JP2011019706A - 医療用観察システムおよびプロセッサ - Google Patents

医療用観察システムおよびプロセッサ Download PDF

Info

Publication number
JP2011019706A
JP2011019706A JP2009166880A JP2009166880A JP2011019706A JP 2011019706 A JP2011019706 A JP 2011019706A JP 2009166880 A JP2009166880 A JP 2009166880A JP 2009166880 A JP2009166880 A JP 2009166880A JP 2011019706 A JP2011019706 A JP 2011019706A
Authority
JP
Japan
Prior art keywords
light
medical probe
laser light
medical
observation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009166880A
Other languages
English (en)
Other versions
JP5388732B2 (ja
Inventor
Shotaro Kobayashi
将太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2009166880A priority Critical patent/JP5388732B2/ja
Priority to US12/834,169 priority patent/US8831710B2/en
Priority to DE102010036427A priority patent/DE102010036427A1/de
Publication of JP2011019706A publication Critical patent/JP2011019706A/ja
Application granted granted Critical
Publication of JP5388732B2 publication Critical patent/JP5388732B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00057Operational features of endoscopes provided with means for testing or calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/00167Details of optical fibre bundles, e.g. shape or fibre distribution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Laser Surgery Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】レーザー光が術者等の目に入るような状況においては、レーザー光の光量を安全なレベルに制限することが可能な医療用観察システムを提供することを目的とする。
【解決手段】 医療用観察システムであって、レーザー光を走査させて対象物を観察する医療用プローブと、医療用プローブにレーザー光を供給するレーザー光源と、医療用プローブが所定の状態であるか否かを判定する判定手段と、判定手段による判定結果に基づいて、レーザー光源から射出されるレーザー光の光量を制御する制御手段とを備える構成とした。
【選択図】図5

