JP2011029803A - 光信号の受信装置及び受信方法 - Google Patents

光信号の受信装置及び受信方法 Download PDF

Info

Publication number
JP2011029803A
JP2011029803A JP2009171878A JP2009171878A JP2011029803A JP 2011029803 A JP2011029803 A JP 2011029803A JP 2009171878 A JP2009171878 A JP 2009171878A JP 2009171878 A JP2009171878 A JP 2009171878A JP 2011029803 A JP2011029803 A JP 2011029803A
Authority
JP
Japan
Prior art keywords
bias voltage
home
optical signal
optical
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009171878A
Other languages
English (en)
Other versions
JP5321312B2 (ja
Inventor
Daisuke Umeda
大助 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009171878A priority Critical patent/JP5321312B2/ja
Publication of JP2011029803A publication Critical patent/JP2011029803A/ja
Application granted granted Critical
Publication of JP5321312B2 publication Critical patent/JP5321312B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

【課題】 受信装置の運用状態においても、光電変換素子に印加するバイアス電圧を自動的に改善できるようにする。
【解決手段】 本発明の受信装置は、前方誤り訂正(FEC)によって符号化された光信号の受信装置に関する。この受信装置は、逆方向のバイアス電圧Viによって光電流の増倍率が変化する、光信号を光電変換する光電変換素子212と、光電変換後の電気信号を二値化したデータ信号をFEC復号化するFEC復号化部217と、FEC復号化部217における訂正頻度に基づいて光電変換素子212に印加するバイアス電圧Viの改善値を決定する制御部220と、を備える。
【選択図】 図3

