WO2024121927A1 - 親局装置、光通信システム、制御回路および光信号処理方法 - Google Patents

親局装置、光通信システム、制御回路および光信号処理方法 Download PDF

Info

Publication number
WO2024121927A1
WO2024121927A1 PCT/JP2022/044865 JP2022044865W WO2024121927A1 WO 2024121927 A1 WO2024121927 A1 WO 2024121927A1 JP 2022044865 W JP2022044865 W JP 2022044865W WO 2024121927 A1 WO2024121927 A1 WO 2024121927A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
initial
equalization
coefficient
Prior art date
Application number
PCT/JP2022/044865
Other languages
English (en)
French (fr)
Inventor
聡 吉間
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/044865 priority Critical patent/WO2024121927A1/ja
Publication of WO2024121927A1 publication Critical patent/WO2024121927A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • This disclosure relates to a master station device that receives optical signals, an optical communication system, a control circuit, and an optical signal processing method.
  • a PON system has one OLT (Optical Line Terminal), which is the central office device, and multiple ONUs (Optical Network Units), which are subscriber terminal devices, and the OLT and ONUs are connected by optical fiber via optical couplers.
  • OLT Optical Line Terminal
  • ONUs Optical Network Units
  • the OLT is also called the parent station device, and the ONUs are also called child station devices.
  • the PON system that is currently being widely introduced is a system that multiplexes signals using TDM (Time Division Multiplexing) for both upstream and downstream.
  • the normal method of deriving equalization coefficients is to measure the degree to which the received signal deviates from the desired signal and apply feedback. This feedback is performed during a training time set up before the transmitting side sends out the transmission information.
  • the appropriate equalization coefficient differs for each communication partner device, and in a PON system using TDM, the OLT communicates with multiple ONUs in a time-division manner, so it is necessary to set the equalization coefficient each time the communication partner device changes. For this reason, in a PON system using TDM, when deriving equalization coefficients using a feedback method, it is necessary to set a training time for each transmission signal, which poses the problem of reduced transmission efficiency.
  • Patent Document 1 discloses a technology in which, in a PON system using TDM, an equalization coefficient is derived for each ONU in the discovery process in which the OLT authenticates the ONU in the initial communication process to determine the communication timing with each ONU, the derived equalization coefficient is stored, and the equalization coefficient to be used is switched using the stored equalization coefficient at a timing that matches the arrival timing of the optical signal from the ONU.
  • this OLT derives the equalization coefficient using a preamble that is longer than the preamble used in the normal communication process.
  • the present disclosure has been made in consideration of the above, and aims to obtain a parent station device that can shorten the time it takes to determine the equalization coefficients for each ONU even in the discovery process, and that can reduce the possibility of communication being disabled even if the state of the communication path changes.
  • the parent station device is connected to a plurality of child station devices by optical fibers via optical couplers, and receives optical signals from each of the plurality of child station devices in a time-division manner.
  • the parent station device includes an opto-electrical conversion unit that converts the received signal from an optical signal to an electrical signal, an analog-to-digital conversion unit that converts the received signal converted into an electrical signal from an analog signal to a digital signal, a waveform equalization unit that performs waveform equalization processing of the received signal, which is a digital signal, using an equalization coefficient, and an initial coefficient analysis unit that performs frequency response analysis in a preamble region of the received signal output by the analog-to-digital conversion unit and determines initial values of the equalization coefficients used by the waveform equalization unit based on the analysis results of the frequency response analysis without recursive calculation, and is characterized in that the waveform equalization unit starts waveform equalization processing using the initial values of the equalization coefficients determined by the initial coefficient analysis unit, and then starts optimization processing of the equalization coefficients involving recursive calculation to update the values of the equalization coefficients to be used.
  • the parent station device disclosed herein has the advantage of being able to shorten the time it takes to determine the equalization coefficients for each ONU during the discovery process, and also to reduce the possibility of communication being disabled even if the state of the communication path changes.
  • FIG. 1 is a diagram showing a configuration of an optical communication system according to a first embodiment
  • FIG. 2 is a circuit block diagram of an ONU and an OLT shown in FIG. 1
  • FIG. 1 is a block diagram of a receiving circuit of an OLT according to a first embodiment. Schematic diagram of an upstream burst signal at the receiving end of an OLT
  • FIG. 1 is a diagram illustrating a method for determining equalization coefficients in an initial coefficient analysis unit
  • 1 is a flowchart for explaining a receiving operation of an OLT according to a first embodiment.
  • FIG. 13 is a diagram for explaining the effect of the third embodiment.
  • FIG. 1 is a diagram showing a configuration of an optical communication system 100 according to a first embodiment.
  • the optical communication system 100 has a plurality of ONUs 1-1 to 1-n which are child station devices, and an OLT 4 which is one parent station device.
  • the OLT 4 is connected to each of the plurality of ONUs 1-1 to 1-n via an optical coupler 3.
  • Each of the plurality of ONUs 1-1 to 1-n is connected to the optical coupler 3 via optical fibers 2-1 to 2-n, and the optical coupler 3 is connected to the OLT 4 via an optical fiber 2m.
  • the OLT 4 and the ONUs 1-1 to 1-n constitute a one-to-many access optical communication system 100.
  • ONU 1 when there is no need to distinguish between each of the plurality of ONUs 1-1 to 1-n, they will simply be referred to as ONU 1.
  • optical fiber 2 when there is no need to distinguish between each of the plurality of optical fibers 2-1 to 2-n and 2m, they will simply be referred to as optical fiber 2.
  • Optical communication system 100 achieves one-to-many communication by time division multiplexing both upstream and downstream signals.
  • each of the multiple ONU1s emits an optical signal only in time slots that have been assigned to it in advance by OLT4.
  • the optical signal transmitted by each ONU1 is a signal in which areas where a signal is present and areas where no signal is present are repeated in the time domain, and is called a burst signal.
  • the optical communication system 100 has a digital equalization function that performs ISI compensation by digital signal processing.
  • the bandwidth of the optical signal transmitted from the ONU 1 is mainly determined by the bandwidth of the analog front-end components of the transmission section of the ONU 1.
  • the bandwidth of the analog front-end components is required to be about 0.75 to 1 times the transmission speed, that is, 35 GHz to 50 GHz, if digital equalization is not performed. Components with such performance are very expensive, and it is difficult to achieve them in systems with strict cost reduction requirements.
  • the optical communication system 100 has a digital compensation function, it is possible that the transmission bandwidth will be different for each ONU1.
  • the transmission bandwidth of ONU1-1 and ONU1-2 may be 25 GHz, while the transmission bandwidth of ONU1-n may be 35 GHz.
  • the optical fibers 2-1 to 2-n connecting the optical coupler 3 and each ONU 1 generally have different lengths. Furthermore, the optical transmission power of the ONUs 1-1 to 1-n generally differs within the range that meets the standards. For example, in the case of 25G upstream as specified by ITU-T G. 9804.3, there is a 4dB width. As a result, the upstream burst signal from each ONU 1 received by the OLT 4 has a difference in received power due to the difference in optical transmission power and transmission path loss. For example, in the case of 25G upstream as specified by ITU-T G. 9804.3, a maximum difference in received power of 19.5dB occurs.
  • the first stage amplifier for the received signal of the OLT 4 is usually equipped with an AGC (Automatic Gain Control) circuit.
  • AGC Automatic Gain Control
  • amplifiers have a constant gain-bandwidth product, so if the AGC circuit reduces the conversion gain when receiving high power light, the bandwidth will inevitably be extended. As a result, the signal bandwidth output by the first-stage amplifier will change depending on the optical power of the received signal.
  • the bandwidth of the transmitting circuit of ONU1 and the receiving circuit of OLT4 often fluctuates due to factors such as the externally applied power supply voltage, the operating environment temperature, and aging.
  • the bandwidth of the entire upstream transmission line from ONU1 to OLT4 changes depending on the state of the transmitting and receiving equipment and the transmission line, and at the output terminal of the analog front-end circuit of OLT4, the bandwidth differs for each upstream burst signal.
  • FIG. 2 is a diagram showing the circuit blocks of ONU 1 and OLT 4 shown in FIG. 1.
  • ONU 1 has a MAC (Medium Access Control) circuit 11 and an AFE (Analog Front End) circuit 12.
  • OLT 4 has an AFE circuit 41, a DSP (Digital Signal Processor) circuit 42, and a MAC circuit 43.
  • Each of ONU 1-1 to 1-n shown in FIG. 1 has a configuration similar to that of ONU 1 shown in FIG. 2.
  • the MAC circuit 11 and the MAC circuit 43 perform authentication of each ONU1 and transmission timing control by communication between the MAC circuit 11 and the MAC circuit 43.
  • the AFE circuit 12 and the AFE circuit 41 perform conversion between electrical signals and optical signals.
  • the DSP circuit 42 has a function of compensating with a digital equalization circuit or the like when the AFE circuit 41 cannot accurately reproduce a digital electrical signal or when the signal from the MAC circuit 43 cannot be optically transmitted as is.
  • a DSP circuit is not shown in the ONU1, a DSP circuit may be provided between the AFE circuit 12 and the MAC circuit 11, as in the OLT4.
  • the example shown in FIG. 2 is an example of how to divide the circuit blocks, and various configurations are possible.
  • the DSP circuit 42 and the MAC circuit 43 are different circuits in FIG. 2, but the DSP circuit 42 and the MAC circuit 43 may be integrated into an IC (Integral Circuit) chip.
  • IC Integral Circuit
  • FIG. 3 is a block diagram of the receiving circuit of the OLT 4 according to the first embodiment. Note that FIG. 3 shows the AFE circuit 41 and the DSP circuit 42 of the OLT 4, and shows the parts of the AFE circuit 41 and the DSP circuit 42 that function as receiving circuits.
  • the AFE circuit 41 has a PD (Photo Detector) 411 and a TIA (Trans Impedance Amplifier) circuit 412.
  • the PD 411 may be a PIN-PD with an I-type semiconductor sandwiched between a P-type semiconductor and an N-type semiconductor, or an APD (Avalanche Photo Diode) that uses the avalanche phenomenon of electrons to increase light receiving sensitivity.
  • an optical amplifier may be inserted as a preamplifier at the input of the PD 411.
  • the PD 411 is a photoelectric conversion element that receives an optical signal and converts it into an electrical signal. The PD 411 outputs the received signal converted into an electrical signal to the TIA circuit 412.
  • the TIA circuit 412 is a first stage amplifier for the received signal of the OLT 4, and has an AGC function so that electrical regeneration is possible even if there is a power difference in the received light power.
  • the TIA circuit 412 may have a mechanism for inputting an external reset signal to optimize the AFC function at the beginning of each received signal received in time division.
  • the TIA circuit 412 may have a mechanism for inputting an external rate select signal to optimize the constant of the TIA circuit 412 for the transmission speed of each received signal when the transmission speeds of multiple received signals received in time division are different.
  • multiple amplifiers may be inserted at the output of the TIA circuit 412 to make the signal amplitude a certain value or more.
  • the TIA circuit 412 outputs the amplified received signal to the DSP circuit 42.
  • the DSP circuit 42 has an AD conversion unit 421, a waveform equalization unit 422, a signal processing unit 423, a switch unit 424, a switch unit 425, a frequency response analysis unit 426, and an initial coefficient determination unit 427.
  • the frequency response analysis unit 426 and the initial coefficient determination unit 427 constitute an initial coefficient analysis unit 420 that performs a frequency response analysis of the received signal and determines the initial values of the equalization coefficients used by the waveform equalization unit 422 based on the analysis results of the frequency response analysis without recursive calculations.
  • the AD conversion unit 421 is an analog-to-digital conversion unit that converts the received signal, which is an analog signal output by the AFE circuit 41, into a digital signal.
  • the AD conversion unit 421 samples the input received signal at a sampling rate faster than the transmission signal rate, and digitizes the signal amplitude at 2 bits or more to digitize the output waveform information of the AFE circuit 41.
  • the AD conversion unit 421 outputs the received signal converted into a digital signal to the waveform equalization unit 422 or the initial coefficient analysis unit 420.
  • the waveform equalizer 422 performs digital waveform equalization using an FFE (Feed-Forward Equalizer), a DFE (Decision Feedback Equalizer), or a combination of these.
  • FFE Field-Forward Equalizer
  • DFE Decision Feedback Equalizer
  • the waveform equalizer 422 performs digital waveform equalization of the received signal and outputs the processed received signal to the signal processor 423.
  • the equalization coefficients used by the waveform equalizer 422 for waveform equalization are determined for each ONU 1, so the waveform equalizer 422 changes the equalization coefficients used each time the sender of the received signal changes.
  • the transmission timing of ONU 1 is assigned in advance in a time-division manner in the discovery process that registers ONU 1, so the waveform equalizer 422 changes the equalization coefficients used in accordance with this assignment.
  • the signal processing unit 423 performs signal processing such as data identification, clock extraction, and pattern identification.
  • the signal processing unit 423 outputs the processing results to the MAC circuit 43.
  • the switch unit 424 has a function of switching between a connection state in which the output of the AD conversion unit 421 is input to the waveform equalization unit 422 and a connection state in which the output of the AD conversion unit 421 is input to the frequency response analysis unit 426 and the switch unit 425.
  • the switch unit 424 can switch the connection state in response to a control signal.
  • the switch unit 425 has a function of switching between a connection state in which the output of the waveform equalization unit 422 is input to the signal processing unit 423 and a connection state in which the output of the AD conversion unit 421 is input to the signal processing unit 423 without passing through the waveform equalization unit 422.
  • the switch unit 425 can switch the connection state in response to a control signal.
  • the switch units 424 and 425 can change whether or not to input a received signal to the waveform equalization unit 422 by switching the connection state in response to a control signal.
  • the switch unit 424 is in a connection state in which the output of the AD conversion unit 421 is input to the initial coefficient analysis unit 420 and the switch unit 425
  • the switch unit 425 is in a connection state in which the output of the AD conversion unit 421 is input to the signal processing unit 423 by bypassing the waveform equalization unit 422.
  • the switch unit 424 When the switch unit 424 is switched to a connection state in which the output of the AD conversion unit 421 is input to the waveform equalization unit 422 in response to a control signal, the switch unit 425 is switched to a connection state in which the output of the waveform equalization unit 422 is input to the signal processing unit 423.
  • the output of the AD conversion unit 421 is input to the signal processing unit 423 without passing through the waveform equalization unit 422, and is also input to the initial coefficient analysis unit 420, and the determined initial value of the equalization coefficient is input to the waveform equalization unit 422.
  • the frequency response analysis unit 426 performs frequency response analysis of the received signal output by the AD conversion unit 421 using processing such as Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the frequency response analysis unit 426 outputs the results of the frequency response analysis to the initial coefficient determination unit 427.
  • the frequency response analysis unit 426 performs frequency response analysis using the preamble region of the received signal, and outputs the analysis results for each received signal, that is, for each ONU1.
