JP2011008852A - 光ピックアップ装置 - Google Patents
光ピックアップ装置 Download PDFInfo
- Publication number
- JP2011008852A JP2011008852A JP2009150480A JP2009150480A JP2011008852A JP 2011008852 A JP2011008852 A JP 2011008852A JP 2009150480 A JP2009150480 A JP 2009150480A JP 2009150480 A JP2009150480 A JP 2009150480A JP 2011008852 A JP2011008852 A JP 2011008852A
- Authority
- JP
- Japan
- Prior art keywords
- light
- laser
- pickup device
- photodetector
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/001—Axicons, waxicons, reflaxicons
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1359—Single prisms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1365—Separate or integrated refractive elements, e.g. wave plates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1381—Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0911—Anamorphotic systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Optical Head (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
【課題】簡素な構成にて迷光を除去することができる光ピックアップ装置を提供する。
【解決手段】ディスクによって反射されたレーザ光のうち、レーザ光軸の周りに設定された4つの光束領域A〜Dの光束に対し、それぞれ異なる非点収差作用および進行方向変更作用を付与し、光束領域A〜Dの光束を互いに離散させる。光検出器の検出面には、信号光のみが存在する信号光領域が現れ、この領域にセンサパターンを有する光検出器112が配置される。平板素子111は、反射光の光軸に対し傾けて配置されている。これにより、アナモレンズが用いられることなく非点収差の効果が生じる。よって、復路倍率を小さくすることができ、光ピックアップ装置の小型化および簡素化が実現され得る。
【選択図】図9
【解決手段】ディスクによって反射されたレーザ光のうち、レーザ光軸の周りに設定された4つの光束領域A〜Dの光束に対し、それぞれ異なる非点収差作用および進行方向変更作用を付与し、光束領域A〜Dの光束を互いに離散させる。光検出器の検出面には、信号光のみが存在する信号光領域が現れ、この領域にセンサパターンを有する光検出器112が配置される。平板素子111は、反射光の光軸に対し傾けて配置されている。これにより、アナモレンズが用いられることなく非点収差の効果が生じる。よって、復路倍率を小さくすることができ、光ピックアップ装置の小型化および簡素化が実現され得る。
【選択図】図9
Description
本発明は、光ピックアップ装置に関するものであり、特に、複数の記録層が積層された記録媒体に対してレーザ光を照射する際に用いて好適なものである。
近年、光ディスクの大容量化に伴い、記録層の多層化が進んでいる。一枚のディスク内に複数の記録層を含めることにより、ディスクのデータ容量を顕著に高めることができる。記録層を積層する場合、これまでは片面2層が一般的であったが、最近では、さらに大容量化を進めるために、片面に3層以上の記録層を配することも検討されている。ここで、記録層の積層数を増加させると、ディスクの大容量化を促進できる。しかし、その一方で、記録層間の間隔が狭くなり、層間クロストークによる信号劣化が増大する。
記録層を多層化すると、記録/再生対象とされる記録層(ターゲット記録層)からの反射光が微弱となる。このため、ターゲット記録層の上下にある記録層から、不要な反射光(迷光)が光検出器に入射すると、検出信号が劣化し、フォーカスサーボおよびトラッキングサーボに悪影響を及ぼす惧れがある。したがって、このように記録層が多数配されている場合には、適正に迷光を除去して、光検出器からの信号を安定化させる必要がある。
以下の特許文献1には、ピンホールを用いて迷光を除去する技術が、特許文献2には、1/2波長板と偏光光学素子を組み合わせることにより迷光を除去する技術が、それぞれ記載されている。
上記特許文献1の技術によれば、ターゲット記録層から反射されたレーザ光(信号光)の収束位置にピンホールを正確に位置づける必要があるため、ピンホールの位置調整作業が困難であるとの課題がある。位置調整作業を容易にするためピンホールのサイズを大きくすると、迷光がピンホールを通過する割合が増加し、迷光による信号劣化を効果的に抑制できなくなる。
また、特許文献2の技術によれば、迷光を除去するために、1/2波長板と偏光光学素子が2つずつ必要である他、さらに、2つのレンズが必要であるため、部品点数とコストが増加し、また、各部材の配置調整が煩雑であるとの課題がある。また、これらの部材を並べて配置するスペースが必要となり、光学系が大型化するとの課題もある。
本発明は、これらの課題を解消するためになされたものであり、簡素な構成にて迷光を除去することができる光ピックアップ装置を提供することを目的とする。
本発明の第1の態様に係る光ピックアップ装置は、レーザ光源と、前記レーザ光源から出射されたレーザ光を記録媒体上に収束させる対物レンズと、前記記録媒体により反射された前記レーザ光を受光する光検出器と、前記光検出器に前記レーザ光を収束光として導く光学系と、前記光学系と前記光検出器との間に前記レーザ光の光軸に対して傾くように配置され前記レーザ光に非点収差を導入する光透過板と、前記光透過板による前記レーザ光の第1の焦線方向と当該第1の焦線方向に直交する第2の焦線方向にそれぞれ平行な2つの直線で前記レーザ光を4つの光束に分割したときの各光束を互いに離散させる光学素子とを備える。
本発明の第2の態様に係る光ピックアップ装置は、レーザ光源と、前記レーザ光源から出射されたレーザ光を記録媒体上に収束させる対物レンズと、前記記録媒体により反射された前記レーザ光を受光する光検出器と、前記光検出器に前記レーザ光を収束光として導く光学系と、前記光学系と前記光検出器との間に前記レーザ光の光軸に対して傾くように配置され前記レーザ光に非点収差を導入する複数の光透過板と、前記複数の光透過板による前記レーザ光の第1の焦線方向と当該第1の焦線方向に直交する第2の焦線方向にそれぞれ平行な2つの直線で前記レーザ光を4つの光束に分割したときの各光束を互いに離散させる光束分離部とを備える。ここで、前記複数の光透過板は、前記レーザ光のコマ収差を抑制するように配置されている。
