WO2012124372A1 - 永久磁石式回転電機 - Google Patents

永久磁石式回転電機 Download PDF

Info

Publication number
WO2012124372A1
WO2012124372A1 PCT/JP2012/050989 JP2012050989W WO2012124372A1 WO 2012124372 A1 WO2012124372 A1 WO 2012124372A1 JP 2012050989 W JP2012050989 W JP 2012050989W WO 2012124372 A1 WO2012124372 A1 WO 2012124372A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet type
rotor
type rotating
current
rotating electrical
Prior art date
Application number
PCT/JP2012/050989
Other languages
English (en)
French (fr)
Inventor
信一 山口
詠吾 十時
伊藤 正人
大輔 西島
敏則 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020137026035A priority Critical patent/KR101506417B1/ko
Priority to JP2013504586A priority patent/JP5329005B2/ja
Priority to US14/005,429 priority patent/US9537380B2/en
Priority to DE112012001251T priority patent/DE112012001251T5/de
Priority to CN201280013582.6A priority patent/CN103444053B/zh
Priority to TW101102492A priority patent/TWI462435B/zh
Publication of WO2012124372A1 publication Critical patent/WO2012124372A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • This invention relates to a permanent magnet type rotating electrical machine that can detect the position of a rotor without a sensor (can be driven without a rotation sensor).
  • an embedded magnet type motor having saliency is used (for example, Patent Document 2).
  • a permanent magnet is embedded in a rotor core, and the stator core is formed as an integral structure, which is an opening shape, so that the initial magnetic pole position at the time of power-on can be detected.
  • Patent Document 2 when the stator core has an integral structure, the state of magnetic saturation inside the core is easily changed by the load current of the motor. For this reason, the magnitude of the inductance of the motor changes depending on the load current, resulting in an increase in position detection error or step-out during sensorless driving, and there is a problem that it cannot be applied to positioning control.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a permanent magnet type rotating electrical machine capable of detecting the position of a rotor with high accuracy during sensorless driving.
  • a permanent magnet type rotating electrical machine includes a rotor having a plurality of magnetic poles arranged at equal intervals, and a stator having a plurality of teeth and armature windings, and torque is applied to the armature windings.
  • This is a permanent magnet type rotating electrical machine in which a high frequency voltage having a different frequency and amplitude is applied to the voltage to be generated, and the magnetic pole position of the rotor is estimated using a current locus of the measured high frequency current.
  • the permanent magnet type rotating electrical machine of the present invention when the high frequency current measured when the high frequency voltage is applied is dq converted, the current locus on the dq axis becomes an elliptical shape, and the load current and rotation The angle variation width of the major axis of the ellipse with respect to the child position is formed so as to obtain a predetermined position estimation resolution. Therefore, it is possible to obtain a permanent magnet type rotating electrical machine that can detect the position of the rotor with high accuracy during sensorless driving.
  • the slot opening ratio, the salient pole ratio of the rotating electrical machine corresponding to the ratio of the major axis to the minor axis of the current locus, and the major axis of the current locus ellipse It is explanatory drawing which shows the relationship with the fluctuation
  • FIG. 1 is a general explanatory diagram showing a method for detecting the magnetic pole position of a permanent magnet type rotating electrical machine.
  • a permanent magnet type rotating electrical machine is applied with a driving voltage superimposed with a high frequency voltage for detecting the magnetic pole position, and the magnetic pole position is estimated by processing the measured current waveform of each phase current. .
  • the ideal inductance distribution is an ideal sine wave shape having a vibration component of 2 times at an electrical angle of 360 degrees, and does not cause phase shift or distortion even when the load current changes. It is. Therefore, the current waveform with respect to the rotor position at the time of applying the high frequency voltage also has an ideal sine wave shape having a vibration component twice at an electrical angle of 360 degrees.
  • the inductance distribution does not cause a phase shift or distortion depending on the load current, so that when the load current is energized, an ellipse shifted in the q-axis direction that is the drive current direction. A trajectory will be drawn. However, after the q-axis current offset processing for the drive current is performed, the current locus becomes the same elliptical locus both when there is no load and when it is loaded.
  • FIG. 4 shows an actual inductance distribution obtained as a result of the investigation on the rotor position of an actual permanent magnet type rotating electrical machine.
  • the actual inductance distribution includes a high frequency component (distortion component) in the inductance distribution, and thus has a shape different from an ideal sine wave shape, and the magnitude of the amplitude of the inductance distribution depends on the magnitude of the energization current. It can be seen that a phase shift occurs.
  • the current locus after the offset processing for the drive current is performed is shown in FIG.
  • FIG. 6 in an actual permanent magnet type rotating electrical machine, the ellipse is inclined even when there is no load due to the non-sinusoidal inductance (the major axis of the ellipse rotates), and the ellipse is further inclined during load. You can see that it changes.
  • an error at the time of magnetic pole position estimation becomes large, and positioning control cannot be executed with high accuracy.
  • a permanent magnet type rotating electrical machine that applies a high frequency voltage having a frequency and amplitude different from a voltage for generating torque to the armature winding and estimates the magnetic pole position of the rotor using a current locus of the high frequency current.
  • the motor performance condition (current response condition) necessary for the rotation sensorless drive is clarified based on the sensorless drive theory described above.
  • the current response conditions required for the rotation sensorless drive must satisfy the following conditions 1 to 3 at the same time. I understood.
  • condition 1 the current locus on the dq axis of the high-frequency current has an elliptical shape
  • the error of the normal sensor is about ⁇ 3%.
  • the ratio of the major axis to the minor axis of the ellipse (motor salient pole ratio) is 5% or less, in the worst case, the difference between the currents on the dq axis is buried in the sensor error, and the position is estimated. May not be able to run.
  • the elliptical shape of the current locus corresponds to the fact that the inductance distribution has a fundamental wave component, and corresponds to the fact that the permanent magnet type rotating electrical machine has saliency.
  • condition 2 reducing the angular fluctuation range of the major axis of the ellipse with respect to the load current
  • the magnetic field analysis of the permanent magnet type rotating electrical machine and the simulation of the rotation sensorless drive resulted in the angular fluctuation range of the load current. Is proportional to the number of pole pairs of the motor and inversely proportional to the resolution of the magnetic pole position detection and the torque pulsation rate of the motor.
