JP6504380B2 - 受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法 - Google Patents

受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法 Download PDF

Info

Publication number
JP6504380B2
JP6504380B2 JP2014137048A JP2014137048A JP6504380B2 JP 6504380 B2 JP6504380 B2 JP 6504380B2 JP 2014137048 A JP2014137048 A JP 2014137048A JP 2014137048 A JP2014137048 A JP 2014137048A JP 6504380 B2 JP6504380 B2 JP 6504380B2
Authority
JP
Japan
Prior art keywords
signal
optical
light
transmission rate
monitor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014137048A
Other languages
English (en)
Other versions
JP2016015640A5 (ja
JP2016015640A (ja
Inventor
大助 梅田
大助 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014137048A priority Critical patent/JP6504380B2/ja
Publication of JP2016015640A publication Critical patent/JP2016015640A/ja
Publication of JP2016015640A5 publication Critical patent/JP2016015640A5/ja
Application granted granted Critical
Publication of JP6504380B2 publication Critical patent/JP6504380B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)
  • Optical Communication System (AREA)

Description

本発明は、時間的に分離された形で送られてくる少なくとも2種類の異なる伝送レート(デュアルレート)の光バースト信号を一括して受信し処理する受信信号処理装置に関するものである。また本発明は、それを用いた光信号中継装置及び中継方法に関するものである。
光加入者線局側装置OLT(Optical Line Terminal:以下「局側装置」という)と、複数の光加入者線終端装置ONU(Optical Network Unit:以下「宅側装置」という)との間を、光ファイバ通信ネットワークを介して、双方向通信する光通信システムがある。
この光通信システムにおいて、局側装置OLTと各宅側装置ONUとの間を、それぞれ1本の光ファイバで放射状に結ぶ(Single Star)構成を有する光ファイバ通信ネットワークが構築、実用化されている。このネットワークの構成では、システムや通信機器などの構成は簡単になるが、1つの宅側装置ONUが、一本の光ファイバを占有しており、局側装置OLTにこの光ファイバを直接配線接続しなければならない。よって、宅側装置ONUがN局あれば、局側装置OLTから直接配線接続される光ファイバがN本必要となり、光通信システムの低価格化を図るのが困難である。
一方、局側装置OLTから配線接続される1本の光ファイバを、複数の宅側装置ONUで共有する光通信システムとしてのPON(Passive Optical Network)システムが実用化されている。このPONシステムは、FTTH(Fiber To The Home)やFTTB(Fiber To The Building)などのFTTxに適用されている低価格の光加入者用アクセス方式の1つである。
このPONシステムでは、特に外部からの電源供給を必要とせずに受動的に入力された信号を分岐・多重する受動型光分岐器(以下、単に「光カプラ」ともいう)と、局側装置OLTとが、伝搬モードを単一とするシングルモードファイバ(Single Mode Fiber)などの光ファイバを介して接続されている。
PONシステムには、宅側装置ONUは通常、複数あり、光カプラで分岐された光ファイバが、宅側装置ONUの数に合わせて備えられている。これにより、1つの局側装置OLTに対して、多くの宅側装置ONUを割り当てることができ、全体的な設備コストを抑えることができる。
このようなPONシステムでは、局側装置OLTから宅側装置ONUへの下り方向の通信はブロードキャスト方式で連続的な光信号が伝送され、宅側装置ONUから局側装置OLTへの上り方向の通信は光信号の衝突を避けるために時分割方式で間欠的な光信号(光バースト信号という)が伝送される。
局側装置OLTと光カプラとの距離が長い場合、光バースト信号を、光/電気モジュールで電気信号に変換し、再び電気/光モジュールで光変換して中継することが行われている。この中継装置を「光信号中継装置」という。
ところで、IEEE802.3標準には、PONの規格として、比較的低速の伝送レート(1.25Gb/s)のGE−PONと、比較的高速の伝送レート(10.3125Gb/s)の10G−EPONとがある。
