JP2011007972A - 光導波路デバイス - Google Patents

光導波路デバイス Download PDF

Info

Publication number
JP2011007972A
JP2011007972A JP2009150518A JP2009150518A JP2011007972A JP 2011007972 A JP2011007972 A JP 2011007972A JP 2009150518 A JP2009150518 A JP 2009150518A JP 2009150518 A JP2009150518 A JP 2009150518A JP 2011007972 A JP2011007972 A JP 2011007972A
Authority
JP
Japan
Prior art keywords
waveguide
optical waveguide
substrate
ground electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009150518A
Other languages
English (en)
Other versions
JP5326860B2 (ja
Inventor
Masaki Sugiyama
昌樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Optical Components Ltd
Original Assignee
Fujitsu Optical Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Optical Components Ltd filed Critical Fujitsu Optical Components Ltd
Priority to JP2009150518A priority Critical patent/JP5326860B2/ja
Priority to US12/801,461 priority patent/US8380017B2/en
Publication of JP2011007972A publication Critical patent/JP2011007972A/ja
Application granted granted Critical
Publication of JP5326860B2 publication Critical patent/JP5326860B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】支持部材と基板との熱膨張差に起因した応力により生じる光導波路の動作点変動を抑制する。
【解決手段】導波部22の伸延方向D1に交差する交差方向D2において、支持部材13による応力の応力分布中心に近い方にある接地電極25の架橋部25c−inと、応力分布中心から遠い方にある接地電極25の架橋部25c−outとが、異なる形状で形成されている、光導波路デバイス10とする。接地電極25の構造を工夫することにより、支持部材13から基板11にかかる応力で生じる、複数の導波部22間の応力特性の相異を打ち消すような応力を、接地電極25から基板11へかける。
【選択図】図1