Description

この発明は、対象物を走査して画像情報を取得する走査型医療用プローブを用いた医療用観察システム、および走査型医療用プローブ用プロセッサに関する。
医師が患者の体腔内を観察するときに使用する装置として、電子スコープが一般的に知られている。電子スコープを使用する医師は、電子スコープの挿入部を体腔内に挿入し、挿入部の先端に備えられた先端部を観察対象近傍に導く。そして、先端部に内蔵されたCCD(Charge Coupled Device)等の固体撮像素子により体腔内の画像が撮影される。体腔内で撮影された画像は、電子スコープからビデオプロセッサへ送信される。ビデオプロセッサでは、受信した画像に所定の処理を行ってモニタに体腔内の映像を表示させる。医師はこのようにモニタに表示される体腔内の映像を観察して検査や施術等を行う。
また、近年、電子スコープの挿入部を咽喉部に差し込まれることに因る患者の苦痛を軽減するために、固体撮像素子等を構成要素から排除することにより、電子スコープに比べて外径を細く構成した医療用プローブ、および該医療用プローブを用いた観察システムが提案されている。
かかる医療用プローブの一例が、特許文献1に開示されている。特許文献1に記載の医療用プローブは、単一の光ファイバの先端を共振させて所定の走査光により対象物を所定の走査パターンで走査する。そして、対象物からの反射光を検出して光電変換しビデオプロセッサに順次出力する。ビデオプロセッサは、光電変換された信号を処理して画像化しモニタに出力する。医師は、このようにして得られた体腔内の映像を、電子スコープを使用した場合と同様にモニタ上で観察して検査や施術等を行うことができる。
米国特許第6,294,775号明細書
上述のような医療用プローブにおいては、光ファイバより射出される走査光としてレーザー光が用いられる。また、走査光は単一の光ファイバ内を伝搬されて対象物へと射出されるため、体腔内の状態を観察するのに十分な画像を得るためにはある程度光量の高いレーザー光を用いる必要がある。一般的に、レーザー光は人に直視されることなどによって危害を及ぼす恐れがあるため、JIS規格などにおいては、レーザー光を射出する装置に対してレーザー光の光量における安全基準が定められている。
通常、当該医療用プローブから射出されるレーザー光は、医療用プローブが直接または電子スコープの鉗子チャンネルを通して体腔内に挿入された状態で、体腔壁に向けて射出されるため、術者や患者の目に入ることは想定されていない。ところが、実際には、検査前後にレーザー光を放射している状態の医療用プローブが検査室内に置かれる場合もあり、該レーザー光が術者など検査室内にいる人の目に直接入る可能性もある。
そこで、本発明は上記の事情に鑑みてなされたものであり、レーザー光が術者等の目に入るような状況においては、レーザー光の光量を安全なレベルに制限することが可能な医療用観察システムを提供することを目的とする。
上記の課題を解決するため、本発明により、レーザー光を走査させて対象物を観察する医療用プローブと、医療用プローブにレーザー光を供給するレーザー光源と、医療用プローブが所定の状態であるか否かを判定する判定手段と、判定手段による判定結果に基づいて、レーザー光源から射出されるレーザー光の光量を制御する制御手段と、を備える医療用観察システムが提供される。また、上記所定の状態は、医療用プローブが体内に挿入されていない状態であっても良い。さらに、上記制御手段は、判定手段によって、医療用プローブが所定の状態であると判定された場合に、レーザー光源から射出されるレーザー光の光量を低減するものであっても良い。
このように構成することにより、医療用プローブが体内に挿入されているか否かに基づいて、適切にレーザー光の光量を制御することができる。そして、医療用プローブが体内に挿入されてない場合には、レーザー光の光量を制御し、安全な光量に低減することで、走査型医療用プローブから射出されるレーザ光が、術者等の眼に入る場合であっても、安全性を確保して体腔内観察を行なうことが可能となる。
また、上記制御手段は、判定手段による判定結果に基づいて、レーザー光源から射出されるレーザー光の光量を段階的に低減させるものであっても良い。このように構成することで、必要な量だけレーザー光の光量を低減させることが可能となり、様々な状況に応じて、柔軟にレーザー光の光量を制御することが可能となる。
また、上記医療用プローブは、レーザー光を導光して対象物に射出するための導光手段と、レーザー光を対象物上で走査させるために導光手段の射出端近傍を振動させる振動手段と、記対象物の反射光を受光する受光手段とを備える構成としても良い。
また、上記判定手段は、受光手段によって受光された反射光に基づいて、医療用プローブが所定の状態であるか否かを判定するものであっても良い。
また、上記判定手段は、受光手段によって受光された反射光の光量が、所定の光量より大きい場合に、医療用プローブが所定の状態であると判定するものであっても良い。または、上記判定手段は、受光手段によって受光された反射光が、所定の範囲の周波数で点滅するものである場合に、医療用プローブが所定の状態であると判定するものであっても良い。このように構成することにより、反射光から医療用プローブの状態を容易に判定することが可能となる。
また、上記判定手段は、レーザー光が対象物に射出されていない期間に、受光手段によって受光された反射光に基づいて、医療用プローブが所定の状態であるか否かを判定するものであっても良い。このように構成することにより、受光手段によって受光されたレーザー光以外の光に基づいて、医療用プローブの状態を判定することが可能となる。
また、上記判定手段は、受光手段によって受光された反射光に基づく信号の輝度値が変化しない場合に、医療用プローブが所定の状態であると判定するものであっても良い。このように構成することにより、より正確に走査型医療用プローブの状態を判定することが可能となる。
また、上記医療用プローブは、医療用プローブの使用環境を検出するためのセンサを備え、上記判定手段は、センサの検出結果に基づいて、医療用プローブが所定の状態であるか否かを判定するものであっても良い。このように構成することにより、信号処理等における負荷を軽減できるとともに、より迅速に光量制御を行なうことが可能となる。
また、上記センサは、導光手段の先端に備えられた湿度センサと、医療用プローブの把持部に備えられた接触センサと、からなる構成としても良い。また、この場合、上記判定手段は、湿度センサおよび接触センサの検出結果に基づいて、医療用プローブが所定の状態であるか否かを判定するものであっても良い。
また、上記センサは、複数の温度センサからなり、判定手段は、複数の温度センサにおける温度差に基づいて、医療用プローブが所定の状態であるか否かを判定するものであっても良い。
さらに、本発明により、レーザー光を走査させて対象物を観察する医療用プローブにレーザー光を供給するためのプロセッサであって、レーザー光を射出するレーザー光源と、
医療用プローブが所定の状態であるか否かを判定する判定手段と、判定手段による判定結果に基づいて、レーザー光源から射出されるレーザー光の光量を制御する制御手段とを備える医療用プローブ用プロセッサが提供される。
本発明の医療用観察システムによれば、医療用プローブの状態に応じて、レーザー光源の光量を適切に制限することができ、レーザー光が術者等の目に入る状況においても、安全性を確保することができる。
本発明の実施形態における走査型医療用プローブの先端部の内部構成を模式的に示す図である。 本発明の実施形態におけるプロセッサの構成を示すブロック図である。 本発明の実施形態における走査型医療用プローブによる走査パターンを示す図である。 本発明の実施形態におけるプロセッサの信号処理回路による画素位置補正処理の具体例を説明するための図である。 本発明の第1の実施形態における光量制御処理を示すフローチャートである。 外光検出のタイミングを説明するためのタイミングチャートである。 本発明の第2の実施形態における光量制御処理を示すフローチャートである。 レーザー停止時に検出される外光信号の例を示す図である。 本発明の第3の実施形態における光量制御処理を示すフローチャートである。 (a)本発明の第4の実施形態における医療用プローブの外観図、および(b)本発明の第5の実施形態における医療用プローブの外観図である。 本発明の第4の実施形態における光量制御処理を示すフローチャートである。 本発明の第5の実施形態における光量制御処理を示すフローチャートである。
以下、図面を参照して、本発明の実施形態について説明する。図1は、本発明の第1の実施形態の走査型医療用プローブ10における先端部の内部構成を模式的に示す図である。また、図2は、走査型医療用プローブ10に接続されるプロセッサ20の構成を示すブロック図である。なお、図2においては、走査型医療用プローブ10およびモニタ30とプロセッサ20との接続関係等を明確にするため、走査型医療用プローブ10の一部の構成およびモニタ30も模式的に示している。モニタ30は周知の構成を有した受像装置である。これらの走査型医療用プローブ10、プロセッサ20、およびモニタ30によって、本実施形態の医療用観察システム1が構成される。
まず、図1を参照して、本実施形態の走査型医療用プローブ10の構成について説明する。走査型医療用プローブ10は、患者の体腔内に挿入される長尺の可撓管からなる挿入部10a、術者によって把持される把持部10b(図10)、およびプロセッサ20と電気的および光学的に接続される接続部10c(図2)からなる。図1は、走査型医療用プローブ10の挿入部10aの先端部を示すものであり、該先端部には、シングルモードファイバ110(以下、「SMF110」という)、アクチュエータ112、支持体114、筒体116、およびレンズユニット118が配置されている。また、これらの部材は可撓性を有する保護チューブであるシース130に収容されており、シース130の内部には、さらに複数の受光ファイバ120が円環上に埋設されている。
SMF110は、プロセッサ20から供給される走査光を体腔内まで伝搬するためのファイバであり、走査型医療用プローブ10の接続部10cから、挿入部10aの先端まで延在している。また、SMF110の先端付近は、円筒型のアクチュエータ112の長軸方向に設けられた貫通孔に通され、アクチュエータ112に接着材などで固定されている。
アクチュエータ112は、圧電素子などで形成され、複数の電極113を有している。そして、アクチュエータ112は、後述するプロセッサ20のX軸ドライバ220XおよびY軸ドライバ220Yから、各電極113に接続された電線(不図示)を通じて所定の駆動電圧が供給されることにより、所定の振動を開始する。また、アクチュエータ112は、支持体114に設けられた貫通孔に通されて支持される。これにより、SMF110の先端部が、支持体114に片持ち梁の状態で支持される。尚、以降の説明について、便宜上、走査型医療用プローブ10の長手方向をZ方向、Z方向に直交しかつ互いに直交する二方向をX方向、Y方向と定義する。
筒体116は、ステンレスなどの金属で形成される円筒上の部品であり、レンズユニット118および支持体114の固定に用いられる他、走査型医療用プローブ10の先端部近傍に配置される部品を保護する役割を備えている。また、レンズユニット118は、複数のレンズから構成され、SMF110の射出端110aから射出される走査光を観察対象上に集光するための光学系である。
また、シース130内部に埋設される複数の受光ファイバ120は、観察対象によって反射された光を入射端120aから受光するためのファイバであり、走査型医療用プローブ10の接続部10cから挿入部10aの先端まで延在している。複数の受光ファイバ120にて受光された反射光は、受光ファイバ120内を伝搬され、走査型医療用プローブ10の接続部10cにて結合されて、プロセッサ20へ送られる。
なお、本実施形態においては、体腔内を観察するために走査型医療用プローブ10単体が患者の体腔内に直接挿入される。別の実施形態においては、例えば走査型医療用プローブ10の先端を観察対象近傍にスムーズに導くために挿入部10aにガイドワイヤ等を添えて挿入するようにしてもよい。また、例えば電子スコープ等が有する鉗子チャンネルに挿入部10aを挿入し通して先端を観察対象近傍に近接させるようにしてもよい。