Description

本発明は、例えば、PON(Passive Optical Network )システムを構成する局側装置ないし宅側装置に好適に使用される、光信号の受信装置及び受信方法に関する。
PONシステムは、集約局としての局側装置と、複数の加入者宅に設置された宅側装置とを、1本の光ファイバから光カプラを介して複数の光ファイバに分岐する光ファイバ網によって接続したものである(例えば、特許文献1参照)。
かかるPONシステムでは、局側装置から宅側装置への下り方向通信の場合は、ブロードキャスト方式によって連続的な光信号が伝送され、宅側装置から局側装置への上り方向通信の場合は、光信号の衝突を避けるために、時分割方式によって間欠的な光信号(光バースト信号)が伝送される。
このため、各宅側装置は、局側装置から同じ下り方向の光信号を受信するようになっており、下り信号のフレームが自己宛であればこれを取り込み、そうでなければフレームを廃棄する。
また、局側装置は、上り方向の送信時期及び送信データ量に関する許可(グラント)を予め宅側装置ごとに通知するようになっており、このグラントに従って各宅側装置が送信した上り方向の光信号を時分割で受信する。従って、局側装置には、種々の強度の光バースト信号が間欠的に届くことになる。
一方、局側装置の光受信回路は、光信号を光電変換するアバランシェフォトダイオード(Avalanche Photodiode:以下、「APD」と略記することがある。)と、この素子が出力する電気信号を増幅する増幅器と、増幅された電気信号を閾値と比較して二値信号(デジタル信号)を出力する比較器とを備えている(例えば、特許文献2参照)。
上記APDは、高い逆方向のバイアス電圧(以下、単に「バイアス電圧」ということがある。)を印加することで光電流が増倍される高感度のフォトダイオードである。このため、上記光受信回路には、APDが最適な増倍率になるようにバイアス電圧を制御するためのバイアス回路が設けられる(例えば、特許文献3参照)。
特開2004−64749号公報(図4) 特開2005−175596号公報(図2) 特開2007−74397号公報
上記PONシステムで使用される光受信回路では、伝送速度の高速化に伴って高受信感度が要求されており、例えば10G−EPON(IEEE 802.3av)のPR30においては、宅側装置にもAPDの使用が想定されており、下り信号の高受信感度化が図られている。
また、10G−EPONにおいては、送信信号に前方誤り訂正(Forward Error Correction:以下、「FEC」ということがある。)によって符号化を行い、受信側においてその符号化に対応するFEC復号化を行うことにより、伝送速度の高速化に伴って不足するパワーバジェットを補うようになっている。
ところで、光通信用のAPDでは、増倍率がほぼ10付近となるバイアス電圧に設定すると最も高いSN比が得られるが、増倍率が小さ過ぎると増倍効果が不十分になり、逆に増倍率が大き過ぎると、ショットノイズや暗電流が増加してSN比が劣化する。従って、最適なSN比を実現するためには、APDのバイアス電圧を適切に制御する必要がある。
また、APDのバイアス電圧は、大きな温度依存性を持つとともに、その特性のばらつきが大きいので、受信装置ごとにAPDの特性を検査しつつ最適なバイアス電圧を設定する必要がある。
そこで、従来では、受信装置の製造時に擬似ランダムビットシーケンス(Pseudo-random bit sequence:PRBS)等、既知の信号を受信しながらビットエラーレート(Bit Error Ratio:BER)を測定し、その値が最小となるようにバイアス電圧を予め設定している。
しかしながら、かかる製造時におけるバイアス電圧の設定作業は、そもそも手間がかかるとともに、環境変化や経年変化によって受信特性が変化した場合には、これに対応できないという欠点がある。
また、従来では、APDのバイアス回路に温度センサを設けて、温度に応じてバイアス電圧を最適値に制御している。しかしながら、起動時など受信装置内部の温度変化が大きい場合には、温度センサが正しくAPDの温度を検出できず、バイアス電圧を最適値に制御することが難しい。
本発明は、上記従来の問題点に鑑み、受信装置の運用状態においても、光電変換素子に印加するバイアス電圧を自動的に改善(最適化を含む。)することができる光信号の受信装置等を提供することを目的とする。
(1) 本発明の受信装置は、FECによって符号化された光信号の受信装置であって、逆方向のバイアス電圧によって光電流の増倍率が変化する、前記光信号を光電変換する光電変換素子と、光電変換後の電気信号を二値化したデータ信号をFEC復号化するFEC復号化部と、前記FEC復号化部における訂正頻度に基づいて前記光電変換素子に印加する前記バイアス電圧の改善値を決定する制御部と、を備えていることを特徴とする。
なお、本明細書において、バイアス電圧の「改善値」とは、バイアス電圧が現時点のものよりも所定条件(本発明では、訂正頻度がより低いこと。)に適合することとなるように、当該バイアス電圧を改善した電圧値のことをいう。
従って、後述の実施形態のように、訂正頻度を最小にするバイアス電圧の最適値を決定する場合には、その最適化処理によって得られた唯一のバイアス電圧の最適値も、上記改善値に含まれる。
本発明の受信装置によれば、上記制御部が、FEC復号化部における訂正頻度に基づいて前記光電変換素子に印加する前記バイアス電圧の改善値を決定するので、受信装置の運用状態においても、光電変換素子に印加するバイアス電圧が自動的に改善される。
このため、運用前におけるバイアス電圧の設定作業が不要となり、事業者の作業手間を低減できるとともに、環境変化や経年変化によって受信特性が変化しても、バイアス電圧を改善することができる。
(2) ところで、光電変換素子がAPDである場合には、バイアス電圧の増加に伴って増倍率も単調増加するが、それと同時に暗電流も増加するため(図6参照)、所定のバイアス電圧の調整範囲においては、BER(≒訂正頻度)がバイアス電圧に対して凸関数を形成することが判明している(図7参照)。
そこで、本発明の受信装置において、前記バイアス電圧の調整範囲における前記訂正頻度を参照データとして記憶する記憶部を、更に備えていることが好ましい。
この場合、前記制御部が、前記参照データに基づいて、前記訂正頻度が小さくなる方向に前記バイアス電圧を調整するようにすれば、例えば山登り法等による簡便な局所探索法を用いて、バイアス電圧の改善値を高速に求めることができる。
(3) また、この場合、前記制御部は、起動時における前記バイアス電圧の初期値を当該バイアス電圧の最適値よりも低い値に設定することが好ましい。
その理由は、光電変換素子のバイアス電圧が降伏電圧を超える値になると、過電流によって光電変換素子やプリアンプを破壊する恐れがあることから、バイアス電圧の調整の際には、なるべく小さい値から大きい値に移行させるのが好ましいからである。
(4) 更に、前記制御部は、起動時における前記光電変換素子の温度に基づいて、起動時における前記バイアス電圧の初期値を設定することが好ましい。
この場合、光電変換素子の温度変化がバイアス電圧の変化に及ぼす影響を補償した初期値を設定できるので、光電変換素子の温度変化によって初期値が改善値から大きく外れるのを防止することができる。従って、初期値から改善値への収束時間を速めることができる。
(5) 一方、訂正頻度が小さ過ぎるために、バイアス電圧の改善値を決定できない場合には、そもそも所望の受信感度が既に実現されているので、バイアス電圧の改善値を求める必要がない。
そこで、前記制御部は、上記のような場合、すなわち、前記バイアス電圧の改善値を特定不能な程度に低頻度の所定値よりも前記訂正頻度が小さい場合には、現時点の前記バイアス電圧の値を維持させることが好ましい。また、この場合、現時点の前記バイアス電圧の値を更に低下させるようにすれば、バイアス電圧を生成するためのバイアス回路の消費電力を低減することができる。
(6) また、前記制御部は、前記訂正頻度を更新する時間間隔が変更可能であることが好ましい。