Description

本発明は、電気光学効果を利用した光導波路デバイスに関する。
LiTaOやLiNbO(LN)などの電気光学結晶を基板として光導波路を形成し、この光導波路に電界を作用させて屈折率を変化させることを可能とした光導波路デバイスが、近年の光通信システムにおける光変調器として使用される。当該光導波路デバイスにおいて電気光学結晶の基板中に形成される光導波路を用いた干渉構成として、例えば、マッハツェンダ(Mach-Zehnder:MZ)型の構成が知られる。光導波路を用いたマッハツェンダ型光干渉構成は、入力導波部と、入力導波部に入力された光を分岐して伝搬する2つの並行する導波路を備えた導波部と、該導波部を伝搬してきた分岐光を結合する出力導波部と、を含んで構成される。そして、導波部の並行する導波路に対して電界を作用させる電極が、SiOなどのバッファ層を介して基板の上に形成される。
光導波路を用いたマッハツェンダ型光干渉構成において、光導波路デバイスの電極は、導波部上に信号電極及び接地電極として設けられるコプレーナ電極とすることができ、電気光学結晶の基板がZカット基板である場合、信号電極及び接地電極は、導波部の並行する導波路にそれぞれ重なる(オーバーラップする)部分をもつように形成される。そして、変調する信号光の高周波化に対応して、信号電極及び接地電極は、信号電極の一端を抵抗を介して接地し終端した進行波電極とされ、信号電極の他端に、例えばマイクロ波の高周波電気信号が印加される。
光導波路を用いたマッハツェンダ型光変調器は、光変調方式の多様化、例えば、RZ(Return-to-Zero)変調、多値変調、偏波多重変調など、に応じて、多数の導波部を単一の基板に集積する構成が用いられる。一例として図10は、4つの導波部を基板に形成した光導波路デバイスである。
図10において、光導波路デバイス1は、ZカットのLN基板2に、Tiなどの金属膜をパターニングして熱拡散させる、あるいは、パターニング後に安息香酸中でプロトン交換するなどの工程により、LN基板2の長さ方向に伸延した光導波路3が形成される。光導波路3は、光を入力するための入力導波部3aと、入力導波部3aに入力された光を分岐して伝搬する4つの導波部3bと、導波部3bを伝搬してきた分岐光を結合する出力導波部3cと、の3つの部分を含んでいる。すなわち、LN基板2の一方の端部に形成された入力導波部3aとLN基板2の他方の端部に形成された出力導波部3cとの間に、4つの導波部3bが並列接続される。
4つ設けられた導波部3bは、それぞれの導波部3bが、並行する2本の導波路により形成される。そして、導波部3bのそれぞれに対し、電界を作用させるための信号電極4と接地電極5とが、バッファ層2a(図11参照)を介在させて設けられる。図10に示すように接地電極5は、良好な高周波特性を得るために、導波部3bの伸延方向D1に交差する交差方向D2において、信号電極4に比べて幅広に形成される。
図10に示す接地電極5は、交差方向D2において、電極幅の狭い幅狭部5aと、電極幅の広い幅広部5bと、に分割された部分を有し、幅狭部5aが導波部3bの一方の導波路に重なっている。幅狭部5aと幅広部5bとの間は、伸延方向D1に所定のピッチで設けられた架橋部5cで連結される。図10に示すように接地電極5を交差方向D2において分割する理由は、接地電極5とLN基板2の熱膨張差によって接地電極5下の導波部3bにかかる応力を、抑制するためである。
熱膨張差によって導波部3bに応力がかかると、当該部分の光導波路の屈折率に影響し、出力導波部3cから出力される出力光がOFFになる電圧に変動が生じる。この電圧変動に対しては、バイアス電圧(DC)を電極に別途印加し、出力光をモニタしながら前記バイアス電圧を調整することで光変調器の動作点を最適化する制御が有効であるが、この場合は駆動電圧が上昇してしまう。この問題を解決するために、幅広の接地電極5を分割し、導波部3b上に位置する部分を幅狭部5aとすることで、光導波路にかかる応力を弱くし、温度変動による動作点変動をできるだけ抑止する。この一方で、電極の高周波特性ついては、架橋部5cを形成して幅狭部5aと幅広部5bとを連結し、十分な接地状態を確保することにより、維持される。接地電極を分割する構成は、特許文献1に開示されている。
特開2006−084537号公報
特許文献1に開示された接地電極分割構造は、幅広の接地電極から光導波路にかかる応力を減らして、細い信号電極による応力と同程度にし、導波部の伸延方向に交差する交差方向において、電極による応力の均一化を図る構成である。しかし、図10に示すように、光導波路デバイス1のLN基板2は、光導波路デバイス1を実装した筐体内で支持部材6に支持されるので、接地電極5からLN基板2の上面にかかる応力の他に、支持部材6からLN基板2の下面にかかる応力も存在する。支持部材6は、筐体の一部か又は筐体とは別部品であってSUS等の金属製であり、LN基板2と支持部材6との間には熱膨張差がある。LN基板2は支持部材6に接着剤などを用いて固定されるので、LN基板2と支持部材6との熱膨張差によって、基板下面からも応力がかかる。支持部材6によりLN基板2の下面からかかる応力は、交差方向D2において大きさが変化する。図10においてLN基板2の幅方向に4つ並んだ導波路3bに対し、支持部材6によりかかる応力について、図11を参照して説明する。
図11は、支持部材6に固定した光導波路デバイス1の、図10中のA−A線における断面図である。
LN基板2に比べて支持部材6の熱膨張率は小さく、これに起因した熱膨張差により支持部材6からLN基板2にかかる応力は、LN基板2の側面に近づくほど強い。したがって、図10及び図11に示すように、4つの導波部3bがLN基板2において基板幅方向にほぼ対称配置されていて、電極4,5による応力の均一化が基板幅方向において図られている場合、図11に示すように、支持部材6からLN基板2にかかる応力の交差方向D2における分布は、分布中心がほぼ基板幅方向中心と一致し、応力分布中心から基板側面へ向かって次第に強くなる特性を示す。
図11に示した支持部材6の応力によって、4つの導波部3bのうち、応力分布中心に近い方の2つの導波部3b−inに関しては、各2本の導波路間に生じる応力差Xが小さく、一方、応力分布中心から遠い方の2つの導波部3b−outに関しては、各2本の導波路間に生じる応力差Yが大きくなる。すなわち、交差方向D2において複数の導波部3b間に応力特性の相異が発生する。1つの導波部3bにおいて2本の導波路間に生じる応力差が大きくなると、温度変動による動作点変動が大きくなるので、導波部3bの基板内形成位置に応じて動作点変動に違いが生じることになる。
図12は、図11に示す導波部3bの基板内位置による動作点変動を示す図である。図12において、縦軸は、正常時の動作点電圧を“1”としたときの温度変動に伴う動作点の電圧変動量(V)を示す。また、横軸は、基板幅方向の中心からの距離(μm)を示す。なお、図11の場合、上述のように基板幅方向中心と応力分布中心とがほぼ一致するので、図12における横軸の基板幅方向中心は応力分布中心である。
図12中の各点は、温度を変動させたときの、4つの導波部3bの動作点電圧の変動量を、横軸の距離に応じてプロットした点である。図12に示すように、交差方向D2において応力分布中心に近い方の導波部3b−inでは、温度が変動することにより、絶対値で1V程度しか動作点電圧が変動しない一方、交差方向D2において応力分布中心から遠い方の導波部3b−outでは、温度が変動することにより、絶対値で3Vほども動作点電圧が変動する。なお、左右の位置で動作点変動の符号(±)が異なるのは、1つの導波部3bにおいて、接地電極5が、2本の導波路のうちの内側の導波路に対し設けられるか、外側の導波路に対し設けられるか、の違いによる。
このような導波部の基板内位置に応じた動作点変動の差を防ぐためには、LN基板2の幅を広くする、あるいは、導波部3bの相互間隔を狭くする、といった手法が考えられる。しかし、基板幅を広げるとウエハから切り出せる基板数が減る、相互間隔を狭めるとクロストークが増える、という課題が生じるため、満足のいく解決策がないのが現状である。
上記課題に対して提案する光導波路デバイスは、接地電極の構造を工夫することにより、支持部材から基板にかかる応力で生じる複数の導波部間の応力特性の相異を打ち消すような応力を、接地電極から基板へかけることができる光導波路デバイスである。
本提案に係る光導波路デバイスは、
支持部材に載置された、電気光学効果を有する基板と、前記基板に、前記基板の長さ方向へ伸延して形成された光導波路と、前記基板上に形成され、前記光導波路に対し電界を作用させる電極と、を含んで構成され、
前記光導波路は、光が入力される入力導波部と、前記入力導波部に入力された光を分岐して伝搬する2つの並行する導波路を備えた導波部と、前記導波部を伝搬してきた分岐光を結合する出力導波部と、を有し、
