JP2011002514A - 位相差顕微鏡 - Google Patents

位相差顕微鏡 Download PDF

Info

Publication number
JP2011002514A
JP2011002514A JP2009143628A JP2009143628A JP2011002514A JP 2011002514 A JP2011002514 A JP 2011002514A JP 2009143628 A JP2009143628 A JP 2009143628A JP 2009143628 A JP2009143628 A JP 2009143628A JP 2011002514 A JP2011002514 A JP 2011002514A
Authority
JP
Japan
Prior art keywords
transmittance
phase
light
optical system
contrast microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009143628A
Other languages
English (en)
Inventor
Kaoru Kato
薫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009143628A priority Critical patent/JP2011002514A/ja
Publication of JP2011002514A publication Critical patent/JP2011002514A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】位相差顕微鏡において、複雑な構成の位相板や対物レンズを用いることなく被検体の大きさに対応して、容易に良好な位相差観察を行うことができるようにする。
【解決手段】光源2と、光源2からの光を開口絞り4を通して被検体に照射するコンデンサーレンズ部6と、被検体の像を形成する対物光学系9と、対物光学系9の光路上において開口絞り4と共役な位置に設けられている位相板10とを有する位相差顕微鏡1であって、対物光学系9による像形成後の光路上において位相板10と共役な位置に配置された透過率規制部材14を備え、透過率規制部材14は、少なくとも位相板10の位相膜10bの全体を光学的に覆う範囲に設けられた透過率変調部14bと、開口絞り4の開口部4aの全体を光学的に覆う範囲で透過率変調部14bの周囲を取り囲むように設けられ、透過率変調部14bよりも高い一様な透過率を有する無変調透過部14aとを備える。
【選択図】図1