本発明によれば、簡素な構成にて迷光を除去することができる光ピックアップ装置を提供することができる。
本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下の実施の形態は、あくまでも、本発明を実施する際の一つの例示であって、本発明は、以下の実施の形態によって何ら制限されるものではない。
以下、本発明の実施の形態につき図面を参照して説明する。
<技術的原理>
まず、図1ないし図8を参照して、本実施の形態に適用される技術的原理について説明する。
まず、図1ないし図8を参照して、本実施の形態に適用される技術的原理について説明する。
図1(a)は、ターゲット記録層によって反射されたレーザ光(信号光)、ターゲット記録層よりも深い層によって反射されたレーザ光(迷光1)、ターゲット記録層よりも浅い層によって反射されたレーザ光(迷光2)が、収束光の状態で平行平板に入射されたときの収束状態を示す図である。なお、同図は、信号光がターゲット記録層にフォーカス合わせされたときの状態を示している。
平行平板は、集光効果を有さない平板状の透過素子であり、図示の如く、ディスクによって反射されたレーザ光(反射光)の光軸に対して、上下方向から前後に傾けられて配置されている。また、反射光は、収束光として平行平板に入射している。これにより、反射光の上下方向と左右方向に光路差が生じることとなり、反射光の光束の収束位置にずれが生じる。
図1(b)は、反射光の光軸に対して垂直な面内において、平行平板に入射する前の反射光(収束光部分)の光束を、反射光の進行方向から見た図である。図示の如く、収束光部分のビームの外周に、反時計方向に8つの位置(位置1〜8:同図では丸囲み数字で表記)が設定されている。また、同図には、平行平板が傾けられた方向(以下、「傾き方向」という)と、平行平板が傾けられていない方向(以下、「非傾き方向」という)が併せて示されている。
なお、位置3と位置7は、傾き方向に平行な直線にて収束光部分のビーム断面を2分割する場合の分割線上に位置しており、位置1と位置5は、非傾き方向に平行な直線にて収束光部分のビーム断面を2分割する場合の分割線上に位置している。位置2、4、6、8はそれぞれ、位置1、3、5、7によって区分される外周円弧の中間にある。
図1(a)に戻って、図示の如く、信号光は、傾き方向および非傾き方向の収束により、それぞれ異なる位置で焦線を結ぶ。傾き方向の収束による焦線位置(S2)は、非傾き方向の収束による焦線位置(S1)よりも、平行平板から遠い位置となり、後述する信号光の収束位置(S0)は、焦線位置(S1)、(S2)の間(収束範囲)の中間位置となる。
迷光1についても同様に、傾き方向の収束による焦線位置(M12)は、非傾き方向の収束による焦線位置(M11)よりも、平行平板から遠い位置となる。なお、迷光1の傾き方向の収束による焦線位置(M12)が、信号光の収束位置(S0)よりも、平行平板に近い位置となるよう、光学系が設計されている。
迷光2についても同様に、傾き方向の収束による焦線位置(M22)は、非傾き方向の収束による焦線位置(M21)よりも、平行平板から遠い位置となる。なお、迷光2の非傾き方向の収束による焦線位置(M21)は、信号光の収束位置(S0)よりも、平行平板から遠い位置となるよう、光学系が設計されている。
このように、平行平板により、図示の如く、焦線位置(S1)における光軸と垂直な平面(面S1)には、上下方向に信号光の焦線が生じ、さらに、焦線位置(S2)における光軸と垂直な平面(面S2)には、左右方向に信号光の焦線が生じる。これにより、収束位置(S0)における光軸と垂直な平面(面S0)上において、信号光のスポットが最も真円に近づけられる。非点収差法に基づくフォーカス調整では、面S0に光検出器の受光面が置かれる。
なお、同図(a)では、平行平板が、反射光の光軸に対して上下方向から前後に傾けられるよう配置されたが、同図(a)の状態から平行平板が光軸周りに回転させられることによって、反射光に対する傾き方向と非傾き方向を変化させることができる。すなわち、同図(a)において、平行平板が光軸周りに90°回転させられると、反射光に対して、左右方向が傾き方向、上下方向が非傾き方向となる。また、平行平板が同図後方から見て光軸周りに45°時計方向に回転されると、傾き方向と非傾き方向は、同図(b)の状態から45°傾けられ、同図(c)の状態となる。このように平行平板が光軸周りに回転すると、それに伴い、信号光と迷光1、2の焦線も同様に回転する。
図2は、収束光部分および面S1、S0、S2上における信号光、迷光1、迷光2のビーム形状を示す図である。なお、同図では、図1(c)に示したように、平行平板による傾き方向と非傾き方向が、上下方向と左右方向に対して45°となるよう設定されている場合を示している。
同図左列の信号光を参照して、平行平板への入射前に位置4と位置8を通る光線は、面S1で非傾き方向の焦線へと収束された後に面S0へと入射する。このため、これら位置4、8を通る光線は、面S0上において、同図(c)左列に示す位置4、8を通る。同様に、平行平板への入射前に位置1、3、5、7を通る光線も、面S1にて非傾き方向の焦線へと収束された後に面S0へと入射するため、面S0上では、同図(c)左列に示す位置1、3、5、7を通る。これに対し、平行平板への入射前に位置2、6を通る光線は、面S1で非傾き方向の焦線へと収束されずに面S0へと入射する。このため、これら位置2、6を通る光線は、面S0上において、同図(c)左列に示す位置2、6を通る。
同図中央列の迷光1を参照して、平行平板への入射前に位置1〜8を通る光線は、焦線位置(M11)および焦線位置(M12)の何れにおいても焦線を結んだ後に面S0へと入射する。このため、位置1〜8を通る迷光1の光線は、面S0上において、それぞれ、同図(c)中央列に示す位置1〜8を通る。
同図右列の迷光2を参照して、平行平板への入射前に位置1〜8を通る光線は、傾き方向の焦線と非傾き方向の焦線の何れへも収束されることなく面S0へと入射する。このため、位置1〜8を通る迷光2の光線は、面S0上において、それぞれ、同図(c)右列に示す位置1〜8を通る。
次に、以上の現象を考慮して、平行平板への入射前における信号光および迷光1、2の領域分割パターンと、面S0上における信号光および迷光1、2の照射領域との関係について検討する。
まず、図3(a)に示すように、平行平板への入射前における信号光および迷光1、2を、傾き方向と非傾き方向に対して45°傾いた2つの直線で分割し、4つの光束領域A〜Dに区分したとする。なお、この分割パターンは、従来の非点収差法に基づく領域分割に対応するものである。
この場合、上述の現象により、光束領域A〜Dの信号光は、面S0上において、同図(b)のように分布する。また、光束領域A〜Dの迷光1および迷光2は、上述の現象により、それぞれ、同図(c)および(d)のように分布する。
ここで、面S0上における信号光と迷光1、2を光束領域毎に取り出すと、各光の分布は、図4(a)ないし(d)のようになる。この場合、各光束領域の信号光には、同じ光束領域の迷光1および迷光2の何れか一方が必ず重なる。このため、各光束領域の信号光を光検出器上のセンサパターンで受光すると、少なくとも、同じ光束領域における迷光1または迷光2が対応するセンサパターンに同時に入射し、これにより検出信号に劣化が生じる。