  • the q-axis current also has a fluctuation of ⁇ B / 2 during a constant speed control. appear. Therefore, it is necessary to set the position error so as to be within the range of the magnetic pole position detection resolution A, and the condition can be expressed by the following equation (1).
  • the fluctuation range H of the inclination of the ellipse at no load and at the rated load needs to be a value represented by the following equation (2).
  • the fluctuation range S with respect to the long axis rotor position of the current locus ellipse needs to be a value represented by the following equation (4).
  • the above description is the current response condition of the motor suitable for the rotation sensorless drive.
  • the target resolution in the rotation sensorless drive is 200 pulses / rotation or more
  • the motor torque pulsation width is 0.1 (10%)
  • the inductance distribution has a non-sinusoidal shape due to the generation of harmonic components accompanying magnetic saturation and slots, so the magnetic structure for optimizing the inductance distribution was unknown. Therefore, for the permanent magnet type rotating electric machine suitable for the rotation sensorless drive that satisfies all the above conditions 1 to 3 at the same time, the rotor and stator shapes were examined by magnetic field analysis. A representative example of the result of magnetic field analysis is shown in FIG.
  • FIG. 7 shows that it is necessary to select the IPM structure in order to satisfy the condition 1.
  • a 10-pole 12-slot structure may be selected with the SPM structure.
  • the saliency of condition 1 cannot be ensured, so that it cannot be applied to rotation sensorless driving.
  • a permanent magnet type rotating electrical machine that can satisfy all of the conditions 1 to 3 simultaneously has an IPM structure, 10 poles and 12 slots, and a slot opening width ratio of 0.6 or more. I understood.
  • the structure of the permanent magnet type rotating electrical machine according to the first embodiment of the present invention will be described in detail.
  • FIG. 8 is a cross-sectional view showing the structure of the permanent magnet type rotating electric machine according to Embodiment 1 of the present invention.
  • this permanent magnet type rotating electrical machine includes a stator 10 and a rotor 20.
  • the stator 10 has a stator core 11 and an armature winding 12, and the rotor 20 has a rotor core 21 and a permanent magnet 22.
  • the permanent magnets 22 are inserted into ten holes provided at equal intervals in the circumferential direction on the inner side of the outer peripheral surface of the rotor core 21.
  • a stator core 11 having cylindrical teeth provided with an armature winding 12 that generates a rotating magnetic field for rotating the rotor 20 is divided into N stator blocks in the circumferential direction.
  • the stator core 11 is set so as to satisfy the following expression (5).
  • FIG. 9 shows the relationship between the slot opening ratio and the phase shift (inductance phase shift) between the major axis at the time of no load and the major axis at the time of loading of the current locus ellipse by magnetic field analysis.
  • the relationship between the slot opening ratio, the salient pole ratio of the rotating electrical machine corresponding to the ratio of the major axis to the minor axis of the current locus, and the variation of the major axis of the current locus ellipse with respect to the rotor position is calculated.
  • the slot opening ratio was a value represented by the following equation (6).
  • the phase shift between the no-load major axis and the loaded major axis of the current trajectory ellipse is reduced while ensuring the ratio of the major axis to the minor axis of the current locus ellipse of 1.06 or more.
  • the slot opening ratio is optimally 0.6 or more. This is because by increasing the slot opening ratio, the slot leakage magnetic flux can be reduced, and the change in the state of magnetic saturation inside the stator core 11 due to the load current and the rotor position can be suppressed. .
  • the lower limit value of the slot opening ratio is set to 0.6.
  • the slot opening ratio is further increased, the ratio between the major axis and the minor axis of the ellipse of the current locus becomes larger, and the current locus ellipse is reduced. It is possible to reduce the phase shift between the long axis under load and the long axis under load, and to reduce the fluctuation of the long axis of the current locus ellipse with respect to the rotor position. Therefore, it can be seen that the closer the slot opening ratio is to 1.0, the more suitable the motor is for rotation sensorless driving.
  • the circumferential size Lb of the teeth is set to satisfy the following equation (7), where D is the inner diameter dimension of the stator core 11 and N is the number of circumferential divisions of the stator block.
  • FIG. 11 shows the calculated values.
  • the slot opening ratio was a value represented by the following equation (8).
  • the ratio of the major axis to the minor axis of the ellipse of the current locus is the teeth width ratio.
  • the number increases rapidly at 0.57 or less. This is because the change in the state of magnetic saturation inside the stator core 11 due to the load current and the rotor position can be suppressed by reducing the teeth width ratio. It can be seen that the motor is suitable for sensorless driving.
  • Embodiment 1 of the present invention the stator core 11 is divided in the circumferential direction, and the magnetic characteristics in the divided portion of the stator 10 are also deteriorated, so that the iron core can be stably magnetically saturated. Also by this, the change of the magnetic saturation state in the stator core 11 due to the load current and the rotor position can be suppressed.
  • stable magnetic saturation of the iron core suppresses changes in the state of magnetic saturation inside the stator core 11, and the current locus ellipse has a long axis at no load and a long axis at load.
  • the phase shift can be reduced, and the fluctuation of the long axis of the current locus ellipse with respect to the rotor position can be reduced.
  • P and N are set so that P / (the greatest common divisor of P and N) is an odd number.
  • the current locus on the dq axis becomes elliptical, and the load current and rotation
  • the angle variation width of the major axis of the ellipse with respect to the child position is formed so as to obtain a predetermined position estimation resolution. Therefore, it is possible to obtain a permanent magnet type rotating electrical machine that can detect the position of the rotor with high accuracy during sensorless driving.
  • FIG. FIG. 12 is a cross-sectional view showing the structure of the permanent magnet type rotating electric machine according to the second embodiment of the present invention.
  • R0 and R1 are set to satisfy R0> R1.
  • the magnetomotive high-frequency magnetic flux of the rotor 20 can be reduced, and the fluctuation of the major axis of the current locus ellipse with respect to the rotor position can be reduced.
  • the position dependency of the inductance can be further reduced.
  • the magnetic pole position can be estimated without using a motor rotation detecting device such as an optical encoder or a resolver. Therefore, it is possible to reduce the number of parts and failure elements, and it is possible to achieve high reliability and cost reduction. It is also possible to use in combination with an optical encoder or resolver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Control Of Ac Motors In General (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 センサレス駆動時に回転子の位置を高精度に検出することができる永久磁石式回転電機を得る。 複数の磁極が等間隔に配置された回転子と、複数のティースおよび電機子巻線を有する固定子と、を備え、電機子巻線に、トルクを発生させるための電圧とは周波数および振幅の異なる高周波電圧が印加され、測定された高周波電流の電流軌跡を用いて回転子の磁極位置が推定される永久磁石式回転電機であって、測定された高周波電流をdq変換した場合に、dq軸上での電流軌跡が楕円形状になるとともに、負荷電流および回転子位置に対する楕円の長軸の角度変動幅が所定の位置推定分解能を得られるように形成されているものである。