前記電極は、前記導波部ごとに、一方の前記導波路に重なる部分をもつ信号電極と、他方の前記導波路に重なる部分をもつ接地電極と、を備え、
前記接地電極が、前記導波部の伸延方向に交差する交差方向において、前記導波路に重なる幅狭部と、前記幅狭部よりも幅の広い幅広部と、に分割された部分を有し、前記幅狭部と前記幅広部との間を架橋部により連結してあり、
前記接地電極の架橋部の形状が、複数の前記接地電極間で異なる、光導波路デバイスである。
あるいは、本提案に係る光デバイスは、
支持部材に載置された、電気光学効果を有する基板と、前記基板に、前記基板の長さ方向へ伸延して形成された光導波路と、前記基板上に形成され、高周波電気信号による電界を前記光導波路に対し作用させる進行波電極と、前記基板上に形成され、前記光導波路の動作点を調整するバイアス電圧が印加される動作点調整電極と、を含んで構成され、
前記光導波路は、光が入力される入力導波部と、前記入力導波部に入力された光を分岐して伝搬する2つの並行する導波路を備えた導波部と、前記導波部を伝搬してきた分岐光を結合する出力導波部と、を有し、
前記動作点調整電極は、前記導波部ごとに、一方の前記導波路に重なる部分をもつバイアス電極と、他方の前記導波路に重なる部分をもつ接地電極と、を備え、
前記接地電極が、前記導波部の伸延方向に交差する交差方向において、前記導波路に重なる幅狭部と、前記幅狭部よりも幅の広い幅広部と、に分割された部分を有し、前記幅狭部と前記幅広部との間を架橋部により連結してあり、
前記接地電極の架橋部の形状が、複数の前記接地電極間で異なる、光導波路デバイスである。
上記提案の光導波路デバイスは、導波部の導波路上に重なる接地電極の形状を変えることにより、接地電極から導波部にかかる応力を、基板における位置に応じて変化させる。
前述のように、支持部材から基板にかかる応力により複数の導波部間に生じる応力特性の相異が、動作点変動の差を発生させる原因である。本提案に係る光導波路デバイスによると、支持部材による応力の応力分布中心からの距離に応じて接地電極の架橋部の形状を変えることが可能になるので、接地電極から基板へ、導波部間の応力特性の相異を打ち消すような応力をかけ、導波部の基板内位置に応じた動作点変動の差を防ぐことができる。これにより、基板の幅を広くしたり、あるいは、導波部の相互間隔を狭くするといった対策を講じずとも、動作点変動の抑制が図られる。
光導波路デバイスの第1実施形態を示した平面図。 図1中のB−B線における断面図。 架橋部形状と動作点変動との関係を示したグラフ。 光導波路デバイスの第2実施形態を示した断面図。 光導波路デバイスの第3実施形態を示した平面図。 光導波路デバイスの第4実施形態を示した平面図。 光導波路デバイスの第5実施形態を示した平面図。 図7中のC−C線における断面図。 光導波路デバイスを用いた光変調器の構成例を示すブロック図。 背景技術に係る光導波路デバイスの平面図。 図8中のA−A線における断面図。 応力分布中心からの距離に応じた動作点変動を説明した図。
図1は、光導波路デバイスの第1実施形態を示す平面図である。図2は、図1中のB−B線における断面図である。
図1及び図2において、光導波路デバイス10は、電気光学効果を有する基板としてLiNbO(LN)を用いたZカットの基板11を含み、LN基板11に、LN基板11の長さ方向(長手方向)へ伸延する光導波路20が形成される。光導波路20は、Tiなどの金属膜をパターニングして熱拡散させる、あるいは、パターニング後に安息香酸中でプロトン交換するなどの工程により、形成される。
光導波路20は、伸延方向D1に沿って順に、光を入力するための入力導波部21と、入力導波部21に入力された光を分岐して伝搬する、一例として4つの導波部22と、導波部22を伝搬してきた分岐光を結合する出力導波部23と、の3つの部分を含む。図1に示すように、LN基板11の一方の端部に形成された入力導波部21とLN基板11の他方の端部に形成された出力導波部22との間に、4つの導波部22が並列接続される。
4つ設けられた導波部22は、それぞれの導波部22が、並行する2本の導波路22a,22bを有する。そして、導波路22a,22bに対して電界を作用させるための信号電極24と接地電極25とが、導波部22ごとにそれぞれ、バッファ層12(図2参照)を介在させてLN基板11上に設けられる。図1に示すように接地電極25は、良好な高周波特性を得るために、導波部22の伸延方向D1に交差する交差方向D2において、信号電極24に比べて幅広く形成される。
第1実施形態の接地電極25は、交差方向D2において、電極幅の狭い幅狭部25aと、電極幅の広い幅広部25bと、に分割された部分を有する。そして、幅狭部25aが、導波部22における2本の導波路22a,22bのうち、図2に示す応力分布中心に近い側の導波路22aに重なっている。接地電極25を幅方向において分割するのは、接地電極25とLN基板11の熱膨張差によって、接地電極25下の導波部22に対し応力が過度にかかるのを抑制するためである。分割された幅狭部25aと幅広部25bとの間は、伸延方向D1に所定のピッチで設けられた架橋部25cで連結され、十分な接地状態を確保することにより、高周波応答特性が低下しないようにしてある。
幅狭部25aと幅広部25bとの間を架橋部25cで連結した接地電極25は、導波部22ごとに、信号電極24よりも応力分布中心に近い側に設けられる。すなわち、いずれの導波部22においても、応力分布中心に近い側の導波路22aに対して接地電極25が形成され、応力分布中心から遠い側の導波路22bに対して信号電極24が形成される。また特に、第1実施形態の場合、応力分布中心に近い(つまり内側の)導波部22−inに対する接地電極25は、2つの導波部22−inに共通の1つとして、LN基板11の幅方向中心部分に形成される。
図1及び図2に示す光導波路デバイス10において、応力分布中心に近い方の導波部22−inに対する接地電極25の架橋部25c−inと、応力分布中心から遠い方の導波部22−outに対する接地電極25の架橋部25c−outとは、互いに異なる形状に形成される。つまり、応力分布中心からの距離に応じて、接地電極25間で架橋部25cの形状が異なっている。図1及び図2に示す第1実施形態では特に、応力分布中心に近い方(以下、「近い方」とも略す)の接地電極25における架橋部25c−inの太さ(幅や厚み)に比べて、応力分布中心から遠い方(以下、「遠い方」とも略す)の接地電極25における架橋部25c−outの太さが太い。遠い方の架橋部25c−outが、近い方の架橋部25c−inに比べて太いことにより、遠い方の接地電極25においてLN基板11との熱膨張差が大きくなっている。
具体的に、第1実施形態において遠い方の架橋部25c−outは、近い方の架橋部25c−inに比べて、幅W(この場合は伸延方向D1の距離になる)が広く形成される。これにより、近い方の接地電極25に比べて遠い方の接地電極25が、温度が変動したときの熱膨張差によって、より強い応力を導波路22aに加えることができる。
図2は図1中のB−B線における断面図で、図2に示す通り、光導波路デバイス10は支持部材13に下面を固定して載置される。
支持部材13は、光導波路デバイス10を実装した筐体の一部又は筐体とは別部品であってステンレス鋼(SUS)製等の金属製であり、LN基板11に比べて熱膨張率が小さい。このため、熱膨張率に起因した熱膨張差が、温度変動に応じてLN基板11と支持部材13との間に発生する。熱膨張差により支持部材13からLN基板11にかかる応力は、LN基板11の側面に近づくほど強い。したがって、図1及び図2に示すように、4つの導波部22がLN基板11において基板幅方向にほぼ対称配置されていて、これに対応して電極24,25も基板幅方向においてほぼ対称に配置される場合、図2に示すように、支持部材13からLN基板11にかかる応力の交差方向D2における分布は、分布中心がほぼ基板幅方向中心と一致し、応力分布中心から基板側面へ向かって次第に強くなる特性を示す。
交差方向D2における支持部材13による応力分布特性に起因して、交差方向D2において複数の導波部22間に応力特性の相異が発生する。すなわち、図2に示した支持部材13の応力によって、4つの導波部22のうち、応力分布中心に近い方の2つの導波部22−inに関しては、各2本の導波路22a,22b間に生じる応力差X’が小さく、一方、応力分布中心から遠い方の2つの導波部22−outに関しては、各2本の導波路22a,22b間に生じる応力差Y’が大きくなる。