次に、図2を参照して、本実施形態のプロセッサ20の構成について説明する。プロセッサ20は、走査型医療用プローブ10に照明光を供給するための光源部、走査型医療用プローブ10を駆動制御するための駆動部、および走査型医療用プローブ10により取得される反射光を検出し、モニタ30での表示に適した画像信号を生成する信号処理部を備える。なお、本実施形態においては、プロセッサ20は、光源部、駆動部、信号処理部を備えた一体型のプロセッサであるが、別の実施形態では各部を別体で構成してもよい。
プロセッサ20の光源部は、観察対象を走査するための光源として、RGBの各波長に対応したレーザー光を供給するレーザー光源230R、230Gおよび230B、各レーザー光源230R、230Gおよび230Bを駆動するドライバ232R、232Gおよび232B、ならびにレーザー結合器234から構成される。ここで、RGBの各波長に対応する光源が備えられる理由は、カラー画像に対応するためである。したがって、光源は、例えば広帯域であるスーパーコンティニューム光等を発振する単一の白色ファイバレーザーとしてもよい。
プロセッサ20の駆動部は、走査型医療用プローブ10のアクチュエータ112を駆動するためのX軸ドライバ220XおよびY軸ドライバ220Yから構成される。X軸ドライバ220XおよびY軸ドライバ220Yは、タイミングコントローラ240の制御の下、図示しない電線を介してアクチュエータ112へ所定の駆動電圧を印加する。
プロセッサ20の信号処理部は、受光ファイバ120によって伝搬される反射光をRGBの各波長を有する光へと分離するレーザー分離器254、分離されたRGB光を受光する検出器250R、250Gおよび250B、各検出器250R、250Gおよび250Bの出力をA/D変換するA/Dコンバータ252R、252Gおよび252B、A/D変換された信号に対して所定の処理を行う信号処理回路260、ならびに処理された信号を映像信号へと変換してモニタ30に出力するエンコーダ270から構成される。
さらに、本実施形態のプロセッサ20は、レーザー光源230R、230Gおよび230Bから射出されるレーザー光の光量を制御するための光量制御回路280を備えている。光量制御回路280は、後述する光量制御処理を実行し、ドライバ232R、232G、および232Bを制御することにより、レーザー光源230R、230Gおよび230Bから射出されるレーザー光の光量を変化させる。また、上記各部は、同じくプロセッサ20が備えるタイミングコントローラ240によって処理のタイミングが統括的にコントロールされる。
次に、上述のような構成を備えた医療用観察システム1における体腔内観察の流れについて、各部の具体的な動作とともに説明する。まず、プロセッサ20に電源が投入されると、システムコントローラ210の制御の下、タイミングコントローラ240からドライバ232R、232Gおよび232Bに駆動信号が出力される。ドライバ232R、232Gおよび232Bは、該駆動信号に従ってレーザー光源230R、230Gおよび230Bを駆動する。そして、各レーザー光源230R、230Gおよび230Bは、RGBに対応するレーザー光を射出する。
各レーザー光源230R、230Gおよび230Bから射出されたレーザー光は、レーザー結合器234に入射される。そして、レーザー結合器234が備えるダイクロイックミラー等によって、RGBの各レーザー光が結合される。なお、図2においてレーザー結合器234内を進行するRGB光の光路長が異なるように見えるが、実際には、各光の光路長は同一である。そして、結合されたレーザー光(以下、「走査光」という)は、カップリングレンズ234aによって収束され、SMF110へと射出される。なお、レーザー光結合器234は、ダイクロイックミラーを使用した光結合器でなく、光ファイバ結合された各レーザー光源を光コンバイナや光導波路に接続した構成としてもよい。また、光源が単一の白色ファイバレーザーである場合には、光源から射出される白色レーザーをそのままカップリングレンズ234aにて集束して射出すれば良い。SMF110へと射出された光は、SMF110内を伝搬され、走査型医療用プローブ10の挿入部先端に位置するSMF110の射出端110aから射出される。
また、上述のような光源部の起動と同期して、タイミングコントローラ240から、アクチュエータ112を駆動するための駆動信号が、X軸ドライバ220XおよびY軸ドライバ220Yにそれぞれ出力される。X軸ドライバ220XおよびY軸ドライバ220Yは、受信した駆動信号に従って、アクチュエータ112を駆動させる。具体的には、X軸ドライバ220Xは、駆動信号に基づいて、アクチュエータ112に第一の交流電圧を印加し、Y軸ドライバ220Yは、駆動信号に基づいて、アクチュエータ112に第一の交流電圧と同一周波数であって位相が直交する第二の交流電圧を印加する。
アクチュエータ112は、X軸ドライバ220XおよびY軸ドライバ220Yから印加された第一および第二の交流電圧に応じて振動する。アクチュエータ112の振動はそれぞれ、SMF110の先端部のX方向、Y方向への共振運動を生じさせる。そして、SMF110の射出端は、アクチュエータ112によるX方向およびY方向への運動エネルギーが合成されることにより、X−Y平面に近似する面上において所定半径を有する円の軌跡を描く。そして、X軸ドライバ220XおよびY軸ドライバ220Yから印加される駆動電圧の振幅を変化させながらSMF110を共振させることにより、SMF110の先端部が中心から外側に向かって螺旋状に駆動される。その結果、図3に示されるように、SMF110の射出端110aから、走査光が、観察対象へ向けて螺旋状の走査パターンSPを描くように射出される。
そして、X軸ドライバ220XおよびY軸ドライバ220Yから、アクチュエータ112へ第一および第二の交流電圧の印加が開始されてから、SMF110の射出端110aが所定の半径Rを有する円の軌跡を描く迄の期間(以下、「走査パターン期間」という)、SMF110から走査光が射出され続ける。そして、この走査パターン期間において受光された反射光が、1フレーム分の画像として取得される。その後、SMF110の射出端110aが、所定半径Rを有する円の軌跡を描く状態となると、アクチュエータ112に対する交流電圧の印加が停止される。すると、SMF110の先端部の振動は徐々に減衰されていく。かかる減衰に伴って、SMF110の射出端110aは、略螺旋状の軌跡を描きながら中心に向かい、最終的には中心軸AX上で停止する。アクチュエータ112に対する交流電圧の印加が停止されてから、SMF110の射出端110aが中心軸AX上で停止するまでの期間を「ブレーキング期間」という。
なお、SMF110の射出端110aが停止した状態(つまり、射出端110aが中心軸AX上にある状態)から所定半径Rを有する円の軌跡を描く状態に達する迄にかかる時間(すなわち走査パターン期間が開始されてから終了する迄にかかる時間)、およびアクチュエータ112に対する交流電圧の印加が停止されてから、SMF110の射出端110aが中心軸AX上で停止するまでにかかる時間(すなわちブレーキング期間が開始されてから終了するまでにかかる時間)は既知である。さらに、走査パターン期間中のSMF110の射出端110aの位置も既知である。そのため、タイミングコントローラ240は、かかる既知の情報に基づき、X軸ドライバ220XおよびY軸ドライバ220Yに対するタイミング制御(つまり、アクチュエータ112に対する交流電圧の印加と停止のタイミング制御)、およびドライバ232R、232Gおよび232Bに対するタイミング制御(つまり、走査パターン期間中における各レーザー光源に対する駆動電圧の印加と停止のタイミング制御)のそれぞれをフレームレートに応じた周期で繰り返す。
このように観察対象が走査されることによって得られた反射光は、複数の受光ファイバ120にて受光される。そして、該反射光は受光ファイバ120によって伝搬され、走査型医療用プローブ10の接続部10cにて結合されてプロセッサ20に送られる。プロセッサ20では、受光ファイバ120によって伝搬された反射光が、レーザー分離器254にて、ダイクロイックミラー等によりR、G、Bに対応する反射光に分離される。レーザー分離器254にて分離された各反射光は、それぞれ検出器250R、250Gおよび250Bに入射する。なお、光源部から供給される走査光は、単一のSMF110により導光されて観察対象にて反射される。そのため、反射光の光量は非常に少ない。このような微弱な光を確実にかつ低ノイズで検出する必要があるため、各検出器には光電子増倍管(PMT:Photomultiplier Tube)等の高感度光検出器が用いられる。
各検出器250R、250Gおよび250Bは、それぞれ検出した反射光を光電変換し、アナログ信号を生成する。そして、各検出器によって生成されたアナログ信号は、A/Dコンバータ252R、252Gおよび252Bにそれぞれ出力される。各A/Dコンバータは、タイミングコントローラ240の制御の下、各検出器から出力されたアナログ信号をサンプリングおよびホールドして、図3のスポットS、S、S・・・に対応する画素データへと変換する。そして各A/Dコンバータによって変換された画素データは、それぞれ信号処理回路260に出力される。
信号処理回路260では入力された画素データに対して、モニタ30の表示形式に合わせて画素位置を補正する処理が行われる。具体的には、走査型医療用プローブ10にて螺旋状の走査パターンによって得られた各画素データを、信号処理回路260にて固体撮像素子で言うところの画素アドレスに対応付けて、フレームメモリ(不図示)へと一時的に記憶する処理が行なわれる。信号処理回路260には、各スポットに対応する時間Tと画素アドレスとの変換テーブルが予め保持されている。当該変換テーブルは、既知の情報である走査パターン期間中の各スポットの形成位置および形成時間、ならびにサンプリング周波数などの既知の情報に基づき作成される。信号処理回路260は、特定の時間Tに対応する画素データ(R、G、Bに対応する各画素データ)が入力されたとき、変換テーブルに基づき該画素データの画素アドレスを特定する。
図4を用いて、信号処理回路260による画素位置補正処理の具体例を説明する。ここでは、説明の便宜上、画素データを19×19からなる画素アドレスに割り当てる場合を考える。信号処理回路260は、例えばスポットSに対応する時間tの画素データが入力されたとき、上記変換テーブルに基づき当該画素データを画素アドレス(10,10)に記憶する。次いで、スポットSに対応する時間tの画素データが入力されたとき、上記変換テーブルに基づき、当該画素データを画素アドレス(11,9)に記憶する。信号処理回路260は、入力される画素データに対して、画素アドレスを特定し、順次フレームメモリに記憶させる。
このように、1フレーム分の画素データが所定の画素アドレスに記憶されることにより、フレームメモリにおいて、1フレーム分の画像データが記憶される。また、信号処理回路260では、さらに、画像データに対して、エンハンス処理やゲイン調整処理等の画像処理が施される。続いて、タイミングコントローラ240の制御に従い、信号処理回路260にて処理が施された画像データが読み出され、エンコーダ270に出力される。エンコーダ270は、入力された画像データをNTSC(National Television Standards Committee)やPAL(Phase Alternating Line)等の所定の規格に準拠した映像信号に変換してモニタ30に出力する。これにより、モニタ30に観察対象の映像が表示される。
続いて、医療用観察システム1の光量制御回路280による光量制御処理について説明する。上述のように、医療用観察システム1における通常の体腔内観察では、走査型医療用プローブ10の挿入部10aが患者の体腔内に挿入された状態で、走査光(レーザー光)が体腔内の観察対象に向けて射出される。しかしながら、検査の前後などに、挿入部10aの先端から走査光が射出された状態で、走査型医療用プローブ10が検査室内に置かれる場合がある。そのため、本実施形態では、光量制御回路280によって、走査型医療用プローブ10が体外にある場合、すなわち走査型医療用プローブ10から射出されるレーザー光が術者や患者に直視される可能性のある場合には、レーザー光源230R、230Gおよび230Bから射出されるレーザー光の光量を制限するための光量制御処理が行なわれる。具体的には、本実施形態の光量制御回路280では、走査型医療用プローブ10から射出される走査光の光量が、以下の3段階のレベルA〜Cのいずれかの光量となるよう、ドライバ232R、232G、および232Bを制御する。