Description

永久磁石式回転電機
 この発明は、センサレスで回転子の位置を検出可能な(回転センサレス駆動可能な)永久磁石式回転電機に関する。
 近年、永久磁石型モータ等の永久磁石式回転電機について、信頼性の向上、コストの低減および小型化が求められている。そこで、これらの要求に応えるべく、光学式エンコーダやレゾルバ等といったモータの回転検出装置を不要とする回転センサレス駆動技術が開発されている。
 永久磁石式回転電機の回転センサレス駆動方式の1つとして、モータが回転していない状態でもモータの磁極位置を推定可能な高周波重畳方式が提案されている(例えば、特許文献1参照)。高周波重畳方式では、モータの電機子巻線に、トルクを発生させるための電圧とは別の高周波電圧を印加し、モータのインダクタンスの回転子位置依存性(突極性)に起因するd軸電流とq軸電流との差を用いて回転子の位置検出を実行する。
 また、高周波重畳方式に適用されるモータとして、すなわちモータのインダクタンスの回転子位置依存性(突極性)を用いた回転センサレス駆動用モータとして、突極性を有する埋め込み磁石型モータが用いられる(例えば、特許文献2参照)。この埋め込み磁石型モータでは、永久磁石を回転子鉄心内に埋設し、固定子鉄心を一体構造とし、オープニング形状とすることにより、電源投入時の初期磁極位置を検出可能としている。
国際公開2009/040965号 特開2004-056871号公報
 特許文献1に示された高周波重畳方式では、永久磁石式回転電機が理想的なインダクタンス分布を有する、すなわちd軸電流およびq軸電流が描く楕円軌跡が、負荷や回転子位置によって変化しないと想定して、回転子の位置検出を実行している。しかしながら、実際の永久磁石式回転電機は、理想的なインダクタンス分布を有しないので、磁極位置の推定誤差が大きく、位置決め制御を高精度に実行することができないという問題がある。
 また、光学式エンコーダやレゾルバ等といったモータの回転検出装置を不要とする回転センサレス駆動技術を実現するためには、電源投入時だけでなく、モータ駆動時(モータ負荷電流を通電する負荷時)にも回転子の位置検出を実行する必要がある。
 これに対して、特許文献2に示されたように、固定子鉄心を一体構造とした場合には、モータの負荷電流によって鉄心内部の磁気飽和の状態が変化し易くなる。そのため、モータのインダクタンスの大きさが負荷電流によって変化することとなり、センサレス駆動時の位置検出誤差の増大や脱調等を招き、位置決め制御に適用することができないという問題もある。
 この発明は、上記のような課題を解決するためになされたものであり、センサレス駆動時に回転子の位置を高精度に検出することができる永久磁石式回転電機を得ることを目的とする。
 この発明に係る永久磁石式回転電機は、複数の磁極が等間隔に配置された回転子と、複数のティースおよび電機子巻線を有する固定子と、を備え、電機子巻線に、トルクを発生させるための電圧とは周波数および振幅の異なる高周波電圧が印加され、測定された高周波電流の電流軌跡を用いて回転子の磁極位置が推定される永久磁石式回転電機であって、測定された高周波電流をdq変換した場合に、dq軸上での電流軌跡が楕円形状になるとともに、負荷電流および回転子位置に対する楕円の長軸の角度変動幅が所定の位置推定分解能を得られるように形成されているものである。
 この発明に係る永久磁石式回転電機によれば、高周波電圧を印加した際に測定された高周波電流をdq変換した場合に、dq軸上での電流軌跡が楕円形状になるとともに、負荷電流および回転子位置に対する楕円の長軸の角度変動幅が所定の位置推定分解能を得られるように形成されている。
 そのため、センサレス駆動時に回転子の位置を高精度に検出することができる永久磁石式回転電機を得ることができる。
一般的な永久磁石式回転電機のセンサレス駆動時における磁極位置の検出方法を示す説明図である。 永久磁石式回転電機の回転子位置に対する理想的なインダクタンス分布を示す説明図である。 理想的なインダクタンス分布を有する永久磁石式回転電機に、高周波電圧が重畳された駆動電圧を印加した場合の、dq軸上の電流軌跡を示す説明図である。 実際の永久磁石式回転電機の回転子位置に対する実際のインダクタンス分布を示す説明図である。 実際のインダクタンス分布を有する永久磁石式回転電機に、高周波電圧が重畳された駆動電圧を印加した場合の、dq軸上の電流軌跡を示す説明図である。 実際のインダクタンス分布を有する永久磁石式回転電機に、高周波電圧が重畳された駆動電圧を印加した場合の、dq軸上の電流軌跡において、dq軸電流の直流分のオフセット処理が施された後の電流軌跡を示す説明図である。 回転子および固定子形状をパラメータとし、磁界解析により永久磁石式回転電機の回転センサレス駆動への適用検討を実行した結果の代表例を示す説明図である。 この発明の実施の形態1に係る永久磁石式回転電機の構造を示す断面図である。 この発明の実施の形態1に係る永久磁石式回転電機におけるスロット開口比と、電流軌跡楕円の無負荷時の長軸と負荷時の長軸との位相ずれとの関係を示す説明図である。 この発明の実施の形態1に係る永久磁石式回転電機におけるスロット開口比と、電流軌跡の楕円の長軸と短軸との比に相当する回転電機の突極比および電流軌跡楕円の長軸の回転子位置に対する変動との関係を示す説明図である。 この発明の実施の形態1に係る永久磁石式回転電機におけるティース幅比と、電流軌跡の楕円の長軸と短軸との比に相当する回転電機の突極比および電流軌跡楕円の長軸の回転子位置に対する変動との関係を示す説明図である。 この発明の実施の形態2に係る永久磁石式回転電機の構造を示す断面図である。