一つのPONシステム内で、2種類の伝送レートの通信方式、GE−PONと10G−EPONとが混在する場合がある。この場合、宅側装置ONUは、GE−PONに対応し比較的低速の伝送レート(1G)の光バースト信号を送出する宅側装置ONUと、10G−EPONに対応し比較的高速の伝送レート(10G)の光バースト信号を送出する宅側装置ONUとが混在している。局側装置OLTは、該2種類の伝送レートの光バースト信号をそれぞれ受信し処理することができるように設計されている。
このようなデュアルレートのPONシステムでは、光信号中継装置も2種類の伝送レートの通信方式に対応する必要がある。
特許文献1に開示される中継装置は、GE−PONと10G−EPONとが混在するPONシステムにおいて、宅側装置ONUから入力されてくる光信号を分岐器11bで2つに分岐し、一方の信号について1G信号に対応する第一処理部12aが設けられ、他方の信号について10G信号に対応する第二処理部12−2が設けられている。第一処理部12aで1G信号に対応する処理が行われている場合には、第二処理部12−2で10G信号を強制OFFするようにしている。
特開2010-252044号公報 特許第4761135 号公報 特開平6−082651号公報
特許文献1に記載された技術では、第一処理部12aで1G信号に対応する処理が行われている場合には、第一処理部12aで処理された1G信号はそのまま第一処理部12aから出力される。第二処理部12−2で10G信号に対応する処理が行われている場合には、10G信号は第二処理部12−2から出力される。
この場合、分岐器11bでの光パワーの分岐比が問題となる。1G,10Gどちらの信号も極力損失の少ない状態で中継しようとすれば、分岐器11bでの分岐比を1対1、すなわち分岐ロスを約3dBに設定することが好ましい。もし、分岐比を9対1などに設定すれば、片方の信号はほとんどロスがないのに、他方の信号は大きなロスを受けてしまうからである。
したがって、1G信号も10G信号も、中継装置を通過するときに、どちらも約3dBの損失を受けてしまうという問題がある。
また、光信号を分岐するのではなく、光電変換素子で光信号をいったん電気信号に変換して、電気信号の形で分岐することも考えられる。この場合、光電変換素子の光検出電流を増幅する受信増幅器として、電流を入力して電圧に変換するトランスインピーダンス型の増幅器が使われるため、やはり電流を分岐する際に損失が出る。
1G信号も10G信号も、そのまま単一の受信増幅器に通して増幅してから分岐すると言うことも考えられるが、この場合、単一の受信増幅器の利得及び帯域幅を10G信号に合わせて固定しておくのが通常の使い方である。すなわち、受信増幅器の帯域幅を10G信号用に広く設定しておく。このような受信増幅器に1G信号が入ってくれば、1G信号専用に設定された受信増幅器と比べて、帯域幅が広すぎてS/Nの点で不利となり、かつ利得が低くなる、という問題がある。
そこで、本発明者は、光バースト信号の伝送レートを判別して、受信増幅器の帯域幅と利得を制御することができ、かつ分岐ロスが基本的に出ない、受信信号処理装置並びにそれを用いた光信号中継装置及び中継方法を提案する。
すなわち本発明の受信信号処理装置は、光バースト信号をモニタ光と信号光に分岐する光分岐器と、信号光を電気信号に変換する光電変換素子と、電気信号を増幅する受信増幅器であって、利得及び帯域幅を少なくとも2種類切り換えることのできる受信増幅器と、モニタ光を入力して、該モニタ光の信号パターンを検出して、モニタ光の伝送レートが比較的低速の伝送レートか否かを判定するレート判定/信号検出部と、レート判定/信号検出部で判定されたレートが、比較的低速の伝送レートか否かに応じて、受信増幅器の利得及び帯域幅を切替える信号を受信増幅器に供給する制御部とを備えるものである。
この構成によれば、光分岐器によって光バースト信号をモニタ光と信号光に分岐する。レート判定/信号検出部は比較的低速の伝送レートか否かのみを判定する。したがってモニタ光はレート判定/信号検出部において、比較的低速の伝送レートか否かの判定にのみ用いられるため、その判定のための光強度は低くてもよく(比較的低速の伝送レートの信号のほうが受信器の感度を高く設定できるので)、その結果、光分岐器における分岐比は、信号光の側を大きく、モニタ光の側を小さく設定することができる。そしてこの判定結果に応じて、受信増幅器の利得及び帯域幅を切り換える。したがって、光バースト信号が比較的低速の伝送レートか否かに応じて、受信増幅器の利得及び帯域幅を最適に設定できる。
前記光分岐器と前記受信増幅器との間に前記信号光又は前記信号光に基づいて変換された電気信号(主信号)を遅延させる信号遅延部が挿入されており、前記信号遅延部の遅延時間が、前記比較的低速の伝送レートの光バースト信号のプリアンブル時間よりも長く設定されていれば、受信増幅器がバースト信号の受信を開始する前に、レート判定/信号検出部においてバースト信号が比較的低速の伝送レートか否かを判定できるため、バースト信号の受信開始にあわせて、受信増幅器を制御でき、好ましい。
前記光分岐器におけるモニタ光と信号光との分岐比は、具体的には、モニタ光に対しては0.4未満、信号光に対しては0.6以上とすることができ、主信号の分岐ロスを低減できる。
前記レート判定/信号検出部の具体的構成としては、前記モニタ光を受信する受信部と、比較的低速の伝送レートでクロックを再生するクロック・データ再生部と、前記クロック・データ再生部の出力に基づいて信号パターンを検出するパターン判定部とを有し、前記パターン判定部の出力に基づいて比較的低速の伝送レートか否かを判別するものであってもよい。伝送レート判定にクロック・データ再生部での信号同期の有無、特定パターンの検出を行うことで、低速の伝送レートを確実に判別することができる。