Description

本発明は、位相差顕微鏡に関する。特に位相差顕微鏡の空間周波数の変調に関する。
従来、無色透明で屈折率が周囲と異なる物体(位相物体)を可視化する方法として位相差法が知られており、また、この位相差法による顕微鏡観察装置として位相差顕微鏡が知られている。この位相差顕微鏡は、例えば生体試料などの位相物体の観察に広く用いられている。
試料(位相物体)を透過した光は、背景光(0次回折光)と回折光(1次回折光)からなる。回折光は、背景光に対し、π/2の位相差(λ/4の光路差)を持ちかつ強度も弱いので、そのままでは干渉することはできない。
位相差顕微鏡は、試料の背景光(0次回折光)の位相と強度に変調を加えて、回折光(1次回折光)と干渉させることにより、無色透明の位相物体にコントラストを付けて可視化する装置である。背景光(0次回折光)の変調は、光の位相をπ/2すすめ、かつ光の強度を弱めるNDフィルター特性を有する薄膜を備えた位相板を、対物光学系内において照明光学系の開口絞りと光学的に共役な位置に配置して行われる。
このような構成では、例えば、背景光(0次回折光)の位相は位相板によりπ/2遅らせ(ブライトコントラスト)られ、もしくは、π/2だけ進め(ダークコントラスト)られ、回折光(1次回折光)と同位相になり、かつ、背景光(0次回折光)の強度は、位相板により弱められる。像は、回折光(1次回折光)と位相板により変調を受けた背景光の和となり、背景に対して、明るい像(ブライトコントラスト)もしくは暗い像(ダークコントラスト)が形成される。つまり、
結像光 = 変調を受けた背景光(0次回折光) + 回折光(1次回折光)
となる。第1項の変調を受けた背景光は振幅が一定で、かつ、第2項の回折光(±1次回折光)は、位相物体の位相差に応じた振幅を持つので、像は位相物体の位相差に応じた明暗のコントラストをもち、位相物体の位相差が可視化される。
ところが、位相差顕微鏡では、位相物体の縁の部分に光のにじみが生じるという欠点がある。この現象はハロ(halo)と呼ばれている。観察像のハロの程度は、位相物体のサイズ、及び、位相膜の光の透過率と相関がある。位相物体のサイズが大きいほど、また、位相膜の透過率が低い(高コントラスト観察用の位相板)ほど、ハロは大きくなる。
ハロを低減するには、ハロが出やすい試料に対しては、低コントラスト観察用の位相板を備える対物レンズを用いるか、いわゆるアポダイズド位相差法を採用した対物レンズを用いる必要があった。
アポダイズド位相差法による観察を行う位相差顕微鏡としては、例えば、特許文献1に記載された位相差観察装置(位相差顕微鏡)が知られている。
この位相差観察装置は、コンデンサレンズの前側焦点面にリング絞りが配置され、これと共役な関係にある対物レンズの後側焦点面に位相絞りが配置されている。この位相絞りは、リング絞りの開口部と相似な形状であって、リング絞りと位相絞りの間の光学系によってリレーされる倍率で定まる形状を有し、かつ透過光に光路差λ/4(位相差π/2)を与える位相板を有している。さらに、この位相絞りは、位相板の領域に設けられた輪帯状の第1の透過率変調部と、その周囲を取り囲むように外周および内周部分に設けられた第2の透過率変調部と、第2の透過率変調部の外周部および内周部に形成された無変調部とを有している。ここで、第1および第2の透過率変調部はニュートラルデンシティ膜(ND膜)によって形成されている。
アポダイズド位相差法では、位相物体が小さい場合には、±1次回折光の回折角が大きくなるため、位相板および第1の透過率変調部によって、従来の位相差法と同様なハロの少ない観察を行うことができる。また、位相物体が大きい場合には、±1次回折光の回折角が小さいため、±1次回折光が第2の透過率変調部を透過してその光強度が低減された状態で0次光と干渉する。このため、±1次回折光の光強度が低減されずに干渉する場合に比べて、位相差量のコントラストが低減され、ハロの少ない試料像を観察することができる。
特開2000−19410号公報
しかしながら、上記のような従来の位相差顕微鏡には、以下のような問題があった。
低コントラスト観察用の対物レンズではハロが低減できるものの、位相差量に基づくコントラストも低下し、良好な像の検出も困難になる。ハロが少ない被検体(試料)の観察時には高コントラスト観察用の対物レンズに切り替える必要があり、効率的な観察ができないこと、及び、ハロが少ない被検体でも高コントラスト用対物レンズで観察すると、ハロが生じることが問題である。
また、ハロの発生の仕方は、被検体である位相物体の大きさ、すなわち、位相物体の空間周波数の大きさに依存するため、被検体の空間周波数に応じて、コントラストの程度を変えた位相板を有する対物レンズを数多く揃えておく必要があるという問題がある。
また、アポダイズド位相差法に用いる対物レンズは、1種類でも、ある程度の空間周波数範囲に対応する被検体に対応することができるものの、被検体の大きさによっては位相絞りの空間周波数特性を変化させた対物レンズに交換する必要があるという問題がある。
また、アポダイズド位相差法に用いる位相絞りは、一般の位相差板に精度よくND膜を形成しなければならないため、構成がより複雑となり、製造にたいへん手間がかかる。このため、特許文献1に記載の技術において、理想に近い形の第2の透過率変調部をもつ対物レンズを作製することは技術的に難しいだけではなく、作製できたとしても、部品コストが大変高価なものとなるという問題があり、単純な形状の第2の透過率変調部を持つ対物レンズしか作られていない。
また被検体の種類によっては、位相絞りの構成を変えねばならないため、このような高価で、かつ、作製が難しいなアポダイズド位相差法用の位相絞り、対物レンズを被検体の種類に応じて多数用意しておかなければならないという問題がある。
本発明は、上記のような問題に鑑みてなされたものであり、複雑な構成の位相板や対物レンズを用いることなく被検体の大きさに対応して、ハロを減弱した良好な位相差観察を容易に行うことができる位相差顕微鏡を提供することを目的とする。
上記の課題を解決するために、請求項1に記載の発明では、光源と、開口絞りを有し前記光源からの光束を前記開口絞りを通して被検体に照射する照明光学系と、該照明光学系によって照明された前記被検体からの光束による像を形成する対物光学系と、該対物光学系の光路上において前記開口絞りと共役な位置に設けられている位相変換部とを有する位相差顕微鏡であって、前記対物光学系による像形成後の光路上において前記位相変換部と共役な位置に配置された透過率規制部材を備え、該透過率規制部材は、少なくとも前記位相変換部の全体を光学的に覆う範囲で透過光量分布を規制する透過率変調部と、前記開口絞りの開口部の全体を光学的に覆う範囲で前記透過率変調部の周囲を取り囲むように設けられ、前記透過率変調部よりも高い一様な透過率を有する無変調透過部とを備えてなる構成とする。
この発明によれば、照明光学系から開口絞りを通して被検体に照射された光のうち、被検体を透過して直進する0次光は開口絞りと共役な位置に設けられている位相変換部によって位相が変換され、被検体で回折された回折光は位相変換部を透過しないため位相が変換されることなく、それぞれ、対物光学系の像面に結像される。そして、この像形成後の光路上において、位相変換部と共役な位置に配置された透過率規制部材によって、0次光および回折光の透過率が規制される。透過率規制部材は、少なくとも透過率変換部の全体を光学的に覆う透過率変調部と無変調透過部とを有するので、透過率変調部を透過した0次光は透過率変換部により光強度が低減される。このため、透過率規制部材を透過した0次光および回折光の像を結ぶことにより、位相差法の観察を行うことができる。特に、透過率変調部が、位相変換部よりも大きな範囲を光学的に覆う場合、その大きさに応じて、アポダイズド位相差法による観察を行うことができる。
ここで、「位相変換部あるいは開口絞りを光学的に覆う範囲」とは、位相変換部あるいは開口絞りと、透過率変調部との間の光学倍率に応じて透過率変調部の位置に投影される位相変換部あるいは開口絞りの像を、透過率変調部が覆う範囲であることを意味する。
請求項2に記載の発明では、請求項1に記載の位相差顕微鏡において、前記透過率変調部は、前記無変調透過部に挟まれた方向の断面において、前記無変調透過部に接する外縁部から中心部に向けて透過率が段階的に減少する透過率分布特性を有する構成とする。
この発明によれば、透過率変調部は、無変調透過部に接する外縁部から中心部に向けて透過率が段階的に減少する透過率分布特性を有するため、透過率規制部材の透過光は、透過率変調部と無変調透過部との境界部側では、光強度が高く、中心部に向かうほど段階的に光強度が低下する。このため、透過率変調部を透過する光束のうち、中心部に近い側を透過する光束ほど、中心部を透過する光束との光強度のコントラストが段階的に小さくなる。そのため、被検体の空間周波数が変わっても位相差観察におけるコントラストの変化が段階的に抑制される。
請求項3に記載の発明では、請求項1に記載の位相差顕微鏡において、前記透過率変調部は、前記無変調透過部に挟まれた方向の断面において、前記無変調透過部に接する外縁部から中心部に向けて透過率が漸減されてから急峻に低減される略U字状の透過率分布特性を有する構成とする。