 以下、この発明に係る永久磁石式回転電機の好適な実施の形態につき図面を用いて説明するが、各図において同一または相当する部分については、同一符号を付して説明する。
 実施の形態1.
 まず、図1を参照しながら、永久磁石式回転電機のセンサレス駆動時における磁極位置の検出方法について説明する。図1は、永久磁石式回転電機の磁極位置の検出方法を示す一般的な説明図である。図1において、永久磁石式回転電機には、磁極位置検出用の高周波電圧が重畳された駆動電圧が印加され、測定された各相電流の電流波形を処理することによって、磁極位置が推定される。
 続いて、永久磁石式回転電機の回転子位置に対する理想的なインダクタンス分布を図2に示す。図2において、理想的なインダクタンス分布は、電気角度360度で2回の振動成分を有する理想的な正弦波形状であり、負荷電流の大きさが変化しても位相ずれや歪みの発生しない形状である。そのため、高周波電圧印加時の回転子位置に対する電流波形も、電気角度360度で2回の振動成分を有する理想的な正弦波形状となる。
 ここで、図2に示したような理想的なインダクタンス分布を有する永久磁石式回転電機に、磁極位置検出用の高周波電圧が重畳された駆動電圧を印加した場合において、測定された電流をdq軸に座標変換すると、電流軌跡は図3のようになる。すなわち、電流軌跡は、インダクタンスの回転子位置の変動に応じて変化するので、dq軸に対して楕円軌跡を描くこととなる。なお、図3において、楕円の長軸と短軸との比は、突極比を示している。
 さらに、理想的なインダクタンス分布を有する永久磁石式回転電機では、負荷電流によってはインダクタンス分布の位相ずれや歪みが発生しないので、負荷電流通電時には、駆動電流方向であるq軸方向にシフトされた楕円軌跡を描くこととなる。ただし、駆動電流分のq軸電流のオフセット処理が施された後は、無負荷時および負荷時ともに、電流軌跡は、同様の楕円軌跡となる。
 なお、上述したように、実際の永久磁石式回転電機は、理想的なインダクタンス分布を有しないので、磁極位置の推定誤差が大きく、位置決め制御を高精度に実行することができない。そこで、実際の永久磁石式回転電機の回転子位置に対する調査の結果得られた実際のインダクタンス分布を図4に示す。
 図4において、実際のインダクタンス分布は、インダクタンス分布に高周波成分(歪み成分)が含まれるので、理想的な正弦波形状とは異なる形状になるとともに、通電電流の大きさによってインダクタンス分布の振幅の大きさが減少し、位相ずれが発生していることが分かる。
 さらに、永久磁石式回転電機の回転子位置に対するインダクタンス分布が図4のようになる場合、測定された高周波電流をdq軸に座標変換すると、電流軌跡は図5のようになる。すなわち、高周波電流による電流軌跡は、インダクタンスの変動に応じて変化するので、dq軸に対して楕円軌跡を描くこととなる。
 また、負荷電流による楕円形状の変化に注目するために、駆動電流分のオフセット処理が施された後の電流軌跡を図6に示す。図6より、実際の永久磁石式回転電機では、インダクタンスの非正弦波化により、無負荷時においても楕円に傾きが生じる(楕円の長軸が回転する)とともに、負荷時には、楕円の傾きがさらに変化することが分かる。これにより、実際の永久磁石式回転電機では、磁極位置推定時の誤差が大きくなり、位置決め制御を高精度に実行することができない。
 ここで、電機子巻線に、トルクを発生させるための電圧とは周波数や振幅の異なる高周波電圧を印加し、高周波電流の電流軌跡を用いて回転子の磁極位置を推定する永久磁石式回転電機において、高精度に磁極位置を推定し、高精度な位置決め制御を実行するためには、インダクタンス分布を、負荷電流や回転子位置に関係なく理想的な正弦波分布とすることが必要である。
 しかしながら、実際のインダクタンス分布は、正弦波形状ではなく、負荷によって位相ずれが発生するので、インダクタンス分布を完全な正弦波形状とすることは困難である。そこで、この発明の実施の形態1では、上述したセンサレス駆動理論に基づいて、回転センサレス駆動に必要なモータ性能条件(電流応答条件)の明確化を図った。
 すなわち、永久磁石式回転電機の磁界解析および回転センサレス駆動のシミュレーションを実施した結果、回転センサレス駆動に必要な電流応答条件としては、以下の1~3の各条件を同時に満足する必要があることが分かった。
 具体的には、電機子巻線に、トルクを発生させるための電圧とは周波数や振幅の異なる高周波電圧を印加し、測定された高周波電流をdq変換した場合に、dq軸上での電流軌跡が楕円形状になること(条件1)、負荷電流に対する楕円の長軸の角度変動幅を所定の位置推定分解能が得られるように低減すること(条件2)および回転子位置に対する楕円の長軸の角度変動幅を所定の位置推定分解能が得られるように低減すること(条件3)、を満足する必要がある。
 まず、条件1(高周波電流のdq軸上の電流軌跡が楕円形状になること)については、使用する電流センサの性能に依存するが、通常のセンサの誤差が±3%程度であることを考慮すると、楕円の長軸と短軸との比(モータの突極比)を、6%以上となるように設定する必要がある。
 ここで、楕円の長軸と短軸との比(モータの突極比)が5%以下となると、最悪の場合には、dq軸の電流の差がセンサの誤差に埋もれてしまい、位置推定を実行することができなくなる可能性がある。なお、電流軌跡を楕円形状とすることは、インダクタンス分布が基本波成分を有するということであり、永久磁石式回転電機が突極性を有するということに対応している。