これに対し、図5(a)に示すように、平行平板への入射前における信号光および迷光1、2を、傾き方向と非傾き方向に平行な2つの直線で分割し、4つの光束領域A〜Dに区分したとする。この場合、上述の現象から、光束領域A〜Dの信号光は、面S0上において、同図(b)のように分布する。また、光束領域A〜Dの迷光1および迷光2は、上述の現象により、それぞれ、同図(c)および(d)のように分布する。
ここで、面S0上における信号光と迷光1、2を光束領域毎に取り出すと、各光の分布は、図6(a)ないし(d)のようになる。この場合、各光束領域の信号光には、同じ光束領域の迷光1および迷光2の何れも重ならない。このため、各光束領域内の光束(信号光、迷光1、2)を異なる方向に離散させた後に、信号光のみをセンサパターンにて受光するように構成すると、対応するセンサパターンには信号光のみが入射し、迷光の入射を抑止することができる。これにより、迷光による検出信号の劣化を回避することができる。
以上のように、信号光および迷光1、2を傾き方向と非傾き方向に平行な2つの直線で4つの光束領域A〜Dに分割し、これら光束領域A〜Dを通る光を分散させて面S0上において離間させることにより、信号光のみを取り出すことができる。本実施の形態は、この原理を基盤とするものである。
図7は、図5(a)に示す4つの光束領域A〜Dを通る光束(信号光、迷光1、2)の進行方向を、それぞれ、異なる方向に、同じ角度だけ変化させたときの、面S0上における信号光と迷光1、2の分布状態を示す図である。ここでは、同図(a)に示すように、光束領域A〜Dを通る光束(信号光、迷光1、2)の進行方向が、それぞれ、方向Da、Db、Dc、Ddに、同じ角度量α(図示せず)だけ変化している。なお、方向Da、Db、Dc、Ddは、傾き方向と非傾き方向に対して、それぞれ、45°の傾きを持っている。
この場合、方向Da、Db、Dc、Ddにおける角度量αを調節することにより、面S0上において、同図(b)に示すように各光束領域の信号光と迷光1、2を分布させることができる。その結果、図示の如く、信号光のみが存在する信号光領域を面S0上に設定することができる。この信号光領域に光検出器のセンサパターンを設定することにより、各領域の信号光のみを、対応するセンサパターンにて受光することができる。
図8は、センサパターンの配置方法を説明する図である。同図(a)は、ディスクからの反射光(信号光)の光束領域を示す図であり、同図(b)は、図1(a)の構成において、面S0上に従来の非点収差法に基づく光検出器(4分割センサ)を配置したときの、光検出器上における信号光の分布状態を示す図である。図8(c)および(d)は、面S0上における、上述の原理に基づく信号光の分布状態とセンサパターンを示す図である。
各図において、トラック溝による信号光の回折の像(トラック像)の方向は、傾き方向および非傾き方向に対して45°の傾きを持っている。同図(a)において、トラック像の方向が同図の左右方向であるとすると、同図(b)ないし(d)では、信号光におけるトラック像の方向は、同図の上下方向となる。なお、同図(a)および(b)には、説明の便宜上、光束が8つの光束領域a〜hに区分されている。また、トラック像が実線で示され、オフフォーカス時のビーム形状が点線によって示されている。なお、トラック溝による信号光の0次回折像と1次回折像の重なり状態は、波長/(トラックピッチ×対物レンズNA)で求められることが知られており、同図(a)、(b)、(d)のように、4つの光束領域a、d、e、hに1次回折像が収まる条件は、波長/(トラックピッチ×対物レンズNA)>√2となる。
従来の非点収差法では、光検出器のセンサパターンP1〜P4(4分割センサ)が同図(b)のように設定される。この場合、光束領域a〜hの光強度に基づく検出信号成分をA〜Hで表すと、フォーカスエラー信号FEとプッシュプル信号PPは、
FE=(A+B+E+F)−(C+D+G+H) …(1)
PP=(A+B+G+H)−(C+D+E+F) …(2)
の演算により求まる。
FE=(A+B+E+F)−(C+D+G+H) …(1)
PP=(A+B+G+H)−(C+D+E+F) …(2)
の演算により求まる。
これに対し、上記図7(b)の分布状態では、上述の如く、信号光領域内に、図8(c)の状態で信号光が分布している。この場合、同図(a)に示す光束領域a〜hを通る信号光は、同図(d)のようになる。すなわち、同図(a)の光束領域a〜hを通る信号光は、光検出器のセンサパターンが置かれる面S0上では、同図(d)に示す光束領域a〜hへと導かれる。
したがって、同図(d)に示す光束領域a〜hの位置に、同図(d)に重ねて示す如くセンサパターンP11〜P18を設定すれば、同図(b)の場合と同様の演算処理によって、フォーカスエラー信号とプッシュプル信号を生成することができる。すなわち、この場合も、光束領域a〜hの光束を受光するセンサパターンからの検出信号をA〜Hで表すと、同図(b)の場合と同様、フォーカスエラー信号FEとプッシュプル信号PPは、上記式(1)、(2)の演算により取得することができる。
以上のように、本原理によれば、収束光部分における信号光および迷光1、2を、傾き方向と非傾き方向に平行な2つの直線で4つの光束領域A〜Dに分割し、これら光束領域A〜Dを通る光を分散させ、さらに、分散させた後の各光束領域A〜Dにおける信号光を、2分割された受光部(2分割センサ)によって個別に受光することにより、従来の非点収差法に基づく場合と同様の演算処理にて、フォーカスエラー信号とプッシュプル信号(トラッキングエラー信号)を生成することができる。
<実施例1>
以下、上記原理に基づく実施例1について説明する。
以下、上記原理に基づく実施例1について説明する。
図9に、本実施例に係る光ピックアップ装置の光学系を示す。同図(a)は、立ち上げミラー105よりもディスク側の部分を除いた光学系を示し、同図(b)は、立ち上げミラー105よりもディスク側の部分の光学系を示している。なお、同図中のディスクには、複数の記録層が積層して配置されている。
同図(a)、(b)に図示の如く、光ピックアップ装置の光学系は、半導体レーザ101と、偏光ビームスプリッタ102と、コリメートレンズ103と、レンズアクチュエータ104と、立ち上げミラー105と、1/4波長板106と、アパーチャ107と、対物レンズ108と、ホルダ109と、対物レンズアクチュエータ110と、平板素子111と、光検出器112を備えている。
半導体レーザ101は、所定波長のレーザ光を出射する。半導体レーザ101から出射されるレーザ光の広がり角は、水平広がり角と垂直広がり角が異なっている。
偏光ビームスプリッタ102は、半導体レーザ101から入射されるレーザ光(S偏光)を略全反射するとともに、コリメートレンズ103側から入射されるレーザ光(P偏光)を略全透過する。
コリメートレンズ103は、偏光ビームスプリッタ102側から入射されるレーザ光を平行光に変換する。なお、本実施例では、コリメートレンズ103の光軸と、ディスク上のレーザ光の照射位置におけるトラックの接線方向のなす角(以下、「振り角」という)が、0°となるよう光学系が設定されている。