前記2種類の伝送レートの光バースト信号は、10G−EPONで使用される10G光バースト信号(10.3125Gb/s)と、GE−PONで使用される1G光バースト信号(1.25Gb/s)であってもよい。この場合、前記1G光バースト信号は8B/10Bで符号化されていて8B/10B のアイドルパターンを同期パターンに使用することができるため、パターン検出が容易にできる。
本発明の光信号中継装置は、宅側装置からの光バースト信号の受信部に、前記本発明の受信信号処理装置を採用したものである。
本発明の光信号中継方法は、前記本発明の光信号中継装置と同一の発明に係る中継方法である。
本発明によれば、受信している光バースト信号の伝送レートを判定して、受信増幅器の帯域幅と利得を制御することができる。したがって伝送レートに応じて、光受信器の受信感度特性を最適に保つことができる。
局側装置OLTと複数の宅側装置ONUとを、光ファイバで接続した光通信システムの構成例を示す概略図である。 光信号中継装置の一部を構成する、本発明の受信信号処理装置の構成を示すブロック図である。 レート判定/信号検出部の詳細な構成例を示すブロック図である。 1G/10G受信器の内部構成を示すブロック図である。
以下、本発明の実施の形態を添付図面を参照して説明する。
図1は、局側装置OLTと複数の宅側装置ONUとを、光ファイバで接続した光通信システム1の構成例を示す概略図である。
光通信システム1は、制御局側局舎に備えられる局側装置OLT2(以下、「局側装置OLT」という)と、複数の加入者宅に備えられる宅側装置ONU3a,3b,...(以下、総称するときは「宅側装置ONU」という)と、局側装置OLTに接続された幹線光ファイバ4a及び各宅側装置ONUに接続された支線光ファイバ4b(以下、総称するときは「光ファイバ4」という)と、幹線光ファイバ4aと複数の支線光ファイバ4bとを接続するための光カプラ5と、幹線光ファイバ4aの途中に挿入設置された光信号中継装置7を備えている。
局側装置OLT及び宅側装置ONUを含むこの光通信システム1は、ギガビットイーサネット(Gigabit Ethernet;イーサネットは登録商標である)の技術を取り込み、1.25bpsの通信速度のアクセス区間通信を実現するGE−PONと、10.3125Gbpsの通信速度のアクセス区間通信を実現する10G−EPONとが混在したシステムを構築している。
局側装置OLTは、1.25bpsの通信速度のGE−PONの上り信号、10.3125Gbpsの通信速度の10G−EPONの上り信号の何れにも対応しており、1.25bpsの通信速度のGE−PONの下り信号、10.3125Gbpsの通信速度の10G−EPONの下り信号の何れにも対応している。
宅側装置ONUは、加入者が光ネットワークサービスを享受するための装置であり、各加入者宅内に設置されている。宅側装置ONUは、上り信号が1.25bpsの通信速度のGE−PON、又は上り信号が10.3125Gbpsの通信速度の10G−EPONの何れかに対応しており、下り信号が1.25bpsの通信速度のGE−PON、又は下り信号が10.3125Gbpsの通信速度の10G−EPONの何れかに対応している。したがって、4種類の組合せから選択され得る構成となっている。
例えば図1の実施の形態では、宅側装置ONU3aは、上り信号が1.25bpsの通信速度のGE−PONに対応し、下り信号が1.25bpsの通信速度のGE−PONに対応している。宅側装置ONU3bは、上り信号が1.25bpsの通信速度のGE−PONに対応し、下り信号が10.3125Gbpsの通信速度の10G−EPONに対応している。宅側装置ONU3cは、上り信号、下り信号ともに10.3125Gbpsの通信速度の10G−EPONに対応している。
光カプラ5は、外部からの電源供給を特に必要とせず、一方に接続された光ファイバ4から入力される信号を、受動的に分岐・多重化して、他方に接続された光ファイバ4に出力することができるスターカプラで形成されている。これにより、1つの局側装置OLTに対して、多くの宅側装置ONUを割り当てることができ、全体的な設備コストを抑えることができる。
このPONシステムに従えば、局側装置OLTと宅側装置ONUとは、64バイト以上の可変長なフレームを単位として、相互の通信を行う。
以下、宅側装置ONUと局側装置OLTとの信号の、下り方向と上り方向との信号の送受信手順を説明する。
まず、インターネット網などの上位のネットワークから局側装置OLTを経て宅側装置ONUへ向けて送られる下り方向の信号の流れを説明する。
上位から信号を受け取った局側装置OLTにおいて、中継されるべき論理リンクを特定するために、所定のブリッジ処理が行われる。このとき、局側装置OLTは、フレーム信号に、論理リンク識別子を含む同期ビットやPONヘッダなどの情報を付加し、光信号に変換して、幹線光ファイバ4aに送る。下り信号の伝送レートは、送り先の宅側装置ONUの種類に応じて、GE−PON又は10G−EPONの何れかに対応した信号となっている。
この下りの光信号は、特定の宅側装置ONUを指定した送信信号と、宅側装置ONUを指定しないアイドル信号との組み合わせで構成されており、途絶えることのない連続信号となっている。