・レベルA:直視は危険であるが、体腔内観察を行なうのに十分な光量(例えば5.0mW)
・レベルB:まばたき等により眼への保護が達せられ、且つある程度の体腔内観察を行なうことができる光量(例えば1.0mW)
・レベルC:直視しても危険はないが、診断をするための体腔内観察はほとんど行なえない光量(例えば0.4mW以下)
図5は、第1の実施形態における光量制限処理の流れを示すフローチャートである。本処理は、光量制御回路280によって実行される処理であり、プロセッサ10の電源が投入されるのと同時に開始される。本処理では、まず、レーザー光源230R、230Gおよび230Bの駆動が停止されているか否かが判断される(S101)。
図6は、各レーザー光源230R、230Gおよび230Bの駆動および停止のタイミングを説明するためのタイミングチャートである。図6(a)は、アクチュエータ112に印加される駆動電圧のタイミングチャートであり、図6(b)はレーザー光源230R、230Gおよび230Bに印加される駆動電圧のタイミングチャートである。上述のように、体腔内観察時には、タイミングコントローラ240によって、X軸ドライバ220XおよびY軸ドライバ220Y、ならびにドライバ232R、232Gおよび232Bに対するタイミング制御が行なわれる。
具体的には、走査型医療用プローブ10のフレームレートが30fpsの場合、1フレームあたりの走査パターン期間、およびブレーキング期間の合計時間が33.3msecとなる。そして、走査パターン期間を200スパイラル、ブレーキング期間を133スパイラルとした場合、走査パターン期間は、20msec、ブレーキング期間は13.3msecとなる。従って、タイミングコントローラ240は、走査パターン期間である20msecのみ、走査光が射出されるよう、ドライバ232R、232Gおよび232Bの駆動を制御する。これにより、ブレーキング期間中である13.3msecは、レーザー光源230R、230Gおよび230Bの駆動が停止され、レーザー光の射出が停止される。
そして、現在各レーザー光源が停止されていない場合(すなわち走査パターン期間中である場合)には(S101:No)、各レーザー光源が停止されるまで待機する。一方、現在各レーザー光源が停止されている場合(すなわちブレーキング期間中である場合)には(S101:Yes)、各検出器250R、250Gおよび250Bにて検出された各アナログ信号における光量L1が検出される(S102)。上述のように、ブレーキング期間中は、レーザー光の射出が停止されている。そのため、このブレーキング期間中(13.3msec)にS102で検出される光量L1は、受光ファイバ120によって受光されたレーザー光以外の光(以下、「外光」という)の光量である。
続いて、プロセッサ20の図示しないメモリに記憶される基準レベルLbが読み出される(S103)。この基準レベルLbは、医療用観察システム1における黒レベルの基準となる光量を示す値であり、工場出荷時やキャリブレーション時に取得され、メモリに予め記憶されている。続いて、受光量L1と基準レベルLbとの比較が行なわれる(S104)。一般的に、患者の体内には外光がないため、走査型医療用プローブ10が患者の体腔内に挿入され、かつレーザー光が射出されていない状態では、受光ファイバ120には何の光も入射しない。一方、走査型医療用プローブ10が、体外にある場合、すなわち検査室等に置かれている場合には、レーザー光が射出されていなくても、受光ファイバ120には検査室の照明などの外光が入射する。そのため、ブレーキング期間に受光した光の光量が、黒の基準レベルと比べて大きいか否かを判断することにより、走査型医療用プローブ10が患者の体腔内に挿入されているか否かを判定することができる。
そして、光量L1が、基準レベルLb以下であると判断された場合(S104:No)、走査型医療用プローブ10は、患者の体腔内に挿入されていると判定され、レーザー光の光量制限が解除される。これにより、光量制御回路280によって、各レーザー光源230R、230Gおよび230BからレベルAの光量のレーザー光が射出されるように、ドライバ232R、232Gおよび232Bが制御される(S105)。そして、モニタ30に、レーザー光の光量制限は行なわれていない旨を通知するための表示が行なわれる(S106)。このように、モニタ30に光量制限に関する通知を行なうことで、術者が、走査型医療用プローブ10から射出されているレーザー光のレベルを容易に把握することができる。
一方、光量L1が、基準レベルLbより大きい場合(S104:Yes)、走査型医療用プローブ10は、患者の体腔内に挿入されていないと判定され、レーザー光の光量が制限される。詳しくは、光量制御回路280によって、各レーザー光源230R、230Gおよび230Bから、レベルBまたはレベルCの光量のレーザー光が射出されるように、ドライバ232R、232Gおよび232Bが制御される(S107)。そして、モニタ30に、現在レーザー光の光量が制限されている旨を通知するための表示が行なわれる(S108)。その後、プロセッサ20の電源がOFFされるまで(S109)、S101〜S108の処理が繰り返される。これにより、観察中に走査型医療用プローブ10が患者の体腔内に挿入されたり、体腔内から引き抜かれたりした場合も、随時レーザー光の光量を制限することができる。
このように、本実施形態においては、走査型医療用プローブ10がブレーキング期間に受光する光の光量に基づいて、走査型医療用プローブ10が患者の体腔内に挿入されているか否かを判定する構成となっている。そして、走査型医療用プローブ10が患者の体腔内に挿入されていないと判定される場合には、レーザー光の光量を安全な光量に低減することで、走査型医療用プローブ10から射出されるレーザ光が、術者等の眼に入る場合であっても、安全性を確保して体腔内観察を行なうことが可能となる。
続いて、本発明の第2の実施形態について説明する。本実施形態の医療用観察システムにおける各部の構成や、体腔内観察の流れについては、第1の実施形態と略同様であるため、詳細な説明を省略し、第1の実施形態との相違点についてのみ説明する。本実施形態では、光量制御回路280によって行なわれる光量制御処理が、第1の実施形態と相違する。
図7は、本実施形態における光量制御処理を示すフローチャートである。本実施形態の光量制御処理におけるS201〜S206の処理は、第1の実施形態におけるS101〜S106の処理と同様である。すなわち、本実施形態においても、第1の実施形態と同様に、走査型医療用プローブ10がブレーキング期間に受光した光の光量L1と基準レベルLbとの比較が行なわれ(S201〜S204)、光量L1が基準レベルLb以下である場合には(S204:No)、レーザー光の光量制限が解除され(S205)、モニタ30にその旨を通知するための表示が行なわれる(S206)。
一方、光量L1が、基準レベルLbより大きい場合(S204:Yes)、続く1フレーム分の走査パターン期間中、各レーザー光源230R、230Gおよび230Bの駆動を停止するようにドライバ232R、232G、232Bが制御される。そして、その1フレーム分の走査パターン期間中に、受光ファイバ120にて受光した光が、各検出器250R、250Gおよび250Bにて外光信号として検出される(S208)。続いて、検出された外光信号に対して周波数解析が行なわれ、外光信号の周波数feが求められる(S209)。
図8は、外光信号の例を示す図である。ここで、図8(a)は、白熱灯の光を受光した場合の外光信号を示し、図8(b)は、蛍光灯の光を受光した場合の外光信号を示し、図8(c)は、インバータ方式の蛍光灯の光を受光した場合の外光信号を示す。図8(a)〜図8(c)に示されるように、走査型医療用プローブ10の受光ファイバ120にて、白熱灯や蛍光灯などの外光を受光した場合は、所定の周波数で点滅する光が検出される。例えば、白熱灯の光を受光した場合の外光信号の周波数feは約50Hz〜60Hz、蛍光灯の光を受光した場合の外光信号の周波数feは約100Hz〜120Hz、インバータ方式の蛍光灯の光を受光した場合の外光信号の周波数feは約10kHz〜20kHzとなる。
続いて、S209によって求められた周波数feが、予め定められた上限周波数fmaxおよび下限周波数fminの範囲内であるか否かが判定される(S210)。この上限周波数fmaxおよび下限周波数fminは、想定される外光の周波数の上限値と下限値である。ここで、上限周波数fmaxは、例えばインバータ方式の蛍光灯の光を受光した場合における20kHzに設定され、下限周波数fminは、例えば白熱灯の光を受光した場合における50Hzに設定される。
そして、周波数feが、上限周波数fmaxおよび下限周波数fminの範囲内であるときは(S210:Yes)、受光ファイバ120によっていずれかの外光が受光されていることになる。そのため、この場合は、走査型医療用プローブ10は体外にあると判定され、レーザー光の光量が制限される。詳しくは、光量制御回路280によって、各レーザー光源230R、230Gおよび230Bから、レベルCの光量のレーザー光が射出されるように、ドライバ232R、232Gおよび232Bが制御される(S211)。そして、モニタ30に、現在、レベルCの光量でレーザー光が制限されている旨を通知するための表示が行なわれる(S212)。
一方、周波数feが、上限周波数fmaxおよび下限周波数fminの範囲内でない場合は(S210:No)、受光ファイバ120によって受光された光の光量L1は、基準レベルよりも大きいものの、所定の周波数の外光は受光されていないことになる。このような場合の例としては、走査型医療用プローブ10がCCDなどの撮像素子を備えた電子スコープとともに用いられる場合において、電子スコープから射出されるキセノンランプ等の連続光を走査型医療用プローブ10の受光ファイバ120にて受光する場合や、LEDライトや太陽光などの連続光の外光を受光ファイバ120にて受光する場合が考えられる。そして、前者の場合は、走査型医療用プローブ10が体腔内に挿入されている場合であり、後者の場合は、走査型医療用プローブ10が体外にある場合である。そのため、このような場合には、光量制御回路280によって、各レーザー光源から、レベルBの光量のレーザー光が射出されるように、ドライバ232R、232G、232Bが制御される(S213)。そして、モニタ30に、現在レーザー光の光量がレベルBに制限されている旨を通知するための表示が行なわれ(S214)、その後、プロセッサ20の電源がOFFされるまで(S215)、S201〜S214の処理が繰り返される。
このように、本実施形態では、走査型医療用プローブ10が体腔内に挿入されている場合と体外にある場合の両方が想定され得る状況においては、レーザー光をある程度の体腔内観察が行えて、かつ安全なレベルであるレベルBの光量に制限する構成とした。このように構成することにより、本実施形態においては、第1の実施形態における効果に加え、走査型医療用プローブ10が体腔内にあるにもかかわらず、レーザー光の光量が制限され、画像が取得できなくなってしまうことを防ぐことができる。
続いて、本発明の第3の実施形態について説明する。本実施形態の医療用観察システムにおける各部の構成や、体腔内観察の流れについても、第1の実施形態と同様であるため、詳細な説明を省略し、第1の実施形態との相違点についてのみ説明する。本実施形態においても、光量制御回路280によって行なわれる光量制御処理が、第1の実施形態と相違する。
図9は、本実施形態における光量制限処理の流れを示すフローチャートである。本処理では、まず、各検出器250R、250Gおよび250Bにて検出されたアナログ信号に基づいて、1フレーム分の画像における平均輝度値が算出される(S301)。そして、算出された平均輝度値が、1つ前のフレームにおける平均輝度値に対して、変化したか否かが判断される(S302)。
通常、走査型医療用プローブ10が患者の体腔内に挿入され体腔内観察が行なわれている状態では、術者により走査型医療用プローブ10の先端が動かされ、観察対象が変化することにより、フレームごとの輝度値が変化する。そのため、平均輝度値が変化したと判断される場合は(S302:Yes)、走査型医療用プローブ10は、患者の体腔内に挿入されていると判定され、レーザー光の光量制限が解除される。これにより、光量制御回路280によって、各レーザー光源230R、230Gおよび230Bから、レベルAの光量のレーザー光が射出されるように、ドライバ232R、232Gおよび232Bが制御される(S303)。そして、モニタ30に、現在レーザー光の光量制限は行なわれていない旨を通知するための表示が行なわれる(S304)。
これに対し、走査型医療用プローブ10が、体外にある場合、すなわち検査室等に置かれている場合には、走査型医療用プローブ10の先端は動かされることはなく、観察対象も一定であるため、フレームごとの輝度値にも変化は生じない。そのため、平均輝度値が変化しないと判断される場合は(S302:No)、走査型医療用プローブ10は、患者の体腔内に挿入されていないと判定され、レーザー光の光量が制限される。詳しくは、光量制御回路280によって、各レーザー光源230R、230G、および230Bから、レベルBまたはレベルCの光量のレーザー光が射出されるように、ドライバ232R、232G、232Bが制御される(S305)。そして、モニタ30に、現在レーザー光の光量が制限されている旨を通知するための表示が行なわれ(S306)、その後、プロセッサ20の電源がOFFされるまで(S307)、S301〜S306の処理が繰り返される。
このように、本実施形態においては、体腔内観察時に検出された1フレーム分の信号の平均輝度値に基づいて、走査型医療用プローブ10が患者の体腔内に挿入されているか否かを判定する構成とした。このように、通常の体腔内観察によって取得される信号に基づいて、判定を行なうことにより、第1の実施形態における効果に加え、より正確に走査型医療用プローブ10が体腔内にあるか否かを判定することが可能となる。
続いて、本発明の第4の実施形態について説明する。図10(a)は、本実施形態の走査型医療用プローブ10Aの外観図である。本実施形態では、図10(a)に示されるように、走査型医療用プローブ10の把持部10bに接触センサ150が備えられ、挿入部10aの先端に湿度センサ160が備えられる点において、第1の実施形態と相違する。その他の医療用観察システムにおける各部の構成や、体腔内観察の流れについては、第1の実施形態と同様であるため、詳細な説明を省略する。
