TW449932B - Low temperature formation of backside ohmic contacts for vertical devices - Google Patents
Low temperature formation of backside ohmic contacts for vertical devices Download PDFInfo
- Publication number
- TW449932B TW449932B TW088116007A TW88116007A TW449932B TW 449932 B TW449932 B TW 449932B TW 088116007 A TW088116007 A TW 088116007A TW 88116007 A TW88116007 A TW 88116007A TW 449932 B TW449932 B TW 449932B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- semiconductor
- semiconductor device
- silicon carbide
- implanted
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title description 6
- 239000004065 semiconductor Substances 0.000 claims abstract description 107
- 238000000034 method Methods 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims description 120
- 229910052751 metal Inorganic materials 0.000 claims description 50
- 239000002184 metal Substances 0.000 claims description 50
- 239000002019 doping agent Substances 0.000 claims description 45
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 40
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 34
- 238000000137 annealing Methods 0.000 claims description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- 238000002513 implantation Methods 0.000 claims description 19
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 14
- 229910052733 gallium Inorganic materials 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 12
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical group [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 229910002601 GaN Inorganic materials 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 10
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052785 arsenic Inorganic materials 0.000 claims description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- 229940044658 gallium nitrate Drugs 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims description 2
- 238000006731 degradation reaction Methods 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims 2
- 150000001247 metal acetylides Chemical class 0.000 claims 2
- 229910052765 Lutetium Inorganic materials 0.000 claims 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims 1
- 235000011613 Pinus brutia Nutrition 0.000 claims 1
- 241000018646 Pinus brutia Species 0.000 claims 1
- 229910000676 Si alloy Inorganic materials 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 229910003437 indium oxide Inorganic materials 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 230000003248 secreting effect Effects 0.000 claims 1
- 239000002689 soil Substances 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 3
- 229910018540 Si C Inorganic materials 0.000 description 11
- 238000005468 ion implantation Methods 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 9
- 239000007943 implant Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- -1 nitrogen ions Chemical class 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- CDZGJSREWGPJMG-UHFFFAOYSA-N copper gallium Chemical compound [Cu].[Ga] CDZGJSREWGPJMG-UHFFFAOYSA-N 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/048—Making electrodes
- H01L21/0485—Ohmic electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrodes Of Semiconductors (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
449932 五、發明說明(1) 發明範疇 本發明牽涉到半導體材料之歐姆接觸。特言之,本發明 牽涉到形成包含複數個半導體材料裝置的歐姆接觸之方 法。 發明背景 就微電子而言,電路係來自半導體裝置的連續連接。一 般而言,半導體裝置係由特定電路内的電流所運作,並用 以控制該特定電路内的電流,以達成特殊任務。為了於電 路中連接半導體裝置,該半導體裝置必須製造適當之接 觸。由於其高導電性及其他化學特性,因此用以對此等裝 置製造接觸之最有用且最方便之材料為金屬。 在半導體裝置及電路間之金屬接觸應儘量減少或較佳地 不受到該裝置或電路運作之影響。甚至,該金屬接觸必須 在物理或化學特性上與其所製造或附接的半導體材料相 容。顯示所希望特性之接觸的類型被稱為「歐姆接觸」。 於 1981年Sze的 Physics of Semiconductor Devices第 二版第304頁中,歐姆接觸通常被定義為金屬半導體接 觸,相對於半導體的體電阻或擴展電阻,該接觸具有可忽 略的接觸電阻。該文件進一步描述到,適當的歐姆接觸將 不會很明顯地改變其所連接裝置的效能,並且可提供任何 所需電流,該電流之電壓降與該裝置之作用區上的電壓降 相比,為適當的小壓降。 歐姆接觸與產生歐姆接觸的方法為本行業專家所熟知。 例如,美國專利案號5,4 0 9,8 5 9和5,3 2 3,0 2 2,由G 1 as s等449932 V. Description of the invention (1) Scope of the invention The present invention relates to ohmic contact of semiconductor materials. In particular, the present invention relates to a method of forming an ohmic contact including a plurality of semiconductor material devices. BACKGROUND OF THE INVENTION In the case of microelectronics, a circuit is a continuous connection from a semiconductor device. Generally, a semiconductor device is operated by a current in a specific circuit, and is used to control the current in the specific circuit to achieve a specific task. In order to connect a semiconductor device in a circuit, the semiconductor device must make appropriate contacts. Due to its high electrical conductivity and other chemical properties, the most useful and convenient material for making contact with these devices is metal. Metal contact between a semiconductor device and a circuit should be minimized or preferably not affected by the operation of the device or circuit. Furthermore, the metal contact must be physically or chemically compatible with the semiconductor material it is manufactured or attached to. The type of contact that displays the desired characteristics is called "ohmic contact." In 1981, Sze, Physics of Semiconductor Devices, Second Edition, p. 304, ohmic contact is usually defined as a metal-semiconductor contact, which has negligible contact resistance relative to the bulk or extended resistance of the semiconductor. The document further describes that a proper ohmic contact will not significantly change the performance of the device to which it is connected, and will provide any required current, the voltage drop of which is compared to the voltage drop across the active area of the device, For an appropriate small pressure drop. Ohmic contact and methods of generating ohmic contact are well known to industry experts. For example, U.S. Patent Nos. 5,4 0 9, 8 5 9 and 5, 3 2 3, 0 2 2 are represented by G 1 as s, etc.
第4頁 五、發明說明(2) 人所著(「G 1 a s s專利」),該專利的全部内容隨附於後, 以供參考,討論由鉑和p型碳化矽所形成之歐姆接觸結 構,以及產生該歐姆結構的方法。雖然歐姆接觸和產生歐 姆接觸的方法眾所皆知,但產生歐姆接觸的已知方法,特 別是利用碳化矽基材的方法,即使操作正確也很困難。 〇 與產生歐姆接觸有關的問題種類繁多,且會逐漸累積。 由於電洞或電子濃度太低,因而半導體導電性受到限制, 可能影響甚至妨礙歐姆接觸的形成。同樣地,半導體内電 洞(hole)或電子移動度不良,可能影響甚至妨礙歐姆接觸 的形成。如G 1 a s s專利所討論,接觸金屬和半導體間的工 作功能差異可能升高位障,導致一接觸呈現相對於施加電 壓的整流(非歐姆)電流。即使密切接觸、具有十分不同的 電子-電洞濃度的兩種相同半導體之間,也會存在位障(内 在電位),因此導致整流而非歐姆接觸。於G 1 a s s專利中, 若在ρ型SiC基材與該接觸金屬間插入一明顯的p型掺雜之 S i C層,將發生這些問題。 當針對新一代鎵和銦為基之半導體裝置形成歐姆接觸 時,則遭遇更困難的問題。在半導體和金屬間形成歐姆接 觸其介面處需要該半導體和該接觸金屬之正確合金。選擇 性地在沉積歐姆接觸金屬的半導體表面上增加電洞電子濃 度,被視為增強接觸處理以達到歐姆接觸的有效方法。此 種處理方式通常藉由離子植入而達成,在石夕和後化石夕技術 中眾所皆知為一種選擇性的摻雜技術。但是,在碳化矽的 情況下,通常會在溫度升高時(通常> 6 0 0 °C )執行離子植5. Explanation of the Invention (2) Author ("G 1 ass Patent"), the entire contents of which are attached for reference, and discuss the ohmic contact structure formed by platinum and p-type silicon carbide , And a method of generating the ohmic structure. Although ohmic and ohmic contact methods are well known, the known methods of generating ohmic contacts, especially those using silicon carbide substrates, are difficult to operate correctly. 〇 There are many types of problems related to ohmic contact, and they gradually build up. Because the hole or electron concentration is too low, the conductivity of the semiconductor is limited, which may affect or even prevent the formation of ohmic contacts. Similarly, poor hole or electron mobility in semiconductors may affect or even prevent the formation of ohmic contacts. As discussed in the G 1 as s patent, differences in the functional functions of the contact metal and semiconductor may raise the barrier, causing a contact to exhibit a rectified (non-ohmic) current relative to the applied voltage. Even between two identical semiconductors that are in close contact and have very different electron-to-hole concentrations, there will be a barrier (internal potential), which results in rectification rather than ohmic contact. In the G 1 as s patent, these problems will occur if an apparent p-type doped S i C layer is inserted between the p-type SiC substrate and the contact metal. More difficult problems are encountered when forming ohmic contacts for next-generation gallium and indium-based semiconductor devices. The formation of an ohmic contact between a semiconductor and a metal requires the correct alloy of the semiconductor and the contact metal. Selectively increasing the hole electron concentration on the semiconductor surface on which the ohmic contact metal is deposited is considered an effective method to enhance contact processing to achieve ohmic contact. This processing method is usually achieved by ion implantation, which is well-known as a selective doping technique in Shixi and post-fossil techniques. However, in the case of silicon carbide, ion implantation is usually performed when the temperature rises (usually> 60 ° C).