この場合、訂正頻度が比較的高い場合には、その時間間隔を出来るだけ短くすることにより、バイアス電圧の改善値を可及的速やかに算出することができる。逆に、訂正頻度が比較的低い場合には、その時間間隔を長くすることにより、訂正頻度が0になるバイアス電圧の範囲を狭くすることができ、バイアス電圧の改善値の調整精度を向上することができる。
(7) 本発明の受信装置は、PONシステムの局側装置と宅側装置のいずれにも適用可能であるが、局側装置に搭載する場合には、前記制御部は、前記訂正頻度に基づいて前記バイアス電圧の改善値を決定する処理を前記宅側装置ごとに個別に実行すればよい。
この場合、宅側装置ごとに正確なバイアス電圧の改善値を求めることができ、その改善値を求める処理を高精度に行うことができる。
(8) もっとも、バイアス電圧の改善値を宅側装置ごとに決定すると、光バースト信号の受信時期に合わせてバイアス電圧を切り替える必要があるので、光バースト信号の送信時間が短い場合には、光電変換素子の増倍率が追従できないこともあり得る。
そこで、局側装置に搭載する受信装置において、前記制御部は、前記訂正頻度が最も高い前記宅側装置が送信する前記光バースト信号について、その訂正頻度に基づいて前記バイアス電圧の改善値を決定し、他の前記宅側装置が送信する前記光バースト信号についても前記改善値を採用することにしてもよい。
この場合、制御部は、訂正頻度が最も高い宅側装置(従って、受信特性が最も悪い。)が送信する光バースト信号について、その訂正頻度に基づいて前記バイアス電圧の改善値を決定するので、このバイアス電圧の改善値をそれより訂正頻度が低い他の宅側装置と共通の改善値としても、特に差し支えない。
このため、上記改善値を決定した後の運用時において、光バースト信号ごとにバイアス電圧を切り替える処理が不要となり、光電変換素子の増倍率の変化が追従しないという問題を回避できる。
(9) 本発明の受信方法は、FECによって符号化された光信号の受信方法であって、本発明の受信装置が実行する受信方法である。このため、本発明の受信方法は、本発明の受信装置と同様の作用効果を奏する。
以上の通り、本発明によれば、受信装置の運用状態において、光電変換素子に印加するバイアス電圧を自動的に改善できるので、運用前におけるバイアス電圧の設定作業が不要となり、事業者の作業手間を低減できるとともに、環境変化や経年変化によって受信特性が変化しても、バイアス電圧を改善することができる。
本発明の実施形態に係るPONシステムの接続図である。 宅側装置の内部構成の概略を示すブロック図である。 宅側装置における光受信部とPON側受信部の内部構成の一例を示すブロック図である。 局側装置の内部構成の概略を示すブロック図である。 局側装置における光受信部とPON側受信部の内部構成の一例を示すブロック図である。 APDのバイアス電圧と光電流(PD電流)の関係を示すグラフである。 APDのバイアス電圧と受信誤り率(訂正頻度)との関係を示すグラフである。 制御フレームのやり取りを示すシーケンス図である。 上り方向の通信制御を示すシーケンス図である。
〔システムの全体構成〕
図1は、本発明の実施形態に係るPONシステムの接続図である。
図1において、局側装置1は、複数の宅側装置2A〜2Cに対する集約局として設置され、各宅側装置2A〜2Cは、それぞれPONシステムの加入者宅に設置されている。
なお、本実施形態では、各宅側装置の共通事項を説明する場合には符号2を使用し、各宅側装置の個別事項を説明する場合には、符号2A〜2Cを使用する。
局側装置1に接続された1本の光ファイバ(幹線)5は、光カプラ6等よりなる受動光分岐ノードを介して複数の光ファイバ(支線)7に分岐しており、これによって光ファイバ網が構成されている。その光カプラ6から分岐した各光ファイバ7の終端に、それぞれ各宅側装置2が接続されている。
また、局側装置1は、上位ネットワーク8と接続され、各宅側装置2はそれぞれのユーザネットワーク9と接続されている。
なお、図1では、合計3個の宅側装置2A〜2Cを示しているが、1つの光カプラ6から例えば32分岐して32個の宅側装置を接続することが可能である。
また、図1では、光カプラ6を1個だけ使用しているが、光カプラを縦列に複数段設けることにより、更に多くの宅側装置を局側装置1と接続することができる。
図1において、宅側装置2から局側装置1への上り方向には、波長λ1の光信号によるデータが送信される。逆に、局側装置1から宅側装置2への下り方向には、波長λ2の光信号によるデータが送信される。
これらの波長λ1及びλ2は、例えば、IEEE802.3avの10.3125Gbps信号では、以下の範囲の値が想定されている。
1260nm≦λ1≦1280nm
1575nm≦λ2≦1580nm
本実施形態では、下り方向の連続的な光信号C1と、上り方向の間欠的な光バースト信号B1〜B3が、いずれも、リードソロモン符号やターボ符号等の所定の前方誤り訂正(FEC)符号によってランダムに符号化されることを想定している。
〔制御フレームのやり取り〕
図8は、局側装置1と宅側装置2A(宅側装置2B,2Cについても同様)との間の制御フレームのやり取りを示すシーケンス図である。
図8に示すように、まず、局側装置1は、運用時間開始時刻T0の時点で宅側装置2Aに関するRTT(Round Trip Time)を既に計算している。
時刻Ta1において、局側装置1は、宅側装置2Aに対して、送出要求量を通知させるために、レポート送出開始時刻Tb2を含んだゲートフレームG1を送信する。
このレポート送出開始時刻Tb2は、他の宅側装置2B,2Cから送信されるレポートと衝突しないように計算される。
宅側装置2Aは、時刻Tb1に自身に対するゲートG1を受信すると、データ中継処理部207(図2参照)のバッファメモリに蓄積されたデータ量を参照して送出要求量を算出し、ゲートトG1に含まれるレポート送出開始時刻Tb2に、局側装置1に対して送出要求量を含んだレポートフレーム(リクエストともいう。)R1を送出する。
局側装置1は、時刻Ta2に上記レポートR1を受信すると、固定または可変の最大送出許可量以下となり、かつ、レポートR1に含まれるバッファメモリ内データ量のデータをなるべく多く送れるような値を演算し(帯域割当)、演算結果を送出許可量としてゲートフレーム(グラント)G2に挿入する。
レポートR1に含まれる送出要求量がゼロの場合には、局側装置1による演算結果がゼロとなるため帯域が割当てられないが、宅側装置2AにレポートR2を送出させる必要があるので、局側装置1は宅側装置2Aに対して必ずゲートG2を送出する。
ゲートG2に含まれる送出開始時刻Tb4は、演算済みである前回の宅側装置2Aのデータの受信予定時刻、前回の宅側装置2の送出許可量、現在の宅側装置2Aに関するRTT及び固定時間であるガードタイムを用い、データ及びレポートが他の宅側装置2B,2Cからのデータ又はレポートと衝突しないように計算される。
なお、局側装置1は、自身がゲートG2を送出する時刻Ta3を、送出開始時刻Tb4までにゲートG2が宅側装置2Aに到着するように計算する。
宅側装置2Aは、時刻Tb3に自身に対するゲートG2を受信すると、そのゲートG2に含まれる送出開始時刻Tb4に、グラントされた送出許可量分のデータDを、次回の送出要求量を含んだレポートR2とともに局側装置1に送出する。
このレポートR2は、データDの直前または直後に送出されるが、データDの直前に送出される場合には、送出要求量として局側装置1に報告する値は、バッファメモリに蓄積されているデータ量とデータDのデータ量との差分である。
局側装置1は、時刻Ta4にデータD及びレポートR2を受信すると、データDを上位ネットワーク8に送出し、レポートR2についてはレポートR1の場合と同様の処理を行なう。
以上のシーケンスは、すべての宅側装置2A〜2Cに対して独立に行なわれ、運用時間が終了するまで、時刻Ta3〜時刻Ta4の処理が繰り返される。
〔上り方向通信のシーケンス〕
図9は、PONシステムでの上り方向通信を示すシーケンス図であり、分散割当方式の一例を示している。