  • the initial coefficient determination unit 427 determines the initial values of the equalization coefficients used by the waveform equalization unit 422 for each ONU1 based on the results of the frequency response analysis without recursive calculations. When the initial coefficient determination unit 427 determines the initial values of the equalization coefficients, it outputs the determined initial values to the waveform equalization unit 422. Although not shown, when the initial coefficient determination unit 427 determines the initial values of the equalization coefficients, it can output a control signal for switching the connection state of the switch unit 424 and the switch unit 425.
  • the frequency response analysis unit 426 may receive the pattern analysis results from the signal processing unit 423 via a trigger signal or the like. Also, although not shown, each circuit within the DSP circuit 42 receives a clock signal from the signal processing unit 423.
  • the initial value of the equalization coefficient determined by the initial coefficient analysis unit 420 is determined based on the analysis result of the frequency response analysis without recursive calculation.
  • the equalization coefficient based on the analysis result of the frequency response analysis can compensate for the bandwidth degradation, which is a major part of the waveform degradation factors of the upstream signal in the optical communication system 100, but cannot compensate for factors other than the bandwidth degradation, such as chromatic dispersion.
  • the waveform equalization unit 422 uses the initial value determined by the initial coefficient analysis unit 420 to start the waveform equalization process, and then performs recursive calculations to update the equalization coefficient using an algorithm for converging the equalization coefficient to an optimal value.
  • the algorithm for converging the equalization coefficient to an optimal value uses an algorithm such as the least mean square method (LMS) or the recursive least square method (RLS) to converge to the optimal value.
  • the recursive least square method has the characteristic of being able to converge the equalization coefficient to the optimal value in a shorter time than the least square method, but has the problem of increasing the implementation circuit size due to the increased amount of calculation. For this reason, when trying to implement it on a realistic circuit scale, it takes time for the equalization coefficients to converge to the optimal value, so the preamble length must be made sufficiently long, resulting in a situation where the upstream throughput drops. Also, if it is not possible to converge to an equalization coefficient that can regenerate the electrical signal within the preamble time, it will be impossible to receive the upstream burst signal itself.
  • FIG. 4 is a schematic diagram of an upstream burst signal at the receiving end of the OLT 4.
  • communication between the ONU 1 and the OLT 4 is performed in a time-division manner.
  • each ONU 1 performs a registration process with the OLT 4, it transmits an upstream signal using the assigned period.
  • the receiving end of the OLT 4 has a different received optical power for each upstream burst signal.
  • Each received signal for each ONU 1 includes a preamble area, a payload area, and an EOB (End Of Burst) signal area.
  • the preamble area is divided into a number of divided areas, which are called preamble area #1, preamble area #2, and preamble area #3.
  • the preamble area is an area allocated for preparation for transmitting and receiving signals
  • the payload area is an area allocated with the transmission information that ONU1 wants to send
  • the EOB signal area is an area for ending the transmission and reception of signals.
  • Preamble area #1 is used for analog signal processing. Specifically, preamble area #1 is used for preparations for the transmitter of ONU1 to output a burst signal with the desired waveform, for the time required for the AGC of the TIA circuit 412 in the AFE circuit 41 to converge to a certain value, and for regenerating the received signal clock. Preamble area #1 is a portion that is also allocated in existing PON systems such as XGS-PON.
  • the preamble region #2 is used in the DSP circuit 42 to analyze the frequency response and to determine the initial coefficients of the waveform equalization unit 422. That is, the frequency response analysis unit 426 uses the preamble region #2 to analyze frequency responses such as the -3 dB band and the slope attenuation in the low-pass characteristics through processing such as FFT, and the initial coefficient determination unit 427 determines the initial values of the equalization coefficients of the waveform equalization unit 422 based on the analysis results so as to achieve the desired frequency response.
  • preamble region #3 is used to optimize the equalization coefficients in the waveform equalizer 422.
  • the length of preamble region #3 is allocated to the convergence response time required for the equalization coefficients to converge to a level at which the received signal can be reproduced as an electrical signal.
  • a random signal such as a PRBS is assigned to preamble region #2.
  • PRBS Physical Random Bit Sequence
  • a PRBS 5 signal is assigned to preamble region #2, a maximum of 5 bits of the same code will be repeated for 32 consecutive bits.
  • the gain at a bandwidth of 1/10 of the bit rate, for example 5 GHz is known, and the processing delay in the FFT is about 80 processing clocks.
  • preamble region #2 may be assigned to preamble region #1 and preamble region #3, or different signal sequences may be assigned to each.
  • the signal patterns assigned to each of preamble regions #1 to #3 may be determined in advance, or may be assigned and notified to each ONU 1 by OLT 4 during system operation.
  • FIG. 5 is an explanatory diagram of a method for determining equalization coefficients in the initial coefficient analysis unit 420.
  • the analysis result which is the output response waveform of the frequency response analysis unit 426
  • the frequency is 20 GHz at -3 dB gain.
  • the theoretical response which is the frequency response required to identify the received signal, is shown by a solid line. Therefore, in order to compensate the waveform of the analysis result shown by the dashed line to the theoretical response waveform shown by the solid line, it is desirable that the input/output response of the frequency in the waveform equalization unit 422 be the waveform shown by the dashed line.
  • the initial coefficient determination unit 427 receives the analysis result shown by the dashed line, it determines the initial value of the equalization coefficient that will result in the input/output response shown by the dashed line, and outputs it to the waveform equalization unit 422.
  • the method of determining the initial values of the equalization coefficients in the initial coefficient determination unit 427 may involve, for example, storing a lookup table in which the input/output relationship is determined in advance and determining the initial values of the equalization coefficients using the lookup table, or may involve using a calculation unit such as a CPU (Central Processing Unit) to calculate the inverse characteristics of the input frequency response so as to come closest to a frequency response that has been determined in advance.
  • a CPU Central Processing Unit
  • FIG. 6 is a flow chart for explaining the receiving operation of the OLT 4 according to the first embodiment.
  • the AFE circuit 41 of the OLT 4 converts the received signal from an optical signal to an electrical signal in the PD 411 (step S11).
  • the AFE circuit 41 also amplifies the received signal in the TIA circuit 412 (step S12).
  • the AD conversion unit 421 of the DSP circuit 42 converts the received signal from an analog signal to a digital signal (step S13).
  • the switch unit 424 and the switch unit 425 are in the state shown in FIG. 3, and the received signal is input to the initial coefficient analysis unit 420 and is also input to the signal processing unit 423 without passing through the waveform equalization unit 422.
  • the initial coefficient analysis unit 420 determines the initial values of the equalization coefficients (step S14). Specifically, the initial coefficient analysis unit 420 executes a frequency response analysis in the preamble region #2 of the received signal in the frequency response analysis unit 426, and the initial coefficient determination unit 427 determines the initial values of the equalization coefficients based on the results of the frequency response analysis. Note that this process of determining the initial values does not involve recursive calculations, but determines the initial values of the equalization coefficients based on the results of the frequency response analysis so that the input/output response compensates for the waveform distortion. The initial coefficient analysis unit 420 outputs the determined initial values to the waveform equalization unit 422.
  • the initial coefficient determination unit 427 determines the initial value of the equalization coefficient, it switches the connection state of the switch unit 424 and the switch unit 425 (step S15). Specifically, as described above, before the switching, the switch unit 424 and the switch unit 425 are in the connection state shown in FIG. 3, and here, the connection state is switched so that the switch unit 424 connects the AD conversion unit 421 and the waveform equalization unit 422, and the switch unit 425 connects the waveform equalization unit 422 and the signal processing unit 423.
  • the waveform equalization unit 422 starts the waveform equalization process using the initial values of the equalization coefficients output by the initial coefficient analysis unit 420 (step S16).
  • the waveform equalization unit 422 starts the optimization process of the equalization coefficients, which involves recursive calculations, while performing the waveform equalization process (step S17).
  • the OLT 4 is a parent station device that is connected to a plurality of child station devices, the ONUs 1, by optical fiber 2 via optical couplers 3, and receives optical signals from each of the plurality of ONUs 1 in a time-division manner.
  • the OLT 4 includes a photoelectric converter PD 411 that converts the received signal from an optical signal to an electrical signal, an analog-to-digital converter AD converter 421 that converts the electrical signal of the received signal from an analog signal to a digital signal, a waveform equalizer 422 that performs waveform equalization processing of the digital received signal using an equalization coefficient, and an initial coefficient analyzer 420 that performs frequency response analysis in the preamble region of the received signal output by the AD converter 421, and determines the initial value of the equalization coefficient used by the waveform equalizer 422 based on the analysis result of the frequency response analysis without recursive calculation.
  • a photoelectric converter PD 411 that converts the received signal from an optical signal to an electrical signal
  • an analog-to-digital converter AD converter 421 that converts the electrical signal of the received signal from an analog signal to a digital signal
  • a waveform equalizer 422 that performs waveform equalization processing of the digital received signal using an equalization coefficient
  • an initial coefficient analyzer 420 that perform
  • the waveform equalizer 422 starts waveform equalization processing using the initial value of the equalization coefficient determined by the initial coefficient analyzer 420, and then starts optimization processing of the equalization coefficient involving recursive calculation to update the value of the equalization coefficient to be used.
  • the equalization coefficients for compensating for the bandwidth degradation which is the main factor in the waveform degradation, are first determined as initial values based on the results of the frequency response analysis, and after the waveform equalization process is started using the initial values, an optimization process involving recursive calculations is started, so that it is possible to update the equalization coefficients to ones that can compensate for waveform degradation caused by factors other than bandwidth degradation, such as chromatic dispersion.
  • the waveform equalization process can be started using the initial values without waiting for the results of the optimization process, which involves feedback and takes time to converge, it is possible to shorten the time it takes to determine the equalization coefficients for each ONU in the discovery process.
  • the equalization coefficients used by the optimization process are updated, so it is possible to reduce the possibility of communication being disabled even if the state of the communication path changes.
  • the initial coefficient analysis unit 420 has a frequency response analysis unit 426 that performs a frequency response analysis of the received signal, and an initial coefficient determination unit 427 that determines the initial values of the equalization coefficients based on the results of the frequency response analysis.
  • This frequency response analysis unit 426 analyzes the frequency response of the received signal by, for example, a Fourier transform.
  • the waveform equalization unit 422 does not perform waveform equalization processing on the received signal unless an initial value for the equalization coefficient is input from the initial coefficient analysis unit 420, and when the initial value is input, performs waveform equalization processing on the received signal using the input initial value, while starting optimization processing of the equalization coefficient involving recursive calculation to update the value of the equalization coefficient. While the waveform equalization unit 422 is not performing waveform equalization processing, the received signal is output as is to the signal processing unit 423.
  • the received signal that OLT4 receives from each of the multiple ONU1 is a burst signal.
  • the received signal has a preamble area at the beginning, and the preamble area is divided into multiple divided areas.
  • PD411 performs analog signal processing using preamble area #1, which is the first of the multiple divided areas.
  • Initial coefficient analysis unit 420 performs frequency response analysis using preamble area #2, which is the second of the multiple divided areas, to determine the initial value of the equalization coefficient.
  • Waveform equalization unit 422 performs optimization processing using preamble area #3, which is the third of the multiple divided areas. Dividing the preamble area into multiple areas has the effect of being able to assign a signal pattern appropriate for each function that uses each area.
  • the OLT 4 can also assign a signal pattern to be used by each of the multiple ONUs 1 in each divided area of the preamble area and notify each of the multiple ONUs 1.
  • an optical communication system 100 includes a plurality of ONUs 1, and an OLT 4 that is connected to the plurality of ONUs 1 by optical fiber 2 via an optical coupler 3 and receives optical signals from each of the plurality of ONUs 1 in a time-division manner.
  • the OLT 4 includes a PD 411 that is an opto-electrical converter that converts a received signal from an optical signal to an electrical signal, an AD converter 421 that is an analog-to-digital converter that converts the electrical signal converted received signal from an analog signal to a digital signal, a waveform equalizer 422 that performs waveform equalization processing of the received signal, which is a digital signal, using an equalization coefficient, and an initial coefficient analyzer 420 that performs frequency response analysis in the preamble region of the received signal output by the AD converter 421, and determines the initial value of the equalization coefficient used by the waveform equalizer 422 based on the analysis result of the frequency response analysis without recursive calculation.
  • a PD 411 that is an opto-electrical converter that converts a received signal from an optical signal to an electrical signal
  • an AD converter 421 that is an analog-to-digital converter that converts the electrical signal converted received signal from an analog signal to a digital signal
  • a waveform equalizer 422 that performs wave
  • the waveform equalization unit 422 starts the waveform equalization process using the initial values of the equalization coefficients determined by the initial coefficient analysis unit 420, and then starts an optimization process of the equalization coefficients involving recursive calculations to update the values of the equalization coefficients to be used.
  • an optical signal processing method can be provided that is connected to a plurality of ONUs 1 by optical fiber 2 via optical coupler 3 and receives optical signals from each of the plurality of ONUs 1 in a time-division manner, and that is executed by an OLT 4 on a received signal.
  • This optical signal processing method includes the steps of converting the received signal from an optical signal to an electrical signal, converting the electrical received signal from an analog signal to a digital signal, performing waveform equalization processing on the digital received signal using an equalization coefficient, performing frequency response analysis in the preamble region of the digital received signal, determining initial values of equalization coefficients used in the waveform equalization processing without recursive calculation based on the results of the frequency response analysis, and starting waveform equalization processing using the initial values of the equalization coefficients, and then starting optimization processing of the equalization coefficients involving recursive calculation to update the values of the equalization coefficients used.
  • Each of the above steps is executed by the OLT 4.
  • Embodiment 2 In the above-described first embodiment, an example has been described in which the initial coefficient analysis unit 420 has a frequency response analysis unit 426 that acquires the frequency response of the received signal using signal processing involving a Fourier transform such as FFT, and determines the initial value of the equalization coefficient of the waveform equalization unit 422 according to the analysis result of the frequency response analysis.