449 9 3 2 五、發明說明(3) 入,以便將對於碳化矽晶格的傷害減至最小。「活化」植 入的原子以達到所希望的高載體密度時,需要超過1 6 0 0 °C 的退火溫度,通常是在超壓的矽之内。這種離子植入技術 所需要的設備相當專業且昂貴。 在高溫離子佈植及後續之退火之後,該接觸金屬係沉積 在植入基材的表面之上,並在超過900 °C以上的溫度下退 火。這種在結合硝酸鎵或銦鎵氮化物的半導體裝置上形成 接觸的方法並不可行,因為此等化合物在升高之溫度下會 分解。 理論上這個問題的解決方法為在完成該半導體裝置所必 須生成的脆弱的蠢晶層(例如碗酸鎵層)之前,先在基材上 形成歐姆接觸。但是這種方法並不可取,因為會將不必要 的污染物’接觸金屬^帶入蠢.晶生長糸統内。該污染金層 會干擾晶格生長、摻雜、反應速率或這類因素,而影響到 蠢晶生長。此外,金屬不純會降低遙晶層之光電特性。 同樣地,許多半導體裝置,譬如金氧半導體場效電晶體 (MOSFETS)需要半導體氧化層(例如二氧化矽)。與傳統離 子植入技術和佈植或接觸金屬之退火處理有關的商溫在氧 化層上施加高壓,因而損傷到氧化層、半導體-氧化物介 面及裝置本身。另外,在建立氧化層之前形成歐姆接觸並 不實際,因為用以形成該氧化層的氧化環境對於歐姆接觸 有負面影響。 因此,就需要有一種實際可行且經濟的方法,用以形成 用於連接不會發生以上討論的製造問題之半導體裝置的歐449 9 3 2 V. Description of the invention (3) In order to minimize the damage to the silicon carbide lattice. "Activating" the implanted atoms to achieve the desired high carrier density requires an annealing temperature in excess of 1,600 ° C, which is usually within silicon under pressure. The equipment required for this ion implantation technique is quite professional and expensive. After high-temperature ion implantation and subsequent annealing, the contact metal is deposited on the surface of the implanted substrate and annealed at a temperature above 900 ° C. This method of forming contacts on a semiconductor device incorporating gallium nitrate or indium gallium nitride is not feasible because these compounds decompose at elevated temperatures. The solution to this problem is theoretically to form an ohmic contact on the substrate before completing the fragile stupid layer (such as a gallium bowl layer) that the semiconductor device must generate. However, this method is not desirable, because unnecessary pollutants ′ contact metal ^ are brought into the stupid crystal growth system. This contaminated gold layer can interfere with lattice growth, doping, reaction rate, or such factors, and affect stupid crystal growth. In addition, impure metals can reduce the optoelectronic properties of the telecrystal layer. Similarly, many semiconductor devices, such as metal-oxide-semiconductor field-effect transistors (MOSFETS), require a semiconductor oxide layer (such as silicon dioxide). The commercial temperature associated with traditional ion implantation techniques and the annealing process of implanting or contacting metal applies high pressure on the oxide layer, thereby damaging the oxide layer, the semiconductor-oxide interface, and the device itself. In addition, it is not practical to form an ohmic contact before the oxide layer is established because the oxidizing environment used to form the oxide layer has a negative effect on the ohmic contact. Therefore, there is a need for a practical and economical method for forming a semiconductor device for connecting semiconductor devices that do not suffer from the manufacturing problems discussed above.
第6頁 Ϊ i 449 9 3 2 五、發明說明(4) 姆接觸。還需要有一種結合歐姆接觸但製造方法很經濟的 半導體裝置。 發明目的與總結 的目的是要提供一種結合歐姆接觸的半導體裝 的另一目的是要提供一種包含碳化矽與一歐姆接 本發明 置。 本發明 觸的半導 本發明 裝置,而 本發明 歐姆接觸 本發明 體歐姆接 入具有初 該半導體 將植入半 入摻雜劑 在半導體 植入半導 基材上發 便在植入 本發明 體裝置 的另一 該歐姆 的另一 的半導 方法符 觸之目 始導電 基材一 導體退 原子, 材料的 體材料 生任意 半導體 亦符合 一導電類型之半 包含至少一蠢晶 目的 接觸 目的 體裝 合用 的。 類型 樣提 火後 並增 植入 之退 蟲晶 材料 有關 導體 層, 是要 的製 是要 置。 以形 本發 的半 供相 植入 加有 表面 火。 層嚴 和沉 一包 基材 其係 提供一種結合歐姆接觸的半導體 造方法很經濟。 提供一種方法,用以形成結合一 成一 明包 導體 同的 摻雜 效的 上沉 第二 重退 積金 含具 之半 生長 用於 括將 基材 導電 劑, 載體 積金 次退 化的 屬之 有第 導體 於或 半導體裝 一篩選過 。該 表面 類型 持續一段時間 濃度 屬。 火的 溫度 。首 。第 隨後 溫度 但 間形成一 一表 裝置 置於 金屬 雜材 置之 的掺 植入掺雜 先於 次 ,發 要低 溫度 歐姆 第二 的。 導體 某一 以活 退火 生金 於可 要夠 接觸 表面 此裝 基材 半導 料植 劑與 溫度 化植 後, 屬與 能在 面以 〇 及第 置亦 之第 面及 之目 該半Page 6 Ϊ i 449 9 3 2 V. Description of the invention (4) Contact with Mu. There is also a need for a semiconductor device that incorporates ohmic contacts but is economical to manufacture. OBJECTS AND SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device incorporating an ohmic contact. Another object is to provide a device including silicon carbide and an ohmic contact. The semiconductor device of the present invention touches the semiconductor device of the present invention, and the ohmic contact of the invention ohmic access has the semiconductor implanted semi-doped dopant on the semiconductor implanted semiconductor substrate before implanting the semiconductor Another device of the ohm, another semiconducting method that meets the purpose of the conductive substrate, a conductor deatomic, the material of the material, any semiconductor, also conforms to a conductive type, and contains at least one stupid crystal. Combined. After the type of fire is raised and the implanted vermicular crystal material is added to the conductive layer, it is necessary to make the system. A semi-donor implant in the shape of a hair is implanted with a surface fire. It is very economical to provide a semiconductor manufacturing method that combines ohmic contact with a package of substrate. Provides a method for forming a sinking second growth factor with a half-growth that combines the same doping effect as an open-conductor. It is used to include the substrate conductive agent. The first conductor or semiconductor is screened. The surface type lasts for a period of time. The temperature of the fire. First. At the next temperature, a dopant is formed between the device and the metal dopant, and the dopant is implanted prior to the second, and the low temperature ohmic is the second. The conductor is annealed with gold to make it contact with the surface. The substrate, the semiconducting material, and the temperature are planted. It belongs to the surface and the surface of the surface.