以下、図9の左側から右側に向かって時間が進行するとして、局側装置1を主体としたPONシステムの動作について説明する。
まず、局側装置1は、各宅側装置2C,2B,2Aに対して、それぞれゲートGc1,Gb1,Ga1を順次送出する。
次に、局側装置1は、各宅側装置2C,2B,2AからそれぞれレポートRc1,Rb1,Ra1を受信すると、最初にデータの送出を許可する宅側装置2Cに対するゲートGc2を送出する。そして、局側装置1は、宅側装置2Cから送出されるデータDc1及び次のレポートRc2を受信すると、これと並行して、宅側装置2Bに対するゲートGb2を送出する。
局側装置1は、宅側装置2Bから送出されるデータDb1及び次のレポートRb2を受信すると、これと並行して、宅側装置2Aに対するグラントGa2を送出する。また、続いて、宅側装置2Cに対するグラントGc3も送出する。その後、局側装置1は、宅側装置2Aから送出されるデータDa1及び次のレポートRa2を受信する。
また、局側装置1は、宅側装置2Cから送出されるデータDc2及び次のレポートRc3を受信するとともに、これと並行して、宅側装置2Bに対するグラントGb3を送出する。
更に、局側装置1は、宅側装置2Bから送出されるデータDb2及び次のレポートRb3を受信するとともに、これと並行して、宅側装置2Aに対するグラントGa3を送出する。ここで、例えば宅側装置2Aから送出されるデータがなければ、図示のように、局側装置1は宅側装置2Aから次のレポートRa3のみを受信する。
これ以降、同様の処理が繰り返され、局側装置1は、順次各宅側装置2A〜2Cに対して帯域を動的に割り当てて、データの受信を繰り返す。
上記シーケンスの通り、PONシステムの局側装置1は、上り方向通信の時分割制御のために、自身が管理する各宅側装置2A〜2Cに送信許可を行うためのゲートGを配布するので、当該局側装置1は、各宅側装置2A〜2Cが次に送信する光バースト信号B1〜B3の受信時期を、実際の受信前に予め把握している。
〔宅側装置の構成〕
図2は、宅側装置2の内部構成の概略を示すブロック図である。
図2に示すように、宅側装置2は、PON側(図2左側)からユーザネットワーク9側に向かって順に、合分波部201、光受信部202、光送信部203、PON側受信部204、PON側送信部205、宅側信号処理部206、データ中継処理部207、ユーザネットワーク側送信部208、及びユーザネットワーク側受信部209を備えている。
図2において、局側装置1が送信した波長λ2の下り方向の光信号は、合分波部201を通過して光受信部202により電気信号に変換され、更に、この電気信号はPON側受信部204により受信される。
PON側受信部204は、受信したフレームのヘッダ部分を読み取ることにより、当該フレームが自己宛(ここでは、自己又は自己の配下のユーザネットワーク9内の装置宛を意味する。)であるか否かを判定する。
この判定の結果、自己宛であれば、PON側受信部204は当該フレームを取り込み、そうでなければ、当該フレームを廃棄する。例えば、上記の宛先判定を行うためのヘッダ情報の例として、IEEE802.3avで想定されている論理リンク識別子(LLID)を挙げることができる。
更に、PON側受信部204は、フレームのヘッダ部分を読み取ることにより、受信したフレームがデータフレームであるか、又は、ゲートフレームであるかを判定する。
この判定の結果、フレームがデータフレームであれば、PON側受信部204はこれをデータ中継処理部207に送る。データ中継処理部207は、ユーザネットワーク側送信部208に対する送信制御等の所定の中継処理を行い、処理後のフレームはユーザネットワーク側送信部208からユーザネットワーク9へ送出される。
また、上記判定の結果、フレームがゲートフレームであれば、PON側受信部204はこれを宅側信号処理部206に転送する。宅側信号処理部206は、ゲートフレームに基づいて上り方向の送出をデータ中継処理部207に指示する。
一方、ユーザネットワーク9からのフレームは、ユーザネットワーク側受信部209によって受信され、データ中継処理部207に転送される。転送されたフレームは、データ中継処理部207内のバッファメモリに一旦蓄積され、また、そのデータ量が宅側信号処理部206に通知される。
宅側信号処理部206は、PON側送信部205に対して送信制御を行い、所定のタイミングで、バッファメモリに蓄積されているフレームをPON側送信部205に出力させるとともに、通知されたバッファメモリ内のデータ蓄積量に基づいてレポートフレームを作成して、PON側送信部205に出力させる。
PON側送信部205の出力信号は、光送信部203で光信号に変換され、波長λ1でかつ所定の伝送レート(10.3125Gbps)の光信号として、合分波部201を介して上り方向に送信される。
また、図2に示すように、PON側送信部205は、内部に物理層符号化部210とFEC符号化部211とを備えている。
物理層符号化部210は、データ中継処理部207から送られてくるデータに対して64B/66B符号化を行い、FEC符号化部211は、符号化されたデータに対して更に冗長ビットを付加して所定の誤り訂正符号を生成する。
なお、物理層符号化部210は、64B/66B符号化と同時に、所定のパターン(IEEE802.3avでは66ビットの同期パターンの繰り返し)からなるプリアンブルをデータに付加する。プリアンブル長は、宅側信号処理部206からの通知に応じて変更可能となっている。
〔宅側装置の光受信部及びPON側受信部〕
図3は、宅側装置2の光受信部202とPON側受信部204の内部構成の一例を示すブロック図である。
図3に示すように、宅側装置2の光受信部202は、内部に、光電変換素子212、増幅器213、比較器214、クロック・データ再生部215、及びバイアス部216を備えている。また、宅側装置2のPON側受信部204は、内部に、FEC復号化部217、物理層復号化部218、フレーム再生部219、制御部220、及び記憶部221を備えている。
光受信部202の光電変換素子212は、半導体受光素子の一種であるアバランシェフォトダイオード(APD)よりなり、下り方向の光信号C1の受光量に対応するレベルの電気信号を出力し、増幅器213は光電変換後の電気信号を増幅する。
比較器214は、増幅器213の出力信号を所定の閾値と比較して二値化する。クロック・データ再生部215は、比較器214から受けた二値信号に同期して、タイミング成分(クロック信号)とデータ信号とを再生する。
バイアス部216は、APD212に逆方向のバイアス電圧Viを付与するバイアス回路よりなり、後述する制御部220からの制御信号Siに対応して、APD212を適正な増倍率とするためのバイアス電圧Viを生成する。
一方、PON側受信部204のFEC復号化部217は、再生されたデータ信号に対して所定の誤り訂正復号化(FEC復号化)を行い、物理層復号化部218は、再生されたデータ信号に対して64B/66B復号化を行う。
上記FEC復号化部217が行う誤り訂正復号は、後述する局側装置1のFEC符号化部111(図4参照)が生成した誤り訂正符号に対応する復号化処理である。
また、FEC復号化部217は、誤り訂正復号の際の誤り訂正数のカウント機能を有しており、FEC復号化部217がカウントした誤り訂正数は、後述する制御部220に入力される。
フレーム再生部219は、復号化されたデータからフレームの境界を検出し、例えば、イーサネット(登録商標)フレームを復元する。また、フレーム再生部219は、フレームのヘッダ部分を読み取り、受信フレームがデータフレームであるか、或いは、メディアアクセス制御のための制御情報であるゲートフレームであるかを判定する。
上記判定の結果、フレームがデータフレームであれば、フレーム再生部219はそれをデータ中継処理部207に送り、フレームがゲートフレームであれば、PON側受信部204はそれを宅側信号処理部206に転送する。
〔制御部によるバイアス電圧の最適化処理(宅側装置の場合)〕
前記した通り、FEC復号化部217は、誤り訂正復号化の処理と同時に、誤り訂正数を制御部220に通知する。
