JP6253133B2 - Method for manufacturing silicon carbide semiconductor device - Google Patents

Method for manufacturing silicon carbide semiconductor device Download PDF

Info

Publication number
JP6253133B2
JP6253133B2 JP2012104226A JP2012104226A JP6253133B2 JP 6253133 B2 JP6253133 B2 JP 6253133B2 JP 2012104226 A JP2012104226 A JP 2012104226A JP 2012104226 A JP2012104226 A JP 2012104226A JP 6253133 B2 JP6253133 B2 JP 6253133B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
main surface
carbide substrate
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012104226A
Other languages
Japanese (ja)
Other versions
JP2013232559A (en
Inventor
明将 木下
明将 木下
福田 憲司
憲司 福田
伸一 仲俣
伸一 仲俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2012104226A priority Critical patent/JP6253133B2/en
Publication of JP2013232559A publication Critical patent/JP2013232559A/en
Application granted granted Critical
Publication of JP6253133B2 publication Critical patent/JP6253133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、炭化珪素半導体装置の製造方法に関し、特に、オーミック電極のコンタクト抵抗を低減でき、良好なオーミック特性を有する炭化珪素半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a silicon carbide semiconductor device, and more particularly to a method for manufacturing a silicon carbide semiconductor device that can reduce the contact resistance of an ohmic electrode and has good ohmic characteristics.

近年、珪素(以下Siと記す)に代わる半導体材料の一つとして炭化珪素(SiC)が注目されている。SiCは、バンドギャップが4H−SiCで3.26eVと、Siのバンドギャップ(1.12eV)に比べて3倍近く大きいため、動作上限温度を高くできる。また、絶縁破壊電界強度が4H−SiCで3.0MV/cmと、Siの絶縁破壊電界強度(0.25MV/cm)に比べて約1桁大きいため、絶縁破壊電界強度の3乗の逆数で効くオン抵抗が低減され、定常状態での電力損失を低減できる。   In recent years, silicon carbide (SiC) has attracted attention as one of semiconductor materials that can replace silicon (hereinafter referred to as Si). Since the band gap of SiC is 4H-SiC, which is 3.26 eV, which is nearly three times larger than the band gap of Si (1.12 eV), the upper limit temperature of operation can be increased. In addition, the dielectric breakdown electric field strength is 3.0 MV / cm for 4H-SiC, which is about an order of magnitude larger than that of Si (0.25 MV / cm). Effective on-resistance is reduced, and power loss in a steady state can be reduced.

さらに、熱伝導度についても、4H−SiCで4.9W/cmKと、Siの熱伝導度(1.5W/cmK)に比べて3倍以上高いので、熱冷却効果が高く冷却装置を小型化できるという利点も有している。さらに、飽和ドリフト速度が2×107cm/sと大きいため、高速動作にも優れている。このようなことから、SiCは、電力用半導体素子(主にパワーデバイス)や高周波デバイス、高温動作デバイスなどへの応用が期待されている。 Furthermore, the thermal conductivity is 4.9 W / cmK for 4H-SiC, which is more than three times higher than the thermal conductivity of Si (1.5 W / cmK). It also has the advantage of being able to. Furthermore, since the saturation drift speed is as high as 2 × 10 7 cm / s, it is excellent in high-speed operation. For these reasons, SiC is expected to be applied to power semiconductor elements (mainly power devices), high-frequency devices, high-temperature operation devices, and the like.

現在、SiCを用いて、MOSFET、pnダイオード、ショットキーダイオード等が試作され、絶縁耐圧とオン抵抗(通電時の順方向電圧/順方向電流)に関しては、Siの特性を超えるデバイスが続出しており、徐々に量産化の動きが加速されてきている。   Currently, MOSFETs, pn diodes, Schottky diodes, etc. are manufactured using SiC, and devices that exceed the characteristics of Si have been developed in terms of dielectric strength and on-resistance (forward voltage / forward current during energization). As a result, mass production is gradually accelerating.

これらのデバイス作製においては、選択された領域において導電型やキャリア濃度を制御する技術が必要である。その方法には、熱拡散法とイオン注入法がある。SiC中においては不純物の拡散係数が非常に小さいため、Si半導体で広く用いられている熱拡散法はSiCには適用が難しい。   In manufacturing these devices, a technique for controlling the conductivity type and carrier concentration in a selected region is required. The method includes a thermal diffusion method and an ion implantation method. Since the diffusion coefficient of impurities is very small in SiC, the thermal diffusion method widely used in Si semiconductors is difficult to apply to SiC.

そのため、SiCでは通常、イオン注入法が用いられている。注入されるイオン種としては、n型に対しては窒素(N)、リン(P)が用いられ、p型に対してはアルミニウム(Al)またはほう素(B)が多く用いられる。   Therefore, an ion implantation method is usually used for SiC. As ion species to be implanted, nitrogen (N) and phosphorus (P) are used for n-type, and aluminum (Al) or boron (B) is often used for p-type.