レンズアクチュエータ104は、レーザ光に生じる収差が補正されるようコリメートレンズ103を光軸方向に変位させる。立ち上げミラー105は、コリメートレンズ103側から入射されたレーザ光(X軸負方向)を対物レンズ108に向かう方向(Z軸正方向)に反射する。
1/4波長板106は、ディスクへと向かうレーザ光を円偏光に変換するとともに、ディスクからの反射光をディスクへ向かう際の偏光方向に直交する直線偏光に変換する。これにより、ディスクによって反射されたレーザ光は、偏光ビームスプリッタ102を透過する。
アパーチャ107は、対物レンズ108に対するレーザ光の有効径が適正となるように、レーザ光のビーム形状を円形形状に調整する。対物レンズ108は、レーザ光をディスク内のターゲット記録層に適正に収束できるよう設計されている。ホルダ109は、1/4波長板106、アパーチャ107、対物レンズ108を一体的に保持する。対物レンズアクチュエータ110は、従来周知の電磁駆動回路によって構成され、当該回路のうち、フォーカスコイル等のコイル部がホルダ109に装着されている。
平板素子111は、平板状の透過素子であり、同図(c)に示す如く、傾き方向と非傾き方向が、反射光のトラック像の方向に対して45°の角をなすように配置されている。また、平板素子111の出射面には、後述するように、異なる角度を有する4つの傾斜面が形成されている。
これら4つの傾斜面には、傾き方向と非傾き方向に平行な2つの直線で4分割した光束領域(上記図7(a)の光束領域A〜Dに相当)の光束がそれぞれ入射する。これら4つの光束は、対応する傾斜面における屈折作用によって、進行方向が図7(a)の方向Da〜Ddに変化する。これにより、平板素子111に入射する反射光(信号光および迷光1、2)は、面S0上において、図7(b)に示した如く光束領域が分布する。このように、平板素子111は、上記図1で述べた非点収差作用と、上記図7(a)で述べた分光作用の両方を発揮する。
光検出器112は、図8(d)に示すセンサパターンP11〜P18を有する。光検出器112は、このセンサパターンが図1の面S0の位置に位置づけられるように配置される。光検出器112のセンサパターンP11〜P18は、各々、図8(d)の光束領域a〜hを通る光束を受光する。
なお、光検出器112の8個のセンサパターンから出力された検出信号は、上記式(1)、(2)に従って演算処理され、フォーカスエラー信号とプッシュプル信号が生成される。そして、これら信号により、対物レンズアクチュエータ110が制御される。また、光検出器112の8個のセンサパターンから出力された検出信号から、再生RF信号が生成され、これにより、再生データが生成され、レンズアクチュエータ104が制御される。
図10(a)は、平板素子111の斜視図であり、同図(b)は、平板素子111により、レーザ光の進行方向が変化させられることを模式的に示す図である。同図(b)は、平板素子111を入射面側から見たときの模式図である。なお、同図(a)において、ディスクによって反射されたレーザ光は、平板素子111裏側の平坦な面から入射する。
同図(a)に示す如く、平板素子111には、出射面側に4つの傾斜面111a〜111dが形成されている。これら4つの傾斜面111a〜111dは、平板素子111が図9(a)のように傾いて配置されたとき、各傾斜面に入射する光束の進行方向が、それぞれ同図(b)の矢印Da〜Ddの方向に進むように調整されている。同図(b)の矢印Da〜Ddは、図7(a)の矢印Da〜Ddに相当する。
ここで、平板素子111は、ディスクによって反射されたレーザ光の光軸が、出射面において傾斜面111a〜111dの交わる点(中心点O)を通るように配置されている。よって、図7(a)に示す光束領域A〜Dの光束は、それぞれ、傾斜面111a〜111dに入射し、進行方向が変えられる。これにより、平板素子111に入射する反射光(信号光および迷光1、2)の各光束は、レーザ光がターゲット記録層に合焦されると、面S0上において、図7(b)に示す如く離散される。
以上、本実施例によれば、ディスク内に配された記録層のうちターゲット記録層から反射された信号光と、当該ターゲット記録層の深い側および浅い側の記録層から反射された迷光1、2とが、光検出器112の受光面(オンフォーカス時に信号光スポットが最も真円に近づけられる面S0)上において、互いに重なり合わないようにすることができる。具体的には、受光面(面S0)上における信号光と迷光1、2の分布を、図7(b)の状態にすることができる。したがって、図7(b)の信号光領域に、図8(d)に示すセンサパターンを配置することにより、センサパターンP11〜P18によって、対応する信号光のみを受光することができる。このため、迷光による検出信号の劣化を抑制することができる。
また、本実施例によれば、出射面に傾斜面を有する平板素子111を配するのみで迷光を除去できるので、光ピックアップ装置の構成の簡素化とコストの削減を図りながら、効果的に、迷光の影響を抑制することができる。
なお、本実施例によれば、光検出器上のセンサパターンに迷光が掛からないため、光学系の復路倍率を高めて光検出器上における迷光の照射領域を拡張する等、センサパターンに入射する迷光の光量を低下させるための手段を講じる必要がない。したがって、本実施例では、アナモレンズ等、復路倍率を上げるためのレンズ手段を偏光ビームスプリッタ102と光検出器112の間に配する必要がなく、構成の簡素化とコストの削減を図ることができる。また、復路倍率を上げる必要がないため、光検出器112を偏光ビームスプリッタ102に近づけて配置することができ、結果、光ピックアップ装置の小型化を実現することができる。
なお、本実施例では、平板素子111により、非点収差の発生と、反射光の各光束の進行方向の変更が実現されたが、非点収差の発生と、反射光の各光束の進行方向の変更が、別々の光学素子により実現されても良い。この場合、部品点数が増えるものの、本実施例の構成と同様の迷光除去効果が奏され得る。
<実施例2>
図11は、実施例2に係る光ピックアップ装置の構成を示す図である。同図(a)に示す如く、本実施例では、上記実施例1の偏光ビームスプリッタ102の替わりに、ハーフミラー113と分光素子114が追加されている。また、振り角は45°に設定されている。さらに、同図(b)に示す如く、本実施例では、1/4波長板106が省略されている。
図11は、実施例2に係る光ピックアップ装置の構成を示す図である。同図(a)に示す如く、本実施例では、上記実施例1の偏光ビームスプリッタ102の替わりに、ハーフミラー113と分光素子114が追加されている。また、振り角は45°に設定されている。さらに、同図(b)に示す如く、本実施例では、1/4波長板106が省略されている。
以下、実施例1と異なる部分について説明する。
ハーフミラー113は、入射するレーザ光を50%の比率で反射および透過する。これにより、ハーフミラー113は、半導体レーザ101から入射されるレーザ光をコリメートレンズ103側に反射し、コリメートレンズ103側から入射されるレーザ光をX軸正方向に透過する。また、ハーフミラー113は、反射光の光軸に対してX−Y平面に平行な方向に傾けられている。これにより、同図(c)に示す如く、傾き方向と非傾き方向が、それぞれ、Y軸方向とZ軸方向となる。なお、振り角は45°であるため、トラック像の方向は、傾き方向と非傾き方向に対して45°の角度をなしている。