第7頁 449 9 3 2 五、發明說明(5) 一表面上。進一步界定該半導體基材為於由第二表面(磊 晶層對面之表面)延伸至第一表面之基材中具有遞增載子 濃度區。該裝置進一步包括一金屬層,沉積於該基材之第 二表面,以於該金屬及該增載子濃度區之介面形成一歐姆 接觸。 本發明上述及其他的目的、優點及特性以及達成這些目 的、優點及特性的方法,在考量與附圖相關的本發明以下 詳細描述後,將變得顯而易見,該附圖係用以說明示範之 具體實施例,其中: 圖式之簡單說明 圖1為根據本發明半導體裝置之截面簡圖 圖2為根據本發明方法利用摻雜劑植入之截面簡圖。 發明詳細說明 3 本發明為一種結合歐姆接觸之半導體裝置以及形成歐姆 接觸之方法。熟知寬帶隙半導體,像碳化矽,以及來自該 半導體的半導體裝置的專家都可以暸解,本發明對於利用 η型或p型碳化矽(MSiC")所製造的半導體裝置與歐姆接觸 是最有幫助。因此,為方便解釋起見,本發明以下說明及 範例都將以使用S i C的本發明具體實施例為主。但是本行 業的專家將很容易就發現,本發明也可很方便地與其他半 導體材料結合使用,譬如矽、硝酸鎵、鋁鎵氮化物 (aluminum gallium nitride)、以及铜鎵氮化物(indium gallium n i t r i d e )。此處利用的銘鎵氮化物和麵鎵氮化 物,所包括的化合物其令鋁和鎵或銦和鎵的分子比等於Page 7 449 9 3 2 V. Description of the invention (5) One surface. The semiconductor substrate is further defined as having a region of increasing carrier concentration in the substrate extending from the second surface (the surface opposite the epitaxial layer) to the first surface. The device further includes a metal layer deposited on the second surface of the substrate to form an ohmic contact between the interface of the metal and the carrier concentration region. The above and other objects, advantages, and characteristics of the present invention and methods for achieving these objects, advantages, and characteristics will become apparent after considering the following detailed description of the present invention related to the accompanying drawings, which are used to illustrate exemplary Specific embodiments, wherein: Brief description of the drawings FIG. 1 is a schematic cross-sectional view of a semiconductor device according to the present invention. FIG. 2 is a schematic cross-sectional view of a dopant implantation according to the method of the present invention. Detailed description of the invention 3 The present invention is a semiconductor device incorporating an ohmic contact and a method for forming an ohmic contact. Experts who are familiar with wide bandgap semiconductors, such as silicon carbide, and semiconductor devices from this semiconductor, can understand that the present invention is most helpful for semiconductor devices made with n-type or p-type silicon carbide (MSiC ") and ohmic contact. Therefore, for the convenience of explanation, the following descriptions and examples of the present invention will be based on the specific embodiments of the present invention using SiC. However, experts in the industry will easily find that the present invention can also be easily combined with other semiconductor materials, such as silicon, gallium nitrate, aluminum gallium nitride, and copper gallium nitride. ). The gallium nitride and surface gallium nitride used here include compounds that make the molecular ratio of aluminum and gallium or indium and gallium equal
449 9 3 2 五 '發明說明(6) 1 〇 廣義來說’本發明為一種半導體裝置,包括一半導體基 材’該基材具有提供初始導電類型的摻雜劑之初始濃度。 該半導體基材可以是η型或p型。該裝置也包括至少一磊晶 層,與該半導體基材表面相鄰。 如申請專利範圍之半導體裝置,其特徵另在於該半導體 基材由增加的載體濃度區所定義,該區範圍從相對於磊晶 層的基材表面,延伸到與磊晶層相鄰的表面。一金屬層沉 積於該增加載體農度區(the zone of increased carrier concentration)的基材之上,以便在該金屬表面與基材上 形成歐姆接觸。 參見圖1,為根據本發明之半導體裝置1〇之簡圖β該裝 置10包括一半導體基材12,為方便解釋起見將視為31(:。 但是應瞭解到其他半導體材料,譬如矽,也可用來作為本 發明之基材。該SiC基材12可以是ρ型或η型。 與S i C基材1 2相鄰的是為完成半導體裝置的必要附加元 件1 4。例如以圖1所示,該半導體裝置可以是一發光二極 體(LED) ’具有p型和η型半導體材料的連續磊晶層i4a、 1 4b和1 4c。在較佳具體實施例中,本發明為垂直的半導體 裝置,譬如LED、金屬氧化半導體場效應電晶體(M0SFET) 、雷射、或Schottky整流器,均由與一半導體基材相鄰的 某些磊晶層所組成。稍後將討論本發明裝置特別適用於包 含低熔點或低分離溫度之垂直半導體裝置。這類材料包括 硝酸鎵、銦鎵氮化物和鋁鎵氮化物。449 9 3 2 5 'Explanation of the invention (6) 1 0' In a broad sense, the present invention is a semiconductor device including a semiconductor substrate. The substrate has an initial concentration of a dopant that provides an initial conductivity type. The semiconductor substrate may be n-type or p-type. The device also includes at least one epitaxial layer adjacent to the surface of the semiconductor substrate. For example, a semiconductor device in the scope of a patent application is further characterized in that the semiconductor substrate is defined by an increased carrier concentration region that extends from the surface of the substrate relative to the epitaxial layer to a surface adjacent to the epitaxial layer. A metal layer is deposited on the substrate of the zone of increased carrier concentration to form an ohmic contact between the metal surface and the substrate. Referring to FIG. 1, a simplified diagram of a semiconductor device 10 according to the present invention β The device 10 includes a semiconductor substrate 12 and will be considered 31 (: for convenience of explanation). However, it should be understood that other semiconductor materials such as silicon, It can also be used as the substrate of the present invention. The SiC substrate 12 can be a p-type or an η-type. Adjacent to the Si C substrate 12 are necessary additional components 14 for completing a semiconductor device. As shown, the semiconductor device may be a light emitting diode (LED) with continuous epitaxial layers i4a, 14b, and 14c of p-type and n-type semiconductor materials. In a preferred embodiment, the present invention is vertical Semiconductor devices, such as LEDs, metal oxide semiconductor field effect transistors (MOSFETs), lasers, or Schottky rectifiers, are composed of certain epitaxial layers adjacent to a semiconductor substrate. The device of the present invention will be discussed later Particularly suitable for vertical semiconductor devices containing low melting points or low separation temperatures. Such materials include gallium nitrate, indium gallium nitride, and aluminum gallium nitride.