そこで、制御部220は、通知された誤り訂正数を所定時間ごとにカウントすることによって訂正頻度(=誤り訂正数/データ信号のシンボル数)を算出し、それに基づいて、バイアス部216が出力するバイアス電圧Viを最適化するための制御信号Siを生成する。以下、この制御部による最適化処理を説明する。
図6は、APD212の出力特性の1つである、バイアス電圧と光電流(PD電流)の関係を示すグラフである。
この図6に示すように、光通信用のAPD212では、バイアス電圧を高くすると、PD電流(図6では、平均で−30dBmの光信号を受信している例)も増加し、増倍効果により受信感度が改善されるが、暗電流も増加するため、増倍率Mがほぼ10程度で受信感度が最適値を示すようになっている。
このため、APD212のバイアス電圧を、最適な増倍率(M=10付近)に対応する電圧値(30V付近)から高くしても、ショットノイズや暗電流が増加してSN比が劣化すると考えられ、また、その電圧値から低くしても受信感度は不十分になる。
そこで、APD212のバイアス電圧と出力信号の受信誤り率BER(≒訂正頻度)との関係を求めると、例えば図7に示すように、そのBERは、APD212のバイアス電圧に対して凸関数の関係になることが判明した。
なお、図7(a)は、APD212の受信信号レベルが小さいために、BERが比較的高いレベル(10-4〜10-2)の場合のグラフを示しており、図7(b)は、APD212の受信信号レベルが大きいために、BERが比較的低いレベル(10-12〜10-10後)の場合のグラフを示している。
このように、APD212のバイアス電圧は、受信信号のBERのレベルに拘わらず当該BERを最小にする最適値が存在し、BERと凸関数の関係になる。
本実施形態の宅側装置2は、上記知見に基づき、FEC復号化部217での誤り訂正数を宅側装置2の運用中に監視し、その誤り訂正数から求めた訂正頻度(≒BER)に基づいて、訂正頻度が現状よりも小さくなる方向に、バイアス部216が生成するバイアス電圧Viを改善することを本旨としている。
〔制御部の最適化処理の具体例〕
より具体的には、PON側受信部204の制御部220は、制御信号Siによりバイアス電圧Viを前後に変化させ、その際の訂正頻度をFEC復号化部217から通知される誤り訂正数を所定時間ごとにカウントすることによって算出し、それを現時点の訂正頻度と比較し、例えば山登り法等のロジックにより、訂正頻度が小さくなる方向にバイアス電圧Viを変化させ、その値を改善する。
例えば、図7(a)のd2が現時点とすると、バイアス電圧Viを前後に変化させ、d1とd3の訂正頻度を取得し、訂正頻度が小さくなるd3の方向にバイアス電圧Viを変化させる。現時点がd3に移ると、バイアス電圧Viを前後に変化させたd2、d4はともに訂正頻度が悪くなる方向にあるため、現時点のバイアス電圧を維持すればよい。
バイアス電圧Viの調整範囲において、訂正頻度が凸関数を形成しているので、上記処理を行うことにより、バイアス電圧Viが訂正頻度を最小にする最適値に収束する。
このように、下り方向の光信号C1の受信装置として機能する本実施形態の宅側装置2によれば、制御部220が、FEC復号化部217における訂正頻度に基づいてAPD212に印加するバイアス電圧Viの最適値を決定するので、宅側装置2の運用状態においても、APD212に印加するバイアス電圧Viを自動的に最適化することができる。
このため、製造時におけるバイアス電圧Viの設定作業が不要となり、作業手間を低減できるとともに、環境変化や経年変化によって受信特性が変化しても、バイアス電圧Viを最適化することができる。
また、バイアス電圧Viを変化させた際の訂正頻度を参照データとして記憶部221に記憶すれば、参照データをもとにバイアス電圧Viの最適値を推定することができ、より速くバイアス電圧Viが訂正頻度を最小にする最適値に収束させることができる。
〔制御部の最適化処理のその他の特徴〕
ところで、APD212のバイアス電圧Viが降伏電圧を超える値になると、過電流によってAPD212やプリアンプ等を破壊する恐れがある。従って、上記最適化処理を行うためにバイアス電圧Viの値を調整する場合には、なるべく小さい値から大きい値に移行させることが好ましい。
そこで、本実施形態の制御部220は、起動時におけるバイアス電圧Viの初期値を、当該バイアス電圧Viの最適値よりも低い値に設定するようになっている。
具体的には、例えば、図7に示すd1〜d5において、d3のバイアス電圧値が最適値であるとすると、制御部220は、起動時のバイアス電圧Viの初期値をd2のバイアス電圧値或いはそれ未満に設定している。
このため、上記最適化処理を行うに当たって、バイアス電圧Viの値の調整の際にその値が大きくなり過ぎることがなく、APD212やその他の回路素子の破損を未然に防止することができる。
また、本実施形態の制御部220では、例えば、バイアス部216に設けられた温度センサ(図示せず)の検出信号に基づいて、APD212の温度を測定しており、起動時におけるAPD212の温度に基づいて、起動時におけるバイアス電圧Viの初期値を設定するようになっている。
この場合、APD212の温度変化がバイアス電圧Viの変化に及ぼす影響を補償した初期値を設定することができ、APD212の温度変化によって初期値が最適値から大きく外れるのを防止することができる。従って、初期値から最適値への収束時間を速めることができる。
一方、現時点の訂正頻度が小さく、訂正頻度を精度よく取得できない場合には、バイアス電圧Viの最適値を決定できない。この場合には、そもそも所望の受信感度が既に実現されているので、バイアス電圧の最適値を求める必要がない。
図7(b)において、例えば、1012ビットの信号を受信する毎に訂正頻度を更新して取得するとする。この場合、BERが10-11以下(点線部分)では訂正頻度を更新する時間間隔内に発生するエラー数が小さく、訂正頻度を精度よく取得できない。例えば、d2とd3において時間間隔内にエラーが発生しなかったとする。この場合には、ともに訂正頻度が0となり、バイアス電圧Viの最適値を決定できない。しかし、所望の受信感度が10-11より大きい場合には、所望の受信感度が実現されているため、それ以上にバイアス電圧の最適値を求める必要がない。
そこで、本実施形態の制御部220は、バイアス電圧Viの最適値を特定不能な程度に低頻度の所定値(例えば、10-11以下の訂正頻度値)よりも訂正頻度が小さい場合には、現時点のバイアス電圧Viの値をそのまま維持するようになっている。
当然ながら、所望のBERよりも小さい訂正頻度を測定できる必要があり、訂正頻度を更新する時間間隔は1/BERビットの受信時間以上である必要があり、その10倍程度以上に設定しておくことが望ましい。
もっとも、この場合に、現時点のバイアス電圧Viの値を更に低下させるようにしてもよく、この場合には、バイアス電圧Viを生成するためのバイアス部216の消費電力を低減できるという付加的な効果が得られる。
また、本実施形態の制御部220は、訂正頻度を更新する時間間隔が変更可能になっている。この場合、訂正頻度が比較的高い宅側装置2(例えば、図7(a)のd1〜d5の特性を有する宅側装置2)の場合には、上記時間間隔を出来るだけ短く設定することにより、バイアス電圧の最適値を可及的速やかに算出することができる。
逆に、訂正頻度が比較的低い宅側装置2(例えば、図7(b)のd1〜d5の特性を有する宅側装置2)の場合には、上記時間間隔を長く設定することにより、訂正頻度が精度よく取得できないバイアス電圧Viの範囲(図7(b)の破線の範囲)を出来るだけ狭くすることができ、バイアス電圧Viの最適値の調整精度を向上することができる。
〔局側装置の構成〕
図4は、局側装置1の内部構成の概略を示すブロック図である。
図4に示すように、局側装置1は、PON側(図4の右側)から上位ネットワーク8側に向かって順に、合分波部101、光受信部102、光送信部103、PON側受信部104、PON側送信部105、局側信号処理部106、データ中継処理部107、上位ネットワーク側送信部108、及び上位ネットワーク側受信部109を備えている。