  • a pseudo frequency response analysis is performed by detecting the amplitude of each signal pattern in the preamble region of the received signal, without using signal processing such as FFT.
  • FIG. 7 is a block diagram of the receiving circuit of an OLT 4A according to the second embodiment.
  • a device having a DSP circuit 42A as shown in FIG. 7 instead of the DSP circuit 42 in FIG. 3 is referred to as an OLT 4A.
  • the OLT 4A is connected to a plurality of ONUs 1-1 to 1-n by optical fibers 2 via optical couplers 3, and constitutes an optical communication system 100.
  • the DSP circuit 42A has a pattern signal analysis unit 428 instead of the frequency response analysis unit 426 of the DSP circuit 42.
  • the pattern signal analysis unit 428 and the initial coefficient determination unit 427 constitute an initial coefficient analysis unit 420A.
  • the received signal includes a preamble region divided into three divided regions as shown in FIG. 4.
  • a pattern for analysis by the pattern signal analysis unit 428 is inserted.
  • preamble region #2 for example, it is composed of a 10 alternating signal which is a repetition of "10", a 1100 alternating signal which is a repetition of "1100”, a 11110000 alternating signal which is a repetition of "11110000”, and a repetition signal of 8 bits of "1” and 8 bits of "0".
  • the pattern signal analysis unit 428 obtains a pseudo analysis result similar to the frequency response shown in FIG. 5, and the initial coefficient determination unit 427 determines the initial value of the equalization coefficient based on the analysis result.
  • the pattern type and pattern length used in the preamble area may be determined in advance, or may be assigned and notified to each ONU 1 by the OLT 4 during operation.
  • the signal pattern used in preamble area #1 and preamble area #3 may be the same as that in preamble area #2, or may be a different signal pattern.
  • the signal input line to the pattern signal analysis unit 428 is only input from the AD conversion unit 421, but in order to identify the start and end points of the above signal pattern, the configuration may be such that the pattern analysis results are received from the signal processing unit 423.
  • the OLT 4A according to the second embodiment has a pattern signal analysis unit 428, which makes it possible to obtain an analysis result of a pseudo frequency response equivalent to the frequency response in the transmission/reception circuit without using signal processing such as FFT, and since the calculation delay time can be reduced, the length of the preamble region #2 can be further reduced.
  • the operation of the OLT 4A in the second embodiment is the same as the operation of the OLT 4 in the first embodiment described in FIG. 6, except for the process of determining the initial value of the equalization coefficient in step S14, so a detailed description will be omitted here.
  • the initial coefficient analysis unit 420A has a pattern signal analysis unit 428 that performs a pseudo frequency response analysis by detecting the amplitude of each signal pattern in the preamble region included in the received signal, and an initial coefficient determination unit 427 that determines the initial value of the equalization coefficient based on the analysis result of the pseudo frequency response analysis by the pattern signal analysis unit 428.
  • the second embodiment has the effect of being able to shorten the length of the preamble region #2 more than an OLT 4 equipped with a frequency response analysis unit 426.
  • the preamble region #2 may contain an 1100 alternating signal, which is a repetition of "1100", and the repetition of "1100" may continue.
  • the entire OLT 4A it is necessary to extract a 1-bit wide clock component from the input preamble pattern, but the clock component cannot be correctly extracted from a 2-bit continuous signal such as an 1100 alternating signal.
  • Embodiment 3 In the above-described first and second embodiments, the initial values of the equalization coefficients of the waveform equalizer 422 are always calculated at the beginning of the payload, but a previously stored initial value may be used instead. In the third embodiment, a method for switching between the case where the initial values of the equalization coefficients are calculated and the case where the previously stored initial values are used will be described.
  • FIG. 8 is a block diagram of the receiving circuit of OLT4B according to the third embodiment.
  • a device having a DSP circuit 42B as shown in FIG. 8 instead of the DSP circuit 42 in FIG. 3 is referred to as OLT4B.
  • OLT4B is connected to a plurality of ONUs 1-1 to 1-n by optical fibers 2 via optical couplers 3, and constitutes an optical communication system 100.
  • the following mainly describes the differences from OLT4.
  • DSP circuit 42B has an initial coefficient analysis unit 420B instead of the initial coefficient analysis unit 420 of DSP circuit 42 shown in FIG. 3.
  • the initial coefficient analysis unit 420B further has an initial coefficient memory unit 429.
  • the initial coefficient memory unit 429 holds initial values of the equalization coefficients.
  • the input to the initial coefficient determination unit 427 was only from the frequency response analysis unit 426, but in the initial coefficient analysis unit 420B, input is also received from the initial coefficient memory unit 429.
  • a switching signal is input to the initial coefficient determination unit 427B from outside DSP circuit 42B.
  • the initial coefficient determination unit 427B determines initial values of the equalization coefficients based on the analysis results output by the frequency response analysis unit 426, and outputs the determined initial values to the waveform equalization unit 422, or outputs the initial values of the equalization coefficients held in the initial coefficient memory unit 429 to the waveform equalization unit 422.
  • the initial coefficient determination unit 427B switches between using the input from the frequency response analysis unit 426 or the input from the initial coefficient memory unit 429 in response to a switching signal input from outside the DSP circuit 42B.
  • the switching signal is input from the MAC circuit 43.
  • the initial coefficient determination unit 427B receives a signal from the frequency response analysis unit 426.
  • the switch unit 424 and the switch unit 425 are controlled so that the output of the AD conversion unit 421 does not pass through the waveform equalization unit 422 until the initial value of the equalization coefficient is determined.
  • the initial coefficient determination unit 427B can transfer the initial values stored in the initial coefficient memory unit 429 to the waveform equalizer 422. If the initial values are stored in the initial coefficient memory unit 429 before a signal is received and the waveform equalizer 422 uses the initial values stored in the initial coefficient memory unit 429, the switch units 424 and 425 are controlled so that the received signal passes through the waveform equalizer 422 from the beginning.
  • the initial values of the equalization coefficients stored in the initial coefficient memory unit 429 may be values determined based on the analysis results of the frequency response analysis unit 426 in the discovery process, which is the communication section in which ONU 1 is registered.
  • the initial values determined in the discovery process are stored in the initial coefficient memory unit 429 together with ONU registration information received separately from the MAC circuit 43.
  • the initial coefficient determination unit 427B can transfer the initial values stored in the initial coefficient memory unit 429 to the waveform equalization unit 422 in the normal communication section, which is the communication section after the discovery process is completed. Furthermore, even in a normal communication section, when a switching signal is input, the initial coefficient determination unit 427B can output an initial value determined based on the analysis results from the frequency response analysis unit 426, rather than the initial value stored in the initial coefficient memory unit 429. In this case, the determined initial value can be passed to the initial coefficient memory unit 429 to update the stored initial value.
  • FIG. 9 is a diagram for explaining the effect of the third embodiment.
  • preamble region #2 can be omitted while the frequency response analysis unit 426 is not performing a frequency response analysis. Therefore, as shown in FIG. 9, the preamble region can be divided into two regions, preamble region #1 and preamble region #3, instead of being divided into three regions, preamble region #1 to preamble region #3. As a result, it is possible to shorten the total preamble length.
  • FIG. 10 is a flow chart for explaining the operation of the initial coefficient analysis unit 420B according to the third embodiment.
  • the OLT 4B executes the same operation as that explained using FIG. 6, and the operation shown in FIG. 10 corresponds to the details of step S14 in FIG. 6. Therefore, at the time of executing the operation shown in FIG. 10, the switch unit 424 and the switch unit 425 are in a connection state in which the output of the AD conversion unit 421 is input to the initial coefficient analysis unit 420B and the signal processing unit 423 as shown in FIG. 8, and the received signal is not input to the waveform equalization unit 422.
  • the initial coefficient determination unit 427B determines whether or not it is a discovery process (step S21). If it is a discovery process (step S21: Yes), the initial coefficient determination unit 427B determines initial values of the equalization coefficients based on the analysis results of the frequency response analysis input from the frequency response analysis unit 426 (step S22). The initial coefficient determination unit 427B stores the determined initial values in the initial coefficient memory unit 429 (step S23). If it is not a discovery process (step S21: No), the processing of steps S22 and S23 is omitted.
  • the initial coefficient determination unit 427B determines whether or not it is a normal communication section (step S24). If it is not a normal communication section and is still in the discovery process (step S24: No), the initial coefficient determination unit 427B repeats the determination of step S24 and waits until it transitions to a normal communication section. If it is a normal communication section (step S24: Yes), the initial coefficient determination unit 427B determines whether the input to the initial coefficient determination unit 427B at that time is the analysis result input from the frequency response analysis unit 426 or the initial value held in the initial coefficient memory unit 429 (step S25).
  • the initial coefficient determination unit 427B passes the initial value held in the initial coefficient memory unit 429 to the waveform equalization unit 422 (step S26). If the input to the initial coefficient determination unit 427B is the analysis result, the initial coefficient determination unit 427B determines the initial value of the equalization coefficient based on the analysis result of the frequency response analysis (step S27). The initial coefficient determination unit 427B updates the value held in the initial coefficient memory unit 429 with the determined initial value (step S28). In addition, the initial coefficient determination unit 427B outputs the determined initial value to the waveform equalization unit 422 (step S29).
  • the operation shown in FIG. 10 is an example of the operation of the initial coefficient determination unit 427B in the OLT 4B according to the third embodiment, and as described above, the initial values stored in the initial coefficient memory unit 429 may be calculated in advance based on the frequency response characteristics at the time of shipment of the PD 411 and the TIA circuit 412 in the AFE circuit 41 of the OLT 4B and the AFE circuit 12 of the opposing ONU 1.
  • the initial coefficient determination unit 427B simply switches between a state in which it determines an initial value based on the analysis result and outputs it to the waveform equalization unit 422, and a state in which it passes the initial value stored in the initial coefficient memory unit 429 directly to the waveform equalization unit 422, in accordance with the switching signal.
  • the input to the initial coefficient determination unit 427B is the analysis result, and in the normal communication section, the input to the initial coefficient determination unit 427B may be controlled to be the retained initial value.
  • the input to the initial coefficient determination unit 427B is switched to the analysis result, and the processing of steps S27 to S29 is executed.
  • the initial coefficient analysis unit 420B has an initial coefficient memory unit 429 that holds the initial values of the equalization coefficients in advance, and outputs the initial values determined based on the analysis results, or the initial values held in advance in the initial coefficient memory unit 429.
  • the initial coefficient analysis unit 420B can switch between outputting an initial value determined based on the analysis results or an initial value previously stored in the initial coefficient memory unit 429, based on a switching signal input from outside the initial coefficient analysis unit 420B.
  • the initial coefficient analysis unit 420B may determine an initial value based on the analysis result in the discovery process, which is the communication section in which ONU1 is registered, store the initial value determined in the discovery process in the initial coefficient memory unit 429, and transfer the initial value stored in the initial coefficient memory unit 429 to the waveform equalization unit 422 in the normal communication section.
  • the initial coefficient analysis unit 420B may determine an initial value based on the analysis result in the discovery process, which is the communication section in which ONU1 is registered, store the initial value determined in the discovery process in the initial coefficient memory unit 429, and transfer the initial value stored in the initial coefficient memory unit 429 to the waveform equalization unit 422 in the normal communication section.
  • the initial coefficient analysis unit 420B may determine an initial value based on the analysis result in the discovery process, which is the communication section in which ONU1 is registered, store the initial value determined in the discovery process in the initial coefficient memory unit 429, and transfer the initial value stored in the initial coefficient memory unit 429 to the waveform equalization unit 422 in the normal communication
  • the initial coefficient memory unit 429 may hold the initial value of the equalization coefficient before communication is started between OLT 4B and ONU 1.
  • the initial value held in the initial coefficient memory unit 429 may be a value calculated in advance based on the frequency response characteristics at the time of shipment of the PD 411 and TIA circuit 412 in the AFE circuit 41 of OLT 4B and the AFE circuit 12 of the opposing ONU 1, for example, as described above.
  • the initial coefficient analysis unit 420B includes a frequency response analysis unit 426 that performs a frequency response analysis of the received signal and outputs the analysis result, an initial coefficient memory unit 429 that holds initial values of the equalization coefficients in advance and outputs the held initial values, and an initial coefficient determination unit 427B that determines the initial values of the equalization coefficients based on the output of the frequency response analysis unit 426 or the output of the initial coefficient memory unit 429.
  • Fig. 11 is a block diagram of a receiving circuit of an OLT 4C according to the fourth embodiment.
  • a device having a DSP circuit 42C as shown in Fig. 11 instead of the DSP circuit 42 in Fig. 3 is called an OLT 4C.
  • the OLT 4C is connected to a plurality of ONUs 1-1 to 1-n by optical fibers 2 via optical couplers 3, similar to the OLT 4 shown in Fig. 1, and constitutes an optical communication system 100.
  • the DSP circuit 42C has an initial coefficient analysis unit 420C instead of the initial coefficient analysis unit 420B of the DSP circuit 42B according to the third embodiment.
  • the initial coefficient analysis unit 420C has a pattern signal analysis unit 428, an initial coefficient determination unit 427C, and an initial coefficient memory unit 429.
  • the pattern signal analysis unit 428 is similar to the pattern signal analysis unit 428 described in FIG. 7 in the second embodiment.
  • the function of the initial coefficient determination unit 427C is similar to that of the initial coefficient determination unit 427B, except that the initial coefficient determination unit 427B uses input from the pattern signal analysis unit 428 instead of using input from the frequency response analysis unit 426.
  • OLT4C The operation of OLT4C is also the same as in embodiment 3.
  • the initial coefficient determination unit 427B is replaced with the initial coefficient determination unit 427C
  • the frequency response analysis unit 426 is replaced with the pattern signal analysis unit 428, and a detailed explanation is omitted here.
  • the initial coefficient analysis unit 420C has a pattern signal analysis unit 428 that performs a pseudo frequency response analysis by detecting the amplitude of each signal pattern in the preamble region #2 included in the received signal and outputs the analysis result, an initial coefficient memory unit 429 that stores initial values of the equalization coefficients in advance and outputs the stored initial values, and an initial coefficient determination unit 427C that determines the initial values of the equalization coefficients based on the output of the pattern signal analysis unit 428 or the output of the initial coefficient memory unit 429.
  • This provides the effect of being able to shorten the length of the preamble region #2 more than the OLT 4B according to the third embodiment, in addition to the effect of the third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