449932 五、發明說明(7) 如申請專利範圍之裝置,其特徵另在於在該半導體基材 背側上有一增加載體濃度區1 6。換言之,該半導體基材, 本例中為S i C,具有一接近相對於磊晶層之基材表面之载 體濃度,該濃度係高於該基材其餘部份的載體濃度。 η 作為增加載體濃度區1 6的邊線以虛線表示,代表當基材 1 2突然改變時的載體濃度是沒有明顯的分界。當與基材背 侧表面距離增加時該載體濃度減少,一直到該載體濃度等 於初始載體濃度。以下將討論,增加載體濃度區係由室溫 離子植入技術所形成,通常利用與P型及η型半導體材料有 關之摻雜劑。449932 V. Description of the invention (7) The device in the scope of patent application is further characterized in that there is a region 16 for increasing the carrier concentration on the back side of the semiconductor substrate. In other words, the semiconductor substrate, Si C in this example, has a carrier concentration close to the surface of the substrate relative to the epitaxial layer, which is higher than the carrier concentration of the rest of the substrate. η, as an edge of the region 16 for increasing the carrier concentration, is indicated by a dashed line, which represents that there is no clear boundary for the carrier concentration when the substrate 12 is suddenly changed. The carrier concentration decreases as the distance from the back surface of the substrate increases until the carrier concentration is equal to the initial carrier concentration. As will be discussed below, the region of increasing the carrier concentration is formed by the room temperature ion implantation technology, and usually dopants related to P-type and n-type semiconductor materials are used.
例如參見圖1,如申請專利範圍裝置之較佳具體實施例 包括摻雜了氮的η型SiC基材。應暸解到根據本發明也可使 用其他η型摻雜劑形成的η型S i C以及不同種類的ρ型S i C。 SiC基材12較佳是些微至高度摻雜,並具有介於約lx 1015 及約lx 1019 cnr3之間的初始載體濃度。「些微」及「高 度」這兩個詞並不精確,在這裏蓄意用來顯示初始載體濃 度可能大幅變化。雖然初始載體濃度可能差異很大,但是 測試結果顯示基材最初為適中至高度摻雜的基材,效果最 佳。藉由將篩選過的摻雜材料(例如氮)在相對於磊晶層1 4 的表面上進行的離子植入,產生一區1 6,該區域包含較該 基材1 2其餘部份要高的載體濃度。較佳地,所執行的離子 植入能夠在該基材背側產生一增加載體濃度區1 6,使得載 體濃度為介於約lx 1〇18及約lx l〇2a cur3之間,並能保持 一直高於初始載體濃度。For example, referring to Fig. 1, a preferred embodiment of a patent-applied device includes an n-type SiC substrate doped with nitrogen. It should be understood that n-type S i C formed with other n-type dopants and different kinds of p-type S i C can also be used according to the present invention. SiC substrate 12 is preferably slightly to highly doped and has an initial carrier concentration between about 1x 1015 and about 1x 1019 cnr3. The words "slightly" and "height" are imprecise and are intentionally used here to show that the initial carrier concentration may vary significantly. Although the initial carrier concentration may vary widely, the test results show that the substrate is initially a medium to highly doped substrate with the best results. By ion implantation of the screened dopant material (eg nitrogen) on the surface opposite to the epitaxial layer 1 4, a region 16 is generated which contains a higher area than the rest of the substrate 12 Carrier concentration. Preferably, the ion implantation performed can generate a region 16 for increasing the carrier concentration on the back side of the substrate, so that the carrier concentration is between about lx 1018 and about lx l02a cur3, and can be maintained. Always above the initial carrier concentration.
第10頁 449 9 3 2 五、發明說明(8) 熟於此技 可在基材生 率有關的困 度,讓此方 用以形成 和麟。用以 紹、硼和鎵 雖然申請 濃度區1 6能 實施例中, 力和物理化 載體濃度區 成介面2 0。 鎳。然後包 該溫度不能 損,但要高 觸。 再次,雖 載體濃度區 因此,在其 導體裝置之 就廣意來 屬半導體接 至一具有第 藝之人士將發現如上所述之增加載體濃度區也 長時形成。但是,與所需摻雜劑的不同饋送速 難度以及通常與石英生長方法有關的其他困難 法很難執行。— 增加載體濃度區1 6的較佳η型摻雜劑為氮、砷 形成增加載體濃度區1 6的較佳ρ型摻雜劑為 〇 〇 人不欲受限於特定理論,但事實證明增加載體 夠產生具有歐姆特性的金屬接觸。在較佳具體 具有適合用於整個半導體裝置的熔點、蒸氣壓 學特性的篩選過的接觸金屬1 8,係沉積於增加 1 6的S i C基村表面,以便在該金屬和基材間形 較佳金屬包括鎖、ίε、翻、銘及鈦,而最好是 括該金屬和基材的裝置在一溫度下進行退火, 太高,以免使該裝置或特定地任何磊晶層受 到足以在該金屬與基材的介面上形成歐姆接 然申請人不欲受限於特定理論,但是產生增加 作為接觸金屬的受體(receptor)似乎很有用。 他具體實施例中,本發明包括形成用於前述半 歐姆接觸之方法。 看,本發明是一種用以形成一半導體裝置之金 觸的方法。本方法包括植入篩選過的摻雜材料 一導電型的半導體基材,且其中該植入的摻雜Page 10 449 9 3 2 V. Description of the invention (8) Familiar with this technique can reduce the difficulty related to the substrate productivity, and let this party use it to form Helin. Although it can be used for the concentration, boron, and gallium in the application, the concentration region 16 can be used in the embodiment, and the force and the physical concentration region of the carrier form the interface 20. nickel. Then the temperature should not be damaged, but it should be touched. Again, although the carrier concentration region is therefore widely known in its conductor device, a person with advanced technology will find that the carrier concentration region as described above is also formed for a long time. However, it is difficult to perform different feed rate difficulties with the required dopants and other difficult methods usually related to the quartz growth method. — The preferred η-type dopant for increasing the carrier concentration region 16 is nitrogen and arsenic. The preferred ρ-type dopant for increasing the carrier concentration region 16 is 0.00. People do not want to be bound by a specific theory, but it turns out that the increase The carrier is sufficient to produce metal contacts with ohmic properties. The screened contact metal 18, which preferably has melting point and vapour pressure characteristics suitable for the entire semiconductor device, is deposited on the surface of the Si C-based substrate with an increase of 16 in order to form a space between the metal and the substrate. Preferred metals include locks, ε, flips, inscriptions, and titanium, and it is preferred that the device including the metal and the substrate be annealed at a temperature that is too high to prevent the device or, specifically, any epitaxial layer from being sufficiently exposed to The formation of an ohmic interface between the metal and the substrate. The applicant does not want to be bound by a particular theory, but it seems useful to generate an increase in receptors as a contact metal. In other embodiments, the invention includes a method for forming the aforementioned semi-ohmic contact. It appears that the present invention is a method for forming a gold contact of a semiconductor device. The method includes implanting a screened doping material, a conductive semiconductor substrate, and the implanted doping