導波部22間の応力特性の相異に関して、第1実施形態の光導波路デバイス10は、特に遠い方の導波部22−outにおいて、応力分布中心に近い側に位置する導波路22aに対し、幅の広い架橋部25c−outを有する接地電極25から、2本の導波路22a,22bの間に生じる応力差Y’を打ち消すような応力がかかる。具体的に説明すると、接地電極25の熱膨張率はLN基板11よりも大きいので、温度変動によって接地電極25とLN基板11とには熱膨張差が生じる。近い方の導波部22−inに対する接地電極25の場合は、架橋部25c−inの幅が狭いので、幅広部25bの熱膨張が幅狭部25aに与える影響は少なく、幅狭部25aから導波路22aにかかる応力は弱い。すなわち、前述の特許文献1にあるように、接地電極25とLN基板11の熱膨張差によりLN基板11へかかる応力は、抑制される。他方、遠い方の導波部22−outに対する接地電極25は、架橋部25c−outの幅Wが広くなっているので、幅広部25b及び架橋部25c−outの熱膨張が幅狭部25aに与える影響が大きい。その結果、幅狭部25aから導波路22aにかかる応力が強くなる。
遠い方の導波部22−outにおいて、応力分布中心から遠い側に位置した導波路22bには、支持部材13による応力が、近い側の導波路22aよりも強くかかっている。そこで、この応力差Y’に匹敵する応力を、近い側に位置する導波路22aにかけてやれば、両者に同じ程度の応力がかかることになる。同程度の応力がかかっていれば、2本の導波路22a,22bの屈折率変化が同程度になるので、結果として、動作点変動は抑制される。
図3は、架橋部25cの幅に対応した動作点変動の一例を示すグラフである。菱形のポイントが幅の広い架橋部(100μm)に対応し、正方形のポイントが幅の狭い架橋部(10μm)に対応する。図3に示すように、架橋部25cの幅を広くすると、温度変動に対し、幅広部25b及び架橋部25cの熱膨張による応力に従って動作点電圧の変動が大きくなることが分かる。図3に示す接地電極の温度特性と、図10に示した基板内形成位置に従う導波部の動作点変動特性を利用すれば、近い方の接地電極25の架橋部25c−in及び遠い方の接地電極25の架橋部25c−outの適切な形状を設計することができる。
以上の第1実施形態は、架橋部25cの幅Wが、応力分布中心からの距離に応じて異なる構造であるが、この他にも、同様の作用を得られる構造は各種考えられる。例えば、図1中に示す幅狭部25aと幅広部25bとの間の間隔Sを、近い方の接地電極25と遠い方の接地電極25とで違う間隔としてもよい。すなわち、近い方の接地電極25における間隔Sに比べて、遠い方の接地電極25における間隔Sを狭くすることが可能である。あるいは、場合によっては、遠い方の接地電極25における間隔Sを零として、幅狭部25aと幅広部25bとが一体化した構造にすることもできる。
また、別の形態では、図2中に示すように、接地電極25の厚みTを、近い方の接地電極25と遠い方の接地電極25とで違う厚さとしてもよい。すなわち、近い方の接地電極25の厚みTに比べて、遠い方の接地電極25の厚みTを厚くすることが可能である。この厚みTを変更する場合、幅狭部25aの厚みを変更すると電極の特性インピーダンスが変化することになるので、厚み変更による特性インピーダンスのずれが懸念される場合には、図2中に二点鎖線で示すように、幅広部25b及び架橋部25cの厚みTのみを変更するようにしてもよい。
接地電極25に対する構造の工夫に加えて、接地電極25からLN基板11にかかる応力がさらに強くなるように、LN基板11の上面構造を工夫することも可能である。LN基板11の上面構造を工夫した第2実施形態を図4に示す。図4は、第2実施形態の光導波路デバイス10について、基板幅方向中心から左部分を示した断面図である。
基板11は、第1実施形態と同じくZカットのLN基板である。また、光導波路20も第1実施形態同様に、入力導波部21、一例として4つの導波部22、出力導波部23を含んで構成される。図4中には、入力導波部21と出力導波部23との間に並列接続された4つの導波部22のうち、LN基板11の幅方向中心から片側にある2つの導波部22のみ示す。なお、幅方向中心から反対側の図示していない部分は、図4に示す部分と対称構造である。
第2実施形態のLN基板11においては、導波部22に含まれた各2本の導波路22a,22bの両脇に、溝30〜35が形成される。溝30〜35は、導波部22の伸延方向D1へ、導波路22a,22bに沿って延設される。したがって、第2実施形態の導波路22a,22bは、溝30〜35により形成されたリッジ(稜線)部分中に形成される。
溝30〜35を形成したLN基板11上に、バッファ層12を介して信号電極24及び接地電極25が形成される。応力分布中心(図2参照)に近い方の導波部22−in及び遠い方の導波部22−outにおいて、信号電極24は、応力分布中心から遠い側に位置する導波路22bの上に形成され、接地電極25は、近い側に位置する導波路22aの上に形成される。接地電極25は、交差方向D2において幅狭部25aと幅広部25bとに分割された部分を有し、その幅狭部25aが導波路22b上に位置する。導波路22a,22bの上に位置する信号電極24及び幅狭部25aは、溝30〜35の間のリッジ部分の上に形成される。
接地電極25の幅狭部25a及び幅広部25bは、架橋部25cによって連結される。架橋部25cの平面形状は、第1実施形態の架橋部25cと同じで、近い方の接地電極25の架橋部25c−inは幅狭く、遠い方の接地電極25の架橋部25c−outは幅広く形成される。したがって、第1実施形態と同様に、遠い方の導波部22−outにおける導波路22aに対して、必要な応力をかけられる。
接地電極25からかかる応力に関し、第2実施形態の場合、導波路22aの幅方向内側に形成された溝33により、応力がかかりやすい構造が提供されている。すなわち、導波部22−outの導波路22aに隣接して溝33が形成されるので、導波路22aに対する接地電極25は、架橋部25c−outが溝33を埋める状態で形成される。その結果、架橋部25c−outが熱膨張するにあたっては、溝33を押し広げる方向の力が加わるので、溝33に隣接するリッジ部分内に形成された導波路22aには、より強い応力がかかることになる。なお、導波路22aにかける応力だけを目的として溝を形成するのであれば、最低限、溝33を設けてあればよい。
近い方の導波部22−inにおいても、応力分布中心に近い側の導波路22aに隣接して溝30が形成されるが、溝30内に形成される架橋部25c−inの幅は狭い(第1実施形態参照)。したがって、架橋部25c−inから溝30を通して導波路22aにかかる応力は、第1実施形態同様に弱い。
LN基板11において導波路22a,22bの脇に沿う溝30〜35を形成する場合、各溝30〜35は、すべて同じ形状とすることもできるが、近い方の導波部22−inと遠い方の導波部22−outとで違う形状としてもよい。すなわち、交差方向D2における溝30〜35の形成位置に応じて、溝30〜35の形状を変えることができる。例えば、溝の幅WGを変える(遠い方を広くする)、溝の深さDGを変える(遠い方を深くする)、あるいは、伸延方向D1における溝の長さを変える(遠い方を長くする)などが可能である。また、溝30〜35を形成した場合のリッジ部分の幅WRについても、近い方の導波部22−inと遠い方の導波部22−outとで違う形状とすることができる(遠い方を狭くする)。
さらに、接地電極25(架橋部25c−in,25c−out)の形状について、上記の第1実施形態で言及した例のように、近い方の導波部22−inと遠い方の導波部22−outとで違う形状とする以外に、近い方及び遠い方の両接地電極を同じ形状とすることもできる。すなわち、応力をかける必要のない導波部22−inの導波路22aに対しては溝30を形成せずにおいて、応力をかける必要のある導波部22−outの導波路22aに対してのみ溝33を形成すれば、近い方の導波部22−inと遠い方の導波部22−outとで異なる応力をかけることができる。
また、図4中に二点鎖線で示すように、電極の対称性を考慮して、遠い方の導波部22−outに対する信号電極24に関し、接地電極25が対称配置されるように、追加の溝36を形成することもできる。すなわち、信号電極24の内側に2つの溝34,33が形成されるのであれば、信号電極24を対称軸として対称となるように、信号電極24の外側にも2つの溝35,36を形成する。そして、最も外側の溝36上にも接地電極25を形成し、信号電極24を挟んで接地電極25が対称に配置される構造とする。
図5は、第3実施形態の光導波路デバイス50を示す平面図である。
第3実施形態は、動作点変動補償用のバイアス電圧を導波部22に供給するために、動作点調整電極(DC電極)を進行波電極(RF電極)とは別に設けた実施形態である。進行波電極は、第1実施形態と同様に、抵抗で終端する信号電極24及び接地電極25を含んで構成されるので、同じ符号を付して重複説明は省略する。また、LN基板11及びLN基板11に形成される光導波路20も第1実施形態と同様なので、同じ符号を付して重複説明は省略する。
第3実施形態においてLN基板11上に追加されている動作点調整電極は、バイアス電極51と接地電極52とを含んで構成され、進行波電極24,25(信号電極及び接地電極)同様に、バッファ層12を介して形成される。また、図5の第3実施形態において、動作点調整電極を構成するバイアス電極51及び接地電極52は、進行波電極24,25よりも出力導波部23側において、導波部22上に設けられる。