図4において、宅側装置2が上り方向に送信した波長λ1の光信号(光バースト信号)は、合分波部101を通過して光受信部102により電気信号に変換され、更に、この電気信号はPON側受信部104により受信される。
PON側受信部104は、受信したフレームのヘッダ部分を読み取ることにより、当該フレームがデータフレームであるか、又は、レポートフレームであるかを判定する。
この判定の結果、フレームがデータフレームであれば、PON側受信部104はこれをデータ中継処理部107に送る。データ中継処理部107は、上位ネットワーク側送信部108に対する送信制御等の所定の中継処理を行い、処理後のフレームは上位ネットワーク側送信部108から上位ネットワーク8へ送出される。
また、上記判定の結果、フレームがレポートフレームであれば、PON側受信部104はこれを局側信号処理部106に転送する。局側信号処理部106は、このレポートに基づいて制御情報としてのゲートフレームを生成し、このゲートフレームを、PON側送信部105及び光送信部103によって下り方向へ送信させる。
また、局側信号処理部106は、宅側装置2A〜2Cに配付するゲートフレームの生成に際して、その宅側装置2A〜2Cから次に上り方向の光バースト信号B1〜B3を受信する時期(受信タイミング)Trを、PON側受信部104の制御部120(図5参照)に通知する。
一方、上位ネットワーク8からの下りフレームは、上位ネットワーク側受信部109により受信されて、データ中継処理部107に送られる。データ中継処理部107は、その下りフレームをPON側送信部105に渡す。
また、その下りフレームは、光送信部103において、波長λ2でかつ所定の伝送レート(10.3125Gbps)の光信号に変換され、合分波部101を介して下り方向に送信される。
また、図4に示すように、PON側送信部105は、内部に物理層符号化部110とFEC符号化部111とを備えている。
物理層符号化部110は、データ中継処理部107から送られてくるデータに対して64B/66B符号化を行い、FEC符号化部111は、符号化されたデータに対して更に冗長ビットを付加して所定の誤り訂正符号を生成する。
〔局側装置の光受信部及びPON側受信部〕
図5は、局側装置1の光受信部102とPON側受信部104の内部構成の一例を示すブロック図である。
図5に示すように、局側装置1の光受信部102は、内部に、光電変換素子112、増幅器113、比較器114、クロック・データ再生部115、及びバイアス部116を備えている。また、局側装置1のPON側受信部104は、内部に、FEC復号化部117、物理層復号化部118、フレーム再生部119、制御部120、及び記憶部121を備えている。
なお、図5に示す局側装置1のPON側受信部104においても、FEC復号化部117は、再生されたデータ信号に対して所定の誤り訂正復号化(FEC復号化)を行うが、この場合の誤り訂正復号は、宅側装置2のFEC符号化部211(図2参照)が生成した誤り訂正符号に対応する復号化処理である。
一方、図5と図3とを対比すれば明らかな通り、局側装置1における光受信部102とPON側受信部104の内部構成(図5)は、宅側装置2の場合(図3)と回路構成としては等価であり、主として制御部120が行う最適化処理の点おいて、宅側装置2の場合(図3)と相違する。
そこで、以下においては、宅側装置2の場合と共通する構成及び機能については説明を省略し、宅側装置2の場合と相違する制御部120の最適化処理について説明する。
〔制御部によるバイアス電圧の最適化処理(局側装置の場合)〕
局側装置1の制御部120は、基本的に宅側装置2の制御部220と同様のバイアス電圧Viの最適化処理を実行可能である。
しかし、局側装置1の場合には、各宅側装置2から種々の受信タイミングで、異なる強度の光バースト信号B1〜B3を間欠的に受信することから、APD112のバイアス電圧Viの最適化処理の手法としては、次の2種類を採用し得る。
(1) 訂正頻度に基づいてバイアス電圧Viの最適値を決定する処理(最適化処理)を、宅側装置2A〜2Cごとに個別に実行する。
(2) 訂正頻度が最も高い宅側装置(例えば、宅側装置2Cとする)が送信する光バースト信号B3についてのみ、その訂正頻度に基づいてバイアス電圧Viの最適値を決定する。従って、他の宅側装置2A,2Bについては宅側装置2Cのバイアス電圧Viを代用する。
このうち、上記処理(1)を行う場合には、制御部120は、これから宅側装置2A〜2Cが送信してくる光バースト信号B1〜B3の受信タイミングTrを局側信号処理部104から取得する。
そこで、制御部120は、各光バースト信号B1〜B3の受信時期に合わせて、前記宅側装置2の制御部220の場合と同様の最適化処理を実行することにより、バイアス電圧Viの最適値を宅側装置2A〜2Cごとに求める。
このように、処理(1)の場合には、制御部120が、訂正頻度に基づいてバイアス電圧Viの最適値を決定する最適化処理を宅側装置2A〜2Cごとに個別に実行するので、宅側装置2A〜2Cごとに正確なバイアス電圧の最適値を求めることができ、高精度の最適化処理を行うことができる。
もっとも、バイアス電圧Viの最適値を宅側装置2A〜2Cごとに決定すると、その後の運用時において、光バースト信号B1〜B3の受信時期に合わせてバイアス電圧Viを切り替える必要が生じるため、光バースト信号B1〜B3の送信時間が短い場合には、バイアス電圧Viの切り替えが追従できないこともあり得る。
一方、前記処理(2)を行う場合には、制御部120は各光バースト信号B1〜B3の受信時期に合せて、宅側装置2A〜2Cごとに訂正頻度を取得して記憶部121に保持し、訂正頻度が最も高くなる宅側装置を特定(ここでは宅側装置2C)することができる。
そこで、制御部120は、宅側装置2の制御部220の場合と同様の最適化処理を実行することにより、バイアス電圧Viの最適値を宅側装置2Cについてのみ求める。
このように、処理(2)場合には、制御部120が、宅側装置2Cが送信する光バースト信号B3についてのみ、その訂正頻度に基づいてバイアス電圧Viの最適値を決定するが、宅側装置2Cは訂正頻度が最も高い(従って受信特性が最も悪い)ので、このバイアス電圧Viの最適値を、それより訂正頻度が低い他の宅側装置2A,2Bと共通の最適値としても、特に差し支えない。
このため、光バースト信号B1〜B3ごとにバイアス電圧Viを切り替える処理が不要となり、APD112の増倍率が追従しないという問題を回避することができる。
なお、上記実施形態は例示であって制限的なものではない。本発明の権利範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更は、本発明の権利範囲に包含される。
例えば、上記実施形態では、制御部120,220が、訂正頻度を最小にするバイアス電圧Viの「最適値」を求める処理(最適化処理)を実行するが、その「最適値」を求める場合だけでなく、訂正頻度を現時点よりも低くするバイアス電圧Viの「改善値」を求める場合も、本発明の範囲に含まれる。
すなわち、制御部120,220は、訂正頻度の最小値だけでなく、予め設定された閾値に到達するまで訂正頻度が小さくなるように、バイアス電圧Viを改善させることにより、運用可能なバイアス電圧Viの「改善値」を求めるようにしてもよく、バイアス電圧Viが必ずしも唯一の最適値に到達する処理を行う必要はない。
また、上記実施形態では、局側装置1と宅側装置2の双方に本発明の受信装置を適用した場合を例示したが、それらのうちのいずれか一方のみに、本発明の受信装置を適用してもよい。
1 局側装置(受信装置)
2 宅側装置(受信装置)
2A 宅側装置
2B 宅側装置
2C 宅側装置
5 光ファイバ(幹線)
6 光カプラ
7 光ファイバ(支線)
112 光電変換素子(APD)
117 FEC復号化部
120 制御部
121 記憶部
212 光電変換素子(APD)
217 FEC復号化部
220 制御部
221 記憶部
C1 光信号(下り方向)
B1 光バースト信号(上り方向)
B2 光バースト信号(上り方向)
B3 光バースト信号(上り方向)