 続いて、条件2(負荷電流に対する楕円の長軸の角度変動幅を低減すること)については、永久磁石式回転電機の磁界解析および回転センサレス駆動のシミュレーションを実施した結果、負荷電流の角度変動幅がモータの極対数に比例し、磁極位置検出の分解能およびモータのトルク脈動率に反比例することが分かった。
 負荷電流によって楕円の傾き角度が変化する場合、制御によって変動分の補正が実行される。例えば、無負荷時と定格負荷時との楕円の傾き角度の変化量の差がL度である場合には、楕円の傾きの補正量Δθは、Δθ=L×q軸電流となる。
 一方、永久磁石式回転電機は、正弦波電流を通電しても、誘起電圧の高調波成分が存在することにより、トルク脈動が発生する。そのため、負荷トルクが一定であっても、トルク脈動を有する場合には、速度一定制御を実行するために、q軸電流にはトルクリップル分を補償するような電流成分が重畳されることとなる。
 例えば、脈動幅B(±B/2)のトルク脈動を有する永久磁石式回転電機の場合には、速度一定制御時にq軸電流も±B/2の変動を有することとなり、これによって位置誤差が発生する。そこで、この位置誤差を磁極位置検出分解能Aの範囲内に収まるように設定する必要があり、その条件は次式(1)で表すことができる。
 H×B/2≦360/A×極対数              (1)
 したがって、目標とする磁極位置検出分解能Aを得るための、無負荷時および定格負荷時の楕円の傾きの変動幅Hは、次式(2)で表される値とする必要がある。
  H≦360/A×極対数/B/2=360/A/B×磁極数 (2)
 なお、上記の説明は、q軸電流の大きさに比例して補正を実行することを前提としているが、制御ゲインの大きさも影響し、制御ゲインを十分に大きくすることができない場合には、補正を実行することができず、式(2)の変動幅Hでも目標とする磁極位置検出分解能を得ることができない場合があった。発明者のこれまでの検討結果より、一般的な補正ゲインでは、無負荷時および定格負荷時の楕円の傾きの変動幅を、式(2)のおよそ1/3以下にすることが必要である。
 次に、条件3(回転子位置に対する楕円の長軸の角度変動幅を低減すること)については、永久磁石式回転電機の磁界解析および回転センサレス駆動のシミュレーションを実施した結果、回転子位置の角度変動幅がモータの対極数に比例し、磁極位置検出の分解能に反比例することが分かった。電流軌跡楕円の長軸の回転子位置に対する変動幅をS度とすると、次式(3)が成立する。
  A≦360/S/2×極対数               (3)
 したがって、目標とする磁極位置検出分解能Aを得るためには、電流軌跡楕円の長軸の回転子位置に対する変動幅Sは、次式(4)で表される値とする必要がある。
  S≦360×2×極対数/A=360/A×磁極数     (4)
 上記の説明が、回転センサレス駆動に適したモータの電流応答条件であるが、回転センサレス駆動での目標分解能を200パルス/1回転以上、モータのトルク脈動幅を0.1(10%)、対極数を5とすると、以下が具体的な電流応答条件となる。すなわち、無負荷時および定格負荷時の楕円の傾きの変動幅Hが、H≦360/200/0.1×5/3=30度以下、かつ電流軌跡楕円の長軸の回転子位置に対する変動幅SがS≦360/200×5=9度以下となるようにモータを設計することが必要となる。
 ここで、永久磁石式回転電機の設計では、高トルク化やコグングトルクおよびトルクリップルの低減を目的とする磁気構造について多くの検討がなされているものの、インダクタンス分布をより正弦波に近づけることにより、負荷電流や回転子位置による変動を低減する磁気構造については、ほとんど検討されていない。
 特に、インダクタンス分布は、磁気飽和やスロットに伴う高調波成分の発生により非正弦波形状となるので、インダクタンス分布を最適化するための磁気構造は不明であった。そこで、上述した条件1~3をすべて同時に満足する、回転センサレス駆動に適した永久磁石式回転電機について、磁界解析により回転子および固定子形状について検討を実行した。磁界解析の結果の代表例を図7に示す。
 図7より、条件1を満足するためには、IPM構造を選定することが必要であることが分かる。一方、条件2および条件3を満足するためには、SPM構造で10極12スロット構造を選定すればよいことが分かる。しかしながら、SPM構造では、条件1の突極性を確保することができないので、回転センサレス駆動に適用することができない。
 そこで、ロータ構造および極スロット数に加えて、スロット開口比についても着目し、磁界解析を実行した。その結果、条件1~3をすべて同時に満足することができる永久磁石式回転電機は、IPM構造で、10極12スロットとし、スロット開口幅比を0.6以上とすることが必要であることが分かった。以下、この発明の実施の形態1に係る永久磁石式回転電機の構造について詳細に説明する。
 図8は、この発明の実施の形態1に係る永久磁石式回転電機の構造を示す断面図である。図8において、この永久磁石式回転電機は、固定子10および回転子20を備えている。固定子10は、固定子鉄心11および電機子巻線12を有し、回転子20は、回転子鉄心21および永久磁石22を有している。ここで、永久磁石22は、回転子鉄心21の外周面よりも内側に、周方向に等間隔に設けられた10個の孔に挿入されている。
 回転子20を回転させるための回転磁界を発生する電機子巻線12が設けられた円筒形状のティースを有する固定子鉄心11は、周方向にN個の固定子ブロックに分割されている。このとき、周方向に隣り合う固定子鉄心11の先端部間の周方向隙間をLaとし、ティースの周方向の大きさをLbとし、固定子鉄心11の内径寸法をDとすると、固定子鉄心11の先端部間の周方向隙間Laが、次式(5)を満足するように設定されている。