第11頁 五、發明說明(9) 劑提供與基材相同的導電類型。為了進行討論,我們將假 設該半導體基材為S i C基材,並且該摻雜材料係沉積到S i C 基材的表面内。但是,本行業的專家將很容易發現,本發 明也可很方便地與其他半導體材料結合使用。植入篩選過 的摻雜材料後為一退火步驟。在此退火步驟中,植入的 S i C基材係在一溫度下退火,並持續一段時間以活化植入 摻雜劑原子,以有效增加S i C基材的植入摻雜劑原子的載 體濃度。接著,一接觸金屬係沉積在SiC基材的植入表面 上。接著,將沉積的接觸金屬和SiC基材的植入表面退 火。第二次退火的溫度要低於可能發生基材上任意磊晶層 嚴重退化的溫度,但溫度要夠高以便在植入S i C和沉積金 屬之間形成一歐姆接觸。 在較佳具體實施例中,半導體基材可包括一含有些微、 適中或高度初始摻雜劑濃度的η型或p型基材。例如,其中 以η型S i C為基材,S i C基材的初始摻雜劑濃度從約1 X 1 015 (些微摻雜)到1 X 1 〇ig cnr3 (高度摻雜)。「些微」、「適 中」和「高度」這些詞並不精確,用來顯示基材材料上的 摻雜劑初始濃度可能改變。測試結果顯示適中至高度摻雜 基材使本發明有最佳結果。 接者在半導體基材上植入師選過的擦雜材料並加以退 火。最好是說,摻雜劑植入於室溫下進行,而接下來的退 火在約8 0 0 °C到1 3 0 0 °C之間進行。通常與基材的導電類型 有關的換雜劑可在植入步驟時用來作為摻雜劑。例如,當 以最初摻雜了氮的η型S i C作為基材時,氮可作為植入摻雜Page 11 5. Description of the invention (9) The agent provides the same conductivity type as the substrate. For the sake of discussion, we will assume that the semiconductor substrate is a Si substrate, and that the doped material is deposited on the surface of the Si substrate. However, it will be easy for experts in the industry to discover that the invention can also be easily combined with other semiconductor materials. An implantation step is performed after the screened doped material is implanted. In this annealing step, the implanted Si C substrate is annealed at a temperature, and is continued for a period of time to activate the implanted dopant atoms, so as to effectively increase the implanted dopant atoms of the Si C substrate. Carrier concentration. Next, a contact metal system is deposited on the implanted surface of the SiC substrate. Next, the implanted surface of the deposited contact metal and SiC substrate is annealed. The temperature of the second annealing should be lower than the temperature at which severe degradation of any epitaxial layer on the substrate can occur, but the temperature should be high enough to form an ohmic contact between the implanted Si C and the deposited metal. In a preferred embodiment, the semiconductor substrate may include an n-type or p-type substrate with a slightly, moderate, or high initial dopant concentration. For example, where n-type Si C is used as the substrate, the initial dopant concentration of the Si C substrate is from about 1 X 1 015 (slightly doped) to 1 X 1 0ig cnr3 (highly doped). The words "slightly," "moderately," and "highly" are not precise and are used to indicate that the initial dopant concentration on the substrate material may change. Test results show that moderate to highly doped substrates give the best results of the present invention. The receiver then implants a semiconductor-selected material on the semiconductor substrate and fires it. It is better to say that the dopant implantation is performed at room temperature, and the subsequent annealing is performed at about 800 ° C to 130 ° C. A doping agent generally related to the conductivity type of the substrate can be used as a dopant during the implantation step. For example, when using an n-type Si C that is initially doped with nitrogen as the substrate, nitrogen can be used as an implant dopant
第12頁 Γ 449 9 3 2 五 '發明說明α〇) 劑。同樣地,當以最勒摻雜了紹的ρ型S i C作為基材時,銘 可作為植入摻雜劑。其他可用的η型摻雜劑為砷和磷。硼 和鎵可作為ρ型摻雜劑的其他選擇。 0 本行業的專家將很容易發現植入摻雜劑的程序可在高溫 下完成。事實上,就SiC而言,通常最好是以高溫植入, 以減少對晶格結構的傷害。但是就S i C而言,高溫離子植 入會限制本發明用於商業用途。在植入時使用能夠加熱 SiC基材的離子植入設備是相當反常、昂貴且適合研究發 展而不是成本低廉、能夠量產的應用。甚至,當SiC基材 加熱至高溫時,加熱及冷卻的速率必不能導致產生斷裂而 減緩製程速度。 因此,本發明較適合採用室溫植入的方法。我們發現 到,在退火步驟後於能夠達到1 3 0 0 °C和容納1 0 0或更多基 材晶圓的簡單通風爐中進行室溫植入摻雜劑,可獲得令人 滿意的結果,且產量大幅增加。 最好是在室溫下進行摻雜劑的植入,以便在接近半導體 基材的植入表面建立增加摻雜劑濃度區。圖2為根據本發 明的植入過程簡圖。此範例中,初始摻雜劑濃度約為1 X 1018 cnr3的η型SiC基材22,以劑量為lx 1013 cm-2或更多, 以1 0到6 0 keV之間的能量植入原子或雙原子氮2 4。於某些 情況下,可以使用超過一種佈植能量以產生一更累進 (graduated)之載子漠度分佈。該植入過程在接近SiC基材 的植入表面產生一區域26,深度約1000埃,整體化學濃度 約為lx 1019至lx 102() cm—3之間,距離植入表面越遠,植Page 12 Γ 449 9 3 2 5 'Explanation of the invention α〇) agent. Similarly, when using a p-type Si C doped with Shaw as the substrate, Ming can be used as an implant dopant. Other useful n-type dopants are arsenic and phosphorus. Boron and gallium are other options for p-type dopants. 0 Experts in the industry will easily find that the process of implanting dopants can be performed at high temperatures. In fact, in the case of SiC, it is usually best to implant at high temperatures to reduce damage to the lattice structure. In the case of SiC, high temperature ion implantation may limit the invention to commercial use. The use of ion implantation equipment capable of heating SiC substrates during implantation is rather unusual, expensive, and suitable for research and development rather than low cost, mass production applications. Even when the SiC substrate is heated to a high temperature, the rate of heating and cooling must not cause cracks to slow down the process speed. Therefore, the present invention is more suitable for the method of implantation at room temperature. We have found that satisfactory results can be obtained by implanting dopants at room temperature in a simple ventilated furnace capable of reaching 130 ° C and holding 100 or more substrate wafers after the annealing step. , And the output has increased significantly. It is preferable to perform dopant implantation at room temperature in order to establish a region where the dopant concentration is increased near the implantation surface of the semiconductor substrate. Figure 2 is a simplified diagram of the implantation process according to the present invention. In this example, the n-type SiC substrate 22 having an initial dopant concentration of about 1 X 1018 cnr3 is implanted with an atom or a dose of lx 1013 cm-2 or more with an energy between 10 and 60 keV. Diatomic nitrogen 2 4. In some cases, more than one implantation energy can be used to generate a more progressive carrier desert distribution. This implantation process produces a region 26 on the implantation surface close to the SiC substrate, with a depth of about 1000 angstroms, and an overall chemical concentration of about lx 1019 to lx 102 () cm-3.
