09-16 2011-05-13 裏面オーミックコンタクトを備えた縦型の半導体デバイス

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2000570823A Expired - Lifetime JP4785249B2 (ja) 1998-09-16 1999-09-16 縦型デバイスのための裏面オーミックコンタクトの低温形成

Country Status (9)

Country Link
EP (1) EP1125320A1 (ja)
JP (2) JP4785249B2 (ja)
KR (1) KR100694681B1 (ja)
CN (1) CN1178277C (ja)
AU (1) AU6391699A (ja)
CA (1) CA2343416A1 (ja)
MX (1) MXPA01002751A (ja)
TW (1) TW449932B (ja)
WO (1) WO2000016382A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728877B2 (en) 2011-12-29 2014-05-20 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device with a single crystal substrate
US8866262B2 (en) 2011-12-22 2014-10-21 Sumitomo Electric Industries, Ltd. Vertical semiconductor device having silicon carbide substrate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884644B1 (en) 1998-09-16 2005-04-26 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
US6803243B2 (en) 2001-03-15 2004-10-12 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
US6909119B2 (en) 2001-03-15 2005-06-21 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
US7138291B2 (en) 2003-01-30 2006-11-21 Cree, Inc. Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
US7262434B2 (en) * 2002-03-28 2007-08-28 Rohm Co., Ltd. Semiconductor device with a silicon carbide substrate and ohmic metal layer
US7473929B2 (en) 2003-07-02 2009-01-06 Panasonic Corporation Semiconductor device and method for fabricating the same
JP2006086361A (ja) * 2004-09-16 2006-03-30 Stanley Electric Co Ltd 半導体発光素子及びその製造方法
EP1933386B1 (en) * 2005-09-14 2012-11-07 Central Research Institute of Electric Power Industry Process for producing silicon carbide semiconductor device
US20100237385A1 (en) * 2008-06-26 2010-09-23 Sanken Electric Co., Ltd. Semiconductor device and method of fabricating the same
KR101220407B1 (ko) 2010-12-14 2013-01-21 (재)한국나노기술원 반도체 발광 소자
JP6253133B2 (ja) * 2012-04-27 2017-12-27 富士電機株式会社 炭化珪素半導体装置の製造方法
JP5681835B1 (ja) 2013-10-08 2015-03-11 新電元工業株式会社 炭化珪素半導体装置の製造方法
JP7135443B2 (ja) * 2018-05-29 2022-09-13 富士電機株式会社 炭化ケイ素半導体装置及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088210A (ja) * 1994-06-23 1996-01-12 Fuji Electric Co Ltd 炭化けい素半導体素子の製造方法
JPH08139053A (ja) * 1994-11-04 1996-05-31 New Japan Radio Co Ltd SiCへの電極の形成方法
WO1998037584A1 (en) * 1997-02-20 1998-08-27 The Board Of Trustees Of The University Of Illinois Solid state power-control device using group iii nitrides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323022A (en) * 1992-09-10 1994-06-21 North Carolina State University Platinum ohmic contact to p-type silicon carbide
JP3333896B2 (ja) * 1995-09-13 2002-10-15 富士電機株式会社 炭化珪素半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088210A (ja) * 1994-06-23 1996-01-12 Fuji Electric Co Ltd 炭化けい素半導体素子の製造方法
JPH08139053A (ja) * 1994-11-04 1996-05-31 New Japan Radio Co Ltd SiCへの電極の形成方法
WO1998037584A1 (en) * 1997-02-20 1998-08-27 The Board Of Trustees Of The University Of Illinois Solid state power-control device using group iii nitrides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866262B2 (en) 2011-12-22 2014-10-21 Sumitomo Electric Industries, Ltd. Vertical semiconductor device having silicon carbide substrate
US9153661B2 (en) 2011-12-22 2015-10-06 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing same
US8728877B2 (en) 2011-12-29 2014-05-20 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device with a single crystal substrate

Also Published As

Publication number Publication date
KR100694681B1 (ko) 2007-03-13
CN1178277C (zh) 2004-12-01
WO2000016382A1 (en) 2000-03-23
JP4785249B2 (ja) 2011-10-05
EP1125320A1 (en) 2001-08-22
KR20010079759A (ko) 2001-08-22
AU6391699A (en) 2000-04-03
MXPA01002751A (es) 2002-04-08
CN1323446A (zh) 2001-11-21
CA2343416A1 (en) 2000-03-23
TW449932B (en) 2001-08-11
JP2002525849A (ja) 2002-08-13

Similar Documents

Publication Publication Date Title
JP4660733B2 (ja) 縦型デバイスのための裏面オーミックコンタクトの低温形成
JP2011151428A (ja) 裏面オーミックコンタクトを備えた縦型の半導体デバイス
EP0889509B1 (en) Lifetime control for semiconductor devices
US6884644B1 (en) Low temperature formation of backside ohmic contacts for vertical devices
US7675068B2 (en) Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
JP5164319B2 (ja) 半導体素子のための非活性化保護リング
US6909119B2 (en) Low temperature formation of backside ohmic contacts for vertical devices
JP4852786B2 (ja) Iii族窒化物半導体の製造方法及びiii族窒化物半導体素子
CN115692181A (zh) 在碳化硅(SiC)衬底上制造欧姆接触的方法
JP2004356257A (ja) p型III族窒化物半導体の製造方法
EP1488450A2 (en) Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
JP4029466B2 (ja) 炭化けい素半導体素子の製造方法
TWI281710B (en) Low temperature formation of backside ohmic contacts for vertical devices
KR20170044478A (ko) 활성화 열처리 공정을 통한 탄화규소 다이오드 제조방법
Fukada et al. Formation of ohmic contacts to n-GaAs by solid phase epitaxy of evaporated and ion implanted Ge films
WO1997015072A1 (en) A method for producing a semiconductor device comprising an implantation step

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131218

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213