バイアス電極51は、第1実施形態の信号電極24と同様に、各導波部22において、応力分布中心から遠い側の導波路22bの上に重なるように形成される。一方、接地電極52も、第1実施形態の接地電極25と同様に、各導波部22において、応力分布中心に近い側の導波路22aの上に重なる部分をもつように形成される。
接地電極52は、交差方向D2において、電極幅の狭い幅狭部52aと、電極幅の広い幅広部52bと、に分割された部分を有する。そして、幅狭部52aが導波路22aに重なっている。分割された幅狭部52aと幅広部52bとの間は、伸延方向D1に所定のピッチで設けられた架橋部52cで連結される。また特に、近い方の導波部22−inに対する接地電極52は、2つの導波部22−inに共通の1つとして、LN基板11の幅方向中心部分に形成される。
近い方の導波部22−inに対する接地電極52の架橋部52c−inと、遠い方の導波部22−outに対する接地電極52の架橋部52c−outとは、互いに異なる形状に形成される。第3実施形態の場合、架橋部52cの太さが応力分布中心からの距離に応じて違っており、近い方の接地電極52における架橋部52c−inに比べて、遠い方の接地電極52における架橋部52c−outが太い。遠い方の接地電極52における架橋部52c−outが、近い方の接地電極52における架橋部52c−inに比べて太いことにより、遠い方の接地電極52においてLN基板11との熱膨張差が大きくなる。したがって、接地電極52は、第1実施形態における接地電極25と同様の働きをもち、導波路22aに対し所定の応力をかけることができる。
図5は、接地電極52の架橋部52cの幅Wを変える例を示すが、第1実施形態の接地電極25と同様、幅狭部52aと幅広部52bとの間の間隔Sについて、間隔Sを零とする場合も含めて、近い方の接地電極52と遠い方の接地電極52とで違う間隔とすることもできる。また、別の形態として、第1実施形態の接地電極25と同様に、接地電極52の厚みを、近い方の接地電極52と遠い方の接地電極52とで違う厚さとする、あるいは、幅広部52b及び架橋部52cの厚みのみを変更してもよい。
さらに、図5に示す第3実施形態においても、図4を参照して上述したようなLN基板11の溝及びリッジ構造を適用することができる。
なお、図5に示す光導波路デバイス50において、進行波電極24,25も、第1実施形態相当の形状として示されている。しかしながら、動作点調整電極を構成するバイアス電極51及び接地電極52が第1実施形態相当の応力構造になっていれば、進行波電極の信号電極24及び接地電極25を同様の構造とする必要はない。
図6は、第4実施形態の光導波路デバイス60を示す平面図である。
図6において、基板61は、第1実施形態同様に、ZカットのLN基板であり、LN基板61の長さ方向に伸延する光導波路70が、基板幅方向中心から片側に片寄って形成される。
光導波路70は、伸延方向D1に沿って順に、入力導波部71、2つの導波部72、出力導波部73を含んで構成され、2つの導波部72が、入力導波部71と出力導波部73との間に並列接続される。2つの導波部72は、一方の導波部72−inがLN基板61の幅方向中心寄りに、他方の導波部72−outがLN基板61の幅方向外寄りに形成される。
各導波部72は、それぞれ2つの並行する導波路72a,72bを備え、そのうちの一方の導波路72bに対して信号電極74、他方の導波路72aに対して接地電極75が形成される。信号電極74及び接地電極75の両方とも、LN基板61の上にバッファ層(図2のバッファ層12参照)を介して形成される。接地電極75は、良好な高周波特性を得るために、交差方向D2において、信号電極74に比べ幅広く形成される。
第4実施形態において、導波路72aに対する接地電極75は、2つの導波部72に対して共通に1つ設けられる。したがって、図6に示す接地電極75は、2つの幅狭部75aと、2つの幅狭部75aの間に挟まれた幅広部75bと、に分割された部分を有し、2つの幅狭部75aが、2つの導波部72における導波路72aにそれぞれ重なっている。分割された幅狭部75aと幅広部75bとの間は、伸延方向D1に所定のピッチで設けられた架橋部75cで連結され、高周波応答特性が低下しないようにしてある。
図7は、第4実施形態同様に、LN基板81の長さ方向に伸延する光導波路90が、基板幅方向中心から片側に片寄って形成される、第5実施形態の光導波路デバイス80を示す平面図である。
図7において、光導波路90は、伸延方向D1に沿って順に、入力導波部91、2つの導波部92、出力導波部93を含んで構成され、入力導波部91と出力導波部93との間に、2つの導波部92が並列接続される。入力導波部91は、LN基板81の端面から延設された2本の導波路91a,91bを有し、いずれか一方が光入力路として使用される。出力導波部93は、端面にミラー93aを有し、一方の導波部92を伝搬してきた分岐光を結合してミラー93aで反射し、他方の導波部92へ折り返す。例えば、入力導波部91において一方の導波路91aに光が入力されるとした場合、導波路91aに入力された光は、導波部92−outを伝搬して出力導波部93に至り、ミラー93aで反射される。ミラー93aで反射された光は、導波部92−inを伝搬して入力導波路92の他方の導波路91bから出射される。
2つの導波部92は、一方の導波部92−inがLN基板81の幅方向中心寄りに、他方の導波部72−outが幅方向外寄りに形成される。各導波部72は、それぞれ2つの並行する導波路92a,92bを備え、そのうちの一方の導波路92bに対して信号電極94、他方の導波路92aに対して接地電極95が形成される。信号電極94及び接地電極95の両方とも、LN基板81の上にバッファ層(図2のバッファ層12参照)を介して形成される。接地電極95は、良好な高周波特性を得るために、交差方向D2において、信号電極94に比べ幅広く形成される。
第5実施形態においても、導波路92aに対する接地電極95は、2つの導波部92に対して共通に1つ設けられる。したがって、図7に示す接地電極95は、2つの幅狭部95aと、2つの幅狭部95aの間に挟まれた幅広部95bと、に分割された部分を有し、2つの幅狭部95aが、2つの導波部92における導波路92aにそれぞれ重なっている。分割された幅狭部95aと幅広部95bとの間は、伸延方向D1に所定のピッチで設けられた架橋部95cで連結され、高周波応答特性が低下しないようにしてある。
図8は、図7中に示すC−C線における光導波路デバイス80の断面図である。なお、図6に示した第4実施形態の光導波路デバイス60も、同様の形状及び応力分布となる。
第5実施形態の光導波路90は、基板幅方向中心から片側に片寄って形成され、これに伴って電極94,95もLN基板81の片側に片寄って形成されるので、支持部材13による応力の分布中心が基板幅方向中心と一致しない。この場合でも、応力分布中心からの距離に応じて架橋部95cの形状を変えることにより、第1実施形態同様の効果を得ることができる。
温度変動に応じてLN基板81と支持部材13との間に発生する熱膨張差により支持部材13からLN基板81にかかる応力は、LN基板81の側面に近づくほど強い。したがって、支持部材13による応力は、基板側面へ向かって次第に強くなる特性を示すが、導波部92及び電極94,95がLN基板81の片側に片寄って形成されるので、応力分布中心は、電極94,95が形成されている側に基板幅方向中心からずれる。この場合であっても、交差方向D2における支持部材13による応力分布特性に起因して、交差方向D2において2の導波部22間に応力特性の相異が発生する。すなわち、図8に示した支持部材13の応力によって、2つの導波部92のうち、応力分布中心に近い方の導波部92−inに関しては、2本の導波路92a,92b間に生じる応力差が小さく、一方、応力分布中心から遠い方の導波部22−outに関しては、2本の導波路22a,22b間に生じる応力差が大きくなる。
第4実施形態及び第5実施形態の架橋部75c,95cは、近い方の導波部72−in,92−inに対する幅狭部75a,95aを連結する架橋部75c−in,95c−inと、遠い方の導波部72−out,92−outに対する幅狭部75a,95aを連結する架橋部75c−out,95c−outとで、形状が異なっている。すなわち、近い方の架橋部75c−in,95c−inに比べて、遠い方の架橋部75c−out,95c−inが幅を広く形成してあり、第1実施形態の接地電極25同様に、遠い方の導波部72−out,92−outの導波路72a,92aに対して、より強い応力をかけることができる。したがって、2つの導波部72,92間の応力特性の相異に関して、第4実施形態及び第5実施形態の光導波路デバイス60,80は、特に遠い方の導波部72−out,92−outにおいて、応力分布中心に近い側に位置する導波路72a,92aに対し、幅の広い架橋部75c−out,95c−outを有する接地電極75,95から、2本の導波路72a,72b,92a,92bの間に生じる応力差を打ち消すような応力がかかる。