幹線光ファイバ4aに送られた光信号は、光信号中継装置7を通り、光カプラ5で分岐され、各支線光ファイバ4bを介して、各宅側装置ONUに送られる。このとき、当該論理リンクを含んでいる宅側装置ONUのみが、所定の光信号を取り込むことができる。そして、当該フレーム信号を取り込んだ宅側装置ONUは、宅内ネットワークインタフェースを中継し、端末装置にデータを送る。
次に、各宅側装置ONUからインターネット網などの上位のネットワークへ向けて送られる上り方向の信号の流れを説明する。
各端末装置からのデータは、各宅側装置ONUを介して、光バースト信号に変換される。光バースト信号を構成するビットの伝送レートは、宅側装置ONUの上りがGE−PONに対応した宅側装置ONUである場合1.25Gbps、10G−EPONに対応した宅側装置ONUである場合、10.3125Gbpsである。
これらの光バースト信号は各支線光ファイバ4bを介して送信される。光バースト信号は、図1を参照して、宅側装置ONU3aからの光バースト信号6aと、宅側装置ONU3bからの光バースト信号6bと、宅側装置ONU3cからの光バースト信号6cとで構成されている。本実施の形態の場合、光バースト信号6a,6bの伝送レートは、GE−PONであるから1.25Gbps、光バースト信号6cの伝送レートは、10G−EPONであるから10.3125Gbpsである。そして、光カプラ5を介して、幹線光ファイバ4a上をそれぞれの光バースト信号が多重化されて、光信号中継装置7を介して、局側装置OLTに送られる。光バースト信号は伝送距離や分岐数の違いにより、宅側装置ONU毎に光強度と位相の異なる状態で局側装置OLTに届く。
なお図示しないが、各宅側装置ONUからの光バースト信号に含まれる信号は、プリアンブルを構成するプリアンブル部の信号、複数のフレームやセルが含まれたデータ部の信号等を含んでいる。局側装置OLT内に備わる光受信部はプリアンブル部を利用して、光バースト信号毎に光強度を検出して0,1の判定閾値を決定すると同時に、位相を検出してビット同期を確立する。プリアンブル部のパターンは、GE−PONでは8B10Bのアイドル信号となっており、10G−EPONでは特定の同期パターンとなっている。そのマーク率(0,1の比率)は通常50%、ビット数は固定となっている。
これらの光バースト信号は、互いに時間的に競合しないように制御を受ける。この制御は、局側装置OLTから各宅側装置ONUへデータを送信するとき、各宅側装置ONUに対して、上り光信号を送信してもよい期間ウインドウ(以下、単にウインドウともいう)を割り当てる制御フレームを通知することで行われる。したがって、同一の光通信システム1において、各宅側装置ONUから送られる上り光信号は、時間的競合を回避することができる。
このように局側装置OLTは、ウインドウを割り当てることにより、上り光信号が何れの宅側装置ONUから送られてくるかを把握しているので、受信する光バースト信号の伝送レートと受信タイミングを知っている。したがって、局側装置OLTは、局側装置OLTに設置されている上り光受信部の受信帯域幅と利得とを容易に制御することができる。
一方、光信号中継装置7は、光信号を電気信号に変換し、光信号に戻して中継する装置である。光信号は、光信号中継装置7を通ることにより、その信号波形が整形され、信号強度が増大され、一定化される(図1の信号6′a,6′b,6′c参照)。このようにして宅側装置ONUと局側装置OLTとの伝送距離を延ばすことができ、分岐数(宅側装置ONUの接続数)を増やすことができる。
ところが、光信号中継装置7は局側装置OLTと違って、各宅側装置ONUからの通信タイミングを管理していない。このため、光バースト信号を受信した後で、該光バースト信号に基づいて伝送レートを判別して、光受信部の帯域幅と利得を制御する必要がある。
光信号中継装置7は、本来、双方向の光信号中継装置7であって、一方が宅側装置ONUから局側装置OLTへの上りの光バースト信号を中継し、他方が局側装置OLTから宅側装置ONUへの下りの光連続信号を中継するが、本実施の形態では、光信号中継装置7の、宅側装置ONUから局側装置OLTへの上りの光バースト信号を中継する部分(受信信号処理装置70という)に注目する。
図2は、受信信号処理装置70の内部構成を示すブロック図である。宅側装置ONUからの上り光バースト信号は、図2の左側から入力される。
受信信号処理装置70は、光バースト信号を「モニタ光」と「信号光」に分岐する光カプラ71と、遅延ファイバ74と、信号光を受信する1G/10G受信器75と、モニタ光を入力して、該モニタ光の信号パターンを検出して、モニタ光の伝送レートが比較的低速の伝送レート(本実施の形態の場合、1.25Gb/s)か否かを判定するレート判定/信号検出部72と、前記レート判定/信号検出部72で判定された結果に応じて、1G/10G受信器75の中のプリアンプの利得及び帯域幅を切替えるための切替え信号を1G/10G受信器75に供給するレート/タイミング制御部73と、1Gクロック・データ再生部76aと、10Gクロック・データ再生部76bと、1G同期部77aと、10G同期部77bと、1G/10G切替部78と、1G/10G送信器79とを備えている。
図3はレート判定/信号検出部72の詳細な構成例を示すブロック図である。レート判定/信号検出部72は光電変換素子APD、プリアンプ31、ポストアンプ32、1Gクロック・データ再生部33、パターン判定部(8B/10B)34、及び強度モニタ回路36、比較器38を含んでいる。
光電変換素子APDがモニタ光を受光すると、その光信号は電気信号に変換され、プリアンプ31で増幅され、ポストアンプ32に入力される。ポストアンプ32は、該電気信号を増幅して0,1信号として出力する。