複数の子局装置と光カプラを介して光ファイバで接続されており、複数の子局装置のそれぞれから時分割で光信号を受信する親局装置において、受信信号を光信号から電気信号に変換する光電変換部であるPD(411)と、電気信号に変換された受信信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部であるAD変換部(421)と、等化係数を用いて、デジタル信号である受信信号の波形等化処理を行う波形等化部(422)と、波形等化部が用いる等化係数の初期値を、AD変換部が出力する受信信号のプリアンブル領域中において周波数応答解析を行って、再帰的な計算を伴わず周波数応答解析の解析結果に基づいて決定する初期係数解析部(420)と、を備え、波形等化部は、初期係数解析部が決定した等化係数の初期値を用いて波形等化処理を開始した後、再帰的な計算を伴う等化係数の最適化処理を開始して使用する等化係数の値を更新する。

Description

親局装置、光通信システム、制御回路および光信号処理方法
 本開示は、光信号を受信する親局装置、光通信システム、制御回路および光信号処理方法に関する。
 近年、1本の光ファイバを複数の利用者で共有することができるPON(Passive Optical Network)システムと呼ばれる1対多数のアクセス系光通信システムが広く用いられている。PONシステムは、局側装置である1台のOLT(Optical Line Terminal)と、複数の加入者側端末装置であるONU(Optical Network Unit)とを有しており、OLTおよびONUは、光カプラを介して光ファイバで接続される。OLTは親局装置とも呼ばれ、ONUは子局装置とも呼ばれる。現在、幅広く導入されているPONシステムは、上り下りともにTDM(Time Division Multiplexing)による信号多重を行うシステムである。
 TDMを用いたPONシステムにおいて「ITU-T G.9804シリーズ」として標準化されたシステムでは、デジタル信号処理によりISI(Inter-Symbol Interference)を補償する技術が導入された。
 デジタル信号処理によるISI補償を行う際、波形等化処理を行うために用いられる等化係数を適切に設定する必要がある。等化係数を導出する方法としては、通常、受信信号が所望の信号に対してどの程度ずれが生じているかを測定してフィードバックをかける方法が用いられる。このフィードバックは、送信側から伝送情報を送り出す前に設けるトレーニング時間において行われる。適切な等化係数は、通信相手装置毎に異なり、TDMを用いたPONシステムでは、OLTは複数のONUと時分割で通信を行うため、通信相手装置が変わる毎に等化係数を設定する必要がある。このため、TDMを用いたPONシステムにおいて、フィードバックをかける方法で等化係数を導出する場合、送信信号毎にトレーニング時間を設ける必要があり、伝送効率が低下してしまうという問題があった。
 そこで、特許文献1には、TDMを用いたPONシステムにおいて、OLTが各ONUとの通信タイミングを定めるための初期通信プロセスにおけるONUを認証するディスカバリプロセスにおいてONU毎に等化係数を導出し、導出された等化係数を保持しておき、ONUからの光信号の到着タイミングに合わせたタイミングで、保持された等化係数を用いて、使用する等化係数を切り替える技術が開示されている。このOLTは、ディスカバリプロセスにおいて、通常通信プロセスで使用するプリアンブルよりも長いプリアンブルを用いて等化係数の導出を行う。
特許第6513589号公報
 しかしながら、上記従来の技術によれば、ディスカバリプロセスにおいて、各ONUの等化係数を決定するまでに時間がかかり、また、ディスカバリプロセスから通常通信区間に移った後に通信路の状態が変化すると通信不能となる可能性があるという問題があった。
 本開示は、上記に鑑みてなされたものであって、ディスカバリプロセスにおいても各ONUの等化係数を決定するまでにかかる時間を短縮することが可能であると共に、通信路の状態が変化しても通信不能となる可能性を低減することが可能な親局装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示にかかる親局装置は、複数の子局装置と光カプラを介して光ファイバで接続されており、複数の子局装置のそれぞれから時分割で光信号を受信する親局装置において、受信信号を光信号から電気信号に変換する光電変換部と、電気信号に変換された受信信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部と、等化係数を用いて、デジタル信号である受信信号の波形等化処理を行う波形等化部と、波形等化部が用いる等化係数の初期値を、アナログデジタル変換部が出力する受信信号のプリアンブル領域中において周波数応答解析を行って、再帰的な計算を伴わず周波数応答解析の解析結果に基づいて決定する初期係数解析部と、を備え、波形等化部は、初期係数解析部が決定した等化係数の初期値を用いて波形等化処理を開始した後、再帰的な計算を伴う等化係数の最適化処理を開始して使用する等化係数の値を更新することを特徴とする。
 本開示にかかる親局装置は、ディスカバリプロセスにおいても各ONUの等化係数を決定するまでにかかる時間を短縮することが可能であると共に、通信路の状態が変化しても通信不能となる可能性を低減することが可能であるという効果を奏する。
実施の形態1にかかる光通信システムの構成を示す図 図1に示すONUおよびOLTの回路ブロックを示す図 実施の形態1にかかるOLTの受信回路ブロック図 OLTの受信端における上りバースト信号の概略図 初期係数解析部における等化係数の決定方法の説明図 実施の形態1にかかるOLTの受信動作を説明するためのフローチャート 実施の形態2にかかるOLTの受信回路ブロック図 実施の形態3にかかるOLTの受信回路ブロック図 実施の形態3の効果について説明するための図 実施の形態3にかかる初期係数解析部の動作について説明するためのフローチャート 実施の形態4にかかるOLTの受信回路ブロック図
 以下に、本開示の実施の形態にかかる親局装置、光通信システム、制御回路および光信号処理方法を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1にかかる光通信システム100の構成を示す図である。光通信システム100は、複数の子局装置であるONU1-1~1-nと、1台の親局装置であるOLT4とを有する。OLT4は、複数のONU1-1~1-nのそれぞれと、光カプラ3を介して接続されている。複数のONU1-1~1-nのそれぞれと、光カプラ3との間は、光ファイバ2-1~2-nで接続されており、光カプラ3とOLT4との間は、光ファイバ2mで接続されている。これにより、OLT4とONU1-1~1-nとは1対多数のアクセス系の光通信システム100を構成している。なお、以下の説明中において、複数のONU1-1~1-nのそれぞれを特に区別する必要がない場合、単にONU1と称する。同様に、複数の光ファイバ2-1~2-nおよび2mのそれぞれを特に区別する必要がない場合、単に光ファイバ2と称する。
 光通信システム100は、上り信号および下り信号共に時分割多重することで1対多通信を実現する。特にONU1からOLT4に向かう上り信号は、複数のONU1のそれぞれが、予めOLT4から割り当てられた時間スロットのみ光信号を発出することになる。このため、各ONU1が送信する光信号は、信号が存在する領域と信号が存在しない領域とが時間領域で繰り返された信号となり、バースト信号と呼ばれる。
 光通信システム100は、デジタル信号処理によるISI補償を行うデジタル等化の機能を有する。ここで、ONU1から送信される光信号の帯域は、ONU1が備える送信部のアナログフロントエンド部品の帯域によって主に定まる。例えば、50G-PONシステムと呼ばれる総ビットレート50Gbpsを実現するPONシステムでは、アナログフロントエンド部品の帯域は、デジタル等化を行わない場合、伝送速度の0.75倍から1倍程度、つまり、35GHzから50GHzが要求される。このような性能を有する部品は非常に高価となり、コスト低減要求の厳しいシステムでは実現することは困難である。デジタル信号処理によるISI補償機能を有することで、並列処理によって高速化が可能なデジタル系の電子回路に比べて高速化および広帯域化が困難なアナログフロントエンドを構成する光および電気回路の帯域不足をデジタル回路側で補償することが可能となり、安価なアナログフロントエンド部品を導入することができたり、アナログフロントエンド部品の広帯域化を待つことなくより高速なシステムを導入することができるといった利点がある。さらに、アナログフロントエンド部品の帯域不足ではなく、光ファイバ中の波長分散による波形劣化もデジタル信号処理によって補償することが可能になる。このため、デジタル信号処理によりISI補償機能を有することで、伝送速度が上がるにしたがって、また伝送距離が長くなるにしたがってそれぞれ大きくなる波長分散の影響を緩和することが可能になる。
 また、光通信システム100がデジタル補償の機能を有する場合、ONU1毎に送信帯域が異なるという状況が考えられる。例えば、ONU1-1およびONU1-2の送信帯域は25GHzであり、ONU1-nの送信帯域は35GHzであるといった状況が考えられる。この場合、アナログフロントエンド部品の前段にこのような帯域不足を補償可能な回路、例えば、デジタル回路によるプリエンファシス回路が備え付けられていることが望ましいが、コスト低減要求の厳しいONU1では、そのような回路を備えることは簡単ではない。
 また、光カプラ3と各ONU1とを接続する光ファイバ2-1~2-nは、それぞれ長さが異なることが一般的である。さらに、ONU1-1~1-nの光送信パワーも規格を満たす範囲で異なることが一般的である。例えば、ITU-T G.9804.3規定の25G上りでは、4dBの幅がある。その結果、OLT4が受信する各ONU1からの上りバースト信号は、光送信パワーと伝送路損失との違いから、受光パワーに差が生じる。例えば、ITU-T G.9804.3に規定された25G上りでは、最大19.5dBの受光パワー差が生じることとなる。このような受光パワー差が生じた場合にもOLT4が受信信号を再生するために、OLT4の受信信号に対する初段アンプでは、AGC(Automatic Gain Control)回路が通常備えられる。一般的にアンプは利得帯域積一定のため、AGC回路により高パワー受光時の変換利得を下げると、必然的に帯域が延びることとなる。その結果、受信信号の光パワーに応じて初段アンプが出力する信号帯域が変わってくる。
 さらに、ONU1の送信回路およびOLT4の受信回路は、外部印加電源電圧や動作環境温度、また、経年劣化などにより帯域が変動してしまうことがよく発生する。これらの結果、ONU1からOLT4までの上り伝送線路全体での帯域は、送受信機器や伝送路の状態によって変化し、OLT4のアナログフロントエンド回路の出力端では、上りバースト信号ごとに帯域が異なるという結果となる。
 図2は、図1に示すONU1およびOLT4の回路ブロックを示す図である。ONU1は、MAC(Medium Access Control)回路11と、AFE(Analog Front End)回路12とを有する。OLT4は、AFE回路41と、DSP(Digital Signal Processor)回路42と、MAC回路43とを有する。なお、図1に示すONU1-1~1-nのそれぞれは、図2に示すONU1と同様の構成を有している。
 MAC回路11およびMAC回路43は、MAC回路11およびMAC回路43間での通信により、各ONU1の認証や送信タイミング制御などを行う。AFE回路12およびAFE回路41は、電気信号と光信号との間の変換を行う。DSP回路42は、AFE回路41で正確にデジタル電気信号を再生できない場合、または、MAC回路43からの信号をそのままでは光伝送できない場合において、デジタル等化回路などで補償する機能を有する。なお、ONU1にはDSP回路を図示していないが、OLT4と同様にAFE回路12とMAC回路11との間にDSP回路を有していてもよい。また、回路ブロックの分け方についても、図2に示す例は一例であり、様々な構成とすることができる。例えば、図2ではDSP回路42とMAC回路43とをそれぞれ異なる回路としているが、DSP回路42とMAC回路43とが一体化したIC(Integral Circuit)チップであってもよい。なお、ONU1とOLT4との間では、上り下りの双方向通信が行われるが、簡単のため、以下ではONU1が送信した光信号をOLT4が受信する上り通信について主に説明する。