第13頁 4 49 9 32 五、發明說明(11) 入摻雜劑的濃度就越低。增加摻雜劑濃度區2 6之外的摻雜 劑濃度基本上仍與初始摻雜劑的濃度相同。增加載體濃度 區2 6的分界線用虛線表示,指出區域2 6與基材剩餘部份之 間載體濃度的改變不是十分明確清楚而是逐漸改變。本行 業的專家應瞭解植入能量或劑量很容易就可加以改變以獲 得所希望的濃度和厚度。 如前所述,必須要為所植入的基材退火。退火步騍是必 須的,因為植入的摻雜劑離子在植入後不會立刻開始「作 用」。「作用」這個詞是用來描述植入離子提供給植入基 材的整個載體濃度之有效性。 植入時^ S i C基材的晶格主要是受到播·雜劑離子的衝 擊。這些離子衝入他們被攔住的晶格内。這種衝擊不會使 摻雜劑離子插入現有晶格内的狀況更理想。許多摻雜劑離 子最初的位置可能妨礙離子對晶格產生作用,其本身可能 會因為衝擊而受損。使植入的SiC基材退火(也就是加熱) 提供了一種機制,讓基材的植入離子與晶格更有條理的排 列,並將在植入摻雜劑時受損的部份予以恢復。 為方便解釋起見將僅使用整數,植入流程如下所示。假 使100個氮離子植入最初濃度為X氮原子的η型SiC基材,植 入動作一完成,該基材可能只會表現出有「χ+10」氮離子 基材的特性。但是,如果接著該基材被退火,將使得該植 入離子在晶格内就定位,該基材可能表現出有「X + 9 0」氮 離子的特性。因此,該退火步驟「活化(ac t i v a t e )」了約 8 0個植入氮離子。Page 13 4 49 9 32 5. Description of the invention (11) The lower the dopant concentration is. The dopant concentration outside the increased dopant concentration region 26 remains substantially the same as the original dopant concentration. Increasing the carrier concentration The dividing line of the region 26 is indicated by a dashed line, indicating that the change in the carrier concentration between the region 26 and the rest of the substrate is not very clear but gradually changes. Experts in the industry should understand that the implantation energy or dose can be easily changed to achieve the desired concentration and thickness. As mentioned earlier, the implanted substrate must be annealed. The annealing step is necessary because the implanted dopant ions do not begin to "action" immediately after implantation. The term "effect" is used to describe the effectiveness of the overall carrier concentration provided by the implant ion to the implant substrate. At the time of implantation, the crystal lattice of the S i C substrate was mainly impacted by the soot and miscellaneous ions. These ions rushed into the lattice they were blocked in. This impact does not make the dopant ions intercalate into the existing lattice. The initial position of many dopant ions may prevent the ions from acting on the crystal lattice, and may itself be damaged by impact. Annealing (that is, heating) the implanted SiC substrate provides a mechanism for a more organized arrangement of the implanted ions and lattice of the substrate, and will restore the damaged part when implanting the dopant . For ease of explanation, only integers will be used, and the implantation process is shown below. If 100 nitrogen ions are implanted into an η-type SiC substrate with an initial concentration of X nitrogen atoms, once the implantation operation is completed, the substrate may only exhibit the characteristics of a "χ + 10" nitrogen ion substrate. However, if the substrate is subsequently annealed, the implanted ions will be localized in the crystal lattice, and the substrate may exhibit the characteristics of "X + 90" nitrogen ions. Therefore, this annealing step "activates (ac t i v a t e)" about 80 implanted nitrogen ions.
第14頁 449932 五、發明說明(12) 測試顯示在約1 0 0 0 °C到1 3 0 0 °C之間的溫度下,將室溫植 入的S i C基材約兩小時將產生令人滿意的結果。該溫度與 時間很容易就可調整以達到所佈值劑量(dose)之更完整.活 化。 包括上述之植入基材的半導體裝置包括至少一磊晶層。 該磊晶層能夠以本行業專家所熟知的方法來生成。在本發 明較佳的具體實施例中,該磊晶層係在該基材的摻雜劑佈 值之前加以沉積。然而,所需要的磊晶層或後續製造之裝 置可能是由無法承受植入基材的高溫退火的材料(也就是 硝酸鎵或氧化矽)所形成或包含於其中。在此例中,該磊 晶層可能在捧雜劑植入後形成。 植入半導體基材、建立適當的增加摻雜劑濃度退火區、 以及在基材上置入任意蟲晶層之後,選定用以形成歐姆接 觸的金屬被施加到增加載體濃度區的基材表面。該金屬可 以是任何通常用來形成電子接觸的金屬,該金屬具有適當 的高熔點和蒸氣壓力,並且不會對基材材料產生不良反 應。較佳金屬包括鐘、ie、翻、鈦及銘,而最好是錄。 較佳地,接觸金屬沉積在基材表面上,以形成3 0 0埃厚 度的沉積層。沉積之後再進行第二次退火。但是此次退火 並不是高溫長時間的退火。這次退火較好是在溫度低於約 1 0 0 0 °C 以下情況進行,最好的情況是低於8 0 0 °C以下,持 績2 0分鐘或更短時間,且最佳情況是持續5分鐘或以内。 此溫度和持續時間要儘量減少,避免損害到基材上的磊晶 層。半導體基材上接觸金屬的退火將在金屬與基材間介面Page 14 449932 V. Description of the invention (12) The test shows that at a temperature between about 100 ° C and 13 0 ° C, a Si substrate that is implanted at room temperature will produce about two hours. Satisfactory results. The temperature and time can easily be adjusted to achieve a more complete and active dose. The semiconductor device including the implanted substrate includes at least one epitaxial layer. The epitaxial layer can be formed by methods well known to experts in the industry. In a preferred embodiment of the invention, the epitaxial layer is deposited before the dopant distribution of the substrate. However, the required epitaxial layer or subsequent manufacturing devices may be formed or contained in materials that cannot withstand the high temperature annealing of the implanted substrate (ie, gallium nitrate or silicon oxide). In this example, the epitaxial layer may be formed after implantation of the dopant. After implanting the semiconductor substrate, establishing an appropriate annealing zone for increasing the dopant concentration, and placing any worm crystal layer on the substrate, the metal selected to form the ohmic contact is applied to the surface of the substrate for increasing the carrier concentration region. The metal may be any metal commonly used to make electronic contacts, the metal has an appropriate high melting point and vapor pressure, and does not adversely affect the substrate material. Preferred metals include bells, ie, flips, titanium, and inscriptions, and the best are recorded. Preferably, the contact metal is deposited on the surface of the substrate to form a deposited layer having a thickness of 300 angstroms. After deposition, a second anneal was performed. However, this annealing is not a high temperature and long time annealing. This annealing is preferably performed at a temperature below about 100 ° C, the best case is below 80 ° C, the performance is 20 minutes or less, and the best case is continuous Within 5 minutes. This temperature and duration should be minimized to avoid damaging the epitaxial layer on the substrate. Annealing contact metals on semiconductor substrates will interface between metal and substrate