分光素子114は、平板状の透過素子であり、上記実施例1の平板素子111と同様、出射面には、異なる角度を有する4つの傾斜面が形成されている。また、分光素子114の入射面は、ハーフミラー113の出射面に重ね合わされている。
ハーフミラー113と分光素子114がこのように配されると、コリメートレンズ103側からハーフミラー113に入射する反射光(信号光および迷光1、2)は、レーザ光がターゲット記録層に合焦されると、面S0上において、図7(b)に示す如く離散される。すなわち、ハーフミラー113と分光素子114により、非点収差の効果が生じ、分光素子114の傾斜面によって、傾き方向と非傾き方向に平行な直線で分割された領域A〜Dを通る反射光の光束の進行方向が、方向Da〜Ddに変化される。
なお、ハーフミラー113と分光素子114が設置される際には、まず、半導体レーザ101から出射されるレーザ光が、対物レンズ108に適正に入射するよう、ハーフミラー113が位置調整される。すなわち、半導体レーザ101から出射されるレーザ光の光軸とハーフミラー113の法線のなす角θが調整される。続いて、ハーフミラー113の出射面に分光素子114の入射面を合わせつつ、分光素子114に入射する反射光の光軸が、分光素子114の出射面の中心点を通るよう、分光素子114がハーフミラー113との接面内で位置調整される。
本実施例によれば、上記実施例1と同様、構成の簡素化を図りながら、効果的に、迷光を除去することができる。
なお、図11の構成では、ハーフミラー113と分光素子114とが別体とされたが、たとえば図12に示すように、分光素子114の機能をハーフミラー113に持たせて、分光素子114を省略することもできる。この場合、たとえば、ハーフミラー113の出射面に、異なる角度を有する4つの傾斜面が形成される。こうすると、上記図11の構成に比べ、部品点数を削減でき、構成の簡素化を図ることができる。
ただし、図12の構成によれば、ハーフミラー113と分光素子114とが一体化されているため、往路(半導体レーザ101〜対物レンズ108)と復路(対物レンズ108〜光検出器112)の光学系を、個別に調整することができない。これに対し、図11の構成によれば、まず、ハーフミラー113の位置調整を行いながら往路の光学系を設定し、その後、分光素子114の位置調整を行いながら復路の光学系を設定することができる。このため、図11の構成では、復路倍率が小さく設定され、分光素子114と光検出器112が近づけられたような場合でも、分光素子114の位置調整を行うことで、反射光の各光束を図7(b)に示す分布状態に正確に設定することができる。この他、図11の構成では、ハーフミラー113と分光素子114が重ね合わせられるため、ハーフミラー113が熱により変形することを抑制することができる。
なお、図11、12の構成では、反射光の光軸に対して傾けられたハーフミラー113および分光素子114により、コマ収差が発生する。かかるコマ収差は、図13(a)、(b)に示すコマ収差補正板115によって抑制され得る。
同図(a)、(b)において、コマ収差補正板115は、平板状の透過素子である。コマ収差補正板115は、ハーフミラー113が反射光の光軸周りに180°回転させられた場合の傾き角度と同じとなるよう配置されている。また、コマ収差補正板115は、ハーフミラー113および分光素子114により発生したコマ収差を打ち消すよう、厚みと屈折率が調整されている。こうすると、同図(a)の場合には、ハーフミラー113および分光素子114によって発生したコマ収差が、コマ収差補正板115により抑制され得る。また、同図(b)の場合には、ハーフミラー113によって発生したコマ収差が、コマ収差補正板115により抑制され得る。
なお、この場合、コマ収差補正板115によって、光検出器112に入射する反射光の光軸およびX軸方向の焦線位置がずれる。このため、ハーフミラー113または分光素子114の厚みと、光検出器のY−Z平面内での位置が、コマ収差補正板115の厚みに応じて適宜修正される。
<実施例3>
図14は、上記実施例2で示した光ピックアップ装置の光学系の一部を変更した他の実施例を示す図である。同図(a)および(b)には、それぞれ、図11(a)に示した光学系および図13(a)に示した光学系に対して、ダイバージングレンズが追加されている。なお、本実施例におけるダイバージングレンズは、凹状に形成された出射面を有し、入射面から入射するレーザ光を発散させる効果を持つ光学素子である。
図14は、上記実施例2で示した光ピックアップ装置の光学系の一部を変更した他の実施例を示す図である。同図(a)および(b)には、それぞれ、図11(a)に示した光学系および図13(a)に示した光学系に対して、ダイバージングレンズが追加されている。なお、本実施例におけるダイバージングレンズは、凹状に形成された出射面を有し、入射面から入射するレーザ光を発散させる効果を持つ光学素子である。
図14(a)および(b)を参照して、ダイバージングレンズ116は、半導体レーザ101とハーフミラー113との間に設置されている。半導体レーザ101からダイバージングレンズ116に入射するレーザ光は、ダイバージングレンズ116により、発散させられる。これにより、コリメートレンズ103の焦点距離は、上記実施例2に比べ小さく設定されている。
本実施例によれば、上記実施例2の構成に比べて、復路倍率(対物レンズの焦点距離に対するコリメートレンズの焦点距離の比)を小さくできる。このため、上記実施例2に比べて光検出器112をハーフミラー113に近づけて配置でき、光ピックアップ装置のさらなる小型化を実現することができる。
また、本実施例によれば、上記実施例2に比べ、コリメートレンズ103の焦点距離が小さいため、ハーフミラー113に入射する反射光の収束角が大きい。これにより、ハーフミラー113および分光素子114による非点収差の発生量が増えるため、ハーフミラー113および分光素子114の厚みが小さく設定され得る。
なお、図14には、図11(a)と図13(a)の光学系にダイバージングレンズ116を追加した構成を示したが、図12(a)と図13(b)の光学系にも同様にダイバージングレンズ116を追加することも可能である。
<実施例4>
図15は、実施例4に係る光ピックアップ装置の構成を示す図である。本実施例に係る光ピックアップ装置の光学系は、同図(a)に示す如く、図9(a)および(b)に示した実施例1の光学系から、偏光ビームスプリッタ102と、1/4波長板106と、平板素子111とが省略され、替わりに、ハーフミラー113、2分割プリズム117、118が追加されている。
図15は、実施例4に係る光ピックアップ装置の構成を示す図である。本実施例に係る光ピックアップ装置の光学系は、同図(a)に示す如く、図9(a)および(b)に示した実施例1の光学系から、偏光ビームスプリッタ102と、1/4波長板106と、平板素子111とが省略され、替わりに、ハーフミラー113、2分割プリズム117、118が追加されている。