 図3は、実施の形態1にかかるOLT4の受信回路ブロック図である。なお、図3では、OLT4のAFE回路41およびDSP回路42の部分を示しており、AFE回路41およびDSP回路42に備わる機能のうち、受信回路として機能する部分について示している。
 AFE回路41は、PD(Photo Detector)411とTIA(Trans Impedance Amplifier)回路412とを有する。PD411は、P型半導体とN型半導体とでI型半導体を挟んだ構造のPIN-PDであってもよいし、電子のなだれ現象を利用して受光感度を高めたAPD(Avalanche Photo Diode)であってもよい。また、図示していないが、光アンプをPD411の入力部にプリアンプとして挿入してもよい。PD411は、光信号を受信して電気信号に変換する光電変換素子である。PD411は、電気信号に変換した受信信号をTIA回路412に出力する。
 TIA回路412は、OLT4の受信信号に対する初段アンプであって、受光パワーのパワー差があっても電気再生することができるように、AGC機能を有する。図示していないが、TIA回路412のAFC機能を時分割で受信した各受信信号の先頭で最適化するために外部リセット信号を入力する機構を有していてもよい。また、図示していないが、時分割で受信する複数の受信信号の伝送速度がそれぞれ異なる場合に各受信信号の伝送速度に対して、TIA回路412の定数を最適にするための外部レートセレクト信号を入力する機構を有してもよい。また、図示していないが、TIA回路412の出力には信号振幅をある一定以上の値とするための複数のアンプが挿入されてもよい。TIA回路412は、増幅後の受信信号をDSP回路42に出力する。
 DSP回路42は、AD変換部421と、波形等化部422と、信号処理部423と、スイッチ部424と、スイッチ部425と、周波数応答解析部426と、初期係数決定部427とを有する。周波数応答解析部426および初期係数決定部427は、波形等化部422が用いる等化係数の初期値を、受信信号の周波数応答解析を行って、再帰的な計算を伴わず周波数応答解析の解析結果に基づいて決定する初期係数解析部420を構成している。
 AD変換部421は、AFE回路41が出力するアナログ信号である受信信号をデジタル信号へと変換するアナログデジタル変換部である。AD変換部421は、伝送信号速度よりも速いサンプリング速度にて入力された受信信号をサンプリングすると共に、信号振幅を2bit以上で量子化することにより、AFE回路41の出力波形情報をデジタル化する。AD変換部421は、デジタル信号に変換した受信信号を波形等化部422または初期係数解析部420に出力する。
 波形等化部422は、FFE(Feed-Forward Equalizer)、DFE(Decision Feedback Equalizer)、それらの組み合わせなどを用いたデジタル波形等化処理を行う。波形等化部422は、受信信号が入力されると、受信信号のデジタル波形等化処理を行って、処理後の受信信号を信号処理部423に出力する。なお、波形等化部422が波形等化処理に使用する等化係数は、ONU1毎に決定されるため、波形等化部422は、受信信号の送信元が変わる毎に、使用する等化係数を変更する。ONU1の送信タイミングはONU1を登録するディスカバリプロセスにおいて予め時分割で割り当てられるため、波形等化部422は、この割当に従って、使用する等化係数を変更することになる。
 信号処理部423は、データ識別、クロック抽出、パタン識別などの信号処理を行う。信号処理部423は、処理結果をMAC回路43に出力する。
 スイッチ部424は、AD変換部421の出力を波形等化部422に入力させる接続状態と、AD変換部421の出力を周波数応答解析部426およびスイッチ部425に入力させる接続状態とを切り替える機能を有する。スイッチ部424は、制御信号に応じて、接続状態を切り替えることができる。スイッチ部425は、波形等化部422の出力を信号処理部423に入力させる接続状態と、AD変換部421の出力を、波形等化部422を経由せずに信号処理部423に入力させる接続状態とを切り替える機能を有する。スイッチ部425は、制御信号に応じて、接続状態を切り替えることができる。したがって、スイッチ部424およびスイッチ部425は、制御信号に応じて接続状態を切り替えることで、波形等化部422に受信信号を入力するか否かを変更することができる。図3では、スイッチ部424は、AD変換部421の出力を初期係数解析部420およびスイッチ部425に入力させる接続状態であり、スイッチ部425は、AD変換部421の出力を、波形等化部422を経由せずに迂回して信号処理部423に入力させる接続状態である。制御信号に応じて、スイッチ部424がAD変換部421の出力を波形等化部422に入力させる接続状態に切り替えられるとき、スイッチ部425は、波形等化部422の出力を信号処理部423に入力させる接続状態に切り替えられる。図3に示す状態では、AD変換部421の出力は、波形等化部422を経由せずに信号処理部423に入力されると共に、初期係数解析部420に入力されて、決定された等化係数の初期値が波形等化部422に入力される。
 周波数応答解析部426は、高速フーリエ変換(FFT:Fast Fourier Transform)などの処理によりAD変換部421の出力する受信信号の周波数応答解析を行う。周波数応答解析部426は、周波数応答解析の解析結果を初期係数決定部427に出力する。周波数応答解析部426は、受信信号のプリアンブル領域を使用して周波数応答解析を行い、受信信号毎に、つまり、ONU1毎に解析結果を出力する。
 初期係数決定部427は、周波数応答解析の解析結果に基づいて、再帰的な計算を伴わず、波形等化部422が用いる等化係数の初期値をONU1毎に決定する。初期係数決定部427は、等化係数の初期値を決定すると、決定した初期値を波形等化部422に出力する。なお、図示していないが、初期係数決定部427は、等化係数の初期値を決定すると、スイッチ部424およびスイッチ部425の接続状態を切り替えるための制御信号を出力することができる。
 なお、図示していないが、周波数応答解析部426は、周波数応答解析を行うにあたって、信号処理部423からパタン解析結果をトリガ信号などで受け取ってもよい。また、図示していないが、DSP回路42内部の各回路は、信号処理部423からクロック信号を受け取っていることとする。
 ここで、初期係数解析部420が決定する等化係数の初期値は、周波数応答解析の解析結果に基づいて、再帰的な計算を伴わずに決定される。このように周波数応答解析の解析結果に基づく等化係数は、光通信システム100における上り信号の波形劣化要因の中で主要な部分を占める帯域劣化を補償することはできるが、波長分散など帯域劣化以外の要因を補償することはできない。このため、波形等化部422は、初期係数解析部420が決定した初期値を用いて波形等化処理を開始した後、等化係数を最適値に収束させるためのアルゴリズムを用いて、再帰的な計算を行って等化係数を更新する。例えば、等化係数を最適値に収束させるためのアルゴリズムは、最小二乗法(LMS:Least Mean Square)、再帰最小二乗法(RLS:Recursive Least Square)などのアルゴリズムを用いて最適値に収束を行う。再帰最小二乗法は、最小二乗法と比較して短い時間で等化係数を最適値に収束させることができるという特徴を有するが、計算量が増加するため実装回路規模が増大してしまうといった課題がある。このため、現実的な回路規模で実装しようとすると、等化係数を最適値に収束させるまでに時間がかかるため、プリアンブル長を十分に長くする必要があり、その結果、上りスループットが低下してしまうといった事態が発生する。また、もしプリアンブル時間内で電気信号を再生することが可能な等化係数に収束させることができなければ、上りバースト信号そのものを受信することができなくなるという事態に陥る。
 上記のような事態を回避するために、光通信システム100では、以下に説明するような構成のプリアンブル領域を有する信号を伝送する。図4は、OLT4の受信端における上りバースト信号の概略図である。光通信システム100において、ONU1とOLT4との間の通信は、時分割で行われる。各ONU1は、OLT4に対して登録処理を行った後、割り当てられた期間を使用して上り信号を送信する。上述の通り、ONU1毎に出力パワーや伝送路損失が異なるため、OLT4の受信端では、上りバースト信号毎に、受光パワーが異なる。ONU1毎の各受信信号は、プリアンブル領域と、ペイロード領域と、EOB(End Of Burst)信号領域とを含む。プリアンブル領域は、複数の分割領域に分けられており、分割領域のそれぞれをプリアンブル領域#1、プリアンブル領域#2、プリアンブル領域#3と称する。プリアンブル領域は、信号を送受信するための準備に割り当てられた領域であり、ペイロード領域は、ONU1が送信したい伝送情報が割り当てられた領域であり、EOB信号領域は、信号の送受信を終えるための領域である。
 プリアンブル領域#1は、アナログ信号処理のために使用される。具体的には、プリアンブル領域#1は、ONU1の送信器がバースト信号を所望の波形で出力するための準備や、AFE回路41において、TIA回路412のAGCが一定の値に収束するための時間、および、受信信号クロックを再生するための時間などに使用される。プリアンブル領域#1は、例えば、XGS-PONなど既存のPONシステムにおいても同様に割り当てられていた部分である。
 プリアンブル領域#2は、DSP回路42の中で、周波数応答の解析および波形等化部422の初期係数を決定するために使用される。すなわち、周波数応答解析部426は、プリアンブル領域#2を用いて、FFTなどの処理により-3dB帯域やローパス特性の中のスロープ減衰量などの周波数応答を解析し、初期係数決定部427は、解析結果に基づいて、所望の周波数応答になるように波形等化部422の等化係数の初期値を決定する。
 プリアンブル領域#3は、初期値が決定された後、波形等化部422の中で、等化係数を最適化するために使用される。プリアンブル領域#3の長さは、受信信号を電気信号に再生することが可能な程度に等化係数を収束させるためにかかる収束応答時間分だけ割り当てられる。
 プリアンブル領域#2には、PRBS(Pseudo Random Bit Sequence)のようなランダム信号を割り当てる。例えば、プリアンブル領域#2にPRBS 5信号を割り当てた場合、最大5bit同符号連続32bit繰り返しパタンとなる。この結果、ビットレートの10分の1の帯域、例えば5GHzでの利得が分かると共に、FFTでの処理遅延は80処理クロック程度となる。
 なお、プリアンブル領域#1およびプリアンブル領域#3では、プリアンブル領域#2と同じ信号パタンを割り当ててもよいし、それぞれ異なる信号系列を割り当ててもよい。また、プリアンブル領域#1~#3のそれぞれに割り当てる信号パタンは、予め決定していてもよいし、システムの運用途中でOLT4から各ONU1に対して割当てて通知してもよい。
 図5は、初期係数解析部420における等化係数の決定方法の説明図である。図5には、周波数応答解析部426の出力応答波形である解析結果が一点鎖線で示されている。本実施の形態において、-3dB利得では20GHzとなる。また、図5には、本来受信信号の識別に必要な周波数応答である理論応答が実線で示されている。したがって、一点鎖線で示された解析結果の波形を、実線で示された理論応答の波形に補償するためには、波形等化部422における周波数の入出力応答は、破線で示した波形となることが望ましい。初期係数決定部427では、一点鎖線で示される解析結果を受け取ると、破線で示される入出力応答となるような等化係数の初期値を決定して、波形等化部422に出力する。
 なお、初期係数決定部427における等化係数の初期値の決定方法は、例えば、予め入出力関係が決まったルックアップテーブルを保持しておき、ルックアップテーブルを用いて等化係数の初期値を決定してもよいし、CPU(Central Processing Unit)などの算出部を使用して予め決定しておいた周波数応答に最も近づくように入力周波数応答に対する逆特性を算出してもよい。
 図6は、実施の形態1にかかるOLT4の受信動作を説明するためのフローチャートである。OLT4のAFE回路41は、PD411において、受信信号を光信号から電気信号に変換する(ステップS11)。また、AFE回路41は、TIA回路412において、受信信号を増幅させる(ステップS12)。