接触センサ150は、術者等が走査型医療用プローブ10の把持部10bを把持することによる接触を検出するためのセンサである。また、湿度センサ160は、空気中の湿度を測定するものであるが、本実施形態においては、濡れた状態においては検出不可能となる湿度センサ160を用いて、検出の可否に基づいて走査型医療用プローブ10Aの先端が濡れているか否かが検出される。走査型医療用プローブ10Aに備えられた接触センサ150および湿度センサ160における検出結果は、プロセッサ20の光量制御回路280に送信される。そして、光量制御回路280では、各センサからの検出結果に基づいて、光量制御処理が行なわれる。
図11は、本実施形態における光量制限処理の流れを示すフローチャートである。本処理では、まず、接触センサ150にて接触が検出されたか否かが判断される(S401)。そして、接触が検出されていない場合は(S401:No)、走査型医療用プローブ10の把持部10bが把持されていない状態である。そのため、走査型医療用プローブ10Aは、患者の体腔内に挿入されていないと判定され、レーザー光の光量が制限される。詳しくは、光量制御回路280によって、各レーザー光源230R、230G、および230Bから、レベルCの光量のレーザー光が射出されるように、ドライバ232R、232Gおよび232Bが制御される(S402)。そして、モニタ30に、現在レーザー光の光量がレベルCに制限されている旨を通知するための表示が行なわれる(S403)。
一方、接触センサ150にて、接触が検出された場合には(S401:Yes)、走査型医療用プローブ10Aが現在術者によって把持されていると判断される。この場合は、走査型医療用プローブ10Aが患者の体腔内に挿入されているか否かを問わず、走査型医療用プローブ10Aが術者によって管理されていることになる。続いて、湿度センサ160によって湿度が検出されているか否かが判断される(S404)。ここでは、上述のように湿度センサ160が正常に湿度を検出しているか否かに基づいて、走査型医療用プローブ10Aの先端が濡れているか否かが判断される。また、別の実施形態においては、湿度センサによって検出される湿度に基づいて走査型医療用プローブ10Aの先端が濡れているか否かを検出する構成とすることも可能である。この場合、例えば湿度センサにて湿度100%が検出された場合や、所定の閾値以上である場合に走査型医療用プローブ10Aの先端が濡れていると判断する。
ここで、湿度センサ160によって、湿度が検出されている場合には(S404:Yes)、走査型医療用プローブ10Aの先端は濡れていないと判断される。そして、これにより、走査型医療用プローブ10Aは、患者の体腔内に挿入されていない可能性が高いと判定され、レーザー光の光量が制限される。詳しくは、光量制御回路280によって、各レーザー光源230R、230G、および230Bから、レベルBの光量のレーザー光が射出されるように、ドライバ232R、232G、および232Bが制御される(S405)。そして、モニタ30に、現在レーザー光の光量がレベルBに制限されている旨を通知するための表示が行なわれる(S406)。
一方、湿度センサ160によって、湿度が検出不可能な状態である場合には(S404:No)、走査型医療用プローブ10Aの先端が濡れていると判断される。そして、これにより、走走査型医療用プローブ10は、患者の体腔内に挿入されていると判定され、レーザー光の光量制限が解除される。これにより、光量制御回路280によって、各レーザー光源230R、230G、および230Bから、レベルAの光量のレーザー光が射出されるように、ドライバ232R、232G、および232Bが制御される(S407)。そして、モニタ30に、現在レーザー光の光量制限は行なわれていない旨を通知するための表示が行なわれ(S408)、その後、プロセッサ20の電源がOFFされるまで(S409)、S401〜S408の処理が繰り返される。
このように、本実施形態においては、走査型医療用プローブ10Aに備えられたセンサの検出結果に応じて走査型医療用プローブ10Aが患者の体腔内に挿入されているか否かを判定し、走査型医療用プローブ10Aが患者の体腔内に挿入されていないと判定された場合には、レーザー光の光量を安全レベルまで下げることで、走査型医療用プローブ10Aから射出されるレーザ光が、術者等の眼に入る状態においても、安全性を確保することが可能となる。また、各センサの出力結果に基づいて光量制御を行なうことにより、プロセッサ20における信号処理等の負荷を軽減できるとともに、より迅速に光量制御を行なうことが可能となる。
続いて、本発明の第5の実施形態について説明する。図10(b)は、本実施形態の走査型医療用プローブ10Bの外観図である。本実施形態では、図10(b)に示されるように、走査型医療用プローブ10Bの接続部10c、把持部10b、および挿入部10aの各部に、温度センサA〜Dがそれぞれ備えられる点において、上記第1の実施形態と相違する。走査型医療用プローブ10Bに備えられた各温度センサA〜Dにおける検出結果は、プロセッサ20の光量制御回路280に送信される。そして、光量制御回路280では、各温度センサにおける検出結果に基づいて、光量制御処理が行なわれる。その他の医療用観察システムにおける各部の構成や、体腔内観察の流れについては、第1の実施形態と同様であるため、詳細な説明を省略する。
図12は、本実施形態における光量制限処理の流れを示すフローチャートである。本処理では、まず、初期設定として、走査型医療用プローブ10Bが体腔内に挿入されているか否かを示すパラメータFinが「0」に設定される。ここで、パラメータFinが「0」の場合は、走査型医療用プローブ10Bが体腔内に挿入されていないことを示し、Finが「1」の場合は、走査型医療用プローブ10Bが体腔内に挿入されていることを示す。
続いて、温度センサBおよび温度センサAの検出結果に基づいて、温度差ΔBAが算出される(S502)。詳しくは、走査型医療用プローブ10Bの把持部10bに備えられた温度センサBによって検出された温度から、接続部10cに備えられた温度センサAによって検出された温度を減じた値が温度差ΔBAとされる。そして、算出された温度差ΔBAが、5℃よりも大きいか否かが判断される(S503)。ここで、走査型医療用プローブ10Bの把持部10bが、術者によって把持されている場合、温度センサBによって検出される把持部10bの温度は、温度センサAによって検出される接続部10cの温度よりも高くなる。そのため、ここでは、走査型医療用プローブ10Bの把持部10bと接続部10cとの温度差が所定の温度以上であるか否かに基づいて、走査型医療用プローブ10Bが術者によって把持されているかが判断される。
そして、温度差ΔBAが5℃以下である場合には(S503:No)、走査型医療用プローブ10Bの把持部10bが術者等に把持されていない状態であるため、走査型医療用プローブ10Aは、患者の体腔内に挿入されていないと判定され、レーザー光の光量が制限される。詳しくは、光量制御回路280によって、各レーザー光源230R、230G、および230Bから、レベルCの光量のレーザー光が射出されるように、ドライバ232R、232Gおよび232Bが制御される(S504)。そして、モニタ30に、現在レーザー光の光量がレベルCに制限されている旨を通知するための表示が行なわれる(S505)。続いて、走査型医療用プローブ10Bが体腔内に挿入されているか否かを示すパラメータFinが「0」に設定される(S506)。
一方、温度差ΔBAが5℃より大きい場合には(S503:Yes)、走査型医療用プローブ10Bが、現在術者によって把持されていると判断される。この場合は、走査型医療用プローブ10Bが患者の体腔内に挿入されているか否かを問わず、走査型医療用プローブ10Bが術者によって管理されていることになる。そして、温度センサDおよび温度センサCの検出結果に基づいて、温度差ΔDCが算出される(S507)。詳しくは、走査型医療用プローブ10Bの挿入部10aの先端に備えられた温度センサDによって検出された温度から、挿入部10aの先端から少し離れた場所に備えられた温度センサCによって検出された温度を減じた値が、温度差ΔDCとされる。
続いて、走査型医療用プローブ10Bが体腔内にあるか否かを示すパラメータFinが「0」であるか否かが判断される(S508)。ここで、Finが「0」である場合、すなわち走査型医療用プローブ10Bが体腔内に挿入されていない場合は(S508:Yes)、算出された温度差ΔDCが、5℃より大きいか否かが判断される(S509)。ここで、走査型医療用プローブ10Bが、検査室に置かれた状態から患者の体腔内に挿入されると、まず挿入部10aの先端の温度が上昇する。そのため、温度差ΔDCが、5℃以下である場合には(S509:No)、走査型医療用プローブ10は、患者の体腔内に挿入されていない可能性が高いと判定され、レーザー光の光量が制限される。この場合は、光量制御回路280によって、各レーザー光源230R、230G、および230Bから、レベルBの光量のレーザー光が射出されるように、ドライバ232R、232Gおよび232Bが制御される(S510)。そして、モニタ30に、現在レーザー光の光量がレベルBに制限されている旨を通知するための表示が行なわれる(S511)。
一方、温度差ΔDCが、5℃より大きい場合には(S509:Yes)、走査型医療用プローブ10は、患者の体腔内に挿入されていると判定され、レーザー光の光量制限が解除される。これにより、光量制御回路280によって、各レーザー光源230R、230G、および230Bから、レベルAの光量のレーザー光が射出されるように、ドライバ232R、232Gおよび232Bが制御される(S512)。そして、モニタ30に、現在レーザー光の光量制限は行なわれていない旨を通知するための表示が行なわれる(S513)。続いて、査型医療用プローブ10Bが体腔内にあるか否かを示すパラメータFinが「1」とされる(S514)。
これに対し、S508においてFinが「0」でない場合、すなわち走査型医療用プローブ10Bが体腔内に挿入されている場合は(S508:No)、温度差ΔDCが、0であるか否かが判断される(S515)。そして、温度差ΔDCが0である場合は(S515:Yes)、挿入部10aにおける温度に差がないことから、走査型医療用プローブ10Bが体腔内に挿入され、通常観察が行なわれている状態であると判定される。そして、現在の状態(すなわちレベルAの光量による通常の体腔内観察)が維持される(S516)。
一方、体腔内に挿入されている走査型医療用プローブ10Bが体腔内から引き抜かれる場合には、まず挿入部10aの先端から離れた位置の温度が下がる。そのため、温度差ΔDCが0でない場合は(S515:No)、走査型医療用プローブ10Bが患者の体から引き抜かれる可能性が高いと判定され、レーザー光の光量が制限される。詳しくは、光量制御回路280によって、各レーザー光源230R、230G、および230Bから、レベルBの光量のレーザー光が射出されるように、ドライバ232R、232G、および232Bが制御される(S517)。そして、モニタ30に、現在レーザー光の光量がレベルBで制限されている旨を通知するための表示が行なわれ(S518)、その後、走査型医療用プローブ10Bが体腔内にあるか否かを示すパラメータFinが「0」とされる(S519)。そして、プロセッサ20の電源がOFFされるまで(S520)、S501〜S519の処理が繰り返される。
このように、本実施形態においては、走査型医療用プローブ10Bに備えられた温度センサの検出結果に応じて走査型医療用プローブ10Bが患者の体腔内に挿入されているか否かを判定し、走査型医療用プローブ10Bが患者の体腔内に挿入されていないと判定された場合には、レーザー光の光量を安全レベルまで下げることで、走査型医療用プローブ10Bから射出されるレーザ光が、術者等の眼に入る状態においても、安全性を確保することが可能となる。また、第4の実施形態と同様に、各センサの出力結果に基づいて光量制御を行なうことにより、プロセッサ20における信号処理等の負荷を軽減できるとともに、より迅速に光量制御を行なうことが可能となる。さらに、各センサによって検出された温度差に基づいて、走査型医療用プローブ10Bが体腔内から引き抜かれる直前の状態を検出して、光量を制限することにより、引き抜かれた直後に走査型医療用プローブ10Bの先端から射出されるレーザー光が術者等に直視された場合でも、安全性を確保すること可能となる。
以上が本発明の実施形態であるが、本発明はこの実施形態に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。例えば上記実施形態においては、単一の光ファイバを共振させてレーザー光を走査させる医療用プローブについて説明したが、本発明はこれに限定されるものではなく、その他の方法でレーザー光を射出する医療用プローブに対しても適用可能である。
また、上記第1および第2の実施形態では、レーザー停止期間中に検出される光の光量および周波数に基づいて、走査型医療用プローブ10が体腔内にあるか否かが判定される構成としたが、本発明はこれらの実施形態に限定されるものではない。例えば、レーザー停止期間中に検出される光の色分布に基づいて、走査型医療用プローブ10が体腔内にあるか否かを判定する構成としても良い。この場合は、例えば通常の体腔内観察においては考えられない特定の色分布の光が検出された場合、走査型医療用プローブ10が体外にあると判定される。詳しくは、通常の体腔内観察においては、赤色成分が多い光が検出される。これに対し、LEDを用いた蛍光灯などによっては、青色と黄色との混色によって高輝度の白色を作っている。そのため、レーザー停止期間中に検出される光が、青色成分を含む場合等においては、走査型医療用プローブ10が体外にあると判定するような構成としても良い。
さらに、上記実施形態では、走査型医療用プローブが、螺旋状の走査パターンを描きながら、走査パターン期間およびブレーキング期間を交互に繰り返すよう駆動される構成としたが、走査型医療用プローブが、リサージュ走査を行なうよう連続的に駆動される場合においても、本発明を適用することが可能である。このような場合は、例えば、走査光の軌跡の重なりが多くなる範囲や、30フレームに1フレームなど、所定のタイミングでレーサー光源の駆動を停止し、外光を検出する構成とすれば良い。
1 医療用観察システム
10 走査型医療用プローブ
20 プロセッサ
30 モニタ
110 SMF
112 アクチュエータ
120 受光ファイバ
230R、230G、230B レーザー光源
232R、232G、232B ドライバ
240 タイミングコントローラ
260 信号処理回路
280 光量制御回路