SiCは、Si面とC面の重なり順の違いにより、多くの結晶型(以下ポリタイプと呼ぶ)をもつ。このポリタイプの違いにより、Si面とC面の比率が同じであっても、バンドギャップなどの物性値が異なる。   SiC has many crystal types (hereinafter referred to as polytypes) due to the difference in the overlapping order of the Si and C planes. Due to the difference in the polytype, even if the ratio of the Si face and the C face is the same, the physical property values such as the band gap are different.

半導体素子用の基板にイオン注入されるイオン種濃度が1019atms/cm3程度を超える場合、イオン注入領域が連続した非晶質となるため結晶性を回復させる熱処理を行っても異種ポリタイプの混入や活性化率の低下によって低抵抗領域を形成できないという問題点がある。このため、イオン注入時の非晶質化を抑制するために基板を加熱して注入する昇温注入技術が一般的に用いられる(例えば、下記特許文献1参照。)。 When the concentration of ion species ion-implanted into a substrate for a semiconductor device exceeds about 10 19 atms / cm 3 , the ion-implanted region becomes a continuous amorphous material. There is a problem that a low-resistance region cannot be formed due to the mixing of the metal or the activation rate. For this reason, in order to suppress amorphization at the time of ion implantation, a temperature rising implantation technique in which a substrate is heated and implanted is generally used (see, for example, Patent Document 1 below).

SiC基板の裏面(第二の主面)に形成されるオーミック電極は、熱処理温度を上げることでオーミックコンタクトを形成させ、コンタクト抵抗を下げている。このコンタクト抵抗は、ショットキーバリアダイオード(SBD)の順方向特性(Vf)やMOSFETのオン抵抗(Ron)に直接影響するため、デバイス特性上、低くすることが重要である。このコンタクト抵抗を下げるための方法の一つとして、第二の主面に形成されるオーミック電極形成前に、第二の主面にPやNなどのイオンを加熱注入する方法が提案されている(例えば、下記特許文献2参照。)。   The ohmic electrode formed on the back surface (second main surface) of the SiC substrate forms an ohmic contact by raising the heat treatment temperature, and lowers the contact resistance. Since this contact resistance directly affects the forward characteristic (Vf) of the Schottky barrier diode (SBD) and the on-resistance (Ron) of the MOSFET, it is important to reduce it in terms of device characteristics. As one method for lowering the contact resistance, a method is proposed in which ions such as P and N are heated and implanted into the second main surface before the ohmic electrode formed on the second main surface is formed. (For example, refer to Patent Document 2 below.)

特許4348408号公報Japanese Patent No. 4348408 特開2006−324585号公報JP 2006-324585 A

第二の主面にイオン注入を用いた場合においても、オーミック電極形成のための熱処理温度は、より温度を高く設定するほど、より高性能で安定する傾向にあるが、1050℃を超えた設定の熱処理を行うためには、例えば石英チューブを多結晶炭化珪素に素材変更するなど、より高耐熱性のある高価な装置を使用する必要があり、コストアップにつながる。   Even in the case where ion implantation is used for the second main surface, the heat treatment temperature for forming the ohmic electrode tends to become more powerful and stable as the temperature is set higher, but the setting exceeds 1050 ° C. In order to perform this heat treatment, it is necessary to use an expensive apparatus with higher heat resistance such as changing the material of the quartz tube to polycrystalline silicon carbide, which leads to an increase in cost.

また、特にオーミック電極前に形成されるMOSFETに用いるゲート絶縁膜は、形成時の温度より高い熱処理を行うと劣化が発生する。また900℃〜1000℃の熱処理を行う場合においても、しきい値電圧の変動や漏れ電流の増加などを起こす。   In particular, the gate insulating film used for the MOSFET formed before the ohmic electrode is deteriorated when heat treatment higher than the temperature at the time of formation is performed. Further, even when heat treatment at 900 ° C. to 1000 ° C. is performed, the threshold voltage fluctuates and the leakage current increases.

Si(1.12eV)に比べSiCはバンドギャップが大きいことが、絶縁破壊電界強度を高めるなどメリットを得ているが、このバンドギャップの高さのため、安定した良好なオーミックコンタクトを得るためには、より高温での熱処理が必要であり、ゲート絶縁膜が安定しないという課題を有している。   Compared to Si (1.12 eV), SiC has a large band gap, which has the advantage of increasing the breakdown field strength. However, because of the high band gap, in order to obtain a stable and good ohmic contact. Requires heat treatment at a higher temperature and has a problem that the gate insulating film is not stable.

本発明は、上記課題に鑑み、炭化珪素半導体素子のオーミックコンタクト形成のための熱処理温度を下げて良好な特性のデバイスを作製できる炭化珪素半導体装置の製造方法を提供することを目的とする。 In view of the above problems, and an object thereof is to provide a method for manufacturing a silicon carbide semiconductor device of the device of yo good properties by lowering the heat treatment temperature for the ohmic contact formation of a silicon carbide semiconductor device can be manufactured.