 DSP回路42のAD変換部421は、受信信号をアナログ信号からデジタル信号に変換する(ステップS13)。ここで、スイッチ部424およびスイッチ部425は、図3に示す状態であって、受信信号は初期係数解析部420に入力されると共に、波形等化部422を経由せずに信号処理部423に入力されていることとする。
 初期係数解析部420は、等化係数の初期値を決定する(ステップS14)。具体的には、初期係数解析部420は、周波数応答解析部426において、受信信号のプリアンブル領域#2中で、周波数応答解析を実行し、初期係数決定部427は、周波数応答解析の解析結果に基づいて、等化係数の初期値を決定する。なお、この初期値を決定する処理は、再帰的な計算を伴わずに、周波数応答解析の解析結果に基づいて、入出力応答が波形歪みを補償するように等化係数の初期値を決定する処理である。初期係数解析部420は、決定した初期値を波形等化部422に出力する。
 初期係数決定部427は、等化係数の初期値を決定すると、スイッチ部424およびスイッチ部425の接続状態を切り替える(ステップS15)。具体的には、上述の通り、切り替え前には、スイッチ部424およびスイッチ部425は、図3に示す接続状態となっており、ここでは、スイッチ部424がAD変換部421と波形等化部422とを接続し、スイッチ部425が波形等化部422と信号処理部423とを接続するように、接続状態が切り替えられる。
 スイッチ部424およびスイッチ部425の接続状態が切り替えられて、波形等化部422に受信信号が入力されると、波形等化部422は、初期係数解析部420が出力した等化係数の初期値を用いて、波形等化処理を開始する(ステップS16)。
 波形等化部422は、波形等化処理を実行しながら、再帰的な計算を伴う等化係数の最適化処理を開始する(ステップS17)。
 以上説明したように、実施の形態1にかかるOLT4は、複数の子局装置であるONU1と光カプラ3を介して光ファイバ2で接続されており、複数のONU1のそれぞれから時分割で光信号を受信する親局装置であって、受信信号を光信号から電気信号に変換する光電変換部であるPD411と、電気信号に変換された受信信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部であるAD変換部421と、等化係数を用いて、デジタル信号である受信信号の波形等化処理を行う波形等化部422と、波形等化部422が用いる等化係数の初期値を、AD変換部421が出力する受信信号のプリアンブル領域中において周波数応答解析を行って、再帰的な計算を伴わず周波数応答解析の解析結果に基づいて決定する初期係数解析部420と、を備える。波形等化部422は、初期係数解析部420が決定した等化係数の初期値を用いて波形等化処理を開始した後、再帰的な計算を伴う等化係数の最適化処理を開始して使用する等化係数の値を更新する。これにより、まず波形劣化要因の中で主要な部分を示す帯域劣化について補償するための等化係数を周波数応答解析の解析結果に基づいて初期値として決定し、初期値を用いて波形等化処理を開始した後、再帰的な計算を伴う最適化処理が開始されるため、波長分散など帯域劣化以外の要因による波形劣化も補償可能な等化係数に更新することが可能になる。したがって、フィードバックを伴い、収束までに時間を要する最適化処理の結果を待つことなく、初期値を用いて波形等化処理を開始することができるため、ディスカバリプロセスにおいても各ONUの等化係数を決定するまでにかかる時間を短縮することが可能である。また、初期値を用いて波形等化処理を開始した後、最適化処理によって使用される等化係数が更新されるため、通信路の状態が変化しても通信不能となる可能性を低減することが可能になる。
 実施の形態1では、初期係数解析部420は、受信信号の周波数応答解析を行う周波数応答解析部426と、周波数応答解析の解析結果に基づいて等化係数の初期値を決定する初期係数決定部427と、を有する。この周波数応答解析部426は、例えば、フーリエ変換により受信信号の周波数応答を解析する。
 また、波形等化部422は、初期係数解析部420から等化係数の初期値が入力されない限り受信信号に対して波形等化処理を行わず、初期値が入力されると入力された初期値を用いて受信信号の波形等化処理を行いながら、再帰的な計算を伴う等化係数の最適化処理を開始して等化係数の値を更新する。波形等化部422が波形等化処理を行わない間、受信信号はそのまま信号処理部423に出力される。
 また、OLT4は複数のONU1のそれぞれと時分割で通信するため、OLT4が複数のONU1のそれぞれから受信する受信信号は、バースト信号となる。受信信号は、先頭にプリアンブル領域を有し、プリアンブル領域は複数の分割領域に分割されている。PD411は、複数の分割領域のうちの第1の領域であるプリアンブル領域#1を用いてアナログ信号処理を行う。初期係数解析部420は、複数の分割領域のうちの第2の領域であるプリアンブル領域#2を用いて周波数応答解析を行って等化係数の初期値を決定する。波形等化部422は、複数の分割領域のうちの第3の領域であるプリアンブル領域#3を用いて最適化処理を行う。プリアンブル領域を複数の領域に分けることによって、それぞれの領域を使用する機能毎に適した信号パタンを割り当てることができるという効果がある。
 また、OLT4は、複数のONU1のそれぞれがプリアンブル領域の各分割領域において用いる信号パタンを割り当てて複数のONU1のそれぞれに通知することができる。
 また、実施の形態1によれば、複数のONU1と、複数のONU1と光カプラ3を介して光ファイバ2で接続されており複数のONU1のそれぞれから時分割で光信号を受信するOLT4と、を備える光通信システム100が提供される。このOLT4は、受信信号を光信号から電気信号に変換する光電変換部であるPD411と、電気信号に変換された受信信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部であるAD変換部421と、等化係数を用いて、デジタル信号である受信信号の波形等化処理を行う波形等化部422と、波形等化部422が用いる等化係数の初期値を、AD変換部421が出力する受信信号のプリアンブル領域中において周波数応答解析を行って、再帰的な計算を伴わず周波数応答解析の解析結果に基づいて決定する初期係数解析部420と、を備える。波形等化部422は、初期係数解析部420が決定した等化係数の初期値を用いて波形等化処理を開始した後、再帰的な計算を伴う等化係数の最適化処理を開始して使用する等化係数の値を更新する。
 また、実施の形態1によれば、複数のONU1と光カプラ3を介して光ファイバ2で接続されており、複数のONU1のそれぞれから時分割で光信号を受信するOLT4が受信信号に対して実行する光信号処理方法を提供することができる。この光信号処理方法は、受信信号を光信号から電気信号に変換するステップと、電気信号に変換された受信信号をアナログ信号からデジタル信号に変換するステップと、等化係数を用いて、デジタル信号である受信信号の波形等化処理を行うステップと、デジタル信号に変換された受信信号のプリアンブル領域中において周波数応答解析を行うステップと、周波数応答解析の解析結果に基づいて再帰的な計算を伴わずに波形等化処理において用いられる等化係数の初期値を決定するステップと、等化係数の初期値を用いて波形等化処理を開始した後、再帰的な計算を伴う等化係数の最適化処理を開始して使用する等化係数の値を更新するステップと、を含む。上記の各ステップは、OLT4によって実行される。
実施の形態2.
 上記の実施の形態1では、初期係数解析部420は、FFTなどのフーリエ変換を伴う信号処理を用いて受信信号の周波数応答を取得する周波数応答解析部426を有し、周波数応答解析の解析結果に応じて波形等化部422の等化係数の初期値を決定する例を説明した。実施の形態2では、FFTなどの信号処理を用いずに、受信信号のプリアンブル領域の信号パタンごとの振幅を検出することで疑似的に周波数応答解析を行う例について説明する。
 図7は、実施の形態2にかかるOLT4Aの受信回路ブロック図である。なお、図示していないが、図3のDSP回路42の代わりに図7に示すようなDSP回路42Aを有する装置を、OLT4Aと称する。なお、OLT4Aは、図1に示すOLT4と同様に、複数のONU1-1~1-nと光カプラ3を介して光ファイバ2で接続されており、光通信システム100を構成している。
 以下、実施の形態1と異なる部分について主に説明する。DSP回路42Aは、DSP回路42の周波数応答解析部426の代わりに、パタン信号解析部428を有する。パタン信号解析部428および初期係数決定部427は、初期係数解析部420Aを構成する。
 ここで、受信信号は、図4に示したように、3つの分割領域に分割されたプリアンブル領域を含むものとする。プリアンブル領域#2において、パタン信号解析部428で解析するためのパタンが挿入されている。プリアンブル領域#2では、例えば、「10」の繰り返しである10交番信号と、「1100」の繰り返しである1100交番信号と、「11110000」の繰り返しである11110000交番信号と、「1」8bitおよび「0」8bitの繰り返し信号とから構成されているものとする。その結果、送受信回路での帯域制限がかかっている場合には、10交番信号の振幅は小さくなり、「1」8bitおよび「0」8bitの繰り返し信号の振幅は大きくなる。これらの振幅差から図5で示したような周波数応答と同様の疑似的な解析結果がパタン信号解析部428で得られ、初期係数決定部427は、その解析結果に基づいて、等化係数の初期値を決定する。
 なお、上記の交番信号のビット数は、雑音の影響を排除するために平均化が可能なだけ延ばすことが望ましく、例えば、10交番信号では100ビットなどの長さを使用することができる。プリアンブル領域で使用するパタン種別およびパタン長は、予め決定していてもよいし、運用途中でOLT4から各ONU1に対して割当てて通知してもよい。また、プリアンブル領域#1およびプリアンブル領域#3で使用する信号パタンは、プリアンブル領域#2と同じであってもよいし、それぞれ異なる信号パタンであってもよい。
 なお、図7では、パタン信号解析部428への信号入力ラインはAD変換部421からしか入力されていないが、上記の信号パタンの開始点や終了点を識別するために、信号処理部423からパタン解析結果を受け取る構成としてもよい。
 実施の形態2にかかるOLT4Aは、パタン信号解析部428を有することで、FFTなどの信号処理を用いなくても送受信回路における周波数応答に相当する疑似的な周波数応答の解析結果を得ることが可能になり、計算遅延時間を短縮することができるため、プリアンブル領域#2の長さをより短くすることが可能になる。
 なお、実施の形態2にかかるOLT4Aの動作は、ステップS14で等化係数の初期値を決定する処理の内容が異なる他は、図6で説明した実施の形態1におけるOLT4の動作と同様であるため、ここでは詳細な説明を省略する。
 以上説明したように、実施の形態2にかかるOLT4Aにおいて、初期係数解析部420Aは、受信信号に含まれるプリアンブル領域の信号パタンごとの振幅を検出することで疑似的に周波数応答解析を行うパタン信号解析部428と、パタン信号解析部428による疑似的な周波数応答解析の解析結果に基づいて、等化係数の初期値を決定する初期係数決定部427とを有する。周波数応答解析部426のように、FFTなどを用いて周波数応答解析を行う場合には、計算遅延時間が増大するが、パタン信号解析部428ではこのような信号処理を行わなくても、周波数応答に相当する情報を得ることができる。このため、実施の形態2では、実施の形態1の効果に加えて、周波数応答解析部426を備えるOLT4よりもプリアンブル領域#2の長さを短縮することができるという効果を奏する。
 また、実施の形態2においても、実施の形態1と同様にプリアンブル領域を複数の領域に分けることによって、各領域を使用する機能に適した信号パタンを割り当てることが可能になる。実施の形態2では、プリアンブル領域を3つの領域に分けた場合、プリアンブル領域#2に「1100」の繰り返しである1100交番信号を含み、「1100」の繰り返しが続く場合がある。OLT4A全体では入力されたプリアンブルパタンから1bit幅のクロック成分を抽出する必要があるが、1100交番信号のような2bit連続信号からはクロック成分を正しく抽出することができない。このため、クロック成分を抽出するプリアンブル領域#1では、孤立「1」bitや、孤立「0」bitを含む信号パタンとし、クロック抽出後にプリアンブル領域#2ではパタン信号解析に適した信号パタンとし、さらにプリアンブル領域#3では「再帰的な計算により最適な等化係数を導出」するために適した信号パタンとすることが望ましい。