この発明によれば、透過率変調部は、無変調透過部に接する外縁部から中心部に向けて透過率が漸減されてから急峻に低減される略U字状の透過率分布特性を有するため、透過率規制部材の透過光は、透過率変調部と無変調透過部との境界部側では、光強度が高く、中心部に向かうにつれ、光強度が漸減してから急峻に低下する。このため、透過率変調部を透過する光束のうち、光束の透過位置が境界部側から中心部側に向かうにつれて、滑らかに光強度のコントラストが低減される。そのため、被検体の空間周波数が変わっても位相差観察におけるコントラストの変化が滑らかとなる。
請求項4に記載の発明では、請求項3に記載の位相差顕微鏡において、前記略U字状の透過率分布特性は、透過率の低減率がガウス分布に従う透過率分布特性である構成とする。
この発明によれば、略U字状の透過率分布特性は、透過率の低減率がガウス分布に従うため、透過率変調部を透過する光束のうち、光束の透過位置が境界部側から中心部側に向かうにつれて、光強度のコントラストがガウス分布にしたがって低減される。そのため、被検体の空間周波数が変わっても、位相差観察におけるコントラストの変化がより滑らかとなる。
請求項5に記載の発明では、請求項1〜4のいずれかに記載の位相差顕微鏡において、前記透過率規制部材は、透過率可変に設けられた液晶フィルターである構成とする。
この発明によれば、液晶フィルターの透過率を可変することによって、透過率変調部の変調強度および変調の空間周波数を可変できるので、被検体の大きさや種類が変わっても、良好な観察を行うための透過率分布特性を容易に設定することができる。被検体の大きさや種類が変わっても、透過率規制部材を交換することなく観察を行うことができる。
本発明の位相差顕微鏡によれば、対物光学系による像形成後の光路上において位相変換部と共役な位置に配置された透過率規制部材を備えるので、複雑な構成の位相板や対物レンズを用いることなく被検体の大きさに対応して、ハロを減弱した良好な位相差観察を容易に行うことができるという効果を奏する。
本発明の実施形態に係る位相差顕微鏡の概略構成を示す模式的な概略構成図である。 本発明の実施形態に係る位相差顕微鏡の位相変換部を示す模式的な平面図である。 本発明の実施形態に係る位相差顕微鏡の透過率規制部材の模式的な平面図である。 本発明の実施形態に係る位相差顕微鏡の透過率規制部材の透過率分布特性を示す模式的なグラフである。 本発明の実施形態の第1変形例に係る位相差顕微鏡の透過率規制部材の透過率分布特性を示す模式的なグラフである。 本発明の実施形態の第2変形例に係る位相差顕微鏡の透過率規制部材の透過率分布特性を示す模式的なグラフである。 本発明の実施形態の第3変形例に係る位相差顕微鏡の透過率規制部材の透過率分布特性を示す模式的なグラフである。 本発明の実施形態の第4変形例に係る位相差顕微鏡の透過率規制部材の透過率分布特性を示す模式的なグラフである。 本発明の実施形態の第5変形例に係る位相差顕微鏡の透過率規制部材の透過率分布特性を示す模式的なグラフである。 本発明の実施形態の第6変形例に係る位相差顕微鏡の透過率規制部材の模式的な平面図である。 本発明の実施形態の第7変形例に係る位相差顕微鏡の開口絞りを示す模式的な平面図である。 本発明の実施形態の第7変形例に係る位相差顕微鏡の位相変換部を示す模式的な平面図である。 本発明の実施形態の第7変形例に係る位相差顕微鏡の透過率規制部材の模式的な平面図である。
以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。
本発明の実施形態に係る位相差顕微鏡について説明する。
図1は、本発明の実施形態に係る位相差顕微鏡の概略構成を示す模式的な概略構成図である。図2は、本発明の実施形態に係る位相差顕微鏡の位相変換部を示す模式的な平面図である。図3は、本発明の実施形態に係る位相差顕微鏡の透過率規制部材の模式的な平面図である。図4は、本発明の実施形態に係る位相差顕微鏡の透過率規制部材の透過率分布特性を示す模式的なグラフである。横軸は、透過率変調部の中心を原点とする径方向位置、縦軸は透過率を示す。
本実施形態の位相差顕微鏡1は、図1に示すように、被検体載置面O上に配置された被検体の位相差観察を行うためのものである。
被検体としては、試料の屈折率や大きさによって背景光と試料の透過光との間に光路差が生じる位相物体であれば、適宜の試料を採用することができる。例えば、細胞などの生体試料を採用することができる。
以下では、一例として、サイズが30μmの細胞とその内部の構造を倍率100倍の対物レンズで、位相差観察する場合の例で説明する。
位相差顕微鏡1の概略構成は、光源2、集光レンズ3(照明光学系)、開口絞り4、コンデンサーレンズ5(照明光学系)、対物光学系9、位相板10、リレー光学系13、および透過率規制部材14を備え、これらが光軸C上に同軸に配置されている。
なお、位相差顕微鏡1は、特に図示しないが、従来の位相差顕微鏡と同様、後述する像面Iに形成される被検体の像を観察するため、接眼光学系や、撮像カメラなどを備えている。
光源2は、被検体に照射する照明光を発生するもので、例えば、ハロゲンランプ、水銀ランプ、キセノンランプ、メタルハライドランプ、LEDなどを採用することができる。また特に図示しないが、コントラストを向上するため必要に応じて照明光の波長を選択するフィルターや、視野絞りなどが適宜設けられている。
集光レンズ3は、光源2で発生された照明光を略平行光束に集光するレンズである。
なお、図1は模式図のため、集光レンズ3を単レンズのように描いているが、単レンズからなっていてもよいし、レンズ群からなっていてもよい。また、レンズまたはレンズ群は適宜のレンズ鏡筒に収められている。以下、図1に記載された他のすべてのレンズも同様である。
開口絞り4は、本実施形態では、光軸Cを中心とする輪帯状の開口部4aを有し、透過光束の断面をリング状に整形するリング絞りからなり、後述する位相板10と光学的に共役な位置(以下、単に共役な位置という)に配置されている。
コンデンサーレンズ5は、開口絞り4の開口部4aを透過した光束を被検体載置面Oに集光するレンズである。
開口絞り4およびコンデンサーレンズ5は、一体化されてコンデンサーレンズ部6を構成しており、位相差顕微鏡1に着脱可能に取り付けられている。
また、集光レンズ3、およびコンデンサーレンズ部6は、開口絞り4を有し光源2からの光束を開口絞り4を通して被検体に照射する照明光学系を構成している。
光源2、集光レンズ3、コンデンサーレンズ部6は、従来の位相差顕微鏡に用いる照明光学系と同様の構成を採用することができる。コンデンサーレンズ5の一例としては、開口数0.7以上のコンデンサーレンズを採用できる。
対物光学系9は、照明光学系によって照明された被検体からの光束による像を形成するための光学系であり、本実施形態では、無限遠補正光学系からなる対物レンズ7と、対物レンズ7によって集光された光束を結像する結像レンズ8とからなる。
対物光学系9は、被検体の観察時には、被検体載置面Oが対物レンズ7の前側焦点面に一致するように調整して配置される。このような位置関係において、コンデンサーレンズ5および対物レンズ7はアフォーカル光学系を構成している。
対物レンズ7としては、例えば、次の開口数のものを使用できる。つまり、乾燥系の対物レンズでは、開口数0.7〜0.95、水浸系対物レンズでは開口数0.7〜1.2、油浸系対物レンズでは開口数1.2〜1.4のものを採用することができる。
位相板10は、対物レンズ7および結像レンズ8の間の光路上において、開口絞り4と共役な位置に設けられている位相変換部として位相膜10bを備えるものであり、被検体を透過した光束のうち、背景光に由来する0次光がこの位相膜10bを透過するように配置され、この位相膜10bの透過光の位相をπ/2だけずらすものである。本実施形態では、位相板10の位相膜10bは、対物レンズ7の後側焦点面に配置されている。
本実施形態の位相膜10bの形状は、図1、2に示すように、円板状のガラス基板10aに、光軸Cを中心として、内径d、外径dの輪帯状に形成されている。本実施形態では、ダークコントラストの位相差観察を行うため、位相膜10bは、透過光の位相をπ/2だけ進ませるものが形成されている。すなわち、位相膜10bは、照明光学系によって、被検体に照射される照明光の波長、あるいは中心波長を波長λとして、透過光に光路差λ/4を発生させることで位相を進めている。例えば、λ=546nmの緑の波長光に対してλ/4の光路差を発生させる。
位相膜10bの内径d、外径dは、コンデンサーレンズ5および対物レンズ7を介して、投影される開口絞り4の開口部4aの像によって、位相膜10bの全体が覆われる大きさに設定される。例えば、開口数1.3〜1.40の対物レンズ7を用いる場合、位相膜10bの内径dは開口数0.58に相当する輪径に、外径dは開口数0.7に相当する輪径に、それぞれ設定されている。