強度モニタ回路36は、バースト信号を検出する。すなわち、バースト信号が入って来ると、強度モニタ回路36が信号強度をモニタし、その信号強度が閾値を超えていれば、比較器37は信号を出力するのでバースト信号を検出することができる。
この比較器37の出力信号を、「信号有無検出信号」という。すなわち、信号有無検出信号が存在する期間は、1G信号であれ10G信号であれ、信号を検出(光信号の強度検出)していると判定することができる。信号有無検出信号が存在しない期間は、信号がないと判定することができる。
なお、強度モニタ回路はピーク検出回路やローパスフィルタによる平均値回路で構成すことができる。
プリアンプ31とポストアンプ32の増幅帯域幅は、1G信号の帯域幅に合わせている。しかし、10G信号が光電変換素子APDに入ってきた場合、10G信号の有無を検出することができる。この理由は、10G−EPON では10G 信号のプリアンブル部に低周波成分を含む同期パターンが使用されているためである。
ポストアンプ32から出力される増幅された電気信号は、1Gクロック・データ再生部33によってクロック信号が抽出され、そのクロック信号でサンプリングされたデータ信号が、パターン判定部(8B/10B)34に入力される。パターン判定部(8B/10B)34は、1G信号のビットに基づいて8B/10B パターンを判定し、その出力を「レート判定信号」として出力する。なお、1Gクロック・データ再生部33とパターン判定部(8B/10B)34は1G信号に対して動作できるが、10G信号に対しては動作できない。
1Gクロック・データ再生部33が受信信号に同期し、パターン判定部(8B/10B)34が8B/10B パターンを検出すれば、パターン判定部(8B/10B)から出力信号が現れる。この出力信号を「レート判定信号」という。レート判定信号が出力されている間は1G 信号を受信していると判定することができる。
このようにレート判定/信号検出部72を1G信号を判定する構成としたことにより、光カプラ71の分岐比を例えばα:(1−α)とすることができる。ただしαはモニタ光側の比率を表し、αは0を超え、0.5未満の実数、好ましくは0を超え、0.4未満の実数、である。
分岐比が設定された光カプラ71の光学的構造は限定されないが、例えば、光ファイバを熔融接合し、光ファイバの一部を加熱して融着、延伸して形成することができる。このような光カプラは、一般的に「光ファイバカプラ」と呼ばれている。所望の分岐比を実現するために、入出力特性をモニタしながら製造する(特許文献3:「光ファイバカプラの製造方法」参照)。なお、光カプラの分岐比が、50:50の場合は「3dBカプラ」、60:40の場合は「4dBカプラ」、70:30の場合は「5dBカプラ」などと呼ばれている。
なおレート判定/信号検出部72のプリアンプ31に、10G信号に対応した帯域幅と利得を持つプリアンプを用いる構成も考えられるが、1G 受信器のプリアンプの方が10G 受信器のプリアンプよりも感度特性が良く、弱い光レベルを検出することができるので、モニタ光の分岐比を下げることができ、光カプラ71による信号光のレベル劣化を抑えることができる点で有利である。
レート/タイミング制御部73は、レート判定/信号検出部72からのレート判定信号と信号有無検出信号との組み合わせにより、信号が存在し、かつ、「レート判定信号」が検出されている場合は1G 信号を受信していると判定する。信号が存在し、かつ、「レート判定信号」が検出されていない場合は10G 信号を受信していると判定する。信号が存在しない期間は、1G信号も10G 信号も受信していないと判定する。
レート/タイミング制御部73は、これらの判定結果に基づいて、図2に示すように、1G 信号を受信し始めた時点と1G 信号が終了した時点とを示す「1G開始/終了信号」と、10G 信号を受信し始めた時点と10G 信号が終了した時点とを示す「10G開始/終了信号」と、1G 信号を受信しているか10G 信号を受信しているかを判別するための「1G/10G切替信号」とを出力する。
図2を参照して、遅延ファイバ74は、レート判定/信号検出部72がモニタ光に基づいて1G/10Gの判定をする時間的な余裕を確保するために、信号光を遅延させる素子である。遅延時間は例えば、μ秒のオーダーである。例えば、約200mの遅延ファイバで1μ秒の遅延時間となる。
1G/10G受信器75は、図4に示すように、信号光を電気信号に変換する光電変換素子APDと、電気信号を増幅するプリアンプ41とポストアンプ42とを含む。プリアンプ41は、レート/タイミング制御部73からの1G/10G切替信号に応じて、利得及び帯域幅をそれぞれ少なくとも2種類切り換えることができる構成になっている。すなわち、1G 信号を受信している場合には、プリアンプ41の帯域幅を狭くし、利得を上げる。10G 信号を受信している場合には、プリアンプ41の帯域幅を広くし、利得を下げる。このような切り替えは、例えば、プリアンプ41の帰還ループに入っている抵抗の値を切り替えることにより行うことができる。
光電変換素子APDが信号光を受光すると、その信号光は電気信号に変換され、プリアンプ41で増幅される。プリアンプ41には互いに並列に接続された帰還抵抗R1,R2が接続されていて、抵抗R2にはスイッチング素子であるFETが直列に入っている。FETのゲートには、1G/10G切替信号が印加される。