  0.6<La/(πD/N-Lb)<1.0        (5)
 ここで、磁界解析により、スロット開口比と、電流軌跡楕円の無負荷時の長軸と負荷時の長軸との位相ずれ(インダクタンスの位相ずれ)との関係を算出したものを図9に示す。また、スロット開口比と、電流軌跡の楕円の長軸と短軸との比に相当する回転電機の突極比および電流軌跡楕円の長軸の回転子位置に対する変動との関係を算出したものを図10に示す。なお、スロット開口比は、次式(6)で表される値とした。
  La/(πD/N-Lb)                (6)
 図9、10より、電流軌跡の楕円の長軸と短軸との比を1.06以上確保しつつ、電流軌跡楕円の無負荷時の長軸と負荷時の長軸との位相ずれを低減し、電流軌跡楕円の長軸の回転子位置に対する変動を低減するためには、スロット開口比を0.6以上とすることが最適であることが分かる。これは、スロット開口比を大きくすることにより、スロット漏れ磁束を低減させることができ、負荷電流や回転子位置による固定子鉄心11内部における磁気飽和の状態の変化を抑制することができるためである。
 ここでは、スロット開口比の下限値を0.6としたが、スロット開口比は、さらに大きくした方が、電流軌跡の楕円の長軸と短軸との比が大きくなり、電流軌跡楕円の無負荷時の長軸と負荷時の長軸との位相ずれを低減し、電流軌跡楕円の長軸の回転子位置に対する変動を低減することができる。そのため、スロット開口比が1.0に近いほど、回転センサレス駆動に適したモータとなることが分かる。
 さらに、ティースの周方向の大きさLbは、固定子鉄心11の内径寸法をD、固定子ブロックの周方向分割数をNとすると、次式(7)を満足するように設定されている。
  0.57<Lb/(πD/N)              (7)
 ここで、磁界解析により、ティース幅比と、電流軌跡の楕円の長軸と短軸との比に相当する回転電機の突極比および電流軌跡楕円の長軸の回転子位置に対する変動との関係を算出したものを図11に示す。なお、スロット開口比は、次式(8)で表される値とした。
  Lb/(πD/N)                   (8)
 図11より、ティース幅比が変化しても、電流軌跡楕円の長軸の回転子位置に対する変動は、ほとんど変化しないものの、電流軌跡の楕円の長軸と短軸との比は、ティース幅比が0.57以下となるところで急増していることが分かる。これは、ティース幅比を小さくすることで、負荷電流や回転子位置による固定子鉄心11内部における磁気飽和の状態の変化を抑制することができるためであり、ティース幅比ができるだけ小さいほど、回転センサレス駆動に適したモータとなることが分かる。
 また、鉄心は、打ち抜きにより加工歪や残留応力が発生するので、磁気特性が劣化する。そのため、この発明の実施の形態1では、固定子鉄心11を周方向に分割し、固定子10の分割部における磁気特性をも劣化させることにより、鉄心を安定的に磁気飽和させることができる。このことによっても、負荷電流や回転子位置による固定子鉄心11内部における磁気飽和の状態の変化を抑制することができる。
 以上のように、鉄心を安定的に磁気飽和させることにより、固定子鉄心11内部における磁気飽和の状態の変化を抑制し、電流軌跡楕円の無負荷時の長軸と負荷時の長軸との位相ずれを低減し、電流軌跡楕円の長軸の回転子位置に対する変動を低減することができる。
 また、永久磁石式回転電機の磁極数をPとし、スロット数をNとすると、PおよびNを、P/(PとNとの最大公約数)が奇数となるように設定している。これにより、回転子位置に対する電流軌跡楕円の長軸の変動を低減することができる。また、永久磁石式回転電機の故障要因としては、軸受けの電食が挙げられるが、PおよびNを上記のように設定することにより、軸に発生する電圧の発生を回避することができ、より回転センサレス駆動に適したモータとなる。また、インダクタンスの位置依存性を低減することができる。
 以上のように、実施の形態1によれば、高周波電圧を印加した際に測定された高周波電流をdq変換した場合に、dq軸上での電流軌跡が楕円形状になるとともに、負荷電流および回転子位置に対する楕円の長軸の角度変動幅が所定の位置推定分解能を得られるように形成されている。
 そのため、センサレス駆動時に回転子の位置を高精度に検出することができる永久磁石式回転電機を得ることができる。
 実施の形態2.
 図12は、この発明の実施の形態2に係る永久磁石式回転電機の構造を示す断面図である。図12において、回転子20の外半径をR0とし、回転子20表面の曲率半径をR1とすると、R0およびR1を、R0>R1となるように設定している。
 これにより、回転子20の起磁力高周波磁束を低減することができ、回転子位置に対する電流軌跡楕円の長軸の変動を低減することができる。この発明の実施の形態2では、実施の形態1のR0=R1の回転子形状と比較して、回転子位置に対する電流軌跡楕円の長軸の変動を約75%低減することができた。また、インダクタンスの位置依存性をさらに低減することができる。
 上記実施の形態1、2で示した永久磁石式回転電機によれば、光学式エンコーダやレゾルバ等といったモータの回転検出装置を用いなくても、磁極位置推定が可能となる。そのため、部品点数の削減や故障要素を低減することが可能となり、高信頼性および低コスト化が可能となる。なお、光学式エンコーダやレゾルバと併用することも可能である。
 10 固定子、11 固定子鉄心、12 電機子巻線、20 回転子、21 回転子鉄心、22 永久磁石。