上記目的を達成するため、本発明の炭化珪素半導体素子の製造方法は、結晶型が4H−SiCの炭化珪素基板の第一の主面にエピタキシャル層を成長させる工程と、前記炭化珪素基板の前記エピタキシャル層とは反対側の第二の主面に金属膜を形成する工程と、前記第二の主面に金属膜を形成する工程の前に、前記第二の主面にイオン種濃度1×10 18 atms/cm 3 〜1×10 20 atms/cm 3 でイオン注入を行い活性化させる工程と、1500℃〜1800℃の活性化熱処理を行い、3C−SiCと4H−SiCの混晶状態を形成させる工程と、を含み、前記イオン注入は窒素がドーピングされた前記炭化珪素基板に、リンを加熱を行わずに500nmまでボックスプロファイルの濃度となるよう30keV〜350keVの範囲で全面に注入し、前記炭化珪素基板の前記第二の主面と、当該第二の主面にオーミック電極として形成される前記金属膜の間に、前記炭化珪素基板よりバンドギャップの小さい3C−SiCを含む層が熱処理により形成されるオーミック電極形成によってオーミック電極と合金化され、合金化されずに残る3C−SiCと4H−SiCの混晶状態の層が50nm〜200nmである、ことを特徴とする。 To achieve the above object, a method for manufacturing a silicon carbide semiconductor device of the present invention, the crystal type and growing an epitaxial layer on the first main surface of the silicon carbide substrate of 4H-Si C, of the silicon carbide substrate Before the step of forming the metal film on the second main surface opposite to the epitaxial layer and the step of forming the metal film on the second main surface, the ionic species concentration is 1 on the second main surface. × 10 18 and step of activating ions are implanted at atms / cm 3 ~1 × 10 20 atms / cm 3, performs activation heat treatment of 1500 ° C. to 1800 ° C., a mixed crystal state of the 3C-SiC and 4H-SiC The ion implantation is performed in the range of 30 keV to 350 keV so that the concentration of the box profile is reduced to 500 nm without heating phosphorus in the silicon carbide substrate doped with nitrogen. 3C-SiC having a smaller band gap than that of the silicon carbide substrate between the second main surface of the silicon carbide substrate and the metal film formed as an ohmic electrode on the second main surface. A layer containing 3C-SiC and 4H-SiC, which is alloyed with an ohmic electrode by forming an ohmic electrode formed by heat treatment, and remains unalloyed is 50 nm to 200 nm To do.

また、前記第二の主面の表面の前記炭化珪素基板中の3C−SiCの比率が10%〜90%、好ましくは20%〜30%であることを特徴とする。   Further, the ratio of 3C—SiC in the silicon carbide substrate on the surface of the second main surface is 10% to 90%, preferably 20% to 30%.

上記構成によれば、炭化珪素基板とオーミック電極の間に、炭化珪素基板よりバンドギャップが小さい4H−SiCと3C−SiCの混晶層を形成できる。この混晶層は、室温注入と活性化熱処理を組み合わせて形成でき、低抵抗領域の形成を阻害せずに、コンタクト抵抗を低減させる。   According to the said structure, the mixed crystal layer of 4H-SiC and 3C-SiC whose band gap is smaller than a silicon carbide substrate can be formed between a silicon carbide substrate and an ohmic electrode. This mixed crystal layer can be formed by combining room temperature implantation and activation heat treatment, and reduces the contact resistance without impeding the formation of the low resistance region.

本発明によれば、オーミックコンタクト形成のための熱処理温度を下げて良好な特性のデバイスを作製できるという効果を奏する。 According to the present invention, there is an effect that the device of yo good properties by lowering the heat treatment temperature for the ohmic contact formation can be produced.

本発明にかかる炭化珪素ショットキーバリアダイオードを示す断面構造図である。1 is a cross-sectional structure diagram showing a silicon carbide Schottky barrier diode according to the present invention. 本発明にかかる炭化珪素ショットキーバリアダイオードの製造工程を示す断面構造図である。It is a cross-section figure showing the manufacturing process of the silicon carbide Schottky barrier diode concerning the present invention.

以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置の製造方法の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a method for manufacturing a silicon carbide semiconductor device according to the present invention will be described below in detail with reference to the accompanying drawings.