なお、本実施形態では、位相膜10b上には、位相膜10bを透過する光束の光量を規制するニュートラルデンシティ膜(ND膜)は形成されていなくてもよいが、ND膜を有していてもよい。この場合、対物光学系9および位相板10は、従来の位相差顕微鏡において用いられる、位相板上にND膜を有する位相板、およびそれに用いる対物レンズ、あるいはそれらが一体化された対物レンズユニットをそのまま利用することもできる。
リレー光学系13は、対物光学系9によって結ばれた被検体の像Sを、像面Iにリレーする光学系であり、本実施形態では、像Sに前側焦点面が一致された集光レンズ11と、像面Iに後側焦点面が一致された集光レンズ12とからなる。このため、結像レンズ8および集光レンズ11はアフォーカル光学系を構成している。
本実施形態では、結像レンズ8および集光レンズ11からなる光学系の光学倍率βは、一例として、β=2.0である。
透過率規制部材14は、図1、3に示すように、少なくとも位相板10の位相膜10bの全体を光学的に覆う範囲で透過光量分布を規制する透過率変調部14bと、開口絞り4の開口部4aの全体を光学的に覆う範囲で透過率変調部14bの周囲を取り囲むように設けられ、透過率変調部14bよりも高い一様な透過率を有する無変調透過部14aとを備えてなる。
また、透過率規制部材14は、対物光学系9による像形成後の光路上において位相板10と共役な位置に着脱可能に配置されている。本実施形態では、透過率規制部材14は集光レンズ11の後側焦点面に配置されている。
このため、位相板10の配置位置と同様、透過率規制部材14の配置位置は、フーリエ面となっており、透過率規制部材14は、空間変調フィルターの機能を有している。
透過率規制部材14を着脱可能に配置する手段としては、透過率規制部材14がリレー光学系13と一体に保持され、リレー光学系13とともに着脱する方式を採用することができる。あるいは、リレー光学系13の配置を固定し、集光レンズ11、12の間の平行光路中において、ターレット機構やスライド機構またはカセットの抜き差し機構などによって保持された複数の透過率規制部材14を光路上に進退させて切り替える方式を採用してもよい。
なお、「位相膜10bの全体を光学的に覆う範囲」とは、結像レンズ8および集光レンズ11で構成される光学系の光学倍率に応じて変倍されて、透過率規制部材14上に投影された位相膜10bの像が、図3の二点鎖線で示すように、透過率変調部14bの範囲に覆われることを意味する。すなわち、透過率規制部材14の内径D、外径Dは、D<β・dかつD>β・dを意味する。
本実施形態の場合、内径D、外径Dは、開口数で、それぞれ0.46、0.82に相当する輪径としている。
透過率規制部材14の透過率分布特性は、良好な位相観察を行うため適宜の透過率分布特性を採用することができるが、本実施形態では、図4に曲線100で示すようなフラットな分布を採用している。すなわち、光軸C(図4の原点O)から半径D/2までの円領域、および半径D/2より外側の無変調透過部14aの領域の透過率が一定の透過率Tであり、半径D/2から半径D/2までの透過率変調部14bの領域の透過率が一定の透過率T(ただし、T<T)となる透過率分布特性を採用している。
本実施形態では、一例として、T=100(%)、T=60(%)としている。
リレー光学系13および透過率規制部材14は、対物光学系9の結像後の光路上に配置されているので、本実施形態の位相差顕微鏡1は、従来の位相差顕微鏡に、リレー光学系13および透過率規制部材14を含む鏡筒ユニットを着脱可能に連結した構成としてもよい。
次に、本実施形態の位相差顕微鏡1の動作について説明する。
光源2で発生された光束は、図1に示すように、集光レンズ3によって、集光され、略平行光束として、コンデンサーレンズ部6の開口絞り4に照射される。
開口絞り4に照射された光束は、開口部4aを透過することによって、リング状に整形されてから、コンデンサーレンズ5に入射する。
コンデンサーレンズ5に入射した光束は、コンデンサーレンズ5の屈折作用によって、リング径を狭めながら、光軸Cに向かう斜め方向に出射され、被検体載置面O上にスポット状に集光される。
被検体は屈折率差を有する位相物体からなるため、コンデンサーレンズ5によって集光された照明光束が被検体載置面O上の被検体(不図示)に照射されると、照明光束は、被検体を透過して直進する0次光Lと、回折光L、Lに分かれる。回折光L、Lは、対物光学系9のNAを考慮すると、回折角が小さい回折光のみを考慮すればよく、実質的に±1次回折光からなるとしてよい。
0次光Lは、対物レンズ7によって集光されるとともに、光路が屈曲されて、光軸Cに沿う円筒状の平行光束として出射され、位相板10の位相膜10bを透過して、結像レンズ8に入射する。
位相膜10bを透過する際、0次光Lは、位相板10によって、位相がπ/2だけ進むとともに、位相膜10bの透過率に応じて光強度が変化した光束となる。
結像レンズ8に入射した0次光Lは、結像レンズ8の集光作用によって、集光されて筒、結像レンズ8の後側焦点面に到達し、被検体の像Sが形成される。
また、回折光L、Lは、対物レンズ7、結像レンズ8の屈折作用によって、0次光Lと同様に結像レンズ8の後側焦点面に到達し、被検体の像Sが形成される。
ただし、回折光L、Lは、図1に示すように、被検体から各回折角の方向に出射され、位相板10の配置位置において回折角に応じた位置に入射する。このため、回折光L、Lは、位相膜10bを通らずガラス基板10aを透過する。この結果、像Sは、回折光L、Lと、これらに比べて位相がπ/2だけ進んだ0次光Lとにより形成されるため、干渉により位相物体を通過しない光による像に比べて光強度が低下した像となる。
ここまでの光路は、従来の位相差法を用いた位相差顕微鏡とまったく同様である。
本実施形態では、像Sを形成した後の0次光L、および回折光L、Lは、それぞれの光路を直進して、集光レンズ11に入射し、集光レンズ11の屈折作用によって、平行光束とされて、透過率規制部材14に入射する。
透過率規制部材14は、共役の位置にある位相板10の位相膜10bを光学的に覆う範囲に設けられている。このため、図3に示すように、透過率変調部14bは、結像レンズ8および集光レンズ11で構成される光学系によって投影される位相膜10bの像(図3の二点鎖線参照)の全体と重なり位相膜10bを透過する0次光Lが到達する0次光透過領域14Bと、位相膜10bの像の内周側および外周側にはみ出した領域に形成され被検体の空間周波数によっては、回折光L、Lがそれぞれ透過する回折光透過領域14A、14Bとの3領域に分かれている。
0次光Lは、必ず0次光透過領域14Bを透過するため、透過率規制部材14の透過率分布特性にしたがって、透過光量が透過率Tに応じて減衰され、集光レンズ12に入射して像面Iに像を形成する。
一方、回折光L,Lの光路は、それぞれが透過した被検体の空間周波数によって異なる。
被検体の空間周波数が大きい(位相物体の大きさが小さい、位相差量が大きい)場合には、回折光L、Lの回折角が大きくなるため、回折光L、Lは、0次光Lから大きく離間して無変調透過部14aを透過し、0次光Lに比べてあまり光強度が低下することなく像面Iに像を形成する。
0次光Lと、このような回折光L、Lによって形成された像面Iの像は、例えば、不図示の接眼光学系や撮像カメラなどによって観察可能となる。
このとき、被検体の位相差量に基づく明暗差を高コントラストに検出するには、0次光Lの光強度の振幅と、回折光L、Lの光強度の振幅が略等しくなることが必要である。
この場合、回折光L、Lの光強度に比べて高強度となる0次光Lの光強度を透過率変調部14bによって減衰させているため、像面Iの像が被検体の位相差量に応じて高コントラストとなる。
また、被検体の空間周波数が小さい(位相物体の大きさが大きい、位相差量が小さい)場合には、回折光L、Lの回折角が小さくなるため、回折光L、Lは、0次光Lの近傍の光路をとり、一定の空間周波数以下(本実施形態の例では、3μmのサイズの位相物体に相当する空間周波数以下、すなわち位相物体のサイズとしては3μm以上)では、回折光透過領域14A、14Bを透過し、本実施形態では、0次光Lと同様に透過率Tに応じて光強度が低下された状態で、像面Iに像を形成する。
この場合、0次光Lの光強度の振幅とともに、回折光L、Lの光強度の振幅も低下するため、もともと存在する0次光Lと、回折光L、Lとの間の相対的な光強度の差が残るため、被検体の位相差量に対応する明暗のコントラストは低下する。ただし、像面Iに到達する回折光L、Lの光強度が低下することにより、ハロの発生が抑制される。
このようにして、ハロが発生しにくい空間周波数の大きい被検体では、高コントラストの被検体の像が得ることができ、ハロが発生しやすい空間周波数の小さい被検体の像のコントラストを低減してハロを抑制(減弱)した像を得ることができる。
すなわち、位相差顕微鏡1によれば、アポダイズド位相差法の位相絞りを用いた位相差顕微鏡と同様に、ある程度、被検体の大きさ、空間周波数の大きさが変わっても、良好な位相差観察を行うことができる。
その際、本実施形態の位相差顕微鏡1によれば、像形成後の光路上において位相板10と共役な位置に配置された透過率規制部材14を備えるので、アポダイズド位相差法に用いていた複雑な構成の位相絞りを用いることなく、安価な構成によって良好な位相差観察を行うことができる。