1G 信号を受信しているときにはFETはオフになり、帰還抵抗値は、抵抗R1の抵抗になる。10G 信号を受信しているときにはFETはオンになり、帰還抵抗値は、抵抗R1とR2との並列抵抗値になる。抵抗R1とR2の抵抗値を設定することにより、1G 信号を受信しているか10G 信号を受信しているかに応じて、プリアンプ41のプリアンプの帯域幅と、利得とを切り替えることができる。1G 信号の場合は帯域幅を狭くして利得を高くとり、10G 信号の場合は帯域幅を広くして利得を低くとる。
ポストアンプ42は、プリアンプ41から出力される電気信号を増幅して出力する。ポストアンプ42は二段接続されていて、中間から二分岐して、一方を1Gデータの増幅用に、他方を10Gデータの増幅用にすることができる。なお、2分岐する構成に代えて、1G/10G切替信号に応じて動作する切替スイッチを設けてもよい。
1G/10G受信器75から出力される電気信号は、1G/10Gクロック・データ再生部76a,76bに供給される。1G/10Gクロック・データ再生部76a,76bは、1G/10G受信器75から出力される1G/10Gデータから光バースト信号の各ビットに同期した再生クロックを抽出する。そして再生クロックによって受信信号の各ビットをサンプリングして1G/10Gデータをパラレル信号に変換する。
1G/10G同期部77a,77bには、1G/10Gの再生クロックと、1G/10Gのデータと、参照クロックが入力される。
前記参照クロックとは、光信号中継装置7内部で作られるクロックであり、前記再生クロックと同一周波数のクロックである。参照クロックは発振器を用いて作っても良く、局側装置OLTからの下り信号を抽出して作ってもよい。後者の場合、下り信号は、上り信号と違って常時信号が伝送されているので、下りの光連続信号から抽出することにより、時間的にとぎれることのない参照クロックを作ることができる。発振器を用いて作る場合も同様である。
1G/10G同期部77a,77bは、1G/10Gのデータと、参照クロックとに基づいて、同期のとれた、すなわち位相が完全にそろった1G/10Gデータを復元する。なお1G/10G同期部77a,77bの同期処理機能の詳細については、特許文献2に記載されている。
1G/10G切替部78は、レート/タイミング制御部73からの1G/10G切替信号に基づいて1G同期部77aの出力か、10G同期部77bの出力の何れかを選択する。
1G/10G送信器79は、電気信号を光信号に変換する。
なお、1G/10G送信器79は、無信号区間の発光を完全に停止しなければならない。そのために、1G/10G同期部77a,77bは、光バースト信号区間のみ1G/10G送信器79が発光するように、バーストイネーブル信号をそれぞれ生成する。2つのバーストイネーブル信号は、論理和回路80を通して、1G/10G送信器79に供給される。1G/10G送信器79はバーストイネーブル信号を取り込み、このバーストイネーブル信号に基づいて、バーストイネーブル信号が有効な時のみ発光するようにされる。
レート判定/信号検出部72の1G受信器(1G信号の受信に最適な帯域幅、感度を持つプリアンプ31、ポストアンプ32、強度モニタ回路36の組合せ)では、光電変換素子APDに入るモニタ光のレベルが-40dBm でも、1G 信号に対してBER=10-4程度の受信感度を確保でき、クロック・データ再生部が同期して、パターン判定部で8B/10B 符号をパターン検出できることが分かっている。また、10G−EPON では10G 信号のプリアンブルに低周波成分を含む同期パターンが使用されるため、1G受信器でも光バースト信号の有無の検出ができることが分かっている。
光カプラ71に入力される入力光、光カプラ71から1G/10G受信器75に供給される信号光、光カプラ71からレート判定/信号検出部72に供給されるモニタ光の各レベルを想定して、光カプラ71の最適な分岐比を試算した。
上り中継の入力光のレベルを、10G信号の場合、10G−EPON (IEEE802.3av)のBASE-PR-D3 (10G)の受信レベル(-28.0dBm〜-6.0dBm, BER=10-3)とし、1G信号の場合、10/1GBASE-PRX-D3 の受信レベル(-29.78dBm〜-9.38dBm, BER=10-12)とした。
光カプラ71の分岐比を1:9(モニタ光:信号光)に設定した。分岐後のモニタ光のレベルは、1G信号で、-39.78dBm〜-19.38dBmとなり、10G信号で、-38.0dBm〜-16.0dBmとなる。したがって、 1G信号で8B/10B 符号をパターン検出するために必要とされるモニタ光のレベル-40dBm を上回る。また、 10G信号の場合、パターン検出はできないが、光バースト信号の有無を検出できることがわかる。
このように、光カプラの分岐比を1:9(モニタ光:信号光)に設定することにより、信号光側の損失を0.46dB 程度に抑えることができる。
なお、光カプラ71で分岐された信号光のレベルは、10G信号で -28.46dBm〜-6.46dBm BER=10-3となり、1G信号で-30.24dBm〜-9.83dBm BER=10-12となる。
以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定されるものではない。例えば、光分岐器において、モニタ光と信号光に加えて第3の光に分岐させ、この第3の光を別の用途に使う場合にも本発明は適用可能である。その他、本発明の範囲内で種々の変更を施すことが可能である。
1 光通信システム
7 光信号中継装置
33 1Gクロック・データ再生部
34 パターン判定部
41 プリアンプ(受信増幅器)
70 受信信号処理装置
71 光カプラ
72 レート判定/信号検出部(判定部)
73 レート/タイミング制御部(制御部)
74 遅延ファイバ
75 1G/10G受信器