発明者らは、例えば、4H−SiC(3.26eV)とオーミック電極の間にSiCの中でバンドギャップが小さい3C−SiC(2.23eV)を選択的に形成させた。3C−SiCの形成は、イオン種濃度1×1018atms/cm3〜1×1020atms/cm3で第二の主面に非加熱でイオン注入し、1500℃〜1800℃の活性化熱処理を行うことで、3C−SiCと4H−SiCの混晶状態を形成させる。活性化熱処理に3C−SiCは粒状に形成され、分散された状態になる。3C−SiCは他のポリタイプと異なり、イオン注入時の非晶質化が進んでいるほど1500℃〜1800℃の熱処理で再結晶化時に形成されやすい。また、3C−SiCは結晶化しやすいが、大きなバルク形成は起こりにくいため、粒状の分散状態で存在できる。 For example, the inventors selectively formed 3C-SiC (2.23 eV) having a small band gap in SiC between 4H-SiC (3.26 eV) and the ohmic electrode. The formation of 3C-SiC is performed by ion implantation of the second main surface without heating at an ion species concentration of 1 × 10 18 atms / cm 3 to 1 × 10 20 atms / cm 3 and activation heat treatment at 1500 ° C. to 1800 ° C. To form a mixed crystal state of 3C—SiC and 4H—SiC. In the activation heat treatment, 3C-SiC is formed in a granular state and is in a dispersed state. Unlike other polytypes, 3C-SiC is more likely to be formed during recrystallization by heat treatment at 1500 ° C. to 1800 ° C. as amorphization at the time of ion implantation progresses. 3C-SiC is easily crystallized, but large bulk formation is unlikely to occur, so it can exist in a granular dispersed state.

ここで、イオン種濃度1×1018atms/cm3〜1×1020atms/cm3での非加熱イオン注入による活性化率の低下によってコンタクト抵抗上昇を伴うため、膜厚を50nm〜200nmと薄く、かつ4H−SiCとの混晶状態にすることで、低抵抗領域の形成を阻害せずに、コンタクト抵抗を低減させる。 Here, since the contact resistance increases due to the decrease in the activation rate due to the non-heated ion implantation at the ion species concentration of 1 × 10 18 atms / cm 3 to 1 × 10 20 atms / cm 3 , the film thickness is set to 50 nm to 200 nm. By making it thin and mixed with 4H—SiC, the contact resistance is reduced without inhibiting the formation of the low resistance region.

上記のように、炭化珪素基板と濃度の異なるイオン種を、第二の主面に非加熱でイオン注入し1500℃〜1800℃の活性化熱処理で再結晶化させ、バンドギャップの小さい3C−SiCを選択的に分散形成させることで、炭化珪素半導体素子の電極形成工程におけるオーミックコンタクト形成のための熱処理温度を下げ、安価に良好な特性のデバイスを作製できるようになる。   As described above, an ion species having a concentration different from that of the silicon carbide substrate is ion-implanted into the second main surface without heating and recrystallized by an activation heat treatment at 1500 ° C. to 1800 ° C., and 3C—SiC having a small band gap. By selectively dispersing and forming, a heat treatment temperature for forming the ohmic contact in the electrode forming process of the silicon carbide semiconductor element can be lowered, and a device having good characteristics can be manufactured at low cost.

(第一の実施例)
図1は、本発明にかかる炭化珪素ショットキーバリアダイオード(SiC−SBD)を示す断面構造図である。この実施例は、製膜方法、条件等本発明の効果を得られるための一例であり、すべての条件を表すものではない。
(First embodiment)
FIG. 1 is a cross-sectional structure diagram showing a silicon carbide Schottky barrier diode (SiC-SBD) according to the present invention. This example is an example for obtaining the effects of the present invention, such as a film forming method and conditions, and does not represent all conditions.

図1に示すSiC−SBDは、高濃度の炭化珪素基板1上に低濃度の導電型炭化珪素ドリフト層2が形成され、この導電型炭化珪素ドリフト層2のおもて側(第一の主面)にジャンクション・バリア・ショットキー(JBS)構造用の第一導電型の不純物イオン注入領域3が所定間隔で形成される。不純物イオン注入領域3上には、酸化膜5が形成され、ショットキー用のコンタクトホール部5aが開口され、第一の主面上にはショットキー電極7が形成される。8は、電極パッドである。   In the SiC-SBD shown in FIG. 1, a low-concentration conductivity type silicon carbide drift layer 2 is formed on a high-concentration silicon carbide substrate 1. The first conductivity type impurity ion implantation regions 3 for the junction, barrier, and Schottky (JBS) structure are formed at a predetermined interval. An oxide film 5 is formed on the impurity ion implantation region 3, a Schottky contact hole portion 5a is opened, and a Schottky electrode 7 is formed on the first main surface. 8 is an electrode pad.

また、炭化珪素基板1の裏面(第二の主面)には、第二導電型の不純物イオン注入領域4と、オーミック電極6と、外部電極層9が形成される。   A second conductivity type impurity ion implantation region 4, an ohmic electrode 6, and an external electrode layer 9 are formed on the back surface (second main surface) of the silicon carbide substrate 1.