実施の形態3.
 上記で説明した実施の形態1および実施の形態2では、ペイロードの先頭で波形等化部422の等化係数の初期値を必ず計算することとしたが、予め保持していた初期値を用いてもよい。実施の形態3では、等化係数の初期値を計算する場合と、予め保持していた初期値を用いる場合とを切り替える方式について説明する。
 図8は、実施の形態3にかかるOLT4Bの受信回路ブロック図である。なお、図示していないが、図3のDSP回路42の代わりに図8に示すようなDSP回路42Bを有する装置を、OLT4Bと称する。なお、OLT4Bは、図1に示すOLT4と同様に、複数のONU1-1~1-nと光カプラ3を介して光ファイバ2で接続されており、光通信システム100を構成している。以下、OLT4と異なる部分について主に説明する。
 DSP回路42Bは、図3に示すDSP回路42の初期係数解析部420の代わりに、初期係数解析部420Bを有する。初期係数解析部420Bは、周波数応答解析部426と、初期係数決定部427Bとに加えて、初期係数メモリ部429をさらに有する。初期係数メモリ部429には、等化係数の初期値が保持される。また、図3に示す初期係数解析部420では、初期係数決定部427への入力は周波数応答解析部426からのみであったが、初期係数解析部420Bでは、初期係数メモリ部429からも入力される構成となっている。また、初期係数決定部427Bには、DSP回路42Bの外部から切替信号が入力される。初期係数決定部427Bは、周波数応答解析部426が出力する解析結果に基づいて等化係数の初期値を決定して決定した初期値を波形等化部422に出力するか、または、初期係数メモリ部429に保持された等化係数の初期値を波形等化部422に出力する。初期係数決定部427Bは、DSP回路42Bの外部から入力される切替信号に応じて、周波数応答解析部426からの入力を用いるか、初期係数メモリ部429からの入力を用いるかを切り替える。なお、切替信号は、MAC回路43から入力される。
 実施の形態1と同様にプリアンブル領域#2の周波数応答を解析して、等化係数の初期値を決定する場合には、初期係数決定部427Bは、周波数応答解析部426からの信号を受信する。また、等化係数の初期値が決定するまでは、AD変換部421の出力が波形等化部422を通過しないようにスイッチ部424およびスイッチ部425が制御される。
 また、何らかの方法で、信号を受信する前に波形等化部422の等化係数の初期値が決定されている場合には、初期係数決定部427Bは、初期係数メモリ部429に保持されている初期値を波形等化部422へ受け渡すことができる。信号を受信する前に初期値が初期係数メモリ部429に保持されており、波形等化部422が初期係数メモリ部429に保持された初期値を使用する場合には、受信信号が最初から波形等化部422を通過するようにスイッチ部424およびスイッチ部425が制御される。
 初期係数メモリ部429に保持された等化係数の初期値を決定する方法としては、例えば、OLT4BのAFE回路41中のPD411およびTIA回路412や、対向するONU1のAFE回路12の出荷時の周波数応答特性に基づいて、予め算出しておく方法が考えられる。また、初期係数メモリ部429に保持された等化係数の初期値は、ONU1の登録を行う通信区間であるディスカバリプロセスにおいて周波数応答解析部426の解析結果に基づいて決定した値であってよい。ディスカバリプロセスにおいて決定された初期値は、MAC回路43から別途受信するONU登録情報と共に初期係数メモリ部429に保持される。初期係数決定部427Bは、ディスカバリプロセスを終えた後の通信区間である通常通信区間において、初期係数メモリ部429に保持された初期値を波形等化部422に受け渡すことができる。また、通常通信区間内においても、切替信号が入力された場合、初期係数決定部427Bは、初期係数メモリ部429に保持された初期値ではなく、周波数応答解析部426からの解析結果に基づいて決定した初期値を出力することができる。この場合、決定した初期値を初期係数メモリ部429に受け渡して、保持された初期値を更新することができる。
 図9は、実施の形態3の効果について説明するための図である。初期係数メモリ部429に保持された等化係数の初期値を使用する場合、周波数応答解析部426が周波数応答解析を実行しない間は、プリアンブル領域#2を省略することができる。したがって、図9に示すように、プリアンブル領域をプリアンブル領域#1~プリアンブル領域#3の3分割ではなく、プリアンブル領域#1およびプリアンブル領域#3の2分割とすることができる。この結果、合計のプリアンブル長を短縮することが可能になる。
 図10は、実施の形態3にかかる初期係数解析部420Bの動作について説明するためのフローチャートである。まず、OLT4Bは、図6を用いて説明した動作と同様の動作を実行しており、図10に示す動作は、図6のステップS14の詳細に相当する。このため、図10に示す動作を実行する時点において、スイッチ部424およびスイッチ部425は、図8に示すように、AD変換部421の出力を初期係数解析部420Bおよび信号処理部423に入力する接続状態であって、受信信号は波形等化部422に入力されない状態であることとする。
 初期係数決定部427Bは、ディスカバリプロセスであるか否かを判断する(ステップS21)。ディスカバリプロセスである場合(ステップS21:Yes)、初期係数決定部427Bは、周波数応答解析部426から入力される周波数応答解析の解析結果に基づいて等化係数の初期値を決定する(ステップS22)。初期係数決定部427Bは、決定した初期値を初期係数メモリ部429に保持させる(ステップS23)。ディスカバリプロセスでない場合(ステップS21:No)、ステップS22およびステップS23の処理は省略される。
 初期係数決定部427Bは、通常通信区間であるか否かを判断する(ステップS24)。通常通信区間でなく未だディスカバリプロセスである場合(ステップS24:No)、初期係数決定部427Bは、ステップS24の判断を繰り返して通常通信区間に遷移するまで待機する。通常通信区間である場合(ステップS24:Yes)、初期係数決定部427Bは、その時点において初期係数決定部427Bへの入力は、周波数応答解析部426から入力された解析結果であるか、または、初期係数メモリ部429に保持された初期値であるかを判断する(ステップS25)。
 初期係数決定部427Bへの入力が保持された初期値である場合、初期係数決定部427Bは、初期係数メモリ部429に保持された初期値を、波形等化部422へ受け渡す(ステップS26)。初期係数決定部427Bへの入力が解析結果である場合、初期係数決定部427Bは、周波数応答解析の解析結果に基づいて等化係数の初期値を決定する(ステップS27)。初期係数決定部427Bは、決定した初期値で初期係数メモリ部429に保持された値を更新する(ステップS28)。また、初期係数決定部427Bは、決定した初期値を波形等化部422へ出力する(ステップS29)。
 なお、図10に示した動作は、実施の形態3にかかるOLT4Bにおける初期係数決定部427Bの動作の一例であって、上述の通り、初期係数メモリ部429に保持される初期値は、OLT4BのAFE回路41中のPD411およびTIA回路412や、対向するONU1のAFE回路12の出荷時の周波数応答特性に基づいて、予め算出しておいてもよい。この場合、初期係数決定部427Bは、単純に、切替信号に従って、解析結果に基づいて初期値を決定して波形等化部422に出力する状態と、初期係数メモリ部429に保持された初期値をそのまま波形等化部422に受け渡す状態とを切り替えればよい。
 なお、通常、ディスカバリプロセスでは、初期係数決定部427Bへの入力は、解析結果となり、通常通信区間では、初期係数決定部427Bへの入力は、保持された初期値となるように制御されてもよい。通常通信区間において、さらに切替信号が入力されると、初期係数決定部427Bへの入力は、解析結果に切り替えられ、ステップS27~ステップS29の処理が実行される。
 以上説明したように、実施の形態3にかかるOLT4Bによれば、初期係数解析部420Bは、等化係数の初期値を予め保持する初期係数メモリ部429を有し、解析結果に基づいて決定する初期値、または、初期係数メモリ部429に予め保持された初期値を出力する。
 初期係数解析部420Bは、初期係数解析部420Bの外部から入力される切替信号に基づいて、解析結果に基づいて決定する初期値、または、初期係数メモリ部429に予め保持された初期値のいずれを出力するかを切り替えることができる。
 例えば、初期係数解析部420Bは、ONU1の登録を行う通信区間であるディスカバリプロセスにおいては解析結果に基づいて初期値を決定し、ディスカバリプロセスで決定した初期値を初期係数メモリ部429に保持させ、通常通信区間において初期係数メモリ部429に保持させた初期値を波形等化部422に受け渡すようにしてもよい。この場合、通常通信区間においても、切替信号が入力されれば、解析結果に基づいて初期値を決定して波形等化部422に出力するように切り替えることもできる。
 或いは、初期係数メモリ部429は、OLT4BとONU1との間で通信を開始する前に等化係数の初期値を保持していてもよい。この場合、初期係数メモリ部429に保持される初期値は、例えば上述の通り、OLT4BのAFE回路41中のPD411およびTIA回路412や、対向するONU1のAFE回路12の出荷時の周波数応答特性に基づいて、予め算出した値とすることができる。
 なお、実施の形態3では、具体的には、初期係数解析部420Bは、受信信号の周波数応答解析を行って解析結果を出力する周波数応答解析部426と、等化係数の初期値を予め保持し、保持している初期値を出力する初期係数メモリ部429と、周波数応答解析部426の出力または初期係数メモリ部429の出力に基づいて、等化係数の初期値を決定する初期係数決定部427Bと、を有する。
実施の形態4.
 図11は、実施の形態4にかかるOLT4Cの受信回路ブロック図である。なお、図示していないが、図3のDSP回路42の代わりに図11に示すようなDSP回路42Cを有する装置を、OLT4Cと称する。なお、OLT4Cは、図1に示すOLT4と同様に、複数のONU1-1~1-nと光カプラ3を介して光ファイバ2で接続されており、光通信システム100を構成している。
 以下、実施の形態3と異なる部分について主に説明する。DSP回路42Cは、実施の形態3にかかるDSP回路42Bの初期係数解析部420Bの代わりに、初期係数解析部420Cを有する。初期係数解析部420Cは、パタン信号解析部428と、初期係数決定部427Cと、初期係数メモリ部429とを有する。
 ここで、パタン信号解析部428は、実施の形態2において図7で説明したパタン信号解析部428と同様である。また、初期係数決定部427Cの機能は、初期係数決定部427Bが周波数応答解析部426からの入力を用いる代わりに、パタン信号解析部428からの入力を用いる点以外は、初期係数決定部427Bと同様である。
 OLT4Cの動作についても、実施の形態3と同様である。図10の説明中において、初期係数決定部427Bを初期係数決定部427Cと読み替え、周波数応答解析部426をパタン信号解析部428と読み替えることによって、詳細な説明をここでは省略する。
 以上説明したように、実施の形態4によれば、初期係数解析部420Cは、受信信号に含まれるプリアンブル領域#2の信号パタンごとの振幅を検出することで疑似的に周波数応答解析を行って解析結果を出力するパタン信号解析部428と、等化係数の初期値を予め保持し、保持している初期値を出力する初期係数メモリ部429と、パタン信号解析部428の出力または初期係数メモリ部429の出力に基づいて、等化係数の初期値を決定する初期係数決定部427Cと、を有する。これにより、実施の形態3の効果に加えて、実施の形態3にかかるOLT4Bよりも、プリアンブル領域#2の長さを短縮することができるという効果を奏する。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1-1~1-n ONU、2,2-1~2-n,2m 光ファイバ、3 光カプラ、4,4A,4B,4C OLT、11,43 MAC回路、12,41 AFE回路、42,42A,42B,42C DSP回路、411 PD、412 TIA回路、420,420A,420B,420C 初期係数解析部、421 AD変換部、422 波形等化部、423 信号処理部、424,425 スイッチ部、426 周波数応答解析部、427,427B,427C 初期係数決定部、428 パタン信号解析部、429 初期係数メモリ部、100 光通信システム。