第15頁 4 49 9 3 2 五'發明說明(13) 上產生歐姆接觸。 在本發明更特定的具體實施例中,根據本發明的金屬半 導體可利用一 η型SiC基材產生,在能量為50 keV時以3x 1 0“ cnr2氮原子劑量首先植入該η型SiC基材接著以25 keV、5x 1 014 cur2進行二次佈植。該佈值接著在包含氬的 熔爐内以1 3 0 0 °C進行退火6 0到9 0分鐘。接著,該接觸金屬 鎳沉積在植入表面厚度為2500埃。然後該接觸退火在800 °C的氬中執行2分鐘。所產生的歐姆接觸即具備令人滿意 的歐姆特性。 熟悉此技藝人士應認知到亦可能在蟲晶生長時進行接觸 退火。 本發明為垂直裝置像光偵測器(photodetector)、發光 二極體(LED)、雷射、供電裝置像金屬氧化半導體場效應 電晶體(M0SFET)、絕緣閘雙極電晶體(IGBT)、pn接合區以 及Schottky整流器,以及微波裝置像SIT(靜電感應電晶 體)提供實質之優點。以偵測器、LED和雷射為例,磊晶生 長的硝酸鎵和銦鎵氮化物層在可能嚴重損傷該層的溫度下 不易退火。以銦鎵氮化物為例,當合金中銦成份增加時, 在高溫下的時間變得更重要。降低背側接觸退火溫度亦減 少SiC基材上生長的張緊異取向附生膜(strained heteroepitaxial film)中斷裂、或銦或鎵元素之分離之 潛在可能性。 以供電裝置為例,其中S i C的同取向附生膜在基材上生 長且在加熱的情況下生長或在加熱的情況下重新生長(重Page 15 4 49 9 3 2 Five 'invention description (13) ohmic contact. In a more specific embodiment of the present invention, the metal semiconductor according to the present invention can be generated using an n-type SiC substrate, and the energy is 50 keV, and the n-type SiC substrate is first implanted at a dose of 3x 10 "cnr2 nitrogen atom. The material was then replanted at 25 keV, 5x 1 014 cur2. The cloth value was then annealed in a furnace containing argon at 130 ° C for 60 to 90 minutes. Then, the contact metal nickel was deposited on The implant surface thickness is 2500 angstroms. The contact annealing is then performed in argon at 800 ° C for 2 minutes. The resulting ohmic contact has satisfactory ohmic characteristics. Those skilled in the art should recognize that it is also possible to grow in the worm crystal Contact annealing is performed at the same time. The invention is a vertical device like a photodetector, a light emitting diode (LED), a laser, a power supply device like a metal oxide semiconductor field effect transistor (MOSFET), and an insulated gate bipolar transistor. (IGBT), pn junctions and Schottky rectifiers, and microwave devices like SIT (Static Induction Transistor) provide substantial advantages. Take detectors, LEDs, and lasers as examples, epitaxially grown gallium nitrate and indium gallium nitride layers in It is difficult to anneal at a temperature that can seriously damage this layer. Taking indium gallium nitride as an example, when the indium content of the alloy increases, the time at high temperature becomes more important. Lowering the back contact annealing temperature also reduces the growth on the SiC substrate Potential for fracture in the strained heteroepitaxial film, or the separation of indium or gallium. Take power supply devices as an example, where the co-oriented epitaxial film of Si C grows on the substrate and Grow with heat or re-grow with heat (heavy
第16頁 449932 五、發明說明(14) 新氧化或退火)時,氧化物對於裝置效能佔有很重要的地 位,並且較低的退火溫度較為有幫助。背側金屬接觸不容 易受到對於生長S i C二氧化矽介面為必要的氧化環境的影 響,因此,該背侧歐姆接觸必須在二氧化矽長成(重新氧 化或重新生長)後再行沉積及退火。不幸地,前述對於後 續形成基材背側接觸(更典型的溫度為9 0 0至1 0 5 0 °C )為必 要之約為850 °C或以上的退火溫度,由於熱擴張速率不 符,因此會損傷到Si C-二氧化矽介面。特別是對於MOSFET 和i G B T影響很大。 S i C技術還在初期階段,許多相關的裝置和材料結構尚 待檢驗或開發。更進一步來發展此處理程序可能導致甚至 更低的退火溫度,最後以沉積在金屬和半導體之間產生歐 姆接觸(也就是沒有退火)。 已詳細描述本發明,請參考某些較佳的具體實施例,以 便讀者不會不當地實驗本發明。但是,具有本行業一般技 術的人員很容易發現到,許多元件和參數可作某種程度的 改變或調整,而不脫離本發明的範疇和本質。此外,名 稱、標題等為協助讀者瞭本文件之用,不應解讀為限制本 發明之範疇。因此,僅以下申請專利範圍和合理的延伸和 同等意義定義本發明之智慧財產權。Page 16 449932 V. Description of the invention (14) In the case of new oxidation or annealing), the oxide plays a very important role in device performance, and a lower annealing temperature is more helpful. The backside metal contact is not easily affected by the oxidizing environment necessary for the growth of the Si IC interface. Therefore, the backside ohmic contact must be deposited and re-oxidized after the silicon dioxide has grown (reoxidized or regrown). annealing. Unfortunately, the foregoing is necessary for the subsequent formation of the backside contact of the substrate (more typical temperature is 900 to 1050 ° C). An annealing temperature of about 850 ° C or above is necessary, because the thermal expansion rate does not match, so Will damage the Si C-silicon dioxide interface. Especially for MOSFET and i G B T have a great impact. S i C technology is still in its infancy and many related devices and material structures are yet to be tested or developed. Taking this process a step further may result in even lower annealing temperatures, and eventually result in ohmic contact (ie, no annealing) between the metal and the semiconductor by deposition. The invention has been described in detail, please refer to certain preferred embodiments so that the reader will not unduly experiment with the invention. However, those skilled in the art can easily find that many elements and parameters can be changed or adjusted to some extent without departing from the scope and essence of the present invention. In addition, names, titles, etc. are provided to assist the reader in the use of this document and should not be construed as limiting the scope of the invention. Therefore, only the following patent application scopes and reasonable extensions and equivalent meanings define the intellectual property rights of the present invention.