本実施形態に用いる位相板10は、従来の位相差法に用いる位相板と同様の構成を採用することができ、透過率規制部材14は、輪帯状のND膜のみで構成することができるので、それぞれ容易かつ安価に製作することができる。
また、被検体の大きさ、空間周波数の大きさに応じて、透過率規制部材14の寸法や透過率特性などを変えなければならない場合でも、リレー光学系13における平行光束の光路における透過率規制部材14を交換するだけでよい。
このため、対物光学系9および位相板10を交換したり、焦点位置を再調整したりすることなく対応できるので、効率的な位相差観察を行うことができる。
次に、本実施形態の第1〜第5変形例について説明する。これらの変形例は、透過率規制部材14の透過率分布特性の変形例である。
図5〜9は、それぞれ、本発明の実施形態の第1〜第5変形例に係る位相差顕微鏡の透過率規制部材の透過率分布特性を示す模式的なグラフである。各図とも、横軸は、透過率変調部の中心を原点とする径方向位置、縦軸は透過率を示す。
なお、以下の各変形例では、無変調透過部14aは、上記実施形態と同様に一定の透過率Tであるため、透過率変調部14bの透過率分布特性のみについて説明する。
本実施形態の第1変形例は、透過率変調部14bの透過率分布特性として、図5に示す曲線101のようなガウス分布型の分布を採用している。すなわち、径方向の位置D/2(無変調透過部に接する中心部)からD/2(無変調透過部に接する外縁部)までの透過率変調部14bの領域の透過率の低減率がガウス分布にしたがい、透過率変調部14bの幅方向の中心で最低の透過率Tとなる透過率分布特性を採用している。
このような透過率分布特性は、透過率変調部14bを形成するND膜の濃度分布が、位置D/2からD/2の断面で、ガウス分布となるようにND膜を成膜すればよい。
本変形例の透過率規制部材14によれば、回折光透過領域14A、14Cにおける透過率が、無変調透過部14a側から0次光透過領域14B側にかけてガウス分布に沿って滑らかに減少するため、被検体の空間周波数が小さくなるにつれて、低コントラストに変化する度合いをガウス分布にしたがって徐変することができる。
このため、被検体の幅広い空間周波数に応じて、良好な位相差観察を行うことができる。
また、このようにガウス分布をとる透過率変調をかけた場合、ガウス分布のピークの位置と分散σで帯域制限の程度を設定可能である。それ故、本実施形態で得られた位相差画像に対し、デコンボルーションの様な画像処理をかけるとき、ピークの位置と分散σで規定されたガウス分布は空間周波数変調の効果に関する計算が容易であるという利点がある。
また、ガウス分布の代わりに、ハニング関数、ハミング関数、ブラックマン関数などを用いても良い。デコンボルーションのような画像処理の計算は、ガウス分布と同程度に容易である。
また、本実施形態の第2変形例は、透過率変調部14bの透過率分布特性として、図6に示す曲線102のような三角波型の分布を採用している。すなわち、径方向の位置D/2からD/2までの透過率変調部14bの領域の透過率が、位置D/2からD/2の中間位置で最低の透過率Tとなり、位置D/2および位置D/2からこの中間位置に向けて透過率が、TからTに直線的に減少する透過率分布特性を採用している。
このような透過率分布特性は、透過率変調部14bを形成するND膜の濃度分布が、位置D/2からD/2の断面で、三角波状の分布となるようにND膜を成膜すればよい。
本変形例の透過率規制部材14によれば、回折光透過領域14A、14Cにおける透過率が、無変調透過部14a側から0次光透過領域14B側にかけて直線的に減少するため、被検体の空間周波数が小さくなるにつれて、低コントラストに変化する度合いを直線的に徐変することができる。このため、被検体の幅広い空間周波数に応じて、良好な位相差観察を行うことができる。
また、透過率変調部14bの濃度分布を直線的に変化させればよいため、曲線状に変化させる場合に比べて製造が容易となる。
また、本実施形態の第3変形例は、透過率変調部14bの透過率分布特性として、図7に示す曲線103のような階段状の分布を採用している。すなわち、径方向の位置D/2からd/2までの透過率変調部14b(回折光透過領域14A)が一定の透過率T(ただし、T>T)であり、径方向の位置d/2からd/2までの透過率変調部14b(0次光透過領域14B)が一定の透過率Tであり、径方向の位置d/2からD/2までの透過率変調部14b(回折光透過領域14C)が透過率Tである透過率分布特性を採用している。
このような透過率分布特性は、透過率変調部14bを形成するND膜の濃度分布が、位置D/2からD/2の断面で、このような2段階の階段状の分布となるようにND膜を成膜すればよい。
本変形例の透過率規制部材14によれば、回折光透過領域14A、14Cの透過率が、0次光透過領域14Bに比べて大きいため、被検体の空間周波数が小さい場合の被検体の像のコントラストを、上記第1の実施形態に比べて向上することができる。
また、本変形例は、透過率変調部14bが、無変調透過部14aに挟まれた方向の断面において、無変調透過部14aに接する外縁部から中心部に向けて透過率が段階的に減少する透過率分布特性を有する場合の例になっている。段階的な変化は、2段階とは限らず、3段階以上の変化であってもよい。例えば、このような多段階の変化により、上記第1および第2変形例の連続的な変化を階段状の変化で近似して実現してもよい。
また、本実施形態の第4変形例は、透過率変調部14bの透過率分布特性として、図8に示す曲線104のような階段状の分布を採用している。すなわち、径方向の位置D/2からd/2までの透過率変調部14b(回折光透過領域14A)が一定の透過率Tであり、径方向の位置d/2からd/2までの透過率変調部14b(0次光透過領域14B)が一定の透過率Tであり、径方向の位置d/2からD/2までの透過率変調部14b(回折光透過領域14C)が透過率Tである透過率分布特性を採用している。
このような透過率分布特性は、透過率変調部14bを形成するND膜の濃度分布が、位置D/2からD/2の断面で、このような2段階の階段状の分布となるようにND膜を成膜すればよい。
本変形例の透過率規制部材14によれば、回折光透過領域14A、14Cの透過率が、0次光透過領域14Bに比べて小さいため、被検体の空間周波数が小さい場合の被検体の像のコントラストを上記第1の実施形態に比べて低減することができる。
また、このように0次光透過領域14Bの透過率を回折光透過領域14A、14Cに比べて低減することで、位相板10の位相膜10b自体の透過率に応じて変化する、0次光Lの透過率を適宜補正することができるため、位相板10の透過率分布特性に応じて、被検体の像のコントラストを調整することができる。特に、位相板10として従来の位相差法による位相板のように位相膜10bにもND膜が形成されている場合にも容易にコントラストを調整することができる。
また、本実施形態の第5変形例は、透過率変調部14bの透過率分布特性として、図9に示す曲線105のような滑らかな階段状の分布を採用している。
本変形例は、上記第4変形例の階段状の分布において、透過率TからTへの変化およびその逆変化、透過率TからTへの変化およびその逆変化において、それぞれ、変化の開始部と終了部の変化が徐変され、変化の中間部でより急峻に変化されるようにしたものである。
これらの徐変部および急峻変化部分は、ガウス分布の徐変部および急峻変化部に近似された変化であることが好ましい。
また、急峻変化部分は、種々の傾き(縦軸に平行となる90°も含む)を有する直線的な変化でもよい。
このような透過率分布特性は、透過率変調部14bを形成するND膜の濃度分布が、位置D/2からD/2の断面で、このような2段階の滑らかな階段状の分布となるようにND膜を成膜すればよい。
本変形例の透過率規制部材14は、上記第4変形例に比べて、透過率の徐変部を含むので、被検体の空間周波数に応じて、滑らかなコントラストの変化を得ることができる。
また、本変形例は、透過率変調部14bが、無変調透過部14aに挟まれた方向の断面において、無変調透過部に接する外縁側から中心部に向けて透過率が減少する部分を有する透過率分布特性の一例となっている。
次に、本実施形態の第6変形例について説明する。
図10は、本発明の実施形態の第6変形例に係る位相差顕微鏡の透過率規制部材の模式的な平面図である。
本変形例の位相差顕微鏡20は、図1に示すように、上記実施形態の透過率規制部材14に代えて、液晶フィルター24(透過率規制部材)を備える。以下、上記実施形態と異なる点を中心に説明する。
液晶フィルター24は、平面視矩形状の領域に、個々に制御電圧を印加することで透過率を個別に多値変調できる液晶変調画素が格子状に多数配置された透過型の液晶フィルターである。液晶フィルター24の各液晶変調画素は、それぞれ独立した透過率に変調可能なNDフィルターとなっている。
図10には、これらの液晶変調画素を選択的に変調して、透過率規制部材14の無変調透過部14aと、透過率変調部14bとにそれぞれと対応して、透過率Tの無変調透過部24aと、透過率Tの輪帯状の透過率変調部24bとが形成されている様子を示す。