Claims (9)

  1. 前方誤り訂正(Forward Error Correction:以下、「FEC」という。)によって符号化された光信号の受信装置であって、
    逆方向のバイアス電圧によって光電流の増倍率が変化する、前記光信号を光電変換する光電変換素子と、
    光電変換後の電気信号を二値化したデータ信号をFEC復号化するFEC復号化部と、
    前記FEC復号化部における訂正頻度に基づいて前記光電変換素子に印加する前記バイアス電圧の改善値を決定する制御部と、
    を備えていることを特徴とする光信号の受信装置。
  2. 前記バイアス電圧の調整範囲において前記訂正頻度を参照データとして保持するための記憶部を、更に備えており、
    前記制御部は、前記参照データに基づいて、前記訂正頻度が小さくなる方向に前記バイアス電圧を調整する請求項1に記載の光信号の受信装置。
  3. 前記制御部は、起動時における前記バイアス電圧の初期値を当該バイアス電圧の最適値よりも低い値に設定する請求項2に記載の光信号の受信装置。
  4. 前記制御部は、前記光電変換素子の温度に基づいて、起動時における前記バイアス電圧の初期値を設定する請求項2又は3に記載の光信号の受信装置。
  5. 前記制御部は、前記バイアス電圧の改善値を特定不能な程度に低頻度の所定値よりも前記訂正頻度が小さい場合には、現時点の前記バイアス電圧の値を維持又は更に低下させる請求項1〜4のいずれか1項に記載の光信号の受信装置。
  6. 前記制御部は、前記訂正頻度を更新する時間間隔が変更可能である請求項1〜5のいずれか1項に記載の光信号の受信装置。
  7. 複数の宅側装置が送信する上り方向の光バースト信号を時分割で受信する、PONシステムの局側装置に搭載される請求項1〜6のいずれか1項に記載の光信号の受信装置であって、
    前記制御部は、前記訂正頻度に基づいて前記バイアス電圧の改善値を決定する処理を前記宅側装置ごとに個別に実行することを特徴とする光信号の受信装置。
  8. 複数の宅側装置が送信する上り方向の光バースト信号を時分割で受信する、PONシステムの局側装置に搭載される請求項1〜6のいずれか1項に記載の光信号の受信装置であって、
    前記制御部は、前記訂正頻度が最も高い前記宅側装置が送信する前記光バースト信号について、その訂正頻度に基づいて前記バイアス電圧の改善値を決定し、他の前記宅側装置が送信する前記光バースト信号についても前記改善値を採用することを特徴とする光信号の受信装置。
  9. FECによって符号化された光信号の受信方法であって、
    逆方向のバイアス電圧によって光電流の増倍率が変化する光電変換素子により、前記光バースト信号を光電変換するステップと、
    光電変化後の電気信号を二値化したデータ信号をFEC復号化するステップと、
    前記データ信号に対するFEC復号化における訂正頻度に基づいて前記光電変換素子に印加するバイアス電圧の改善値を決定するステップと、
    を含むことを特徴とする光信号の受信方法。
JP2009171878A 2009-07-23 2009-07-23 光信号の受信装置及び受信方法 Active JP5321312B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171878A JP5321312B2 (ja) 2009-07-23 2009-07-23 光信号の受信装置及び受信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171878A JP5321312B2 (ja) 2009-07-23 2009-07-23 光信号の受信装置及び受信方法