Claims (7)

  1. 時間的に分離された形で送られてくる少なくとも2種類の異なる伝送レートの光バースト信号を受信し処理する受信信号処理装置であって、
    前記光バースト信号をモニタ光と信号光に分岐する光分岐器と、
    前記信号光を電気信号に変換する光電変換素子と、
    前記電気信号を増幅する受信増幅器であって、利得及び帯域幅を少なくとも2種類切り換えることのできる、受信増幅器と、
    前記モニタ光を入力して、該モニタ光の信号パターンを検出して、前記モニタ光の伝送レートが比較的低速の伝送レートか否かを判定する判定部と、
    前記判定部で判定されたレートが、比較的低速の伝送レートか否かに応じて、前記受信増幅器の利得及び帯域幅を切替える信号を前記受信増幅器に供給する制御部とを備え、前記光分岐器と前記受信増幅器との間に前記信号光又は前記信号光に基づいて変換された電気信号を遅延させる信号遅延部が挿入されており、前記信号遅延部の遅延時間が、前記比較的低速の伝送レートの光バースト信号のプリアンブル時間よりも長く設定されている、受信信号処理装置。
  2. 時間的に分離された形で送られてくる少なくとも2種類の異なる伝送レートの光バースト信号を受信し処理する受信信号処理装置であって、
    前記光バースト信号をモニタ光と信号光に分岐する光分岐器と、
    前記信号光を電気信号に変換する光電変換素子と、
    前記電気信号を増幅する受信増幅器であって、利得及び帯域幅を少なくとも2種類切り換えることのできる、受信増幅器と、
    前記モニタ光を入力して、該モニタ光の信号パターンを検出して、前記モニタ光の伝送レートが比較的低速の伝送レートか否かを判定する判定部と、
    前記判定部で判定されたレートが、比較的低速の伝送レートか否かに応じて、前記受信増幅器の利得及び帯域幅を切替える信号を前記受信増幅器に供給する制御部とを備え、前記光分岐器におけるモニタ光と信号光との分岐比は、モニタ光に対しては0.4未満、信号光に対しては0.6以上である、受信信号処理装置。
  3. 時間的に分離された形で送られてくる少なくとも2種類の異なる伝送レートの光バースト信号を受信し処理する受信信号処理装置であって、
    前記光バースト信号をモニタ光と信号光に分岐する光分岐器と、
    前記信号光を電気信号に変換する光電変換素子と、
    前記電気信号を増幅する受信増幅器であって、利得及び帯域幅を少なくとも2種類切り換えることのできる、受信増幅器と、
    前記モニタ光を入力して、該モニタ光の信号パターンを検出して、前記モニタ光の伝送レートが比較的低速の伝送レートか否かを判定する判定部と、
    前記判定部で判定されたレートが、比較的低速の伝送レートか否かに応じて、前記受信増幅器の利得及び帯域幅を切替える信号を前記受信増幅器に供給する制御部とを備え、前記判定部は、前記モニタ光を受信する受信部と、比較的低速の伝送レートでクロックを再生するクロック・データ再生部と、前記クロック・データ再生部の出力に基づいて信号パターンを検出するパターン判定部とを有し、前記パターン判定部の出力に基づいて比較的低速の伝送レートか否かを判別するものである、受信信号処理装置。
  4. PONシステムの局側装置−宅側装置間に設置され、各宅側装置から送られてくる少なくとも2種類の異なる伝送レートの光バースト信号を中継する中継装置であって、前記宅側装置からの光バースト信号の受信部に、請求項1から請求項3の何れか1項に記載の受信信号処理装置を採用した、中継装置。
  5. 光分岐器によって光バースト信号をモニタ光と信号光に分岐し、前記信号光を電気信号に変換し、前記電気信号を受信増幅器によって増幅し、増幅された電気信号を光信号に変換する光信号中継方法であって、
    前記光バースト信号が、時間的に分離された形で送られてくる少なくとも2種類の異なる伝送レートの光バースト信号であり、
    前記モニタ光を入力して、該モニタ光の信号パターンを検出して、前記モニタ光の伝送レートが比較的低速の伝送レートか否かを判定する工程と、
    前記判定されたレートが比較的低速の伝送レートか否かに応じて、前記受信増幅器の利得及び帯域幅を切替える信号を前記受信増幅器に供給する工程とを備え、
    前記光分岐器と前記受信増幅器との間に前記信号光又は前記信号光に基づいて変換された電気信号を遅延させる信号遅延部が挿入されており、前記信号遅延部の遅延時間が、前記比較的低速の伝送レートの光バースト信号のプリアンブル時間よりも長く設定されているものである、光信号中継方法。
  6. 光バースト信号を光分岐器によってモニタ光と信号光に分岐し、前記信号光を電気信号に変換し、前記電気信号を受信増幅器によって増幅し、増幅された電気信号を光信号に変換する光信号中継方法であって、
    前記光バースト信号が、時間的に分離された形で送られてくる少なくとも2種類の異なる伝送レートの光バースト信号であり、
    前記モニタ光を入力して、該モニタ光の信号パターンを検出して、前記モニタ光の伝送レートが比較的低速の伝送レートか否かを判定する工程と、
    前記判定されたレートが比較的低速の伝送レートか否かに応じて、前記受信増幅器の利得及び帯域幅を切替える信号を前記受信増幅器に供給する工程とを備え、
    前記光分岐器におけるモニタ光と信号光との分岐比は、モニタ光に対しては0.4未満、信号光に対しては0.6以上である、光信号中継方法。
  7. 光バースト信号をモニタ光と信号光に分岐し、前記信号光を電気信号に変換し、前記電気信号を受信増幅器によって増幅し、増幅された電気信号を光信号に変換する光信号中継方法であって、
    前記光バースト信号が、時間的に分離された形で送られてくる少なくとも2種類の異なる伝送レートの光バースト信号であり、
    前記モニタ光を入力して、該モニタ光の信号パターンを検出して、判定部によって、前記モニタ光の伝送レートが比較的低速の伝送レートか否かを判定する工程と、
    前記判定されたレートが比較的低速の伝送レートか否かに応じて、前記受信増幅器の利得及び帯域幅を切替える信号を前記受信増幅器に供給する工程とを備え、
    前記判定部は、前記モニタ光を受信する受信部と、比較的低速の伝送レートでクロックを再生するクロック・データ再生部と、前記クロック・データ再生部の出力に基づいて信号パターンを検出するパターン判定部とを有し、前記パターン判定部の出力に基づいて比較的低速の伝送レートか否かを判別するものである、光信号中継方法。
JP2014137048A 2014-07-02 2014-07-02 受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法 Active JP6504380B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137048A JP6504380B2 (ja) 2014-07-02 2014-07-02 受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137048A JP6504380B2 (ja) 2014-07-02 2014-07-02 受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法