図15(a)を参照して、本実施例に係る光学系では、ハーフミラー113により反射光に導入された非点収差が2分割プリズム118によりほぼ打ち消される。反射光に対する非点収差は、実質的に、2分割プリズム117によって導入される。また、図7(a)に示す分光作用は、2つの2分割プリズム117、118によって実現される。
2分割プリズム117、118は、平板状の透過素子であり、後述の如く、出射面に、異なる角度を有する2つの傾斜面が形成されている。2分割プリズム117は、同図(c)に示す如く、傾き方向と非傾き方向が、反射光のトラック像の方向に対して45°の角をなすように配置されている。2分割プリズム118は、反射光の光軸に対して、X−Z平面に平行な方向に傾けて配置されている。
2分割プリズム118の厚みおよび屈折率と傾き角は、ハーフミラー113による非点収差作用と2分割プリズム118による非点収差作用が、互いにほぼ打ち消し合うよう調整されている。このため、実質的に2分割プリズム117による非点収差の効果のみ残ることとなる。
また、上記2分割プリズム117の傾き方向は、ハーフミラー113により生じるコマ収差と、2分割プリズム118により生じるコマ収差を、2分割プリズム117により生じるコマ収差によって同時に抑制できる方向となっている。2分割プリズム118の厚みおよび屈折率と傾き角は、ハーフミラー113により生じるコマ収差と、2分割プリズム118により生じるコマ収差を抑制でき、且つ、所望の非点収差作用を実現できるよう調整されている。なお、ハーフミラー113および2つの2分割プリズム117、118を、互いに同じ材質と厚みで構成し、且つ、反射光の光軸に対する傾き角をそれぞれ45°に設定すると、これら各部材により生じるコマ収差を低コストで且つ効果的に相殺させながら、2分割プリズム117による非点収差作用を実現することができる。
図16(a)および(b)は、それぞれ、2分割プリズム117、118の斜視図であり、同図(c)および(d)は、それぞれ、2分割プリズム117、118により、レーザ光の進行方向の変化を模式的に示す図である。同図(c)、(d)は、図15(a)のように配置された2分割プリズム117、118を入射面側から見たときの模式図である。なお、同図(a)、(b)において、ディスクによって反射されたレーザ光は、2分割プリズム117、118裏側の平坦な面から入射する。
同図(a)に示す如く、2分割プリズム117には、出射面側に谷形状となるよう2つの異なる傾斜面117a、117bが形成されている。また、同図(b)に示す如く、2分割プリズム118には、出射面側に山形状となるよう2つの異なる傾斜面118a、118bが形成されている。
2分割プリズム117の傾斜面の交線117cは、反射光の光束に対して図15(c)の傾き方向に合わせられている。また、2分割プリズム118の傾斜面の交線118cは、反射光の光束に対して図15(d)の非傾き方向に合わせられている。
図16(c)および(d)に示す如く、2分割プリズム117に入射する反射光を傾き方向と非傾き方向に平行な2つの直線で4分割すると、光束領域A〜Dの光束は、それぞれ、2分割プリズム117の傾斜面117a、117bと2分割プリズム118の傾斜面118a、118bに、同図(c)、(d)のように入射する。これにより、光束領域A〜Dの光束は、それぞれ、傾斜面117a、117bと傾斜面118a、118bによって同図の矢印方向に進行方向が変えられる。したがって、光束領域A〜Dの光束は、2つの2分割プリズム117、118を通ることにより、それぞれ、同図(e)の方向Da〜Ddに進行方向が変えられる。ここで、方向Da〜Ddは、図7(a)の方向Da〜Ddに相当する。
2分割プリズム117の傾斜面117a、117bと2分割プリズム118の傾斜面118a、118bは、このように、光束領域A〜Dの光束がそれぞれ、同図(e)の方向Da〜Ddに進行方向が変えられるように調整されている。こうして、光束領域A〜Dを通る反射光の光束の進行方向は、2分割プリズム117、118の傾斜面により変化され、結果、反射光の各光束は、面S0上において、図7(b)に示す如く離散される。
以上、本実施例によれば、上記実施例1に比べ部品点数が増えるものの、上記実施例1の効果に加えて、コマ収差が抑制され得る。
なお、2分割プリズム117、118の何れか一方のみが、図16(e)の分光作用を有するようにしても良い。すなわち、図17(a)に示す如く、2分割プリズム117のみに、異なる角度を有する4つの傾斜面が形成されていても良い。また、図17(b)に示す如く、2分割プリズム118のみに、異なる角度を有する4つの傾斜面が形成されていても良い。さらには、2分割プリズム117もしくは118の何れか一方において、表裏に図16(a)、(b)のような2つの傾斜面を形成しても良い。この他、ハーフミラー113の出射面に異なる角度を有する4つの傾斜面を形成するようにしても良く、あるいは、ハーフミラー113の出射面と2分割プリズム117または2分割プリズム118に図16(e)の分光作用を実現するための傾斜面を形成するようにしても良い。
<他の変更例>
以上、本発明の実施例1ないし4について説明したが、本発明は、上記実施例に制限されるものではなく、また、本発明の実施形態も上記以外に種々の変更が可能である。
以上、本発明の実施例1ないし4について説明したが、本発明は、上記実施例に制限されるものではなく、また、本発明の実施形態も上記以外に種々の変更が可能である。
たとえば、上記実施例では、反射光の光束を離散させるために、屈折作用を用いたが、回折作用を用いて反射光の光束を離散させるようにしても良い。たとえば、図9の平板素子111の出射面に、傾斜面に替えて、回折パターンを有するホログラムを形成しても良い。あるいは、図9の平板素子111の出射面を平坦な面にして、平板素子111の後段に、回折により光束を分離するホログラム素子を配するようにしても良い。
図18(a)は、出射面に4つの異なるホログラム領域120a〜120dが形成されたホログラム素子120を入射面側から見た図である。反射光の光束の進行方向は、ホログラム素子120のホログラム領域120a〜120dにより、図示の如く、変化させられる。これにより、光検出器112上で、図7(b)に示すように光束が分布され得る。
図11〜14における分光素子114も、適宜、ホログラム素子に置き換えることができる。また、図15および図17に示す2分割プリズム117、118も、出射面にホログラム領域を持つ平行平板に置き換えることができる。なお、ホログラム領域に形成されるホログラムは、ステップ型でもブレーズ型でも良い。
また、上記実施の形態では、分光作用を発揮する素子の出射面に傾斜面が形成されたが、これら素子の入射面に傾斜面を形成するようにしても良い。たとえば、図9の構成では、平板素子111の出射面に異なる角度を有する4つの傾斜面が形成されたが、かかる傾斜面が入射面に形成されても良い。また、平板素子111の表裏に図16(a)、(b)のような2つの傾斜面が形成されても良い。
また、図15、図17(a)、(b)の構成では、2分割プリズム117、118の出射面に異なる角度を有する傾斜面が形成されたが、かかる傾斜面が、2分割プリズム117、118の入射面に形成されても良い。