Publications (2)

Publication Number Publication Date
JP2011029803A true JP2011029803A (ja) 2011-02-10
JP5321312B2 JP5321312B2 (ja) 2013-10-23

Family

ID=43638067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171878A Active JP5321312B2 (ja) 2009-07-23 2009-07-23 光信号の受信装置及び受信方法

Country Status (1)

Country Link
JP (1) JP5321312B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212481A (ja) * 2013-04-19 2014-11-13 住友電気工業株式会社 光信号の受信装置及び受信方法
JP2015012314A (ja) * 2013-06-26 2015-01-19 日本電気通信システム株式会社 電気−光変換装置および電気−光変換方法
JP2018125754A (ja) * 2017-02-02 2018-08-09 沖電気工業株式会社 伝送制御装置、光信号伝送システム及び印加電圧調整方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167905A (ja) * 2003-12-05 2005-06-23 Hitachi Cable Ltd 光増幅用制御装置
JP2005520430A (ja) * 2002-03-14 2005-07-07 マルコニ ユーケイ インテレクチュアル プロパティー リミテッド アバランシェフォトダイオードバイアス電圧の制御
WO2008085968A1 (en) * 2007-01-08 2008-07-17 Allied Telesis, Inc. Apparatus and method for automated adjustment and setting of apd optical receiver operation point
JP2008306250A (ja) * 2007-06-05 2008-12-18 Nippon Telegr & Teleph Corp <Ntt> バースト光受信方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520430A (ja) * 2002-03-14 2005-07-07 マルコニ ユーケイ インテレクチュアル プロパティー リミテッド アバランシェフォトダイオードバイアス電圧の制御
JP2005167905A (ja) * 2003-12-05 2005-06-23 Hitachi Cable Ltd 光増幅用制御装置
WO2008085968A1 (en) * 2007-01-08 2008-07-17 Allied Telesis, Inc. Apparatus and method for automated adjustment and setting of apd optical receiver operation point
JP2010516106A (ja) * 2007-01-08 2010-05-13 アライド テレシス インコーポレーテッド Apdレシーバの動作点を自動的に調整し設定する装置及び方法
JP2008306250A (ja) * 2007-06-05 2008-12-18 Nippon Telegr & Teleph Corp <Ntt> バースト光受信方法および装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212481A (ja) * 2013-04-19 2014-11-13 住友電気工業株式会社 光信号の受信装置及び受信方法
JP2015012314A (ja) * 2013-06-26 2015-01-19 日本電気通信システム株式会社 電気−光変換装置および電気−光変換方法
JP2018125754A (ja) * 2017-02-02 2018-08-09 沖電気工業株式会社 伝送制御装置、光信号伝送システム及び印加電圧調整方法

Also Published As

Publication number Publication date
JP5321312B2 (ja) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5343748B2 (ja) 受信部及び局側装置並びにクロック・データ再生回路における周波数校正方法
JP4820880B2 (ja) 局側終端装置
US9923639B2 (en) Optical combiner energy harvesting
US7340180B2 (en) Countermeasures for idle pattern SRS interference in ethernet optical network systems
JP4969432B2 (ja) Ponシステム、光信号受信方法及びolt
US8983308B2 (en) Optical network device with multi-transport support
KR20090096495A (ko) 광 수신기
US11695511B2 (en) Communication method and apparatus in a point-to-multipoint communication network
US9490932B2 (en) Burst signal receiving apparatus and method, PON optical line terminal, and PON system
JP2010028629A (ja) 局側終端装置、加入者側終端装置、光通信システム、通信方法、装置のプログラム
JP5460253B2 (ja) 親局側光送受信装置および光加入者伝送システム
JP5321312B2 (ja) 光信号の受信装置及び受信方法
CN112690007B (zh) 一种突发信号转连续信号的方法、设备
JP5169522B2 (ja) バースト信号の受信装置と受信方法、及び、その受信装置を用いたponシステム
JP2009260882A (ja) 復号化装置及び光通信システムの宅内装置
JP6115283B2 (ja) 光信号の受信装置及び受信方法
US20080187313A1 (en) Countermeasures for idle pattern SRS interference in ethernet optical network systems
JP4809811B2 (ja) バースト光受信方法および装置
JP5093290B2 (ja) 光受信装置及び光信号の受信方法
JP5588814B2 (ja) バースト受信機,バースト受信制御方法、およびシステム
JP2005340931A (ja) バースト信号受信装置
JP2011101116A (ja) 光中継器、光通信システム、及び光中継器の制御方法
JP6504380B2 (ja) 受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法
JP2010118896A (ja) 復号化装置及び光通信システムの局側装置
WO2024121927A1 (ja) 親局装置、光通信システム、制御回路および光信号処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250