Claims (14)

  1. レーザー光を走査させて対象物を観察する医療用プローブと、
    前記医療用プローブに前記レーザー光を供給するレーザー光源と、
    前記医療用プローブが所定の状態であるか否かを判定する判定手段と、
    前記判定手段による判定結果に基づいて、前記レーザー光源から射出されるレーザー光の光量を制御する制御手段と、
    を備える医療用観察システム。
  2. 前記所定の状態は、前記医療用プローブが体内に挿入されていない状態であることを特徴とする、請求項1に記載の医療用観察システム。
  3. 前記制御手段は、前記判定手段によって、前記医療用プローブが前記所定の状態であると判定された場合に、前記レーザー光源から射出されるレーザー光の光量を低減することを特徴とする、請求項1または請求項2に記載の医療用観察システム。
  4. 前記制御手段は、前記判定手段による判定結果に基づいて、前記レーザー光源から射出されるレーザー光の光量を段階的に低減させることを特徴とする、請求項1から請求項3のいずれか一項に記載の医療用観察システム。
  5. 前記医療用プローブは、
    前記レーザー光を導光して対象物に射出するための導光手段と、
    前記レーザー光を対象物上で走査させるために前記導光手段の射出端近傍を振動させる振動手段と、
    前記対象物の反射光を受光する受光手段と、を備えることを特徴とする請求項1から請求項4のいずれか一項に記載の医療用観察システム。
  6. 前記判定手段は、前記受光手段によって受光された反射光に基づいて、前記医療用プローブが前記所定の状態であるか否かを判定することを特徴とする、請求項5に記載の医療用観察システム。
  7. 前記判定手段は、前記受光手段によって受光された反射光の光量が、所定の光量より大きい場合に、前記医療用プローブが前記所定の状態であると判定することを特徴とする、請求項6に記載の医療用観察システム。
  8. 前記判定手段は、前記受光手段によって受光された反射光が、所定の範囲の周波数で点滅するものである場合に、前記医療用プローブが前記所定の状態であると判定することを特徴とする、請求項6に記載の医療用観察システム。
  9. 前記判定手段は、前記レーザー光が対象物に射出されていない期間に前記受光手段によって受光された反射光に基づいて、前記医療用プローブが前記所定の状態であるか否かを判定することを特徴とする、請求項6から請求項8のいずれか一項に記載の医療用観察システム。
  10. 前記判定手段は、前記受光手段によって受光した反射光に基づく信号の輝度値が変化しない場合に、前記医療用プローブが前記所定の状態であると判定することを特徴とする、請求項6に記載の医療用観察システム。
  11. 前記医療用プローブは、
    前記医療用プローブの使用環境を検出するためのセンサを備え、
    前記前記判定手段は、前記センサの検出結果に基づいて、前記医療用プローブが前記所定の状態であるか否かを判定することを特徴とする、請求項1から請求項5のいずれか一項に記載の医療用観察システム。
  12. 前記センサは、
    前記導光手段の先端に備えられた湿度センサと、
    前記医療用プローブの把持部に備えられた接触センサと、からなり、
    前記判定手段は、前記湿度センサおよび前記接触センサの検出結果に基づいて、前記医療用プローブが前記所定の状態であるか否かを判定することを特徴とする、請求項5を引用する請求項11に記載の医療用観察システム。
  13. 前記センサは、複数の温度センサからなり、
    前記判定手段は、前記複数の温度センサにおける温度差に基づいて、前記医療用プローブが前記所定の状態であるか否かを判定することを特徴とする、請求項11に記載の医療用観察システム。
  14. レーザー光を走査させて対象物を観察する医療用プローブにレーザー光を供給するためのプロセッサであって、
    前記レーザー光を射出するレーザー光源と、
    前記医療用プローブが所定の状態であるか否かを判定する判定手段と、
    前記判定手段による判定結果に基づいて、前記レーザー光源から射出されるレーザー光の光量を制御する制御手段と、
    を備える医療用プローブ用プロセッサ。
JP2009166880A 2009-07-15 2009-07-15 医療用観察システムおよびプロセッサ Active JP5388732B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009166880A JP5388732B2 (ja) 2009-07-15 2009-07-15 医療用観察システムおよびプロセッサ
US12/834,169 US8831710B2 (en) 2009-07-15 2010-07-12 Medical observation system and processor
DE102010036427A DE102010036427A1 (de) 2009-07-15 2010-07-15 Medizinisches Betrachtungssystem und Prozessor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166880A JP5388732B2 (ja) 2009-07-15 2009-07-15 医療用観察システムおよびプロセッサ