第4実施形態及び第5実施形態の場合も、上述した各種変形例が可能で、例えば幅狭部75a,95aと幅広部75b,95bとの間の間隔について、当該間隔を零とする場合も含めて、応力分布中心からの距離に応じて違う間隔とすることもできる。また、図4を参照して上述したようなLN基板61,81の溝及びリッジ構造を適用することができる。
以上の各実施形態の光導波路デバイスは、一例として、光通信システムの送信機におけるマッハツェンダ型光変調器として利用することができる。図9は、その組込例を示すブロック図である。
図9の送信機では、波長及び出力レベルを可変とした光源100から出力される連続光CWが、マッハツェンダ型光変調器として使用する光導波路デバイス10,50,60,80の入力導波部21,71,91に入力される。多重化回路(MUX)101は、外部から与えられる複数のデータ信号を多重化して高ビットレートのデータ信号DATAを生成すると共に、データ信号DATAのビットレートに対応した周波数を有するクロック信号CLKを生成する。プリコーダ102は、多重化回路101からのデータ信号DATAを用いて、所要の光変調方式に対応した符号化処理を行い、データに対応した変調信号Q及びその反転信号Q’を生成してドライバ回路103に提供する。
光導波路デバイス10,50,60,80の信号電極24,74,94及び接地電極25,75,95は、抵抗で終端して進行波電極とされている。ドライバ回路103から出力される、データに対応した高周波電気信号である駆動信号が、光導波路デバイス10,50,60,80の信号電極24,74,94に印加されると、光導波路デバイス10,50,60,80において、データに従った光変調が実行される。
光導波路デバイス10,50,60,80から出力される光信号は、光カプラ104において一部がモニタ光として分岐され、分岐されたモニタ光が光検出器105で検出される。光検出器105による検出結果の電気信号がバイアス制御回路106に入力されて、バイアス制御回路106が、モニタ光の検出結果に基づきバイアス電圧を調整して光導波路デバイス10,50,60,80の動作点を最適化する。
以上の実施形態に関する付記を以下に開示する。
(付記1)
支持部材に載置された、電気光学効果を有する基板と、
前記基板に、前記基板の長さ方向へ伸延して形成された光導波路と、
前記基板上に形成され、前記光導波路に対し電界を作用させる電極と、
を含んで構成され、
前記光導波路は、光が入力される入力導波部と、前記入力導波部に入力された光を分岐して伝搬する2つの並行する導波路を備えた導波部と、前記導波部を伝搬してきた分岐光を結合する出力導波部と、を有し、
前記電極は、前記導波部ごとに、一方の前記導波路に重なる部分をもつ信号電極と、他方の前記導波路に重なる部分をもつ接地電極と、を備え、
前記接地電極が、前記導波部の伸延方向に交差する交差方向において、前記導波路に重なる幅狭部と、前記幅狭部よりも幅の広い幅広部と、に分割された部分を有し、前記幅狭部と前記幅広部との間を架橋部により連結してあり、
前記接地電極の架橋部の形状が、複数の前記接地電極間で異なる、光導波路デバイス。
(付記2)
付記1記載の光導波路デバイスであって、
前記接地電極の架橋部の形状が、前記支持部材から前記基板にかかる応力の前記交差方向における応力分布中心からの距離に応じて異なる、光導波路デバイス。
(付記3)
付記2記載の光導波路デバイスであって、
前記接地電極は、前記応力分布中心に近い側の前記導波路に前記幅狭部が重なる、光導波路デバイス。
(付記4)
付記3記載の光導波路デバイスであって、
前記応力分布中心から遠い方の前記接地電極の架橋部が、前記応力分布中心に近い方の前記接地電極の架橋部に比べて太く形成される、光導波路デバイス。
(付記5)
付記4記載の光導波路デバイスであって、
前記応力分布中心から遠い方の前記接地電極の架橋部の幅が、前記応力分布中心に近い方の前記接地電極の架橋部に比べて広く形成される、光導波路デバイス。
(付記6)
付記3記載の光導波路デバイスであって、
前記応力分布中心から遠い方の前記接地電極における前記幅狭部と前記幅広部との間の間隔が、前記応力分布中心に近い方の前記接地電極における前記幅狭部と前記幅広部との間の間隔に比べて、狭くなっている、光導波路デバイス。
(付記7)
付記3記載の光導波路デバイスであって、
前記応力分布中心から遠い方の前記接地電極が、前記応力分布中心に近い方の前記接地電極に比べて厚く形成される、光導波路デバイス。
(付記8)
付記7記載の光導波路デバイスであって、
前記応力分布中心から遠い方の前記接地電極の架橋部及び幅広部が、前記応力分布中心に近い方の前記接地電極の架橋部及び幅広部に比べて厚く形成される、光導波路デバイス。
(付記9)
付記1〜8のいずれか1項記載の光導波路デバイスであって、
前記導波部の導波路脇に沿う溝が前記基板に形成されており、
前記接地電極が、前記接地電極下に位置する前記溝を埋めるように形成される、光導波路デバイス。
(付記10)
付記9記載の光導波路デバイスであって、
前記各導波部の各導波路の両脇に前記溝が形成されており、前記交差方向における前記溝の形成位置に応じて、前記溝の形状が異なる、光導波路デバイス。
(付記11)
付記10記載の光導波路デバイスであって、
前記交差方向における前記溝の形成位置に応じて、前記溝の幅が異なる、光導波路デバイス。
(付記12)
付記10記載の光導波路デバイスであって、
前記交差方向における前記溝の形成位置に応じて、前記溝の深さが異なる、光導波路デバイス。
(付記13)
付記10記載の光導波路デバイスであって、
前記交差方向における前記溝の形成位置に応じて、前記溝の長さが異なる、光導波路デバイス。
(付記14)
付記10〜13のいずれか1項記載の光導波路デバイスであって、
前記基板において前記溝に挟まれた部位に形成されるリッジ部分に前記各導波路が形成されており、前記交差方向における前記リッジ部分の形成位置に応じて、前記リッジ部分の幅が異なる、光導波路デバイス。
(付記15)
付記10記載の光導波路デバイスであって、
前記交差方向において、前記信号電極を対称軸にして前記溝が対称に配置される、光導波路デバイス。
(付記16)
付記1〜15のいずれか1項記載の光導波路デバイスの前記信号電極の一端を抵抗を介して接地し終端してあり、データ信号に従った高周波電気信号を前記信号電極の他端に印加して使用する、マッハツェンダ型光変調器。
(付記17)
支持部材に載置された、電気光学効果を有する基板と、
前記基板に、前記基板の長さ方向へ伸延して形成された光導波路と、
前記基板上に形成され、高周波電気信号による電界を前記光導波路に対し作用させる進行波電極と、
前記基板上に形成され、前記光導波路の動作点を調整するバイアス電圧が印加される動作点調整電極と、
を含んで構成され、
前記光導波路は、光が入力される入力導波部と、前記入力導波部に入力された光を分岐して伝搬する2つの並行する導波路を備えた導波部と、前記導波部を伝搬してきた分岐光を結合する出力導波部と、を有し、
前記動作点調整電極は、前記導波部ごとに、一方の前記導波路に重なる部分をもつバイアス電極と、他方の前記導波路に重なる部分をもつ接地電極と、を備え、
前記接地電極が、前記導波部の伸延方向に交差する交差方向において、前記導波路に重なる幅狭部と、前記幅狭部よりも幅の広い幅広部と、に分割された部分を有し、前記幅狭部と前記幅広部との間を架橋部により連結してあり、
前記接地電極の架橋部の形状が、複数の前記接地電極間で異なる、光導波路デバイス。
(付記18)
付記17記載の光導波路デバイスの前記進行波電極に、データ信号に従った高周波電気信号を印加して使用する、マッハツェンダ型光変調器。
10,50,60,80 光導波路デバイス
11,61,81 基板
12 バッファ層
20,70,90 光導波路
21,71,91 入力導波部
22,72,92 導波部
22−in,72−in,92−in 応力分布中心に近い方の導波部
22−out,72−out,92−out 応力分布中心から遠い方の導波部
22a,72a,92a 応力分布中心に近い側の導波路
22b,72b,92b 応力分布中心から遠い側の導波路
23,73,93 出力導波部
24,74,94 信号電極
25,75,95 接地電極
25a,75a,95a 幅狭部
25b,75b,95b 幅広部
25c,75c,95c 架橋部
25c−in,75c−in,95c−in 応力分布中心に近い方の架橋部
25c−out,75c−out,95c−out 応力分布中心から遠い方の架橋部
51 バイアス電極
52 接地電極
52a 幅狭部
52b 幅広部
52c 架橋部
52c−in 応力分布中心に近い方の架橋部
52c−out 応力分布中心から遠い方の架橋部