透過率変調部24bの形状は、透過率変調部14bと同様に、内径D、外径Dの輪帯状であり、輪帯の中心が、光軸Cを通るように、透過率規制部材14と同様な位置関係に配置されている。
ただし、図10は模式図のため、透過率変調部24bの外形を円状に描いているが、実際には液晶変調画素の画素サイズに応じた近似的な円形である。
このように変調された液晶フィルター24は、上記実施形態の透過率規制部材14と光学的に同様な透過率規制部材として機能するため、位相差顕微鏡20は、上記実施形態の位相差顕微鏡1と同様に良好な位相差観察を行うことができる。
さらに、本変形例によれば、液晶フィルター24の液晶変調画素の制御電圧を変更することで、透過率変調部24bの形状や透過率分布特性を変更することができる。このため、1つの液晶フィルター24によって、例えば、上記第1〜第5変形例のような透過率分布特性を実現することができる。したがって、被検体の種々の空間周波数に対応して、良好な位相差観察を行うことが可能となる。
ただし、例えば、第1、第2、第5変形例のように、位置に応じて滑らかに変化する透過率分布の場合は、液晶フィルター24の液晶変調画素の変調分解能に応じて階段状の変化に置き換えるものとする。
また、本変形例によれば、透過率変調部24bの形状や透過率分布特性を、容易かつ迅速に切り替えることができるので、どのような被検体であっても、観察像のコントラストやハロの見え具合を、容易に調整することができるため、効率的な位相差観察を行うことができる。
次に、本実施形態の第7変形例について説明する。
図11は、本発明の実施形態の第7変形例に係る位相差顕微鏡の開口絞りを示す模式的な平面図である。図12は、本発明の実施形態の第7変形例に係る位相差顕微鏡の位相変換部を示す模式的な平面図である。図13は、本発明の実施形態の第7変形例に係る位相差顕微鏡の透過率規制部材の模式的な平面図である。
本変形例の位相差顕微鏡30は、照明光学系の開口絞りの開口部の形状を変えた場合の変形例である。
位相差顕微鏡30は、図1に示すように、上記実施形態の開口絞り4、位相板10、および透過率規制部材14に代えて、光軸C上の同じ位置に、それぞれ、開口絞り4A、位相板10A、および透過率規制部材34を備える。
なお、開口絞り4Aの開口部の形状の変更に伴い位相差顕微鏡30の光線は、図1に描かれた光線とは異なってくるが、当業者には容易に理解されるため、図示は省略している。以下、上記実施形態と異なる点を中心に説明する。
開口絞り4Aは、図11に示すように、開口部4bとして直径dの円孔が形成された円孔絞りであり、光軸Cがこの円孔の中心を通るように配置されている。
位相板10Aは、図12に示すように、開口絞り4Aの開口部4bの形状に対応して、ガラス基板10aの中心部に、直径d(ただし、d<d)の位相膜10bが形成され、光軸Cが位相膜10bの中心を通るように配置されている。このため、位相板10Aは、上記実施形態の位相板10において、d=0として、外径dの寸法を開口絞り4Aの開口径dに合わせて変更した場合に相当している。
透過率規制部材34は、図13に示すように、開口絞り4Aの開口部の形状に対応して、上記実施形態の透過率変調部14bにおいてD=0とし、外径Dの寸法を位相板10Aの外径dに合わせて変更した透過率変調部34bが、光軸Cが位相膜10bの中心を通るように配置されたものである。本変形例では、上記実施形態と同様、D>dとしている。
このため、透過率変調部34bは、位相板10Aの位相膜10bと光学的に重なる0次光透過領域34Bと、この0次光透過領域34Bの外周部を囲んで幅(D−β・d)の輪帯状に広がる回折光透過領域34Cとに分かれる。
本変形例の透過率変調部34bは、無変調透過部14aによって外周側のみから取り囲まれているため、無変調透過部に接する外縁部は、透過率変調部34bの円外形であり、中心部は円中心である。したがって、透過率変調部34bの透過率分布特性は、上記実施形態の図4におけるD/2からD/2までの分布形状を、直径Dの間、すなわち、−D/2からD/2までの間で取るような透過率分布特性をとする。
本変形例の位相差顕微鏡30によれば、光源2からの光が、集光レンズ3、開口絞り4Aを透過して、コンデンサーレンズ5を介して被検体載置面Oに円形スポット状に照射される。そして、被検体を透過した0次光Lが、光軸C上を進み、被検体で回折された回折光L、回折光Lが、光軸Cに斜めに交差する各回折角の方向に出射される。そして、対物光学系9およびリレー光学系13を介して、0次光Lおよび回折光L、Lは、像面Iに像を結ぶ。
その際、0次光Lは、位相板10Aの位相膜10b、透過率規制部材34の0次光透過領域34Bを透過し、回折光L、Lは位相板10Aのガラス基板10aを透過してから、被検体の空間周波数の大小に応じて、透過率規制部材34の無変調透過部14aまたは透過率変調部34bの回折光透過領域34Cを透過する。
このため、上記実施形態と同様に、複雑な構成の位相板や対物レンズを用いることなく被検体の大きさに対応して、容易に良好な位相差観察を行うことができる。
なお、上記の説明では、対物光学系として、無限遠補正光学系の対物レンズ7と、結像レンズ8との組合せによる対物光学系9を採用した場合の例で説明したが、対物光学系として、有限遠補正光学系の対物レンズを採用してもよい。
また、上記の説明では、位相膜10bによって、0次光Lの位相をπ/2だけ進めるダークコントラストの位相差観察の場合の例で説明したが、位相膜10bが0次光Lの位相をπ/2だけ遅らすようにして、ブライトコントラストの位相差観察を行えるようにしてもよい。
また、上記実施形態の第6変形例の説明では、液晶フィルター24として、液晶変調画素が多値変調される場合の例で説明したが、一定の透過率が得られればよい場合には、2値変調されるようにしてもよい。
また、液晶フィルター24の液晶変調画素は、矩形格子状に配置された画素形状には限定されない。例えば、同心円状に形成された複数の輪帯状の透明電極を形成し、輪帯の幅や輪帯ごとの透過率を変化させる輪帯状の液晶変調画素を有していてもよい。
また、上記の説明では、透過率変調部が、無変調透過部に挟まれた方向の断面において、中心部に関して対称な透過率分布特性を有する場合の例で説明したが、中心部に対して非対称な分布を有していてもよい。
また、上記実施形態の第1変形例では、透過率の低減率がガウス分布の場合の例で説明したが、ガウス分布に類似の分布も採用することができる。したがって、透過率変調部は、無変調透過部に挟まれた方向の断面において、無変調透過部に接する外縁部から中心部に向けて透過率が漸減されてから急峻に低減される略U字状の透過率分布特性を有する構成としてもよい。
また、上記の説明では、透過率変調部14bが、位相膜10bの全体より広い範囲を光学的に覆う場合の例で説明した。この場合、透過率変調部14bには、回折光透過領域14A、14Cが形成されるため、アポダイズド位相差法と同等の位相差観察を行うことができるが、アポダイズド位相差法のような位相差観察を行わず従来の位相差法による位相差観察を行う場合には、透過率変調部14bは位相膜10bの全体を光学的にちょうど覆う範囲に設けるのみでよい。すなわち、D=β・dかつD=β・dとしてもよい。
この場合、本実施形態の位相差顕微鏡1では、従来の位相差顕微鏡と異なり、位相板10と独立に、透過率規制部材14の特性を変更することができる。この結果、被検体の大きさ、空間周波数の大きさに応じて、透過率規制部材14の寸法や透過率特性などを変えなければならない場合でも、リレー光学系13の平行光路における透過率規制部材14を交換するだけでよい。このため、対物光学系9および位相板10を交換したり、焦点位置を再調整したりすることなく対応できるので、従来の位相差法による観察においても、効率的な位相差観察を行うことができる。
また、上記の各実施形態に説明したすべての構成要素は、本発明の技術的思想の範囲で適宜組み合わせて実施することができる。
例えば、上記第7変形例の透過率規制部材34の透過率分布特性として、上記第1〜第5変形例の透過率分布特性を採用してもよい。ただし、これらの場合の透過率変調部34bの透過率分布特性も、上記第7変形例と同様に、上記各変形例の図5〜9におけるD/2からD/2までの分布形状を、直径Dの間、すなわち、−D/2からD/2までの間で取るような透過率分布特性とする。
また、第6変形例の液晶フィルター24によって、これらのような透過率分布特性を実現してもよい。
1、20、30 位相差顕微鏡
2 光源
3 集光レンズ(照明光学系)
4、4A 開口絞り
4a、4b 開口部
5 コンデンサーレンズ(照明光学系)
6 コンデンサーレンズ部
7 対物レンズ
8 結像レンズ
9 対物光学系
10、10A 位相板
10b 位相膜(位相変換部)
13 リレー光学系
14、34 透過率規制部材
14a、24a 無変調透過部
14b、24b、34b 透過率変調部
24 液晶フィルター(透過率規制部材)
24a 無変調透過部
34 透過率規制部材
C 光軸
I 像面
0次光
、L 回折光
O 被検体載置面
S 像