また、上記実施例では、立ち上げミラー105が用いられたが、立ち上げミラー105が省略された構成としても良い。
図18(b)は、上記実施例2で示した図11の立ち上げミラー105が省略される場合の光ピックアップ装置の光学系を示す図である。半導体レーザ101から出射されハーフミラー113に入射するまでのレーザ光の光軸は、ディスク上のレーザ光照射位置におけるトラックの接線方向に対して45°の角度をなすよう設定されている。
このような構成とすると、半導体レーザ101とハーフミラー114の向きを、対物レンズ108の光軸周りに回転させるのみで、振り角を45°に設定できるため、光学系のレイアウトを容易に行うことができる。本実施例では、上記のように光検出器112をハーフミラー113に近づけることができるので、同図(b)の構成としても、光ピックアップ装置の厚み寸法が顕著に大きくなることもない。
この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
101 … 半導体レーザ(レーザ光源)
108 … 対物レンズ
111 … 平板素子(光透過板、光学素子)
112 … 光検出器
113 … ハーフミラー(光透過板、光学素子)
114 … 分光素子(光透過板、光学素子)
115 … コマ収差補正板(補正板)
117 … 2分割プリズム(光学素子、光束離散部)
118 … 2分割プリズム(光学素子、光束離散部)
108 … 対物レンズ
111 … 平板素子(光透過板、光学素子)
112 … 光検出器
113 … ハーフミラー(光透過板、光学素子)
114 … 分光素子(光透過板、光学素子)
115 … コマ収差補正板(補正板)
117 … 2分割プリズム(光学素子、光束離散部)
118 … 2分割プリズム(光学素子、光束離散部)
Claims (6)
- レーザ光源と、
前記レーザ光源から出射されたレーザ光を記録媒体上に収束させる対物レンズと、
前記記録媒体により反射された前記レーザ光を受光する光検出器と、
前記光検出器に前記レーザ光を収束光として導く光学系と、
前記光学系と前記光検出器との間に前記レーザ光の光軸に対して傾くように配置され前記レーザ光に非点収差を導入する光透過板と、
前記光透過板による前記レーザ光の第1の焦線方向と当該第1の焦線方向に直交する第2の焦線方向にそれぞれ平行な2つの直線で前記レーザ光を4つの光束に分割したときの各光束を互いに離散させる光学素子と、を備える、
ことを特徴とする光ピックアップ装置。 - 請求項1に記載の光ピックアップ装置において、
前記第1の焦線方向と前記第2の焦線方向が、前記記録媒体からのトラック像の方向に対して45度傾いている、
ことを特徴とする光ピックアップ装置。 - 請求項1または2に記載の光ピックアップ装置において、
前記光透過板と前記光学素子とが一体化されている、
ことを特徴とする光ピックアップ装置。 - 請求項1ないし3の何れか一項に記載の光ピックアップ装置において、
前記光検出器に導かれる前記レーザ光のコマ収差を抑制するための補正板が前記レーザ光の光軸に対して傾くように配置されている、
ことを特徴とする光ピックアップ装置。 - レーザ光源と、
前記レーザ光源から出射されたレーザ光を記録媒体上に収束させる対物レンズと、
前記記録媒体により反射された前記レーザ光を受光する光検出器と、
前記光検出器に前記レーザ光を収束光として導く光学系と、
前記光学系と前記光検出器との間に前記レーザ光の光軸に対して傾くように配置され前記レーザ光に非点収差を導入する複数の光透過板と、
前記複数の光透過板による前記レーザ光の第1の焦線方向と当該第1の焦線方向に直交する第2の焦線方向にそれぞれ平行な2つの直線で前記レーザ光を4つの光束に分割したときの各光束を互いに離散させる光束分離部と、を備え、
前記複数の光透過板は、前記レーザ光のコマ収差を抑制するように配置されている、
ことを特徴とする光ピックアップ装置。 - 請求項5に記載の光ピックアップ装置において、
前記光束分離部は、前記複数の光透過板の何れか1つ、または、2つ以上の前記光透過板に配されている、
ことを特徴とする光ピックアップ装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009150480A JP2011008852A (ja) | 2009-06-25 | 2009-06-25 | 光ピックアップ装置 |
US12/821,529 US8159907B2 (en) | 2009-06-25 | 2010-06-23 | Optical pickup device |
CN2010102139805A CN101937690A (zh) | 2009-06-25 | 2010-06-24 | 光拾取装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009150480A JP2011008852A (ja) | 2009-06-25 | 2009-06-25 | 光ピックアップ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011008852A true JP2011008852A (ja) | 2011-01-13 |
Family
ID=43380601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009150480A Pending JP2011008852A (ja) | 2009-06-25 | 2009-06-25 | 光ピックアップ装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8159907B2 (ja) |
JP (1) | JP2011008852A (ja) |
CN (1) | CN101937690A (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5173923B2 (ja) * | 2009-04-28 | 2013-04-03 | 三洋電機株式会社 | 光ピックアップ装置および光ディスク装置 |
JP4684341B2 (ja) * | 2009-07-29 | 2011-05-18 | 三洋電機株式会社 | 光ピックアップ装置、光ディスク装置および焦点調整方法 |
JP2011054231A (ja) | 2009-09-01 | 2011-03-17 | Sanyo Electric Co Ltd | 光ピックアップ装置 |
JP2012033231A (ja) * | 2010-07-30 | 2012-02-16 | Sanyo Electric Co Ltd | 光ピックアップ装置 |
JP2012033230A (ja) * | 2010-07-30 | 2012-02-16 | Sanyo Electric Co Ltd | 光ピックアップ装置 |
JP2012084200A (ja) * | 2010-10-12 | 2012-04-26 | Hitachi Media Electoronics Co Ltd | 光ピックアップ及び光情報記録再生装置 |