Claims (9)

  1. 支持部材に載置された、電気光学効果を有する基板と、
    前記基板に、前記基板の長さ方向へ伸延して形成された光導波路と、
    前記基板上に形成され、前記光導波路に対し電界を作用させる電極と、
    を含んで構成され、
    前記光導波路は、光が入力される入力導波部と、前記入力導波部に入力された光を分岐して伝搬する2つの並行する導波路を備えた導波部と、前記導波部を伝搬してきた分岐光を結合する出力導波部と、を有し、
    前記電極は、前記導波部ごとに、一方の前記導波路に重なる部分をもつ信号電極と、他方の前記導波路に重なる部分をもつ接地電極と、を備え、
    前記接地電極が、前記導波部の伸延方向に交差する交差方向において、前記導波路に重なる幅狭部と、前記幅狭部よりも幅の広い幅広部と、に分割された部分を有し、前記幅狭部と前記幅広部との間を架橋部により連結してあり、
    前記接地電極の架橋部の形状が、複数の前記接地電極間で異なる、
    光導波路デバイス。
  2. 請求項1記載の光導波路デバイスであって、
    前記接地電極は、前記支持部材から前記基板にかかる応力の前記交差方向における応力分布中心に近い側の前記導波路に前記幅狭部が重なる、光導波路デバイス。
  3. 請求項2記載の光導波路デバイスであって、
    前記応力分布中心から遠い方の前記接地電極の架橋部が、前記応力分布中心に近い方の前記接地電極の架橋部に比べて太く形成される、光導波路デバイス。
  4. 請求項2記載の光導波路デバイスであって、
    前記応力分布中心から遠い方の前記接地電極における前記幅狭部と前記幅広部との間の間隔が、前記応力分布中心に近い方の前記接地電極における前記幅狭部と前記幅広部との間の間隔に比べて、狭くなっている、光導波路デバイス。
  5. 請求項2記載の光導波路デバイスであって、
    前記応力分布中心から遠い方の前記接地電極が、前記応力分布中心に近い方の前記接地電極に比べて厚く形成される、光導波路デバイス。
  6. 請求項1〜5のいずれか1項記載の光導波路デバイスであって、
    前記導波部の導波路脇に沿う溝が前記基板に形成されており、
    前記接地電極が、前記接地電極下に位置する前記溝を埋めるように形成される、光導波路デバイス。
  7. 請求項1〜6のいずれか1項記載の光導波路デバイスの前記信号電極の一端を抵抗を介して接地し終端してあり、データ信号に従った高周波電気信号を前記信号電極の他端に印加して使用する、マッハツェンダ型光変調器。
  8. 支持部材に載置された、電気光学効果を有する基板と、
    前記基板に、前記基板の長さ方向へ伸延して形成された光導波路と、
    前記基板上に形成され、高周波電気信号による電界を前記光導波路に対し作用させる進行波電極と、
    前記基板上に形成され、前記光導波路の動作点を調整するバイアス電圧が印加される動作点調整電極と、
    を含んで構成され、
    前記光導波路は、光が入力される入力導波部と、前記入力導波部に入力された光を分岐して伝搬する2つの並行する導波路を備えた導波部と、前記導波部を伝搬してきた分岐光を結合する出力導波部と、を有し、
    前記動作点調整電極は、前記導波部ごとに、一方の前記導波路に重なる部分をもつバイアス電極と、他方の前記導波路に重なる部分をもつ接地電極と、を備え、
    前記接地電極が、前記導波部の伸延方向に交差する交差方向において、前記導波路に重なる幅狭部と、前記幅狭部よりも幅の広い幅広部と、に分割された部分を有し、前記幅狭部と前記幅広部との間を架橋部により連結してあり、
    前記接地電極の架橋部の形状が、複数の前記接地電極間で異なる、
    光導波路デバイス。
  9. 請求項8記載の光導波路デバイスの前記進行波電極に、データ信号に従った高周波電気信号を印加して使用する、マッハツェンダ型光変調器。
JP2009150518A 2009-06-25 2009-06-25 光導波路デバイス Active JP5326860B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009150518A JP5326860B2 (ja) 2009-06-25 2009-06-25 光導波路デバイス
US12/801,461 US8380017B2 (en) 2009-06-25 2010-06-09 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150518A JP5326860B2 (ja) 2009-06-25 2009-06-25 光導波路デバイス