Publications (2)

Publication Number Publication Date
JP2011019706A true JP2011019706A (ja) 2011-02-03
JP5388732B2 JP5388732B2 (ja) 2014-01-15

Family

ID=43382974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166880A Active JP5388732B2 (ja) 2009-07-15 2009-07-15 医療用観察システムおよびプロセッサ

Country Status (3)

Country Link
US (1) US8831710B2 (ja)
JP (1) JP5388732B2 (ja)
DE (1) DE102010036427A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217627A (ja) * 2011-04-08 2012-11-12 Olympus Corp 外光を利用した挿入部先端位置検出が可能な観察装置
WO2013089053A1 (ja) * 2011-12-12 2013-06-20 Hoya株式会社 走査型内視鏡システム
WO2014024530A1 (ja) 2012-08-07 2014-02-13 オリンパスメディカルシステムズ株式会社 走査型内視鏡装置、画像処理装置、画像処理方法
JP2014033731A (ja) * 2012-08-07 2014-02-24 Olympus Corp 内視鏡システム
WO2014041847A1 (ja) 2012-09-13 2014-03-20 オリンパスメディカルシステムズ株式会社 内視鏡システム
WO2014057773A1 (ja) 2012-10-11 2014-04-17 オリンパスメディカルシステムズ株式会社 内視鏡装置及び治療装置
WO2014057774A1 (ja) 2012-10-11 2014-04-17 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP2014069020A (ja) * 2012-10-02 2014-04-21 Hoya Corp 内視鏡システムおよび内視鏡用プロセッサ
WO2014065077A1 (ja) * 2012-10-22 2014-05-01 オリンパスメディカルシステムズ株式会社 走査型内視鏡システム及び走査型内視鏡システムの作動方法
JP2015136573A (ja) * 2014-01-24 2015-07-30 オリンパス株式会社 光走査型観察装置
JP2015159949A (ja) * 2014-02-27 2015-09-07 オリンパス株式会社 内視鏡システム及び内視鏡システムの制御方法
WO2016027484A1 (ja) * 2014-08-19 2016-02-25 オリンパス株式会社 光源装置
WO2016067316A1 (ja) * 2014-10-28 2016-05-06 オリンパス株式会社 光走査型内視鏡装置
WO2017010486A1 (ja) * 2015-07-14 2017-01-19 オリンパス株式会社 血管認識システム
JP2017018421A (ja) * 2015-07-13 2017-01-26 オリンパス株式会社 内視鏡システム
JP2017086549A (ja) * 2015-11-11 2017-05-25 オリンパス株式会社 走査型内視鏡装置
WO2017154333A1 (ja) * 2016-03-07 2017-09-14 オリンパス株式会社 内視鏡用光源装置
WO2021010801A1 (ko) * 2019-07-18 2021-01-21 엘지전자 주식회사 두피 케어용 광 출력 기기 및 그의 제어 방법
JPWO2020012545A1 (ja) * 2018-07-10 2021-05-13 オリンパス株式会社 光治療支援装置、光治療システムおよび光治療支援方法
WO2022085439A1 (ja) * 2020-10-20 2022-04-28 パナソニックIpマネジメント株式会社 内視鏡システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504446B2 (en) * 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
JP2014505545A (ja) * 2011-01-14 2014-03-06 タニス,ケヴィン ジェイ. 温度センサを備えた医療機器
US8878920B2 (en) * 2011-07-12 2014-11-04 Karl Storz Imaging, Inc. Method and apparatus for protection from high intensity light
JP6114272B2 (ja) * 2011-08-09 2017-04-12 アルコン リサーチ, リミテッド 偏心したファイバ発射を使用する内部照明
WO2013030749A2 (en) * 2011-09-02 2013-03-07 Koninklijke Philips Electronics N.V. Medical device insertion and exit information using distributed fiber optic temperature sensing
JPWO2014087798A1 (ja) * 2012-12-04 2017-01-05 オリンパスメディカルシステムズ株式会社 走査型内視鏡システム
EP3603561B1 (en) * 2017-03-28 2022-09-07 Sony Olympus Medical Solutions Inc. Medical observation system, control method, and program
DE102017213355B3 (de) 2017-08-02 2019-02-07 Robert Bosch Gmbh Mobile Vorrichtung und Abfrageverfahren bezüglich eines Vorliegens einer mobilen Vorrichtung in ihrer Anwendungsstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162438A (ja) * 1984-09-03 1986-03-31 オリンパス光学工業株式会社 内視鏡装置
JPH10243385A (ja) * 1997-02-24 1998-09-11 Olympus Optical Co Ltd ビデオマイクロスコープ
JP2003144385A (ja) * 2001-11-13 2003-05-20 Pentax Corp 電子内視鏡
JP2005501279A (ja) * 2001-08-23 2005-01-13 ユニバーシティ・オブ・ワシントン 奥行きを強調した画像の収集
JP2007209449A (ja) * 2006-02-08 2007-08-23 Pentax Corp 共焦点内視鏡装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154707A (en) * 1987-02-27 1992-10-13 Rink Dan L Method and apparatus for external control of surgical lasers
EP0920275B1 (de) * 1996-07-29 2002-10-09 Karl Storz GmbH & Co. KG Endoskop mit wenigstens einer erfassungs- und registriereinrichtung
JPH10192232A (ja) * 1997-01-14 1998-07-28 Olympus Optical Co Ltd 内視鏡装置
WO1999047041A1 (en) * 1998-03-19 1999-09-23 Board Of Regents, The University Of Texas System Fiber-optic confocal imaging apparatus and methods of use
US6294775B1 (en) * 1999-06-08 2001-09-25 University Of Washington Miniature image acquistion system using a scanning resonant waveguide
US6468204B2 (en) * 2000-05-25 2002-10-22 Fuji Photo Film Co., Ltd. Fluorescent endoscope apparatus
US6511422B1 (en) * 2002-04-30 2003-01-28 Karl Storz Imaging, Inc. Method and apparatus for protection from high intensity light
US6767320B2 (en) * 2002-08-13 2004-07-27 Inner Vision Imaging, L.L.C. Laser endoscope with safety device
US20080132886A1 (en) * 2004-04-09 2008-06-05 Palomar Medical Technologies, Inc. Use of fractional emr technology on incisions and internal tissues
US20050279354A1 (en) * 2004-06-21 2005-12-22 Harvey Deutsch Structures and Methods for the Joint Delivery of Fluids and Light
US20060009679A1 (en) * 2004-07-08 2006-01-12 Pentax Corporation Electronic endoscope system capable of detecting inserted length
JP4575720B2 (ja) * 2004-07-23 2010-11-04 Hoya株式会社 電子内視鏡システム
WO2006112227A1 (ja) * 2005-04-13 2006-10-26 Olympus Medical Systems Corp. 画像処理装置及び画像処理方法
JP5619351B2 (ja) * 2005-05-31 2014-11-05 ダブリュ・オー・エム・ワールド・オブ・メディスン・アー・ゲーW.O.M. World Ofmedicine Ag 組織を視覚的に特徴づけるための方法および装置
AU2006292526A1 (en) * 2005-09-15 2007-03-29 Palomar Medical Technologies, Inc. Skin optical characterization device
US7556414B2 (en) * 2005-10-07 2009-07-07 Karl Storz Endovision, Inc. Endoscopic light source safety and control system with optical sensor
JP4714570B2 (ja) * 2005-11-24 2011-06-29 Hoya株式会社 内視鏡形状検出プローブ
JP5038919B2 (ja) 2008-01-17 2012-10-03 株式会社東芝 前処理装置
JP2009201940A (ja) * 2008-02-29 2009-09-10 Hoya Corp 内視鏡光源システム、内視鏡光源装置、内視鏡プロセッサ、および内視鏡ユニット
US20090316144A1 (en) * 2008-06-20 2009-12-24 Hoya Corporation Device for detecting the condition of an optical filter and illumination device
JP2010162090A (ja) * 2009-01-13 2010-07-29 Hoya Corp 光走査型内視鏡
JP5210894B2 (ja) * 2009-01-13 2013-06-12 Hoya株式会社 光走査型内視鏡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162438A (ja) * 1984-09-03 1986-03-31 オリンパス光学工業株式会社 内視鏡装置
JPH10243385A (ja) * 1997-02-24 1998-09-11 Olympus Optical Co Ltd ビデオマイクロスコープ
JP2005501279A (ja) * 2001-08-23 2005-01-13 ユニバーシティ・オブ・ワシントン 奥行きを強調した画像の収集
JP2003144385A (ja) * 2001-11-13 2003-05-20 Pentax Corp 電子内視鏡
JP2007209449A (ja) * 2006-02-08 2007-08-23 Pentax Corp 共焦点内視鏡装置