図2は、本発明にかかる炭化珪素ショットキーバリアダイオードの製造工程を示す断面構造図である。はじめに、図2(a)に示すように、炭化珪素基板1としては、例えば、結晶構造が4H−SiC基板(4°オフ基板)を用いる。1×1016/cm3の窒素がドーピングされた、例えば厚さ350μmの(0001)面を有する高濃度のn型の炭化珪素基板1の第一の主面上に、例えば、1.8×1016/cm3の窒素がドーピングされた、例えば厚さ6μmの低濃度のn型のドリフト層(エピタキシャル層)2を堆積により形成する。 FIG. 2 is a cross-sectional structure diagram showing a manufacturing process of the silicon carbide Schottky barrier diode according to the present invention. First, as shown in FIG. 2A, as the silicon carbide substrate 1, for example, a 4H—SiC substrate (4 ° off substrate) having a crystal structure is used. On the first main surface of the high-concentration n-type silicon carbide substrate 1 doped with 1 × 10 16 / cm 3 of nitrogen and having a (0001) plane of 350 μm thickness, for example, 1.8 × A low concentration n-type drift layer (epitaxial layer) 2 having a thickness of 6 μm, for example, doped with 10 16 / cm 3 of nitrogen is formed by deposition.

次に、図2(b)に示すように、これらn型基板1とn型ドリフト層2からなる炭化珪素(SiC)基板に、JBS構造用の第一導電型(p型)の不純物領域3を形成する。例えば、イオン注入法により500nmまでボックスプロファイルの濃度が2×1019/cm3となるように30keV〜350keVの範囲で第一導電型の不純物(Al)を注入し、500℃の加熱をしながら2μm間隔で注入する。 Next, as shown in FIG. 2B, the first conductivity type (p-type) impurity region 3 for the JBS structure is formed on the silicon carbide (SiC) substrate composed of the n-type substrate 1 and the n-type drift layer 2. Form. For example, the first conductivity type impurity (Al) is implanted within a range of 30 keV to 350 keV by ion implantation so that the concentration of the box profile is 2 × 10 19 / cm 3 up to 500 nm, and heating at 500 ° C. Inject at 2 μm intervals.

次に、図2(c)に示すように、炭化珪素(SiC)の第二の主面(裏面)からイオン注入法により、第二導電型の不純物として、例えばリン(P)を、n型の炭化珪素基板1に対する加熱を行わずに室温で、500nmまでボックスプロファイルの濃度が8×1020/cm3となるように30keV〜350keVの範囲で全面に注入する。これにより、第二導電型の不純物イオン注入領域4が形成される。 Next, as shown in FIG. 2C, for example, phosphorus (P) is converted to n-type as a second conductivity type impurity by ion implantation from the second main surface (back surface) of silicon carbide (SiC). Without heating the silicon carbide substrate 1, implantation is performed on the entire surface in the range of 30 keV to 350 keV so that the concentration of the box profile is 8 × 10 20 / cm 3 up to 500 nm at room temperature. Thereby, the impurity ion implantation region 4 of the second conductivity type is formed.

次に、図2(d)に示すように、第二の主面側の不純物イオン注入領域4の表面にカーボン保護膜11を形成した炭化珪素基板1を、活性化熱処理装置に挿入後、1×10-2Pa以下まで真空引きを行い、Arガスを導入し、1×105Paの圧力で1700℃で5分の熱処理を行う。ここで、作製した炭化珪素基板1を抜き取り、顕微ラマン分光法により3C−SiCと、4H−SiCのマッピングを行ったところ、3C−SiCが面積比で20%存在していた。これにより、不純物イオン注入領域4の表面層に、炭化珪素基板1よりバンドギャップの小さい炭化珪素もしくはバンドギャップの小さい炭化珪素が混在した層が形成される。 Next, as shown in FIG. 2D, the silicon carbide substrate 1 on which the carbon protective film 11 is formed on the surface of the impurity ion implantation region 4 on the second main surface side is inserted into the activation heat treatment apparatus, and then 1 Vacuuming is performed to × 10 −2 Pa or less, Ar gas is introduced, and heat treatment is performed at 1700 ° C. for 5 minutes at a pressure of 1 × 10 5 Pa. Here, when the produced silicon carbide substrate 1 was extracted and 3C-SiC and 4H-SiC were mapped by microscopic Raman spectroscopy, 3C-SiC was present in an area ratio of 20%. Thereby, a layer in which silicon carbide having a band gap smaller than that of silicon carbide substrate 1 or silicon carbide having a smaller band gap is mixed is formed on the surface layer of impurity ion implantation region 4.

次に、図2(e)に示すように、活性化熱処理した炭化珪素基板1の第二の主面のカーボン保護膜11をアッシング装置により除去(アッシング)する。アッシングは、リアクティブイオンエッチング装置で酸素(O2)を導入し、12Paの圧力、およびRFパワー500Wを印加して酸素プラズマ中で行った。アッシング時間は5分である。次に、拡散炉でパイロ熱酸化を行い、バッファードフッ酸によるエッチングにて裏面の注入層の100nm分の犠牲酸化膜除去を行う。 Next, as shown in FIG. 2E, the carbon protective film 11 on the second main surface of the silicon carbide substrate 1 subjected to the activation heat treatment is removed (ashed) by an ashing device. Ashing was performed in oxygen plasma by introducing oxygen (O 2 ) with a reactive ion etching apparatus and applying a pressure of 12 Pa and an RF power of 500 W. Ashing time is 5 minutes. Next, pyrothermal oxidation is performed in a diffusion furnace, and a sacrificial oxide film is removed for 100 nm from the injection layer on the back surface by etching with buffered hydrofluoric acid.