第17頁Page 17
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10054698P | 1998-09-16 | 1998-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW449932B true TW449932B (en) | 2001-08-11 |
Family
ID=22280313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW088116007A TW449932B (en) | 1998-09-16 | 1999-09-16 | Low temperature formation of backside ohmic contacts for vertical devices |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP1125320A1 (en) |
JP (2) | JP4785249B2 (en) |
KR (1) | KR100694681B1 (en) |
CN (1) | CN1178277C (en) |
AU (1) | AU6391699A (en) |
CA (1) | CA2343416A1 (en) |
MX (1) | MXPA01002751A (en) |
TW (1) | TW449932B (en) |
WO (1) | WO2000016382A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6803243B2 (en) * | 2001-03-15 | 2004-10-12 | Cree, Inc. | Low temperature formation of backside ohmic contacts for vertical devices |
US6884644B1 (en) | 1998-09-16 | 2005-04-26 | Cree, Inc. | Low temperature formation of backside ohmic contacts for vertical devices |
US6909119B2 (en) | 2001-03-15 | 2005-06-21 | Cree, Inc. | Low temperature formation of backside ohmic contacts for vertical devices |
US7138291B2 (en) * | 2003-01-30 | 2006-11-21 | Cree, Inc. | Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices |
US7262434B2 (en) * | 2002-03-28 | 2007-08-28 | Rohm Co., Ltd. | Semiconductor device with a silicon carbide substrate and ohmic metal layer |
US7473929B2 (en) | 2003-07-02 | 2009-01-06 | Panasonic Corporation | Semiconductor device and method for fabricating the same |
JP2006086361A (en) * | 2004-09-16 | 2006-03-30 | Stanley Electric Co Ltd | Semiconductor light-emitting element and its manufacturing method |
JP5011493B2 (en) * | 2005-09-14 | 2012-08-29 | 関西電力株式会社 | Method for manufacturing silicon carbide semiconductor element |
JPWO2009157299A1 (en) * | 2008-06-26 | 2011-12-08 | サンケン電気株式会社 | Semiconductor device and manufacturing method thereof |
KR101220407B1 (en) | 2010-12-14 | 2013-01-21 | (재)한국나노기술원 | Semiconductor light emitting device |
JP5811829B2 (en) | 2011-12-22 | 2015-11-11 | 住友電気工業株式会社 | Manufacturing method of semiconductor device |
JP5742712B2 (en) | 2011-12-29 | 2015-07-01 | 住友電気工業株式会社 | Method for manufacturing silicon carbide semiconductor device |
JP6253133B2 (en) * | 2012-04-27 | 2017-12-27 | 富士電機株式会社 | Method for manufacturing silicon carbide semiconductor device |
US9496366B2 (en) | 2013-10-08 | 2016-11-15 | Shindengen Electric Manufacturing Co., Ltd. | Method for manufacturing silicon carbide (SiC) semiconductor device by introducing nitrogen concentration of 5X1019 cm-3 or more at a boundary surface between thermal oxide film and the SiC substrate and then removing the thermal oxide film |
JP7135443B2 (en) * | 2018-05-29 | 2022-09-13 | 富士電機株式会社 | Silicon carbide semiconductor device and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5323022A (en) * | 1992-09-10 | 1994-06-21 | North Carolina State University | Platinum ohmic contact to p-type silicon carbide |
JP3303530B2 (en) * | 1994-06-23 | 2002-07-22 | 富士電機株式会社 | Method for manufacturing silicon carbide semiconductor device |
JPH08139053A (en) * | 1994-11-04 | 1996-05-31 | New Japan Radio Co Ltd | Method of forming electrode for sic |
JP3333896B2 (en) * | 1995-09-13 | 2002-10-15 | 富士電機株式会社 | Method for manufacturing silicon carbide semiconductor device |
WO1998037584A1 (en) * | 1997-02-20 | 1998-08-27 | The Board Of Trustees Of The University Of Illinois | Solid state power-control device using group iii nitrides |
-
1999
- 1999-09-16 CA CA002343416A patent/CA2343416A1/en not_active Abandoned
- 1999-09-16 AU AU63916/99A patent/AU6391699A/en not_active Abandoned
- 1999-09-16 MX MXPA01002751A patent/MXPA01002751A/en active IP Right Grant
- 1999-09-16 CN CNB998120219A patent/CN1178277C/en not_active Expired - Lifetime
- 1999-09-16 WO PCT/US1999/021475 patent/WO2000016382A1/en not_active Application Discontinuation
- 1999-09-16 EP EP99951484A patent/EP1125320A1/en not_active Ceased
- 1999-09-16 KR KR1020017002942A patent/KR100694681B1/en active IP Right Grant
- 1999-09-16 TW TW088116007A patent/TW449932B/en not_active IP Right Cessation
- 1999-09-16 JP JP2000570823A patent/JP4785249B2/en not_active Expired - Lifetime
-
2011
- 2011-05-13 JP JP2011108544A patent/JP2011151428A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
MXPA01002751A (en) | 2002-04-08 |
JP2002525849A (en) | 2002-08-13 |
CN1178277C (en) | 2004-12-01 |
AU6391699A (en) | 2000-04-03 |
CA2343416A1 (en) | 2000-03-23 |
EP1125320A1 (en) | 2001-08-22 |
CN1323446A (en) | 2001-11-21 |
JP2011151428A (en) | 2011-08-04 |
WO2000016382A1 (en) | 2000-03-23 |
KR100694681B1 (en) | 2007-03-13 |
KR20010079759A (en) | 2001-08-22 |
JP4785249B2 (en) | 2011-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW449932B (en) | Low temperature formation of backside ohmic contacts for vertical devices | |
US6803243B2 (en) | Low temperature formation of backside ohmic contacts for vertical devices | |
TWI375994B (en) | Epitaxial substrate and semiconductor element | |
US6884644B1 (en) | Low temperature formation of backside ohmic contacts for vertical devices | |
JPS58182259A (en) | Method of forming polysilicon resistor | |
US6909119B2 (en) | Low temperature formation of backside ohmic contacts for vertical devices | |
US9627488B2 (en) | Silicon carbide semiconductor device and method for manufacturing same | |
JP3333896B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
US5565690A (en) | Method for doping strained heterojunction semiconductor devices and structure | |
Tsaur et al. | Microsecond carrier lifetimes in Si films prepared on SiO2‐coated Si substrates by zone‐melting recrystallization and by subsequent epitaxial growth | |
JPS61248470A (en) | Iii-v group semiconductor device and manufacture thereof | |
US20040178413A1 (en) | Semiconductor device and method for producing the same | |
JP3157122B2 (en) | Method for ion implantation into silicon carbide and silicon carbide semiconductor device | |
CN114171597A (en) | SiC MOSFET device with low source contact resistance and preparation method thereof | |
JP4029466B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
TWI316565B (en) | ||
Eryu et al. | Formation of ap‐n junction in silicon carbide by aluminum doping at room temperature using a pulsed laser doping method | |
JP2000106350A (en) | Manufacture of ohmic electrode and semiconductor element | |
Zolper et al. | Implant activation and redistribution of dopants in GaN | |
TWI281710B (en) | Low temperature formation of backside ohmic contacts for vertical devices | |
Vobecky et al. | Fast recovery diode with novel local lifetime control | |
Descouts et al. | Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs | |
Fukada et al. | Formation of ohmic contacts to n-GaAs by solid phase epitaxy of evaporated and ion implanted Ge films | |
CN114566546A (en) | Semiconductor device and method for manufacturing the same | |
Nipoti et al. | Current analysis of ion implanted p+/n 4H-SiC junctions: post-implantation annealing in Ar ambient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |