JP2011036105A - 回転電機の製造方法、回転電機、及び電動パワーステアリング装置 - Google Patents
回転電機の製造方法、回転電機、及び電動パワーステアリング装置 Download PDFInfo
- Publication number
- JP2011036105A JP2011036105A JP2009182533A JP2009182533A JP2011036105A JP 2011036105 A JP2011036105 A JP 2011036105A JP 2009182533 A JP2009182533 A JP 2009182533A JP 2009182533 A JP2009182533 A JP 2009182533A JP 2011036105 A JP2011036105 A JP 2011036105A
- Authority
- JP
- Japan
- Prior art keywords
- teeth
- cogging torque
- rotor
- tooth
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Power Steering Mechanism (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
【課題】より効果的にコギングトルクの低減を図ることのできる回転電機の製造方法を提供すること。
【解決手段】ステータ及びロータが組み付けられたモータのコギングトルクを測定し、その測定データに基づいて、同モータのステータ、詳しくは、その各ティース13の何れかを加工することにより、そのコギングトルクの低減を図る。そして、そのコギングトルクを低減すべく決定されたティース13の加工は、そのロータとの対向面23に磁性体24を付加することにより行なわれる。
【選択図】図14
【解決手段】ステータ及びロータが組み付けられたモータのコギングトルクを測定し、その測定データに基づいて、同モータのステータ、詳しくは、その各ティース13の何れかを加工することにより、そのコギングトルクの低減を図る。そして、そのコギングトルクを低減すべく決定されたティース13の加工は、そのロータとの対向面23に磁性体24を付加することにより行なわれる。
【選択図】図14
Description
本発明は、永久磁石が形成する複数の磁極を備えたロータと同ロータに対向する複数のティースを備えたステータとを組み付けてなる回転電機の製造方法、回転電機、及び電動パワーステアリング装置に関するものである。
永久磁石モータを含め、上記のような回転電機には、ステータに設けられた各ティースが作り出すリラクタンス変化と永久磁石の磁束との相関関係に基づくコギングトルクが存在する。そして、そのコギングトルクは、製作誤差等に起因して磁気的なアンバランスが生ずることで、より一層顕著なものとなる。
そこで、従来、ロータ及びステータを組付けた状態でコギングトルクを測定し、その測定結果に基づいて、当該コギングトルクを低減(補正)すべくステータを加工する方法が知られている(例えば、特許文献1参照)。そして、特許文献2には、そのコギングトルクの補正方法として、各ティースのうちの少なくとも何れか一つ、詳しくは、ロータに対向して周方向に延設された各ティースの先端(ティースバー)の径方向外側、及びその側面、並びに隣り合うティースバー間の少なくとも何れかに磁性体を設ける構成が開示されている。
しかしながら、ティースバーの径方向外側、つまり対向面の裏側は、本来、各ティースに巻回した巻線を収容すべき空間である。従って、ここに上記のようなコギング補正用の磁性体を付加する作業は極めて煩雑であり、且つ、この場所に補正用磁性体の配置スペースを確保することで、その巻線占積率が低下してしまうという問題がある。そして、ティースバーの側面又はティースバー間に補正用の磁性体を付加した場合には、コギングトルクの低減と引き換えに新たな励磁時のトルクリップルの発生を招く可能性があり、この点において、なお改善の余地を残すものとなっていた。
本発明は、上記問題点を解決するためになされたものであって、その目的は、より効果的にコギングトルクの低減を図ることのできる回転電機の製造方法、及びよりコギングトルクの小さな回転電機、並びに操舵フィーリングに優れた電動パワーステアリング装置を提供することにある。
上記問題点を解決するために、請求項1に記載の発明は、永久磁石が形成する複数の磁極を備えたロータと、前記ロータに対向して周方向に整列配置された複数のティースを備えたステータとを組み付けてなる回転電機の製造方法であって、前記回転電機のコギングトルクを測定する工程と、測定された前記コギングトルクを低減すべく前記ステータを加工する工程と有し、前記ステータを加工する工程は、前記各ティースの少なくとも何れか一つについて、その前記ロータとの対向面に磁性体を付加することにより行なわれること、を要旨とする。
上記構成によれば、コギングトルクの実測値に基づき物理的にその補正を行なうことで、全回転領域におけるコギングトルクの低減が可能になる。また、そのコギングトルクを低減すべくティースに磁性体を付加する際においても、その付加作業が容易、且つその配置スペースが巻線の巻回領域を侵食しない。そして、そのコギングトルクの低減と引き換えに新たな励磁時のトルクリップルを引き起こすこともない。従って、上記構成によれば、その作業性及び静粛性を損なうことなく、より効果的にコギングトルクを低減することができる。
請求項2に記載の発明は、前記磁性体は薄板状に形成されてなること、を要旨とする。
上記構成によれば、その磁気アンバランスの程度に違いに対し、使用する磁性体の板厚を代えることで容易且つ的確に対応することができる。加えて、その磁性体を加工することによる微調整についても、容易にこれを行なうことができる。
上記構成によれば、その磁気アンバランスの程度に違いに対し、使用する磁性体の板厚を代えることで容易且つ的確に対応することができる。加えて、その磁性体を加工することによる微調整についても、容易にこれを行なうことができる。
請求項3に記載の発明は、前記各ティースの対向面及び前記磁性体には、嵌合部及び被嵌合部が形成されること、を要旨とする。
上記構成によれば、容易且つ確実に、磁性体を対向面に付加することができる。
上記構成によれば、容易且つ確実に、磁性体を対向面に付加することができる。
請求項4に記載の発明は、永久磁石が形成する複数の磁極を備えたロータと、前記ロータに対向して周方向に整列配置された複数のティースを備えたステータとを組み付けてなる回転電機であって、前記各ティースの少なくとも何れか一つには、前記ロータとの対向面に付加的な磁性体が設けられること、を要旨とする。
上記構成によれば、コギングトルクの実測値に基づき磁性体を付加することで、物理的にその補正を行なうことができ、これにより、全回転領域におけるコギングトルクの低減が可能になる。また、そのコギングトルクを低減すべくティースに磁性体を付加する際においても、その付加作業が容易、且つその配置スペースが巻線の巻回領域を侵食しない。そして、そのコギングトルクの低減と引き換えに新たな励磁時のトルクリップルを引き起こすこともない。従って、上記構成によれば、コギングトルクが小さく、且つ同コギングトルクを補正する際の作業性、及び静粛性に優れたモータを提供することができる。
請求項5に記載の発明は、請求項1〜請求項3の何れか一項に記載の回転電機の製造方法により製造されたモータを駆動源とする電動パワーステアリング装置であること、を要旨とする。
上記構成によれば、コギングトルクを低減して、より操舵フィーリングに優れた電動パワーステアリング装置を提供することができる。
本発明によればより効果的にコギングトルクの低減を図ることのできる回転電機の製造方法、及びコギングトルクの小さな回転電機、及び操舵フィーリングに優れた電動パワーステアリング装置を提供することができる。
以下、本発明を電動パワーステアリング装置(EPS)用のモータ及びその製造方法に具体化した一実施形態を図面に従って説明する。
図1に示すように、本実施形態のEPS1において、ステアリング2が固定されたステアリングシャフト3は、ラックアンドピニオン機構4を介してラック軸5と連結されており、ステアリング操作に伴うステアリングシャフト3の回転は、ラックアンドピニオン機構4によりラック軸5の往復直線運動に変換される。そして、このステアリングシャフト3の回転に伴うラック軸5の往復直線運動が、同ラック軸5の両端に連結されたタイロッド6を介して図示しないナックルに伝達されることにより、転舵輪7の舵角が変更される。
図1に示すように、本実施形態のEPS1において、ステアリング2が固定されたステアリングシャフト3は、ラックアンドピニオン機構4を介してラック軸5と連結されており、ステアリング操作に伴うステアリングシャフト3の回転は、ラックアンドピニオン機構4によりラック軸5の往復直線運動に変換される。そして、このステアリングシャフト3の回転に伴うラック軸5の往復直線運動が、同ラック軸5の両端に連結されたタイロッド6を介して図示しないナックルに伝達されることにより、転舵輪7の舵角が変更される。
尚、本実施形態のステアリングシャフト3は、コラムシャフト3a、インターミディエイトシャフト3b、及びピニオンシャフト3cを連結してなる。そして、本実施形態のEPS1は、モータ10を駆動源として、そのコラムシャフト3aを回転駆動する所謂コラム型のEPSとして構成されている。
即ち、本実施形態のEPS1において、モータ10は、減速機構8を介してコラムシャフト3aと駆動連結されている。尚、本実施形態では、減速機構8には周知のウォーム&ホイールが用いられている。そして、この減速機構8により減速されたモータ10の回転をステアリングシャフト3に伝達することにより、そのモータトルクをアシスト力として操舵系に付与する構成となっている。
次に、本実施形態のEPS1におけるモータ10の構成について説明する。
図2に示すように、本実施形態のモータ10は、周面に設けられた永久磁石(マグネット)11が形成する複数の磁極を備えたロータ12と、同ロータ12に対向して周方向に整列配置された複数のティース13を備えたステータ14とを組み付けてなるブラシレスモータとして構成されている。
図2に示すように、本実施形態のモータ10は、周面に設けられた永久磁石(マグネット)11が形成する複数の磁極を備えたロータ12と、同ロータ12に対向して周方向に整列配置された複数のティース13を備えたステータ14とを組み付けてなるブラシレスモータとして構成されている。
詳述すると、ロータ12は、回転軸15に固定されたロータコア16の外周に複数の永久磁石11を固着することにより形成される。具体的には、そのロータコア16の外周には、その全周に亘って短冊状に形成された「10枚」の永久磁石11が均等配置されている。そして、これら各永久磁石11により、その周方向において隣り合う二つの極性(「N」「S」)が異なる「10極」の磁極が形成されている。
一方、ステータ14において、各ティース13は、ロータ12と同軸配置された外筒部17から径方向内側に向って延設されるとともに、該各ティース13には、三相(U,V,W)の駆動電流が通電される巻線18が巻回されている。そして、上記ロータ12と対向する各ティース13の先端部には、同ロータ12の周方向に沿って延設されたティースバー19が形成されている。
ここで、本実施形態のステータ14は、図3に示されるような各ティース13の基端に湾曲板状の基部20が設けられた複数の分割コア21を連結することにより形成される。具体的には、本実施形態のステータ14において、外筒部17は、各分割コア21の基部20を環状に連結することにより形成される。そして、本実施形態のステータ14は、12個の分割コア21を連結することにより、その「12本」のティース13が周方向に沿って均等配置されるようになっている。
即ち、本実施形態のモータ10は、「10」の磁極及び各ティース13間に形成される「12」のスロットを備えた所謂「10極12スロット」の構成を有している。そして、モータ10は、その各ティース13に巻回された巻線18に三相(U,V,W)の駆動電力が供給されることにより、そのステータ14の内側に軸支されたロータ12が、回転軸15とともに一体回転する構成となっている。
[コギングトルクの補正方法]
次に、本実施形態におけるコギングトルクの補正方法について説明する。
図4のフローチャートに示すように、本実施形態では、上記モータ10を組み立てると(ステップ101)、続いて、同モータ10のコギングトルクを測定する(ステップ102)。
次に、本実施形態におけるコギングトルクの補正方法について説明する。
図4のフローチャートに示すように、本実施形態では、上記モータ10を組み立てると(ステップ101)、続いて、同モータ10のコギングトルクを測定する(ステップ102)。
具体的には、このコギングトルクの測定は、上記ステップ101において組み立てたモータ10を測定装置(図示略)に装着し、その回転軸15を外部から駆動してロータ12を回転させることにより行なわれる。
ここで、図5に示すように、本実施形態では、その測定データの記録は、ステータ14側の隣り合う二つのティース13l,13aの中間位置、及びロータ12側の隣り合う二つの永久磁石11a,11bが形成する磁極の中間位置を、それぞれの基準点Ps,Prとして、これらを一致させた状態で行なわれる(Ps=Pr)。そして、この基準となる位置関係を「機械角0°」とした場合における一回転分、即ち「機械角360°」のコギングトルクがその測定データとして得られるようになっている。
尚、本実施形態のモータ10では、上記各基準点Ps,Prは、その図示しないハウジング及び上記回転軸15に施されたマーキング(図示略)を用いることにより、外部から位置合わせすることが可能となっている。
次に、上記ステップ102において得られた測定データについて高速フーリエ変換(FFT)を行なうことにより、その磁極次数成分を抽出する(ステップ103)。尚、本実施形態のモータ10は、上記のように「10極12スロット」の構成を有しているため、図6に示されるような「10次」のコギングトルクが、その磁極次数成分になる。そして、本実施形態では、その抽出された磁極次数成分に基づいて、同モータ10のステータ14、詳しくは、その各ティース13の何れかを加工することにより、そのコギングトルクの低減(補正)を図る構成となっている。
即ち、図7(a)(b)に示すように、ロータの回転により、永久磁石11の形成する磁極が各ティース13の前を通過する際、その吸引力の方向が反転することにより生ずる脈動がコギングトルクとなる。尚、同図中、「破線」はロータの回転方向を示し、「実線」は永久磁石の吸引力に基づきロータがティース側へと引き付けられる方向を示している。そして、多くの回転電機では、各磁極と各ティースとの間に生ずる吸引力が互いに打ち消し合うように設計することで、そのコギングトルクの低減が図られている。
しかしながら、本実施形態のモータ10のように、上記のような分割コア連結型のステータを採用した場合、各ティースの先端を同一円状に整列させることが難しく、その製作誤差に起因する磁気アンバランスによりコギングトルクが発生する。そして、そのステータの製作誤差を要因としたコギングトルクの主成分が上記磁極次数成分である。
つまり、コギングトルクの測定データから磁極次数成分を抽出することで、ステータの製作誤差に起因する磁気アンバランスを直接的に捉えることができる。そして、本実施形態では、上記のように、その磁極次数成分に基づいて、各ティース13の何れかを加工することにより、その抽出された磁極次数成分に示される磁気アンバランスの相殺(カウンターバランス)を図る構成となっている。
(補正対象ティースの決定方法)
次に、上記コギングトルクを低減(補正)すべく加工する補正対象ティースの決定方法について説明する。
次に、上記コギングトルクを低減(補正)すべく加工する補正対象ティースの決定方法について説明する。
磁極次数成分のコギングトルクは、ステータに設けられた各ティースのうちの何れかが径方向内側に突出していると仮定して、ロータが一回転(機械角360°)する間に、同ロータの周面に形成された各磁極が、その「径方向内側に突出していると仮定したティース」の前を通過する際に生ずるトルクの脈動を示すものとして取り扱うことができる。
即ち、磁極次数成分のコギングトルクは、ロータ側の永久磁石11とステータ側のティース13とが、単独で相対する場合に生ずるトルクの脈動に等しい。従って、図8(a)に示すように、その値は、永久磁石11の磁極中心Cmがティース13の周方向中心Ctと正対する場合に「0」となる。
尚、図8(b)に示すように、ティース13の周方向中心Ctが、隣り合う二つの永久磁石11の各磁極中心Cm,Cm´の中間位置にある場合にも、その値は「0」となる。そして、永久磁石11の各磁極中心Cmが、これら図8(b)に示される位置と図8(a)に示される位置の中間にある場合(図7(a)(b)参照)において、それぞれ、その絶対値が最大となる。
つまり、磁極次数成分のコギングトルクの波形は、永久磁石11の磁極中心Cmが、ロータ12の回転により、図8(b)中、回転方向手前側(同図中、ティース13の右側)に示される当該位置から、回転方向進行側(同図中、ティース13の左側)において隣り合う永久磁石の磁極中心Cm´の位置に移動するまでが一周期となる。そして、当該磁極次数成分のコギングトルクは、永久磁石11がティース13に近づく場合に「正(+)」、遠ざかる場合に「負(−)」となることから、その値に基づいて永久磁石11の位置を特定することができる。
具体的には、図9に示すように、磁極次数成分のコギングトルクが正方向に変化し且つその値が「0」となった時点(同図中、点P1)における永久磁石11(の磁極中心Cm)の位置は、図8(b)中、ティース13の右側に示される位置である。そして、その後、当該磁極次数成分のコギングトルクの値が「最大」となった時点(同図中、点P2)における位置が、図7(a)に示される位置である。
更に、その後、負方向に変化するコギングトルクの値が「0」となった時点(同図中、点P3)における永久磁石11(の磁極中心Cm)の位置が、図8(a)に示される位置、即ちティース13の周方向中心Ctと正対する位置になる。そして、その値が「最小」(絶対値では最大)となった時点(同図中、点P4)における位置が、図7(b)に示される位置になる。
本実施形態では、このような関係に基づいて、その製作誤差に起因して「径方向内側に突出していると仮定可能なティース(仮想突出ティース)」を特定する。そして、そのコギングトルクの要因となった磁気アンバランスの相殺、即ちカウンターバランスとなる逆位相のコギングトルクを発生させるための加工を行なう「補正対象ティース」を決定する。
即ち、本実施形態では、図5に示すように、ステータ14側の隣り合う二つのティース13l,13aの中間位置(基準点Ps)とロータ12側の隣り合う二つの永久磁石11a,11bが形成する磁極の中間位置(基準点Pr)とを一致させることで、そのコギングトルク測定における基準の位置関係(機械角0°)が決定されている。従って、例えば、その測定開始から上記磁極次数成分のコギングトルク(図10参照、実線Lに示す波形)の値が「0」となる回転角(基準角α)を求めることにより、上記「仮想突出ティース」を特定することができる。
さらに詳述すると、本実施形態では、何れかの永久磁石11の磁極中心Cmと「仮想突出ティース」の周方向中心Ctとが正対する位置関係(図8(a)参照)が、そのティース特定における基準の位置関係とされている。そして、その磁極次数成分の値が「0」且つその変化の方向が負方向である場合において上記「基準の位置関係」にあるティース13が、上記「仮想突出ティース」として特定される。
即ち、図11に示すように、コギングトルクの測定開始時点における基準点Ps(図5参照)から回転方向進行側(図5中、反時計回り方向)に位置する各ティース13と、当該各ティース13よりも回転方向手前側(図5中、時計回り方向)において最も近い位置に存在する永久磁石11とがなす角度は、予め所定の値(初期角度β(βn))を有している。
具体的には、「10極12スロット」の構成を有する本実施形態のモータ10の場合、そのティース間角度が「30°」である。従って、図12に示すように、測定開始時点における基準点Psと、当該基準点Psから最も近いティース13aの周方向中心Ctaとがなす角度θsは、その半分、つまり「15°」になる。同様に、測定開始時点における基準点Pr(=Ps)と、当該基準点Prから最も近い永久磁石11aの磁極中心Cmaとがなす角度θrは、その磁石間角度「36°」の半分、つまり「18°」となる。そして、その磁極中心Cmaは、基準点Prから回転方向手前側(図5中、反時計回り方向)にあることから、これらティース13a及び永久磁石11a間の初期角度β(β1)は、その絶対値の合計、つまり「33°」となる。
そして、そのティース間角度と磁石間角度との差分は「6」であることから、これらティース13a及び永久磁石11aを測定開始時点における「第1番目」とした場合、その回転方向進行側(図5参照、反時計回り方向)における「第n番目」の組み合わせの初期角度βnは、図11に示すように「33−6(n−1)°」となる。
つまり、例えば、「第6番目」のティース13f(の周方向中心Ctf)及び永久磁石11f(の周方向中心Cmf)との初期角度β6は、上記の関係から「3°」となる(図13参照)。
尚、本実施形態では、図11に示されるような「第n番目」のティース及び永久磁石の初期角度βnが予め一覧表にまとめられている。そして、上記測定データから抽出された磁極次数成分に示される基準角α(図10参照)、即ちそのティース特定における基準の位置関係(図8(a)参照)に対応して磁極次数成分のコギングトルクが「0」となった角度を、上記各初期角度βnに参照することにより、その「仮想突出ティース」を特定する。
具体的には、例えば、図10に示す例では、その測定データから抽出された磁極次数成分(同図中、実線Lに示される波形)に示される基準角αが「33°」であることから、「第1番目」のティース13aを、その「仮想突出ティース」として特定することができる。そして、その基準角αが「3°」である場合(図13参照)には、同様に、上記「第6番目」のティース13aを、その「仮想突出ティース」として特定することができる。
ここで、「10極12スロット」構成の場合、その極数とスロット数(ティース数)の公約数は「2」である。従って、その「第n番目」のティース及び永久磁石の初期角度βnは、機械角「180°」、即ち「第6番目」までで一巡し、その「第n番目」の値と「第(n+6)番目」の値は、全く等しい値となる。そして、磁極次数成分(10次)のコギングトルクの一周期は「36°」である。
つまり、「10次」のコギングトルクは、「第n番目」のティースが突出している場合であっても「第(n+6)番目」を突出している場合であっても、同一の波形となる。従って、本実施形態のモータ10の場合、図11に示すように、その基準角αを「第1番目〜第6番目」の各初期角度β1〜β6に参照(近似)することにより、その「仮想突出ティース」を特定することができる。
また、図10に示すように、既に存在するコギングトルクを打ち消すためには、同図中の破線Mに示されるような逆位相のコギングトルク、つまり「1/2周期」位相がずれたコギングトルクを発生させればよい。そして、その逆位相のコギングトルクは、上記のように「仮想突出ティース」を基準として、その逆位相となる「1/2周期」に対応したティース13を加工することで発生させることができる。
即ち、本実施形態では、既存のコギングトルクとなる磁極数成分は「10次」、つまり上記「1/2周期」は「18°」であり、且つそのティース間角度は「30°」である。従って、その「補正対象ティース」は、上記「仮想突出ティース」から周方向に「90°」離れた位置、つまり周方向に「3つ」離れた位置にあるティース13となる。
具体的には、上記「第1番目」のティース13aが「仮想突出ティース」である場合(図5参照)、図11に示すように、その「補正対象ティース」の一つは、その回転方向進行側(図5参照、反時計回り方向)に3つ離れた「第4番目」のティース13dである。そして、もう一つは、その回転方向手前側(図5参照、時計回り方向)に3つ離れた「第10番目」のティース13jとなる。
尚、この場合における「90°」とは、上記「1/2周期」となる「18°」とティース間角度である「30°」との最小公倍数である。また、本実施形態では、図9に示すように、上記初期角度β(β1〜β6)ともに、当該初期角度β及び上記基準角αから特定される「補正対象ティース」が一覧表にまとめられている。そして、この一覧表を用いることにより、上記測定データから抽出された磁極次数成分のコギングトルクに基づいて、容易に、そのコギングトルクを低減するための加工を行なう「補正対象ティース」を決定することが可能となっている。
(補正対象ティースの加工方法)
次に、上記のように決定された補正対象ティースの加工方法について説明する。
図14及び図15(a)(b)に示すように、本実施形態では、上記のようにコギングトルクを低減すべく加工することが決定されたティース13、即ち「補正対象ティース」の加工は、同ティース13の先端に設けられたティースバー19、詳しくは、そのロータ12との対向面23に磁性体24を付加することにより行なわれる。
次に、上記のように決定された補正対象ティースの加工方法について説明する。
図14及び図15(a)(b)に示すように、本実施形態では、上記のようにコギングトルクを低減すべく加工することが決定されたティース13、即ち「補正対象ティース」の加工は、同ティース13の先端に設けられたティースバー19、詳しくは、そのロータ12との対向面23に磁性体24を付加することにより行なわれる。
詳述すると、本実施形態では、磁性体24には、鉄系金属が用いられるとともに、同磁性体24は、薄板状に形成されている。具体的には、対向面23の形状にあわせて湾曲板状に形成されている。
また、本実施形態では、対向面23には、上記回転軸15の軸線方向に沿って延びる複数(本実施形態では2本)の嵌合溝25が形成されるとともに、薄板状をなす磁性体24には、これら各嵌合溝25に対応する嵌合突部26が形成されている。そして、磁性体24は、その嵌合部としての各嵌合突部26を、対向面23に形成された被嵌合部としての各嵌合溝25に圧入することにより、同対向面23に固着される構成となっている。
ここで、本実施形態では、この「補正対象ティースの加工工程」を行なうに際し、予め、板厚の異なる複数の磁性体24が用意される。そして、上記コギングトルクの測定結果から特定される磁気アンバランスの程度に応じて、その付加する磁性体24の板厚を決定するようになっている。
即ち、図6及び図10に示すように、ステータ14の製作誤差に起因する磁気アンバランスは、その磁極次数成分の振幅Aに現れる。この点を踏まえ、本実施形態では、その振幅Aが大きいほど、より板厚の厚い磁性体24を選択する。そして、これにより、容易且つ効果的にカウンターバランスを図ることが可能となっている。
以上、本実施形態によれば、以下のような作用・効果を得ることができる。
(1)コギングトルクを低減すべく決定されたティース13の加工は、そのロータ12との対向面23に磁性体24を付加することにより行なわれる。
(1)コギングトルクを低減すべく決定されたティース13の加工は、そのロータ12との対向面23に磁性体24を付加することにより行なわれる。
上記構成によれば、その付加作業が容易、且つその配置スペースが巻線18の巻回領域を侵食しない。そして、コギングトルクの低減と引き換えに新たな励磁時のトルクリップルを引き起こすこともない。従って、その作業性及び静粛性を損なうことなく、より効果的にコギングトルクを低減することができるようになる。
(2)磁性体24は、薄板状に形成される。
上記構成によれば、その磁気アンバランスの程度に違いに対し、使用する磁性体24の板厚を代えることで容易且つ的確に対応することができる。加えて、同磁性体24を加工することによる微調整についても、容易にこれを行なうことができる。
上記構成によれば、その磁気アンバランスの程度に違いに対し、使用する磁性体24の板厚を代えることで容易且つ的確に対応することができる。加えて、同磁性体24を加工することによる微調整についても、容易にこれを行なうことができる。
(3)磁性体24には、嵌合突部26が形成される。そして、同磁性体24は、対向面23側に形成された嵌合溝25に対して、その嵌合突部26を圧入することにより、同対向面23に固着される。
上記構成によれば、容易且つ確実に、磁性体24を対向面23に付加することができる。
なお、上記実施形態は以下のように変更してもよい。
なお、上記実施形態は以下のように変更してもよい。
・上記実施形態では、本発明をEPS1の駆動源であるモータ10に具体化した。しかし、これに限らず、本発明は、EPS以外の用途に用いられるモータ、及び発電機を含む回転電機に適用してもよい。そして、そのステータとロータとの位置関係については、ロータが、ステータの外側に配置されるものであってもよい。
・また、EPSに具体化する場合、コラム型のEPSに限らず、その他、所謂ラックアシスト型やピニオン型のEPSに適用してもよい。
・上記実施形態では、モータ10は、「10極12スロット」の構成を有することとした。しかし、これに限らず、例えば「12極14スロット」等、その磁極数及びスロット数(ティース数)については、これに限るものではない。
・上記実施形態では、モータ10は、「10極12スロット」の構成を有することとした。しかし、これに限らず、例えば「12極14スロット」等、その磁極数及びスロット数(ティース数)については、これに限るものではない。
・上記実施形態では、対向面23に付加する磁性体24には、鉄系金属を用いることとした。しかし、これに限らず、その他の磁性材料を用いる構成であってもよい。
・上記実施形態では、各永久磁石11(11a〜11j)が、それぞれ一つずつ磁極を形成する構成とした。しかし、これに限らず、本発明は、例えば、リング磁石を用いる場合等、一の永久磁石が複数の磁極を形成する構成に具体化してもよい。
・上記実施形態では、各永久磁石11(11a〜11j)が、それぞれ一つずつ磁極を形成する構成とした。しかし、これに限らず、本発明は、例えば、リング磁石を用いる場合等、一の永久磁石が複数の磁極を形成する構成に具体化してもよい。
・上記実施形態では、「補正対象ティースの加工工程」を行なうに際しては、予め、板厚の異なる複数の磁性体24が用意し、その磁気アンバランスの程度に応じて、付加する磁性体24の板厚を決定することとした。しかし、これに限らず、平面部分の面積が異なる複数の磁性体24を用意しておいてもよい。
・上記実施形態では、磁性体24は、その嵌合部としての各嵌合突部26を、対向面23に形成された被嵌合部としての各嵌合溝25に圧入することにより、同対向面23に固着されることとした。しかし、これに限らず、例えば、接着により付加される構成であってもよい。
・また、被嵌合部は、必ずしも溝状でなくともよく、その数も複数である必要はない。また、嵌合部及び被嵌合部は、必ずしも同数でなくともよい。
・上記実施形態では、ステータ14側の隣り合う二つのティース13l,13aの中間位置(基準点Ps)とロータ12側の隣り合う二つの永久磁石11a,11bが形成する磁極の中間位置(基準点Pr)とを一致させることで、そのコギングトルク測定における基準の位置関係(機械角0°)が決定される(図5参照)。また、何れかの永久磁石11の磁極中心Cmと「仮想突出ティース」の周方向中心Ctとが正対する位置関係(図8(a)参照)が、そのティース特定における基準の位置関係とされることとした。しかし、コギングトルク測定及びティース特定における各基準の位置関係については、必ずしもこれに限るものではなく、それぞれ任意に設定してもよい。
・上記実施形態では、ステータ14側の隣り合う二つのティース13l,13aの中間位置(基準点Ps)とロータ12側の隣り合う二つの永久磁石11a,11bが形成する磁極の中間位置(基準点Pr)とを一致させることで、そのコギングトルク測定における基準の位置関係(機械角0°)が決定される(図5参照)。また、何れかの永久磁石11の磁極中心Cmと「仮想突出ティース」の周方向中心Ctとが正対する位置関係(図8(a)参照)が、そのティース特定における基準の位置関係とされることとした。しかし、コギングトルク測定及びティース特定における各基準の位置関係については、必ずしもこれに限るものではなく、それぞれ任意に設定してもよい。
具体的には、例えば、図8(b)に示されるように、ティース13の周方向中心Ctが、隣り合う二つの永久磁石11の各磁極中心Cm,Cm´の中間位置にある場合を、ティース特定において基準となる位置関係としてもよい。尚、このように「基準となる位置関係」の設定を変更した場合、図11に示される初期角度β(β1〜β6)は、適当な値に再設定する必要があることはいうまでもない。
・上記実施形態では、各ティース13の何れかを加工することにより、その抽出された磁極次数成分に示される磁気アンバランスの相殺(カウンターバランス)を図ることした。しかし、これに限らず、複数のティースについて、これを加工する構成であってもよい。
具体的には、例えば、「第1番目」のティース13aが「仮想突出ティース」である場合(図5参照)、「第4番目」のティース13d及び「第10番目」のティース13jの二つを「補正対象ティース」として、その加工を行なう構成であってもよい。このような構成としても同様な効果が得られる。
・上記実施形態では、モータ10は、分割コア連結型のステータを有することとしたが、そのステータが分割コア連結型である必要はない。
1…電動パワーステアリング装置(EPS)、10…モータ、11(11a〜11f)…永久磁石、12…ロータ、13(13a〜13l)…ティース、14…ステータ、21…分割コア、23…対向面、24…磁性体、25…嵌合溝、26…嵌合突部、α…基準角、β,βn,β1,β6…初期角度、Pr,Ps…基準点、θr,θs…角度、Cm,Cma…磁極中心、Ct,Cta…磁極中心、A…振幅。
Claims (5)
- 永久磁石が形成する複数の磁極を備えたロータと、前記ロータに対向して周方向に整列配置された複数のティースを備えたステータとを組み付けてなる回転電機の製造方法であって、
前記回転電機のコギングトルクを測定する工程と、
測定された前記コギングトルクを低減すべく前記ステータを加工する工程と有し、
前記ステータを加工する工程は、前記各ティースの少なくとも何れか一つについて、その前記ロータとの対向面に磁性体を付加することにより行なわれること、
を特徴とする回転電機の製造方法。 - 請求項1に記載の回転電機の製造方法において、
前記磁性体は薄板状に形成されてなること、
を特徴とする回転電機の製造方法。 - 請求項1又は請求項2に記載の回転電機の製造方法において、
前記各ティースの対向面及び前記磁性体には、嵌合部及び被嵌合部が形成されること、
を特徴とする回転電機の製造方法。 - 永久磁石が形成する複数の磁極を備えたロータと、前記ロータに対向して周方向に整列配置された複数のティースを備えたステータとを組み付けてなる回転電機であって、
前記各ティースの少なくとも何れか一つには、前記ロータとの対向面に付加的な磁性体が設けられること、を特徴とする回転電機。 - 請求項1〜請求項3の何れか一項に記載の回転電機の製造方法により製造されたモータを駆動源とする電動パワーステアリング装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009182533A JP2011036105A (ja) | 2009-08-05 | 2009-08-05 | 回転電機の製造方法、回転電機、及び電動パワーステアリング装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009182533A JP2011036105A (ja) | 2009-08-05 | 2009-08-05 | 回転電機の製造方法、回転電機、及び電動パワーステアリング装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011036105A true JP2011036105A (ja) | 2011-02-17 |