Claims (5)

  1. 光源と、開口絞りを有し前記光源からの光束を前記開口絞りを通して被検体に照射する照明光学系と、該照明光学系によって照明された前記被検体からの光束による像を形成する対物光学系と、該対物光学系の光路上において前記開口絞りと共役な位置に設けられている位相変換部とを有する位相差顕微鏡であって、
    前記対物光学系による像形成後の光路上において前記位相変換部と共役な位置に配置された透過率規制部材を備え、
    該透過率規制部材は、
    少なくとも前記位相変換部の全体を光学的に覆う範囲で透過光量分布を規制する透過率変調部と、
    前記開口絞りの開口部の全体を光学的に覆う範囲で前記透過率変調部の周囲を取り囲むように設けられ、前記透過率変調部よりも高い一様な透過率を有する無変調透過部とを備えてなることを特徴とする位相差顕微鏡。
  2. 前記透過率変調部は、
    前記無変調透過部に挟まれた方向の断面において、前記無変調透過部に接する外縁部から中心部に向けて透過率が段階的に減少する透過率分布特性を有することを特徴とする請求項1に記載の位相差顕微鏡。
  3. 前記透過率変調部は、
    前記無変調透過部に挟まれた方向の断面において、前記無変調透過部に接する外縁部から中心部に向けて透過率が漸減されてから急峻に低減される略U字状の透過率分布特性を有することを特徴とする請求項1に記載の位相差顕微鏡。
  4. 前記略U字状の透過率分布特性は、透過率の低減率がガウス分布に従う透過率分布特性であることを特徴とする請求項3に記載の位相差顕微鏡。
  5. 前記透過率規制部材は、透過率可変に設けられた液晶フィルターで構成されたことを特徴とする請求項1〜4のいずれかに記載の位相差顕微鏡。
JP2009143628A 2009-06-16 2009-06-16 位相差顕微鏡 Pending JP2011002514A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143628A JP2011002514A (ja) 2009-06-16 2009-06-16 位相差顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143628A JP2011002514A (ja) 2009-06-16 2009-06-16 位相差顕微鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013004186U Continuation JP3186369U (ja) 2013-07-19 2013-07-19 位相差顕微鏡および位相差観察用鏡筒ユニット