Publications (2)

Publication Number Publication Date
JP2011007972A true JP2011007972A (ja) 2011-01-13
JP5326860B2 JP5326860B2 (ja) 2013-10-30

Family

ID=43380823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150518A Active JP5326860B2 (ja) 2009-06-25 2009-06-25 光導波路デバイス

Country Status (2)

Country Link
US (1) US8380017B2 (ja)
JP (1) JP5326860B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212028A (ja) * 2011-03-31 2012-11-01 Sumitomo Osaka Cement Co Ltd 進行波型光変調素子
US9448424B2 (en) 2014-03-07 2016-09-20 Fujitsu Optical Components Limited Optical module and optical modulation device
WO2016159020A1 (ja) * 2015-03-31 2016-10-06 住友大阪セメント株式会社 光変調器
JP2017032968A (ja) * 2016-02-08 2017-02-09 住友大阪セメント株式会社 光変調器及びそれを用いた光送信装置
JP2019519816A (ja) * 2016-07-01 2019-07-11 オクラロ テクノロジー リミテッド Rf導波路アレイの接地構造
JP2020020953A (ja) * 2018-07-31 2020-02-06 富士通オプティカルコンポーネンツ株式会社 光変調器、光変調器モジュール、及び光送信モジュール
US10678114B2 (en) 2016-07-01 2020-06-09 Lumentum Technology Uk Limited Ground structure in RF waveguide array

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170381B2 (en) * 2007-09-19 2012-05-01 Anritsu Corporation Optical modulator
EP2745434A1 (en) * 2011-10-19 2014-06-25 Telefonaktiebolaget LM Ericsson (PUBL) Optical modulator and method of encoding communications traffic in a multilevel modulation format
US9008469B2 (en) * 2012-11-09 2015-04-14 Teraxion Inc. Mach-zehnder optical modulator having an asymmetrically-loaded traveling wave electrode
US8903202B1 (en) * 2012-11-09 2014-12-02 Teraxion Inc. Mach-Zehnder optical modulator having a travelling wave electrode with a distributed ground bridging structure
TW201426151A (zh) * 2012-12-19 2014-07-01 Hon Hai Prec Ind Co Ltd 電光調製器
US9577780B2 (en) * 2014-06-26 2017-02-21 Luxtera, Inc. Method and system for a polarization immune wavelength division multiplexing demultiplexer
WO2017123243A1 (en) * 2016-01-15 2017-07-20 Hewlett Packard Enterprise Development Lp Optical signal modulation
GB2558307B (en) * 2016-12-30 2021-05-05 Lumentum Tech Uk Limited Waveguide array
JP7115483B2 (ja) * 2017-08-24 2022-08-09 Tdk株式会社 光変調器
JP7176837B2 (ja) * 2017-09-06 2022-11-22 住友電気工業株式会社 マッハツェンダ変調器、光変調装置
US11861513B2 (en) 2020-07-13 2024-01-02 International Business Machines Corporation Methods for detecting and monitoring bias in a software application using artificial intelligence and devices thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028418A1 (en) * 2001-09-26 2004-02-12 Arkady Kaplan Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
JP2006084537A (ja) * 2004-09-14 2006-03-30 Fujitsu Ltd 光デバイス
JP2008046573A (ja) * 2006-08-21 2008-02-28 Fujitsu Ltd 光変調器
JP2008276145A (ja) * 2007-04-05 2008-11-13 Anritsu Corp 光変調器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734708B2 (ja) 1989-12-28 1998-04-02 富士通株式会社 光変調器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028418A1 (en) * 2001-09-26 2004-02-12 Arkady Kaplan Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
JP2006084537A (ja) * 2004-09-14 2006-03-30 Fujitsu Ltd 光デバイス
JP2008046573A (ja) * 2006-08-21 2008-02-28 Fujitsu Ltd 光変調器
JP2008276145A (ja) * 2007-04-05 2008-11-13 Anritsu Corp 光変調器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212028A (ja) * 2011-03-31 2012-11-01 Sumitomo Osaka Cement Co Ltd 進行波型光変調素子
US9448424B2 (en) 2014-03-07 2016-09-20 Fujitsu Optical Components Limited Optical module and optical modulation device
WO2016159020A1 (ja) * 2015-03-31 2016-10-06 住友大阪セメント株式会社 光変調器
JP2016194577A (ja) * 2015-03-31 2016-11-17 住友大阪セメント株式会社 光変調器
US10078253B2 (en) 2015-03-31 2018-09-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator
JP2017032968A (ja) * 2016-02-08 2017-02-09 住友大阪セメント株式会社 光変調器及びそれを用いた光送信装置
JP2019519816A (ja) * 2016-07-01 2019-07-11 オクラロ テクノロジー リミテッド Rf導波路アレイの接地構造
US10678114B2 (en) 2016-07-01 2020-06-09 Lumentum Technology Uk Limited Ground structure in RF waveguide array
US10684528B2 (en) 2016-07-01 2020-06-16 Lumentum Technology Uk Limited Ground structure in RF waveguide array
JP2020020953A (ja) * 2018-07-31 2020-02-06 富士通オプティカルコンポーネンツ株式会社 光変調器、光変調器モジュール、及び光送信モジュール
JP7135546B2 (ja) 2018-07-31 2022-09-13 富士通オプティカルコンポーネンツ株式会社 光変調器、光変調器モジュール、及び光送信モジュール

Also Published As

Publication number Publication date
US8380017B2 (en) 2013-02-19
JP5326860B2 (ja) 2013-10-30
US20100329600A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
JP5326860B2 (ja) 光導波路デバイス
JP5120341B2 (ja) 光デバイス
JP5326624B2 (ja) 光変調器
JP4899730B2 (ja) 光変調器
JP5067464B2 (ja) 光制御素子
JP5439838B2 (ja) 光変調器
JP5092573B2 (ja) 光導波路デバイス
JP5405073B2 (ja) 電子デバイス
US20080044124A1 (en) Optical modulator
JPWO2004068221A1 (ja) 光変調器
JP6107869B2 (ja) 光変調器
JP5991339B2 (ja) 光制御素子
JP2011028014A (ja) 光デバイスおよび光送信機
US10088699B2 (en) Optical modulator
JPWO2008117449A1 (ja) 光デバイス
JP5493670B2 (ja) 光変調器および光送信器
JP2012203339A (ja) 光導波路素子
JP5050003B2 (ja) 光変調器
JP4771451B2 (ja) 進行波型光変調器
JP2009109929A (ja) 光変調器
JP6233342B2 (ja) 光変調器
JP5001310B2 (ja) 光変調器
JP2012215678A (ja) 進行波型光変調素子
JP5271294B2 (ja) リッジ光導波路とそれを用いた光変調器
JP5244869B2 (ja) 光変調器モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150