Claims (4)

  1.  複数の磁極が等間隔に配置された回転子と、
     複数のティースおよび電機子巻線を有する固定子と、を備え、
     前記回転子は、回転子鉄心の外周面よりも内側に、周方向に等間隔に設けられたP個の孔に挿入された永久磁石を有し、
     前記固定子は、前記回転子を回転させるための回転磁界を発生する前記電機子巻線が設けられた円筒形状のN個のティースを有する固定子鉄心が、周方向にN個の固定子ブロックに分割され、
     周方向に隣り合う前記固定子鉄心の先端部間の周方向隙間をLaとし、前記ティースの周方向の大きさをLbとし、前記固定子鉄心の内径寸法をDとした場合に、0.6<La/(πD/N-Lb)<1.0となるように設定されるとともに、PおよびNが、P/(PとNとの最大公約数)が奇数となるように設定されている
     永久磁石式回転電機。
  2.  前記固定子のティースの周方向の大きさLbが、0.57<Lb/(πD/N)となるように設定されている
     請求項1に記載の永久磁石式回転電機。
  3.  前記回転子の外半径をR0とし、前記回転子表面の曲率半径をR1とした場合に、R0およびR1が、R0>R1となるように設定されている
     請求項1または請求項2に記載の永久磁石式回転電機。
  4.  回転検出装置を用いずに、位置決め制御が実行される
     請求項1から請求項3までの何れか1項に記載の永久磁石式回転電機。
PCT/JP2012/050989 2011-03-15 2012-01-18 永久磁石式回転電機 WO2012124372A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137026035A KR101506417B1 (ko) 2011-03-15 2012-01-18 영구 자석식 회전 전기 기기
JP2013504586A JP5329005B2 (ja) 2011-03-15 2012-01-18 永久磁石式回転電機
US14/005,429 US9537380B2 (en) 2011-03-15 2012-01-18 Permanent-magnet type rotating electrical machine
DE112012001251T DE112012001251T5 (de) 2011-03-15 2012-01-18 Drehende elektrische Maschine des Permanentmagnettyps
CN201280013582.6A CN103444053B (zh) 2011-03-15 2012-01-18 永磁铁式旋转电机
TW101102492A TWI462435B (zh) 2011-03-15 2012-01-20 永久磁鐵式旋轉電機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011056677 2011-03-15
JP2011-056677 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124372A1 true WO2012124372A1 (ja) 2012-09-20

Family

ID=46830453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050989 WO2012124372A1 (ja) 2011-03-15 2012-01-18 永久磁石式回転電機

Country Status (7)

Country Link
US (1) US9537380B2 (ja)
JP (1) JP5329005B2 (ja)
KR (1) KR101506417B1 (ja)
CN (1) CN103444053B (ja)
DE (1) DE112012001251T5 (ja)
TW (1) TWI462435B (ja)
WO (1) WO2012124372A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619225B1 (ja) * 2013-07-04 2014-11-05 東芝エレベータ株式会社 同期電動機の制御装置
CN104253498A (zh) * 2013-06-27 2014-12-31 株式会社安川电机 旋转电机、旋转电机的控制器及旋转电机的控制方法
JP2015015830A (ja) * 2013-07-04 2015-01-22 東芝エレベータ株式会社 同期電動機の制御装置
CN105577063A (zh) * 2014-10-31 2016-05-11 西门子公司 将变流器接通到磁阻电机上的方法,控制装置及驱动装置
WO2024105797A1 (ja) * 2022-11-16 2024-05-23 三菱電機株式会社 回転電機
JP7501743B2 (ja) 2021-04-28 2024-06-18 株式会社デンソー モータ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322049B2 (en) 2010-07-30 2012-12-04 Nike, Inc. Wear-resistant outsole
RU2598601C2 (ru) * 2012-03-30 2016-09-27 Сони Корпорейшн Устройство обработки данных, способ обработки данных и программа
WO2014080497A1 (ja) * 2012-11-22 2014-05-30 三菱電機株式会社 交流回転機の制御装置、交流回転機の制御装置を備えた交流回転機駆動システムおよび電動パワーステアリングシステム
TWI589097B (zh) * 2013-07-05 2017-06-21 Aida Eng Ltd Permanent magnet motor
GB2529416A (en) * 2014-08-19 2016-02-24 Georgi Yankov Georgiev Multiphase brushless AC generator and method
CN105743314A (zh) * 2016-05-06 2016-07-06 吕三元 一种超高效新能源稀土永磁直流无刷节能汽车电机
CN109769407B (zh) 2016-08-16 2022-04-15 罗伯特·博世有限公司 用于估计电动机中转子位置的光学传感器和方法、及包括光学传感器的电动机
JP6702550B2 (ja) * 2016-08-31 2020-06-03 株式会社東芝 回転子およびリラクタンスモータ
JP2018207632A (ja) * 2017-06-01 2018-12-27 株式会社東芝 電動機
CN111030329A (zh) * 2019-11-29 2020-04-17 北京自动化控制设备研究所 多相永磁容错伺服电机
WO2021176668A1 (ja) * 2020-03-05 2021-09-10 株式会社デンソー 回転電機
TWI774514B (zh) * 2021-08-12 2022-08-11 大銀微系統股份有限公司 高頻旋轉結構
TWI792848B (zh) * 2022-01-11 2023-02-11 東元電機股份有限公司 具有諧波抑制結構之轉子
WO2024002412A1 (de) * 2022-06-30 2024-01-04 Schaeffler Technologies AG & Co. KG Verfahren zum betrieb eines elektromotors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011611A (ja) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp 永久磁石型回転電機およびパワーステアリング装置
JP2011004583A (ja) * 2009-05-21 2011-01-06 Mitsubishi Electric Corp 永久磁石型回転電機
JP2011010439A (ja) * 2009-06-25 2011-01-13 Mitsubishi Electric Corp 永久磁石型回転電機の回転子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408153A (en) * 1991-07-05 1995-04-18 Canon Denshi Kabushiki Kaisha Index position detecting apparatus for an electromagnetic rotary machine
KR19980075864A (ko) * 1997-04-02 1998-11-16 윤종용 브러시리스 dc모터
JP2000197292A (ja) 1998-10-21 2000-07-14 Mitsubishi Electric Corp 永久磁石型電動機の永久磁石型回転子
TW508891B (en) * 2000-02-21 2002-11-01 Misubishi Electric Corp Stator iron core of electric motor, manufacturing method thereof, electric motor, and compresor
JP2002101628A (ja) 2000-09-22 2002-04-05 Hitachi Ltd 永久磁石式回転電機
JP2004056871A (ja) 2002-07-17 2004-02-19 Yaskawa Electric Corp 薄型ダイレクトドライブモータ
JP4065829B2 (ja) * 2003-10-10 2008-03-26 本田技研工業株式会社 永久磁石式回転子およびブラシレスモータ
JP4848842B2 (ja) 2006-05-29 2011-12-28 株式会社ジェイテクト ブラシレスモータ及び電動パワーステアリング装置
JP4652382B2 (ja) * 2007-08-28 2011-03-16 三菱電機株式会社 電動パワーステアリング装置用永久磁石型ブラシレスモータ
DE102007041099A1 (de) * 2007-08-30 2009-03-05 Robert Bosch Gmbh Rotoranordnung für eine elektrische Maschine
US8350507B2 (en) 2007-09-27 2013-01-08 Mitsubishi Electric Corporation Controller of rotary electric machine
JP4685946B2 (ja) * 2009-02-18 2011-05-18 三菱電機株式会社 永久磁石型回転電機の回転子およびその製造方法
TW201034345A (en) * 2009-03-10 2010-09-16 Unique Product & Design Co Ltd A brushless DC motor structure which has multiple complex pole pairs and fixed slot ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011611A (ja) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp 永久磁石型回転電機およびパワーステアリング装置
JP2011004583A (ja) * 2009-05-21 2011-01-06 Mitsubishi Electric Corp 永久磁石型回転電機
JP2011010439A (ja) * 2009-06-25 2011-01-13 Mitsubishi Electric Corp 永久磁石型回転電機の回転子