次に、図2(f)に示すように、犠牲酸化膜除去後の炭化珪素基板1の第一の主面に、化学気相成長(CVD:Chemical Vapor Deposition)法による酸化膜5を500nm形成し、第二の主面にオーミック電極6であるニッケル(Ni)およびチタン(Ti)をスパッタ法により続けて製膜し、800℃で10分の熱処理を行いオーミックコンタクトを形成する。   Next, as shown in FIG. 2F, an oxide film 5 having a thickness of 500 nm is formed on the first main surface of the silicon carbide substrate 1 after the removal of the sacrificial oxide film by a chemical vapor deposition (CVD) method. Then, nickel (Ni) and titanium (Ti), which are ohmic electrodes 6, are successively formed on the second main surface by sputtering, and heat treatment is performed at 800 ° C. for 10 minutes to form ohmic contacts.

次に、図2(g)に示すように、第一の主面の酸化膜5に、フォトリソグラフィーによりショットキー用のコンタクトホール部5aを形成し、続けてチタン(Ti)を第一の主面全面にスパッタ法により形成、フォトリソグラフィーによるパターニングと500℃で10分の熱処理を行い、ショットキー電極7を作製する。   Next, as shown in FIG. 2G, a Schottky contact hole portion 5a is formed in the oxide film 5 on the first main surface by photolithography, and subsequently titanium (Ti) is added to the first main surface. A Schottky electrode 7 is fabricated by forming the entire surface by sputtering, patterning by photolithography, and heat treatment at 500 ° C. for 10 minutes.

そして、図2(h)に示すように、第一の主面側に電極パッド8としてアルミニウム(Al)をスパッタ法により5μm形成し、第二の主面側の外部電極層9として200nmのAu膜を形成する。   Then, as shown in FIG. 2 (h), 5 μm of aluminum (Al) is formed by sputtering as the electrode pad 8 on the first main surface side, and 200 nm of Au is formed as the external electrode layer 9 on the second main surface side. A film is formed.

(比較例)
実施例の第二の主面に、不純物イオン注入領域4を形成するためのイオン注入を行わず、また、カーボン保護膜11のスパッタ条件を除いて、同様に炭化珪素基板1の作製を行った。同様に作製した炭化珪素基板1を抜き取り、顕微ラマン分光法により3C−SiCと4H−SiCのマッピングを行ったところ、3C−SiCが面積比で1%存在が確認された。
(Comparative example)
The silicon carbide substrate 1 was similarly manufactured except that the ion implantation for forming the impurity ion implantation region 4 was not performed on the second main surface of the example and the carbon protective film 11 was sputtered. . Similarly produced silicon carbide substrate 1 was extracted, and 3C-SiC and 4H-SiC were mapped by microscopic Raman spectroscopy. As a result, it was confirmed that 3C-SiC was present in an area ratio of 1%.

(実施例と比較例の評価)
上記の製造方法を用いて作製した素子でダイオードの順方向特性の比較として実施例および比較例を各20サンプル用いて電気特性評価を行った。25Aの電流が流れた時のオン電圧(Vf)を測定したところ、比較例では1.412V(ばらつきσ=0.0807V)であったのに対し、実施例は1.106V(ばらつきσ=0.0267V)となった。このように、実施例は、比較例よりもオン電圧が低くなるため、炭化珪素基板の第二の主面に形成されるオーミック電極とのコンタクト抵抗を低減することができることが確認された。
(Evaluation of Examples and Comparative Examples)
As a comparison of the forward characteristics of the diodes produced using the manufacturing method described above, electrical characteristics were evaluated using 20 samples each of the examples and comparative examples. When the on-voltage (Vf) when a current of 25 A flows was measured, it was 1.412 V (variation σ = 0.0807 V) in the comparative example, whereas 1.106 V (variation σ = 0) in the example. .0267V). Thus, since the ON voltage was lower in the example than in the comparative example, it was confirmed that the contact resistance with the ohmic electrode formed on the second main surface of the silicon carbide substrate can be reduced.

(他の実施例)
第一の実施例では、評価用の簡易縦型SiC−SBD装置を製造する場合について述べたが、素子周囲に耐圧をもたせるエッジを有する構造としてもよい。また、第一主面上に他の装置、例えばMOS等の構造を製造することもできる。さらに、第一の実施例では、主面として(0001)面を例に述べたが、主面として(000−1)面を用いてもよい。
(Other examples)
In the first embodiment, the case of manufacturing a simple vertical SiC-SBD device for evaluation has been described. However, a structure having an edge that provides a breakdown voltage around the element may be used. Also, other devices such as MOS structures can be manufactured on the first main surface. Furthermore, in the first embodiment, the (0001) plane is described as an example of the main surface, but the (000-1) plane may be used as the main surface.