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217627A (ja) * 2011-04-08 2012-11-12 Olympus Corp 外光を利用した挿入部先端位置検出が可能な観察装置
US9182337B2 (en) 2011-04-08 2015-11-10 Olympus Corporation Observation apparatus capable of detecting distal end position of insertion module using external light
JPWO2013089053A1 (ja) * 2011-12-12 2015-04-27 Hoya株式会社 走査型内視鏡システム
WO2013089053A1 (ja) * 2011-12-12 2013-06-20 Hoya株式会社 走査型内視鏡システム
WO2014024530A1 (ja) 2012-08-07 2014-02-13 オリンパスメディカルシステムズ株式会社 走査型内視鏡装置、画像処理装置、画像処理方法
JP2014033731A (ja) * 2012-08-07 2014-02-24 Olympus Corp 内視鏡システム
US9138136B2 (en) 2012-08-07 2015-09-22 Olympus Corporation Scanning endoscope apparatus, image processing apparatus and operation method of image processing apparatus
JP5639289B2 (ja) * 2012-08-07 2014-12-10 オリンパスメディカルシステムズ株式会社 走査型内視鏡装置
WO2014041847A1 (ja) 2012-09-13 2014-03-20 オリンパスメディカルシステムズ株式会社 内視鏡システム
JP5490340B1 (ja) * 2012-09-13 2014-05-14 オリンパスメディカルシステムズ株式会社 内視鏡システム
US9113775B2 (en) 2012-09-13 2015-08-25 Olympus Corporation Endoscope system
JP2014069020A (ja) * 2012-10-02 2014-04-21 Hoya Corp 内視鏡システムおよび内視鏡用プロセッサ
US9179830B2 (en) 2012-10-11 2015-11-10 Olympus Corporation Scanning endoscope apparatus
WO2014057774A1 (ja) 2012-10-11 2014-04-17 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5551844B1 (ja) * 2012-10-11 2014-07-16 オリンパスメディカルシステムズ株式会社 内視鏡装置及び治療装置
WO2014057773A1 (ja) 2012-10-11 2014-04-17 オリンパスメディカルシステムズ株式会社 内視鏡装置及び治療装置
US9215969B2 (en) 2012-10-22 2015-12-22 Olympus Corporation Scanning endoscope system and method of operation of scanning endoscope system
WO2014065077A1 (ja) * 2012-10-22 2014-05-01 オリンパスメディカルシステムズ株式会社 走査型内視鏡システム及び走査型内視鏡システムの作動方法
JP2015136573A (ja) * 2014-01-24 2015-07-30 オリンパス株式会社 光走査型観察装置
US10151916B2 (en) 2014-01-24 2018-12-11 Olympus Corporation Optical scanning observation apparatus
JP2015159949A (ja) * 2014-02-27 2015-09-07 オリンパス株式会社 内視鏡システム及び内視鏡システムの制御方法
WO2016027484A1 (ja) * 2014-08-19 2016-02-25 オリンパス株式会社 光源装置
JP5974206B2 (ja) * 2014-08-19 2016-08-23 オリンパス株式会社 光源装置
WO2016067316A1 (ja) * 2014-10-28 2016-05-06 オリンパス株式会社 光走査型内視鏡装置
JPWO2016067316A1 (ja) * 2014-10-28 2017-09-07 オリンパス株式会社 光走査型内視鏡装置
JP2017018421A (ja) * 2015-07-13 2017-01-26 オリンパス株式会社 内視鏡システム
JPWO2017010486A1 (ja) * 2015-07-14 2018-04-26 オリンパス株式会社 血管認識システム
WO2017010486A1 (ja) * 2015-07-14 2017-01-19 オリンパス株式会社 血管認識システム
JP2017086549A (ja) * 2015-11-11 2017-05-25 オリンパス株式会社 走査型内視鏡装置
WO2017154333A1 (ja) * 2016-03-07 2017-09-14 オリンパス株式会社 内視鏡用光源装置
US10973399B2 (en) 2016-03-07 2021-04-13 Olympus Corporation Light source device for endoscope
JPWO2020012545A1 (ja) * 2018-07-10 2021-05-13 オリンパス株式会社 光治療支援装置、光治療システムおよび光治療支援方法
JP7066850B2 (ja) 2018-07-10 2022-05-13 オリンパス株式会社 光治療支援装置、光治療システムおよび光治療支援方法
US11839774B2 (en) 2018-07-10 2023-12-12 Olympus Corporation Phototherapy assistance device, phototherapy system, and phototherapy assistance method
WO2021010801A1 (ko) * 2019-07-18 2021-01-21 엘지전자 주식회사 두피 케어용 광 출력 기기 및 그의 제어 방법
KR20210009988A (ko) * 2019-07-18 2021-01-27 엘지전자 주식회사 두피 케어용 광 출력 기기 및 그의 제어 방법
KR102226320B1 (ko) 2019-07-18 2021-03-11 엘지전자 주식회사 두피 케어용 광 출력 기기 및 그의 제어 방법
WO2022085439A1 (ja) * 2020-10-20 2022-04-28 パナソニックIpマネジメント株式会社 内視鏡システム

Also Published As

Publication number Publication date
US20110015528A1 (en) 2011-01-20
JP5388732B2 (ja) 2014-01-15
US8831710B2 (en) 2014-09-09
DE102010036427A1 (de) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5388732B2 (ja) 医療用観察システムおよびプロセッサ
US8926500B2 (en) Light irradiating device, scanning endoscopic device, manufacturing method of light irradiating device, and manufacturing method of scanning endoscopic device
EP2946717A1 (en) Scanning endoscope
JP2011036462A (ja) 医療用観察システム
JP5490340B1 (ja) 内視鏡システム
JP2010131161A (ja) 光走査型内視鏡プロセッサ、画像処理装置、および光走査型内視鏡システム
US9345396B2 (en) Scanning endoscope system
US8932209B2 (en) Scanning endoscopic device and method of decreasing directivity of beam light in scanning endoscopic device
JP2011115252A (ja) 医療用プローブ、および医療用観察システム
US20160143515A1 (en) Optical scanning device and light beam scanning method
JP2013121455A (ja) 走査型内視鏡システム
EP2789289B1 (en) Endoscope device and treatment device
JP2010284189A (ja) 医療用観察システム
JP2010268838A (ja) 医療用観察システム
JP2006288535A (ja) 内視鏡装置
JP5439032B2 (ja) 医療用観察システムおよびプロセッサ
JP2010104391A (ja) 蛍光観察用プローブ
EP2976986A1 (en) Endoscope system
JP2010042128A (ja) 医療用プローブ、および医療用観察システム
JP2011101665A (ja) 電子内視鏡システム
JP2011147595A (ja) 内視鏡用光照射装置
WO2016143160A1 (ja) 走査型内視鏡システム
JP2017086549A (ja) 走査型内視鏡装置
JP5366718B2 (ja) 走査型医療用プローブ、及び医療用観察システム
EP3974888A1 (en) Medical lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250