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253498A (zh) * 2013-06-27 2014-12-31 株式会社安川电机 旋转电机、旋转电机的控制器及旋转电机的控制方法
US20150001975A1 (en) * 2013-06-27 2015-01-01 Kabushiki Kaisha Yaskawa Denki Rotating electric machine and controller of rotating electric machine and a control method of rotating electric machine
JP2015012661A (ja) * 2013-06-27 2015-01-19 株式会社安川電機 回転電機及び回転電機の制御装置
KR101536451B1 (ko) * 2013-06-27 2015-07-13 가부시키가이샤 야스카와덴키 회전 전기 기기 및 회전 전기 기기의 제어 장치
CN104253498B (zh) * 2013-06-27 2018-02-13 株式会社安川电机 旋转电机、旋转电机的控制器及旋转电机的控制方法
JP5619225B1 (ja) * 2013-07-04 2014-11-05 東芝エレベータ株式会社 同期電動機の制御装置
JP2015015831A (ja) * 2013-07-04 2015-01-22 東芝エレベータ株式会社 同期電動機の制御装置
JP2015015830A (ja) * 2013-07-04 2015-01-22 東芝エレベータ株式会社 同期電動機の制御装置
CN105577063A (zh) * 2014-10-31 2016-05-11 西门子公司 将变流器接通到磁阻电机上的方法,控制装置及驱动装置
JP7501743B2 (ja) 2021-04-28 2024-06-18 株式会社デンソー モータ
WO2024105797A1 (ja) * 2022-11-16 2024-05-23 三菱電機株式会社 回転電機

Also Published As

Publication number Publication date
US20140001908A1 (en) 2014-01-02
US9537380B2 (en) 2017-01-03
TW201238212A (en) 2012-09-16
CN103444053B (zh) 2016-04-13
DE112012001251T5 (de) 2013-12-05
KR101506417B1 (ko) 2015-03-26
JPWO2012124372A1 (ja) 2014-07-17
CN103444053A (zh) 2013-12-11
KR20130127532A (ko) 2013-11-22
TWI462435B (zh) 2014-11-21
JP5329005B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5329005B2 (ja) 永久磁石式回転電機
KR101781524B1 (ko) 전기 기계를 제어하는 방법 및 장치
KR101536451B1 (ko) 회전 전기 기기 및 회전 전기 기기의 제어 장치
JP5303297B2 (ja) モータ制御装置及びモータ制御方法
US20140246939A1 (en) Motor and motor system
Chen et al. An improved analytical model for inductance calculation of interior permanent magnet machines
EP2800269B1 (en) Permanent magnet motor controller
CN107769633B (zh) 确定无铁pmsm电机的转子的取向的方法和电机系统
JP2011004583A (ja) 永久磁石型回転電機
US9590541B2 (en) Method and apparatus for control of electrical machines
US11152875B2 (en) Multigroup-multiphase rotary electrical machine control device and multigroup-multiphase rotary electrical machine drive device
JP5985119B1 (ja) 永久磁石式回転電機
Pouramin et al. A standstill method to measure electromagnetically induced torque ripple of permanent magnet synchronous machines
Lee et al. Evaluation of slotless permanent synchronous motor with toroidal winding
WO2023218676A1 (ja) 回転電機の制御装置および回転電機の制御方法
Kwon et al. Design and control of IPMSM sensorless drive for mechanical rotor position detection capability
JP2017017927A (ja) 永久磁石式モータおよびモータ制御装置
KR20150046573A (ko) 전동모터 및 그의 회전자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504586

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14005429

Country of ref document: US

Ref document number: 1120120012518

Country of ref document: DE

Ref document number: 112012001251

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137026035

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12758026

Country of ref document: EP

Kind code of ref document: A1