上記の炭化珪素基板1の結晶型は、4H−SiCもしくは6H−SiCを用いることができ、炭化珪素基板1の加熱を伴わないイオン注入により、第二の主面と第二の主面にオーミック電極6として形成される金属膜との間に3C−SiCもしくは3C−SiCが混在した層を形成させることができる。この3C−SiCの比率は10%〜90%、望ましくは20%〜30%である。また、この炭化珪素基板1中の3C−SiCを含む層が熱処理により形成されるオーミック電極形成によってオーミック電極と合金化される場合、合金化されずに残る炭化珪素基板1側に3C−SiCの層が30nm〜1000nm、好ましくは50nm〜200nmとする。   As the crystal type of the silicon carbide substrate 1, 4H—SiC or 6H—SiC can be used, and ohmic is formed on the second main surface and the second main surface by ion implantation without heating the silicon carbide substrate 1. A layer in which 3C—SiC or 3C—SiC is mixed can be formed between the metal film formed as the electrode 6. The ratio of 3C-SiC is 10% to 90%, desirably 20% to 30%. Further, when the layer containing 3C—SiC in the silicon carbide substrate 1 is alloyed with the ohmic electrode by the formation of the ohmic electrode formed by heat treatment, the 3C—SiC of the silicon carbide substrate 1 that remains without being alloyed is formed. The layer is 30 nm to 1000 nm, preferably 50 nm to 200 nm.

以上説明したように、本発明によれば、炭化珪素基板の第二の主面に形成されるオーミック電極とのコンタクト抵抗を低減でき、炭化珪素基板の第二の主面に各種イオンをイオン注入し活性化させた層を形成し、良好なオーミック特性を有するオーミック電極を得ることができる。そして、この発明は、SiC半導体を用いたMOSFET、SBD、IGBTなどの半導体装置に適用することができる。   As described above, according to the present invention, the contact resistance with the ohmic electrode formed on the second main surface of the silicon carbide substrate can be reduced, and various ions are implanted into the second main surface of the silicon carbide substrate. Then, an activated layer can be formed, and an ohmic electrode having good ohmic characteristics can be obtained. The present invention can be applied to semiconductor devices such as MOSFETs, SBDs, and IGBTs using SiC semiconductors.

以上のように、本発明にかかる炭化珪素半導体装置の製造方法は、例えばパワーデバイス等の電力用半導体装置や、産業用のモーター制御やエンジン制御に使用されるパワー半導体装置に有用である。   As described above, the method for manufacturing a silicon carbide semiconductor device according to the present invention is useful for power semiconductor devices such as power devices, and power semiconductor devices used for industrial motor control and engine control.

1 高濃度導電型炭化珪素基板
2 低濃度導電型炭化珪素ドリフト層
3 第一導電型不純物イオン注入領域
4 第二導電型不純物イオン注入領域(第二の主面)
5 酸化膜
6 オーミック電極
7 ショットキー電極
8 電極パッド
9 外部電極層
11 カーボン保護膜
DESCRIPTION OF SYMBOLS 1 High concentration conductivity type silicon carbide substrate 2 Low concentration conductivity type silicon carbide drift layer 3 First conductivity type impurity ion implantation region 4 Second conductivity type impurity ion implantation region (second main surface)
5 Oxide film 6 Ohmic electrode 7 Schottky electrode 8 Electrode pad 9 External electrode layer 11 Carbon protective film

Claims (2)