CN109091764B (zh) * | 2018-09-11 | 2021-01-15 | 中聚科技股份有限公司 | 一种多波长可切换光纤激光治疗装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62205533A (ja) * | 1986-03-06 | 1987-09-10 | Seiko Instr & Electronics Ltd | 光情報検出装置 |
JPH026710A (ja) * | 1988-06-24 | 1990-01-10 | Sharp Corp | 距離検出装置 |
JP2008171470A (ja) * | 2007-01-09 | 2008-07-24 | Victor Co Of Japan Ltd | 光ピックアップ装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5465247A (en) * | 1992-05-14 | 1995-11-07 | Olympus Optical Co., Ltd. | Optical head |
US6181666B1 (en) * | 1996-10-21 | 2001-01-30 | Olympus Optical Company, Ltd. | Optical pickup |
JPH10333025A (ja) * | 1997-05-28 | 1998-12-18 | Pioneer Electron Corp | 光ピックアップ装置 |
US6967908B2 (en) * | 2000-09-07 | 2005-11-22 | Pioneer Corporation | Optical pickup device with focus error detecting optical element and method for focus error detection |
JP2002109778A (ja) * | 2000-09-29 | 2002-04-12 | Pioneer Electronic Corp | 光ピックアップ装置 |
CN100492504C (zh) * | 2002-10-17 | 2009-05-27 | 松下电器产业株式会社 | 光盘装置 |
JP2006079798A (ja) * | 2004-08-09 | 2006-03-23 | Sanyo Electric Co Ltd | 光ピックアップ装置 |
JP4859089B2 (ja) | 2005-03-14 | 2012-01-18 | 株式会社リコー | 抽出光学系、光ピックアップ装置及び光ディスク装置 |
JP2006260669A (ja) | 2005-03-16 | 2006-09-28 | Ricoh Co Ltd | 光情報記録再生装置及び記録媒体 |
JP4806643B2 (ja) * | 2007-03-09 | 2011-11-02 | 株式会社日立メディアエレクトロニクス | 光ピックアップ及び光ディスク装置 |
-
2009
- 2009-06-25 JP JP2009150480A patent/JP2011008852A/ja active Pending
-
2010
- 2010-06-23 US US12/821,529 patent/US8159907B2/en not_active Expired - Fee Related
- 2010-06-24 CN CN2010102139805A patent/CN101937690A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62205533A (ja) * | 1986-03-06 | 1987-09-10 | Seiko Instr & Electronics Ltd | 光情報検出装置 |
JPH026710A (ja) * | 1988-06-24 | 1990-01-10 | Sharp Corp | 距離検出装置 |
JP2008171470A (ja) * | 2007-01-09 | 2008-07-24 | Victor Co Of Japan Ltd | 光ピックアップ装置 |
Also Published As
Publication number | Publication date |
---|---|
US8159907B2 (en) | 2012-04-17 |
US20100329102A1 (en) | 2010-12-30 |
CN101937690A (zh) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4610628B2 (ja) | 光ピックアップ装置および焦点調整方法 | |
JP4610662B2 (ja) | 光ピックアップ装置および光ディスク装置 | |
JP5173656B2 (ja) | 光ピックアップ装置 | |
JP5173659B2 (ja) | 光ピックアップ装置および光ディスク装置 | |
JP2011008852A (ja) | 光ピックアップ装置 | |
KR101109929B1 (ko) | 광 픽업 장치, 광 디스크 장치 및 초점 조정 방법 | |
JP2011070752A (ja) | 光ピックアップ装置 | |
US8228778B2 (en) | Optical pickup device and optical disc device | |
JP4722190B2 (ja) | 光ピックアップ装置および光ディスク装置 | |
US8446809B2 (en) | Optical pickup device and optical disc device | |
JP5173899B2 (ja) | 光ピックアップ装置 | |
JP5227930B2 (ja) | 光ピックアップ装置 | |
US8345528B2 (en) | Optical pickup device | |
KR101109951B1 (ko) | 광 픽업 장치 및 광 디스크 장치 | |
US20130003516A1 (en) | Optical pickup device | |
US8331211B2 (en) | Optical pickup device | |
JP5173868B2 (ja) | 光ピックアップ装置および光ディスク装置 | |
US20130003519A1 (en) | Optical pickup device and position adjusting method for light separating element | |
JP2008047199A (ja) | 光ピックアップ装置 | |
JP2010049758A (ja) | 光ピックアップ装置 | |
JP2012094223A (ja) | 光ピックアップ装置 | |
JP2010079983A (ja) | 光ピックアップ装置および光ディスク装置 | |
JP2010080005A (ja) | 光ピックアップ装置および光ディスク装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130514 |