Claims (16)

  1.  複数の子局装置と光カプラを介して光ファイバで接続されており、複数の前記子局装置のそれぞれから時分割で光信号を受信する親局装置において、
     受信信号を光信号から電気信号に変換する光電変換部と、
     電気信号に変換された前記受信信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部と、
     等化係数を用いて、デジタル信号である前記受信信号の波形等化処理を行う波形等化部と、
     前記波形等化部が用いる前記等化係数の初期値を、前記アナログデジタル変換部が出力する前記受信信号のプリアンブル領域中において周波数応答解析を行って、再帰的な計算を伴わず前記周波数応答解析の解析結果に基づいて決定する初期係数解析部と、
     を備え、
     前記波形等化部は、前記初期係数解析部が決定した前記等化係数の前記初期値を用いて前記波形等化処理を開始した後、再帰的な計算を伴う前記等化係数の最適化処理を開始して使用する前記等化係数の値を更新することを特徴とする親局装置。
  2.  前記初期係数解析部は、
     前記受信信号の周波数応答解析を行う周波数応答解析部と、
     前記周波数応答解析の解析結果に基づいて前記等化係数の前記初期値を決定する初期係数決定部と、
     を有することを特徴とする請求項1に記載の親局装置。
  3.  前記初期係数解析部は、フーリエ変換により前記受信信号の周波数応答を解析することを特徴とする請求項1または2に記載の親局装置。
  4.  前記波形等化部は、前記初期係数解析部から前記等化係数の前記初期値が入力されない限り前記受信信号に対して前記波形等化処理を行わず、前記初期値が入力されると前記初期値を用いて前記受信信号の波形等化処理を行いながら、再帰的な計算を伴う前記等化係数の最適化処理を開始して前記等化係数の値を更新することを特徴とする請求項1から3のいずれか1項に記載の親局装置。
  5.  複数の前記子局装置のそれぞれから受信する前記受信信号は、バースト信号であり、先頭にプリアンブル領域を有し、前記プリアンブル領域は複数の分割領域に分割されており、
     前記光電変換部は、複数の前記分割領域のうちの第1の領域を用いてアナログ信号処理を行い、
     前記初期係数解析部は、複数の前記分割領域のうちの第2の領域を用いて前記周波数応答解析を行って前記等化係数の前記初期値を決定し、
     前記波形等化部は、複数の前記分割領域のうちの第3の領域を用いて前記最適化処理を行うことを特徴とする請求項4に記載の親局装置。
  6.  複数の前記子局装置のそれぞれが前記プリアンブル領域の各分割領域において用いる信号パタンを割り当てて複数の前記子局装置のそれぞれに通知することを特徴とする請求項5に記載の親局装置。
  7.  前記初期係数解析部は、
     前記受信信号に含まれるプリアンブル領域の信号パタンごとの振幅を検出することで疑似的に周波数応答解析を行うパタン信号解析部と、
     前記パタン信号解析部による疑似的な周波数応答解析の解析結果に基づいて前記等化係数の前記初期値を決定する初期係数決定部と、
     を有することを特徴とする請求項1に記載の親局装置。
  8.  前記初期係数解析部は、
     前記等化係数の前記初期値を予め保持する初期係数メモリ部を有し、
     前記解析結果に基づいて決定する前記初期値、または、前記初期係数メモリ部に予め保持された前記初期値を出力することを特徴とする請求項1に記載の親局装置。
  9.  前記初期係数解析部は、
     当該初期係数解析部の外部から入力される切替信号に基づいて、前記解析結果に基づいて決定する前記初期値、または、前記初期係数メモリ部に予め保持された前記初期値のいずれを出力するかを切り替えることを特徴とする請求項8に記載の親局装置。
  10.  前記初期係数解析部は、前記子局装置の登録を行う通信区間であるディスカバリプロセスにおいては前記解析結果に基づいて前記初期値を決定し、前記ディスカバリプロセスで決定した前記初期値を前記初期係数メモリ部に保持させ、通常通信区間において前記初期係数メモリ部に保持させた前記初期値を前記波形等化部に受け渡すことを特徴とする請求項8に記載の親局装置。
  11.  前記初期係数メモリ部は、前記親局装置と前記子局装置との間で通信を開始する前に前記等化係数の前記初期値を保持していることを特徴とする請求項8または9に記載の親局装置。
  12.  前記初期係数解析部は、
     前記受信信号の周波数応答解析を行って解析結果を出力する周波数応答解析部と、
     前記等化係数の前記初期値を予め保持し、保持している前記初期値を出力する初期係数メモリ部と、
     前記周波数応答解析部の出力または前記初期係数メモリ部の出力に基づいて、前記等化係数の前記初期値を決定する初期係数決定部と、
     を有することを特徴とする請求項1に記載の親局装置。
  13.  前記初期係数解析部は、
     前記受信信号に含まれるプリアンブル領域の信号パタンごとの振幅を検出することで疑似的に周波数応答解析を行って解析結果を出力するパタン信号解析部と、
     前記等化係数の前記初期値を予め保持し、保持している前記初期値を出力する初期係数メモリ部と、
     前記パタン信号解析部の出力または前記初期係数メモリ部の出力に基づいて、前記等化係数の前記初期値を決定する初期係数決定部と、
     を有することを特徴とする請求項1に記載の親局装置。
  14.  複数の子局装置と、
     複数の前記子局装置と光カプラを介して光ファイバで接続されており、複数の前記子局装置のそれぞれから時分割で光信号を受信する親局装置と、
     を備え、
     前記親局装置は、
     受信信号を光信号から電気信号に変換する光電変換部と、
     電気信号に変換された前記受信信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部と、
     等化係数を用いて、デジタル信号である前記受信信号の波形等化処理を行う波形等化部と、
     前記波形等化部が用いる前記等化係数の初期値を、前記アナログデジタル変換部が出力する前記受信信号のプリアンブル領域中において周波数応答解析を行って、再帰的な計算を伴わず前記周波数応答解析の解析結果に基づいて決定する初期係数解析部と、
     を有し、
     前記波形等化部は、前記初期係数解析部が決定した前記等化係数の前記初期値を用いて前記波形等化処理を開始した後、再帰的な計算を伴う前記等化係数の最適化処理を開始して使用する前記等化係数の値を更新することを特徴とする光通信システム。
  15.  複数の子局装置と光カプラを介して光ファイバで接続されており、複数の前記子局装置のそれぞれから時分割で光信号を受信する親局装置を制御する制御回路であって、
     光信号から電気信号に変換された受信信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部と、
     等化係数を用いて、デジタル信号である前記受信信号の波形等化処理を行う波形等化部と、
     前記波形等化部が用いる前記等化係数の初期値を、前記アナログデジタル変換部が出力する前記受信信号のプリアンブル領域中において周波数応答解析を行って、再帰的な計算を伴わず前記周波数応答解析の解析結果に基づいて決定する初期係数解析部と、
     を備え、
     前記波形等化部は、前記初期係数解析部が決定した前記等化係数の前記初期値を用いて前記波形等化処理を開始した後、再帰的な計算を伴う前記等化係数の最適化処理を開始して使用する前記等化係数の値を更新することを特徴とする制御回路。
  16.  複数の子局装置と光カプラを介して光ファイバで接続されており、複数の前記子局装置のそれぞれから時分割で光信号を受信する親局装置が、
     受信信号を光信号から電気信号に変換するステップと、
     電気信号に変換された前記受信信号をアナログ信号からデジタル信号に変換するステップと、
     等化係数を用いて、デジタル信号である前記受信信号の波形等化処理を行うステップと、
     デジタル信号に変換された前記受信信号のプリアンブル領域中において周波数応答解析を行うステップと、
     前記周波数応答解析の解析結果に基づいて再帰的な計算を伴わずに前記波形等化処理において用いられる前記等化係数の初期値を決定するステップと、
     前記等化係数の前記初期値を用いて前記波形等化処理を開始した後、再帰的な計算を伴う前記等化係数の最適化処理を開始して使用する前記等化係数の値を更新するステップと、
     を含むことを特徴とする光信号処理方法。
PCT/JP2022/044865 2022-12-06 2022-12-06 親局装置、光通信システム、制御回路および光信号処理方法 WO2024121927A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044865 WO2024121927A1 (ja) 2022-12-06 2022-12-06 親局装置、光通信システム、制御回路および光信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044865 WO2024121927A1 (ja) 2022-12-06 2022-12-06 親局装置、光通信システム、制御回路および光信号処理方法

Publications (1)

Publication Number Publication Date
WO2024121927A1 true WO2024121927A1 (ja) 2024-06-13

Family

ID=91378763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044865 WO2024121927A1 (ja) 2022-12-06 2022-12-06 親局装置、光通信システム、制御回路および光信号処理方法

Country Status (1)

Country Link
WO (1) WO2024121927A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6513589B2 (ja) * 2016-02-22 2019-05-15 日本電信電話株式会社 光通信システム及び通信装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6513589B2 (ja) * 2016-02-22 2019-05-15 日本電信電話株式会社 光通信システム及び通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOMA RYO, FUJIWARA MASAMICHI, KANI JUN-ICHI, SUZUKI KEN-ICHI, OTAKA AKIHIRO: "Burst-Mode Digital Signal Processing That Pre-Calculates FIR Filter Coefficients for Digital Coherent PON Upstream", JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, IEEE, USA, vol. 10, no. 5, 1 May 2018 (2018-05-01), USA, pages 461, XP093178662, ISSN: 1943-0620, DOI: 10.1364/JOCN.10.000461 *
KOMA RYO: "Study on optical access systems using digital signal processing techniques", DOCTORAL THESES (ENGINEERING), HOKKAIDO UNIVERSITY, 25 September 2018 (2018-09-25), Hokkaido University, XP093178665, Retrieved from the Internet <URL:https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/74658/1/Ryo_Koma.pdf> DOI: 10.14943/doctoral.k13301 *

Similar Documents

Publication Publication Date Title
JP4820880B2 (ja) 局側終端装置
KR102179217B1 (ko) Pon들(passive optical networks)에서의 상위-레벨 cdr(clock and data recovery)
US20040247246A1 (en) Optical power equalizer in a passive optical network
US20060280502A1 (en) Optical access network system
US10778364B2 (en) Reduced power consumption for digital signal processing (DSP)-based reception in time-division multiplexing (TDM) passive optical networks (PONs)
JP2006345284A (ja) 伝送システムおよび局側装置
WO2006020538A2 (en) Countermeasures for idle pattern srs interference in ethernet optical network systems
US10153844B2 (en) Channel recovery in burst-mode, time-division multiplexing (TDM) passive optical networks (PONs)
US9490932B2 (en) Burst signal receiving apparatus and method, PON optical line terminal, and PON system
US10205551B2 (en) Systems and methods for power leveling in passive optical networks
JP5460253B2 (ja) 親局側光送受信装置および光加入者伝送システム
JP4536770B2 (ja) オンチップ・リセット信号を生成するバーストモード受信機及びバーストモード受信方法
JP6365349B2 (ja) データ受信装置
JP6920446B2 (ja) 光受信機
CN110958500B (zh) 一种信号接收方法及系统
US20160072588A1 (en) Method And Apparatus For Processing A Communication Signal In An Optical Communication Network
WO2024121927A1 (ja) 親局装置、光通信システム、制御回路および光信号処理方法
WO2021001868A1 (ja) 光受信装置、光伝送システム、光伝送方法及びコンピュータプログラム
JP4809811B2 (ja) バースト光受信方法および装置
JP5588814B2 (ja) バースト受信機,バースト受信制御方法、およびシステム
JP5321312B2 (ja) 光信号の受信装置及び受信方法
CN107276673B (zh) 一种光模块
JP6027513B2 (ja) 通信システム、中継装置、通信方法及び中継方法
EP2492731B1 (en) Optical receiving device and communication system
WO2023125509A1 (zh) 一种控制方法、装置、芯片、光线路终端及无源光网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967780

Country of ref document: EP

Kind code of ref document: A1