結晶型が4H−SiCの炭化珪素基板の第一の主面にエピタキシャル層を成長させる工程と、
前記炭化珪素基板の前記エピタキシャル層とは反対側の第二の主面に金属膜を形成する工程と、
前記第二の主面に金属膜を形成する工程の前に、前記第二の主面にイオン種濃度1×10 18 atms/cm 3 〜1×10 20 atms/cm 3 でイオン注入を行い活性化させる工程と、
1500℃〜1800℃の活性化熱処理を行い、3C−SiCと4H−SiCの混晶状態を形成させる工程と、を含み、
前記イオン注入は窒素がドーピングされた前記炭化珪素基板に、リンを加熱を行わずに500nmまでボックスプロファイルの濃度となるよう30keV〜350keVの範囲で全面に注入し、前記炭化珪素基板の前記第二の主面と、当該第二の主面にオーミック電極として形成される前記金属膜の間に、前記炭化珪素基板よりバンドギャップの小さい3C−SiCを含む層が熱処理により形成されるオーミック電極形成によってオーミック電極と合金化され、合金化されずに残る3C−SiCと4H−SiCの混晶状態の層が50nm〜200nmである、
ことを特徴とする炭化珪素半導体装置の製造方法。
A step of crystal form an epitaxial layer is grown on the first main surface of the silicon carbide substrate of 4H-Si C,
Forming a metal film on a second main surface opposite to the epitaxial layer of the silicon carbide substrate;
Before the step of forming a metal film on the second main surface, the second main surface is activated by ion implantation at an ion species concentration of 1 × 10 18 atms / cm 3 to 1 × 10 20 atms / cm 3. The process of
Performing an activation heat treatment at 1500 ° C. to 1800 ° C. to form a mixed crystal state of 3C—SiC and 4H—SiC ,
The ion implantation is performed by implanting phosphorus into the silicon carbide substrate doped with nitrogen to the entire surface in a range of 30 keV to 350 keV so as to have a box profile concentration up to 500 nm without heating. By forming an ohmic electrode, a layer containing 3C—SiC having a band gap smaller than that of the silicon carbide substrate is formed between the main surface of the silicon carbide substrate and the metal film formed as an ohmic electrode on the second main surface. The layer of the mixed crystal state of 3C—SiC and 4H—SiC that is alloyed with the ohmic electrode and remains unalloyed is 50 nm to 200 nm.
A method for manufacturing a silicon carbide semiconductor device.
前記第二の主面の表面の前記炭化珪素基板中の3C−SiCの比率が10%〜90%であることを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。   2. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein a ratio of 3C—SiC in the silicon carbide substrate on the surface of the second main surface is 10% to 90%.
JP2012104226A 2012-04-27 2012-04-27 Method for manufacturing silicon carbide semiconductor device Active JP6253133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012104226A JP6253133B2 (en) 2012-04-27 2012-04-27 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104226A JP6253133B2 (en) 2012-04-27 2012-04-27 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JP2013232559A JP2013232559A (en) 2013-11-14
JP6253133B2 true JP6253133B2 (en) 2017-12-27

Family

ID=49678739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104226A Active JP6253133B2 (en) 2012-04-27 2012-04-27 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP6253133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222771B2 (en) * 2013-11-22 2017-11-01 国立研究開発法人産業技術総合研究所 Method for manufacturing silicon carbide semiconductor device
JP6179445B2 (en) * 2014-04-11 2017-08-16 豊田合成株式会社 Vertical Schottky Barrier Diode, Manufacturing Method for Vertical Schottky Barrier Diode
WO2018158452A1 (en) * 2017-03-03 2018-09-07 Abb Schweiz Ag Silicon carbide superjunction power semiconductor device and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9501310D0 (en) * 1995-04-10 1995-04-10 Abb Research Ltd A method for introducing an impurity dopant into SiC, a semiconductor device formed by the method and using a highly doped amorphous layer as a source for dopant diffusion into SiC
JP3750311B2 (en) * 1997-10-16 2006-03-01 株式会社デンソー Semiconductor device and manufacturing method thereof
TW449932B (en) * 1998-09-16 2001-08-11 Cree Inc Low temperature formation of backside ohmic contacts for vertical devices
JP4848607B2 (en) * 2001-09-11 2011-12-28 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
JP5339698B2 (en) * 2007-08-20 2013-11-13 新日本無線株式会社 Manufacturing method of semiconductor device
JP4532536B2 (en) * 2007-12-19 2010-08-25 トヨタ自動車株式会社 Semiconductor device
JP5439215B2 (en) * 2010-02-10 2014-03-12 株式会社東芝 Semiconductor device and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2013232559A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
JP6766889B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
US9419133B2 (en) Semiconductor device and fabrication method of semiconductor device
US10600921B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US8367507B1 (en) Manufacturing method of semiconductor device
JP5339698B2 (en) Manufacturing method of semiconductor device
JP2005079339A (en) Semiconductor device, power converter using semiconductor device, driving inverter, general-purpose inverter, and high power high frequency communication equipment
US10069004B2 (en) Semiconductor device and method of manufacturing semiconductor device
EP2927960A1 (en) Silicon carbide semiconductor device, and manufacturing method for same
TW201251023A (en) Semiconductor device
KR20120132340A (en) Manufacturing method of silicon carbide semiconductor device
JP2017175115A (en) Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device
JP2011165902A (en) Semiconductor device and method for manufacturing semiconductor device
JP2015115373A (en) Semiconductor apparatus, and manufacturing method of semiconductor apparatus
US20160181373A1 (en) Silicon carbide semiconductor device and method for manufacturing the same
JP2015056644A (en) Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
JP5802492B2 (en) Semiconductor device and manufacturing method thereof
JP2019029501A (en) Semiconductor device and semiconductor device manufacturing method
JP6253133B2 (en) Method for manufacturing silicon carbide semiconductor device
KR20100123589A (en) Semiconductor device and method for manufacturing semiconductor device
JP6399161B2 (en) Semiconductor device and manufacturing method of semiconductor device
US9806167B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6862782B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2005005578A (en) Semiconductor device and its manufacturing method
JP2018064047A (en) Semiconductor device and semiconductor device manufacturing method
JP7074173B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171124

R150 Certificate of patent or registration of utility model

Ref document number: 6253133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250