Family
ID=43764601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009182533A Pending JP2011036105A (ja) | 2009-08-05 | 2009-08-05 | 回転電機の製造方法、回転電機、及び電動パワーステアリング装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011036105A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014110760A (ja) * | 2012-12-03 | 2014-06-12 | New Motech Co Ltd | 可変磁束モータ |
JP2016072994A (ja) * | 2014-09-26 | 2016-05-09 | アイシン精機株式会社 | 回転電機 |
WO2017183656A1 (ja) * | 2016-04-19 | 2017-10-26 | 日本電産株式会社 | モータおよび電動パワーステアリング装置 |
-
2009
- 2009-08-05 JP JP2009182533A patent/JP2011036105A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014110760A (ja) * | 2012-12-03 | 2014-06-12 | New Motech Co Ltd | 可変磁束モータ |
JP2016072994A (ja) * | 2014-09-26 | 2016-05-09 | アイシン精機株式会社 | 回転電機 |
WO2017183656A1 (ja) * | 2016-04-19 | 2017-10-26 | 日本電産株式会社 | モータおよび電動パワーステアリング装置 |
JPWO2017183656A1 (ja) * | 2016-04-19 | 2019-02-21 | 日本電産株式会社 | モータおよび電動パワーステアリング装置 |
US10998782B2 (en) | 2016-04-19 | 2021-05-04 | Nidec Corporation | Motor and electric power steering apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4722309B2 (ja) | 回転電機及びこの回転電機を用いた滑車駆動装置 | |
JP5058849B2 (ja) | ブラシレスモータ | |
JP4723118B2 (ja) | 回転電機及びこの回転電機を用いた滑車駆動装置 | |
WO2012124372A1 (ja) | 永久磁石式回転電機 | |
US20120326547A1 (en) | Motor having rotor and method for manufacturing the rotor | |
JP2016063728A (ja) | ブラシレスモータ | |
JP2008011695A (ja) | モータ用回転子 | |
JP5892196B2 (ja) | レゾルバ装置、モータ及びアクチュエータ | |
JP5958439B2 (ja) | 回転子、および、これを用いた回転電機 | |
JP5920637B2 (ja) | 回転電機の回転子 | |
JP2018082600A (ja) | ダブルロータ型の回転電機 | |
JP2011036105A (ja) | 回転電機の製造方法、回転電機、及び電動パワーステアリング装置 | |
JP2010183648A (ja) | 永久磁石回転電機及びそれを用いた電動車両 | |
JP2001359266A (ja) | ブラシレスdcモータの構造 | |
EP1971010B1 (en) | Brush-less motor and electric power steering device having brush-less motor | |
JP2003250254A (ja) | 電動パワーステアリング装置用永久磁石型ブラシレスモータ | |
JP5363136B2 (ja) | ブラシレスモータ | |
JP2006109611A (ja) | 複合3相ハイブリッド型回転電機 | |
JPH08205499A (ja) | 同期電動機 | |
JP5667803B2 (ja) | 回転電機の回転子 | |
JP4482918B2 (ja) | リング状の固定子コイルを有する永久磁石型電動機 | |
JPH1169679A (ja) | 永久磁石形モータ | |
JP4466275B2 (ja) | 永久磁石式回転電機及び永久磁石式回転電機の製造方法 | |
JP5940354B2 (ja) | 電動パワーステアリングシステム用モータのロータ及び電動パワーステアリングシステム用モータ | |
JP2016178863A (ja) | 車両用ブラシレスモータ |