Publications (3)

Publication Number Publication Date
JP2016015640A JP2016015640A (ja) 2016-01-28
JP2016015640A5 JP2016015640A5 (ja) 2017-03-02
JP6504380B2 true JP6504380B2 (ja) 2019-04-24

Family

ID=55231523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137048A Active JP6504380B2 (ja) 2014-07-02 2014-07-02 受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法

Country Status (1)

Country Link
JP (1) JP6504380B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380218B2 (ja) 2017-11-22 2023-11-15 住友電気工業株式会社 Ponシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097641B2 (ja) * 2008-08-07 2012-12-12 株式会社日立製作所 受動光網システム、光多重終端装置及び光網終端装置
JP5481240B2 (ja) * 2010-03-12 2014-04-23 株式会社日立製作所 マルチレート用バーストモード受信機

Also Published As

Publication number Publication date
JP2016015640A (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
JP4820880B2 (ja) 局側終端装置
US8346098B2 (en) Receiving apparatus and receiving method
US8861954B2 (en) Burst-mode receiver equipped with optical amplifier, method for controlling optical amplifier, and system
JP5053328B2 (ja) 受動光ネットワークシステムにおいてアップリンクバーストデータを提供する方法および装置
JP2005006313A (ja) 受動光通信網の光パワー等化装置
US9490932B2 (en) Burst signal receiving apparatus and method, PON optical line terminal, and PON system
KR101854054B1 (ko) 전류 전압 변환 회로, 광 수신기 및 광 종단 장치
WO2011009368A1 (zh) 无源光网络中传输信息的方法、装置和系统
JP5460253B2 (ja) 親局側光送受信装置および光加入者伝送システム
US9287981B2 (en) Station-side apparatus and PON system
US10103814B2 (en) Data receiving apparatus
JP6504380B2 (ja) 受信信号処理装置並びにそれを用いた光信号中継装置及び光信号中継方法
JP5588814B2 (ja) バースト受信機,バースト受信制御方法、およびシステム
JP5321312B2 (ja) 光信号の受信装置及び受信方法
JP2008277893A (ja) マルチレートponシステムとその局側装置、端末装置及び伝送レート設定方法
JP2013179695A (ja) Ponシステムおよび局側装置
KR101063012B1 (ko) 시분할 다중접속 방식의 수동 광가입자망을 구성하는 광 회선 단말 및 광 회선 단말의 연속모드 수신기
JP2010178257A (ja) 複数速度対応増幅器
WO2017179241A1 (ja) 光信号中継装置および中継方法
JP6027513B2 (ja) 通信システム、中継装置、通信方法及び中継方法
JP6601484B2 (ja) 光信号中継装置
JP2019009500A (ja) 中継ノード装置、ponシステム、およびネットワークシステム
JP5411805B2 (ja) 受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置
JP2010118896A (ja) 復号化装置及び光通信システムの局側装置
JP2011029976A (ja) 利得可変増幅器および光受信装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R150 Certificate of patent or registration of utility model

Ref document number: 6504380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250