Publications (1)

Publication Number Publication Date
JP2011002514A true JP2011002514A (ja) 2011-01-06

Family

ID=43560537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143628A Pending JP2011002514A (ja) 2009-06-16 2009-06-16 位相差顕微鏡

Country Status (1)

Country Link
JP (1) JP2011002514A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242532A (ja) * 2011-05-18 2012-12-10 Nikon Corp 顕微鏡システム
JP2013200555A (ja) * 2012-02-24 2013-10-03 Seiko Epson Corp 虚像表示装置
JP2013200553A (ja) * 2012-02-24 2013-10-03 Seiko Epson Corp 虚像表示装置
WO2013183438A1 (ja) * 2012-06-05 2013-12-12 株式会社ニコン 顕微鏡装置
JP2015007725A (ja) * 2013-06-26 2015-01-15 株式会社フォトニックラティス 光学的結像装置
JP2015219280A (ja) * 2014-05-14 2015-12-07 ソニー株式会社 位相差顕微鏡及び位相差顕微鏡システム
KR101754905B1 (ko) 2015-10-14 2017-07-19 (주)시원광기술 위상차 현미경용 대물 렌즈계 및 이를 포함한 위상차 현미경
US9977238B2 (en) 2012-02-24 2018-05-22 Seiko Epson Corporation Virtual image display apparatus
KR101850999B1 (ko) * 2016-11-09 2018-05-30 (주)시원광기술 위상차 현미경용 대물 렌즈계 및 이를 포함한 위상차 현미경
CN110520780A (zh) * 2017-04-26 2019-11-29 卡尔蔡司显微镜有限责任公司 具有传输函数的相衬成像
JPWO2019235511A1 (ja) * 2018-06-05 2021-06-10 株式会社ニコン 位相板、対物レンズ、及び観察装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184115A (ja) * 1982-04-16 1983-10-27 Nippon Kogaku Kk <Nikon> 位相差顕微鏡
JPH07261089A (ja) * 1994-03-24 1995-10-13 Olympus Optical Co Ltd 位相差顕微鏡
JPH0894936A (ja) * 1994-09-29 1996-04-12 Olympus Optical Co Ltd 位相差顕微鏡
JPH08190054A (ja) * 1995-01-11 1996-07-23 Olympus Optical Co Ltd 振幅変調コントラスト顕微鏡
JPH10221509A (ja) * 1997-02-03 1998-08-21 Nikon Corp 結像光学系及び写真計測方法
JPH10268197A (ja) * 1996-09-19 1998-10-09 Olympus Optical Co Ltd 光制御部材を有する光学顕微鏡
JPH1123810A (ja) * 1997-06-27 1999-01-29 Asahi Seimitsu Kk 輪帯状ndフィルター
JP2000019410A (ja) * 1998-06-30 2000-01-21 Nikon Corp 位相差観察装置
JP2000347105A (ja) * 1999-06-01 2000-12-15 Nikon Corp 位相差観察装置
JP2004318185A (ja) * 2004-08-20 2004-11-11 Olympus Corp 光制御部材を有する光学顕微鏡
JP2005331568A (ja) * 2004-05-18 2005-12-02 Nikon Corp 顕微鏡対物レンズ及び位相差顕微鏡

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184115A (ja) * 1982-04-16 1983-10-27 Nippon Kogaku Kk <Nikon> 位相差顕微鏡
JPH07261089A (ja) * 1994-03-24 1995-10-13 Olympus Optical Co Ltd 位相差顕微鏡
JPH0894936A (ja) * 1994-09-29 1996-04-12 Olympus Optical Co Ltd 位相差顕微鏡
JPH08190054A (ja) * 1995-01-11 1996-07-23 Olympus Optical Co Ltd 振幅変調コントラスト顕微鏡
JPH10268197A (ja) * 1996-09-19 1998-10-09 Olympus Optical Co Ltd 光制御部材を有する光学顕微鏡
JPH10221509A (ja) * 1997-02-03 1998-08-21 Nikon Corp 結像光学系及び写真計測方法
JPH1123810A (ja) * 1997-06-27 1999-01-29 Asahi Seimitsu Kk 輪帯状ndフィルター
JP2000019410A (ja) * 1998-06-30 2000-01-21 Nikon Corp 位相差観察装置
JP2000347105A (ja) * 1999-06-01 2000-12-15 Nikon Corp 位相差観察装置
JP2005331568A (ja) * 2004-05-18 2005-12-02 Nikon Corp 顕微鏡対物レンズ及び位相差顕微鏡
JP2004318185A (ja) * 2004-08-20 2004-11-11 Olympus Corp 光制御部材を有する光学顕微鏡

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261690B2 (en) 2011-05-18 2016-02-16 Nikon Corporation Microscope system
JP2012242532A (ja) * 2011-05-18 2012-12-10 Nikon Corp 顕微鏡システム
US9977238B2 (en) 2012-02-24 2018-05-22 Seiko Epson Corporation Virtual image display apparatus
JP2013200555A (ja) * 2012-02-24 2013-10-03 Seiko Epson Corp 虚像表示装置
US9436010B2 (en) 2012-02-24 2016-09-06 Seiko Epson Corporation Virtual image display apparatus having prism with specific polynomial relationship between prism surface shapes
JP2013200553A (ja) * 2012-02-24 2013-10-03 Seiko Epson Corp 虚像表示装置
JPWO2013183438A1 (ja) * 2012-06-05 2016-01-28 株式会社ニコン 顕微鏡装置
JP5761458B2 (ja) * 2012-06-05 2015-08-12 株式会社ニコン 顕微鏡装置
WO2013183438A1 (ja) * 2012-06-05 2013-12-12 株式会社ニコン 顕微鏡装置
JP2015007725A (ja) * 2013-06-26 2015-01-15 株式会社フォトニックラティス 光学的結像装置
JP2015219280A (ja) * 2014-05-14 2015-12-07 ソニー株式会社 位相差顕微鏡及び位相差顕微鏡システム
US20170075097A1 (en) * 2014-05-14 2017-03-16 Sony Corporation Phase-contrast microscope and phase plate with annular phase-shift region
KR101754905B1 (ko) 2015-10-14 2017-07-19 (주)시원광기술 위상차 현미경용 대물 렌즈계 및 이를 포함한 위상차 현미경
KR101850999B1 (ko) * 2016-11-09 2018-05-30 (주)시원광기술 위상차 현미경용 대물 렌즈계 및 이를 포함한 위상차 현미경
CN110520780A (zh) * 2017-04-26 2019-11-29 卡尔蔡司显微镜有限责任公司 具有传输函数的相衬成像
CN110520780B (zh) * 2017-04-26 2022-04-15 卡尔蔡司显微镜有限责任公司 具有传输函数的相衬成像
JPWO2019235511A1 (ja) * 2018-06-05 2021-06-10 株式会社ニコン 位相板、対物レンズ、及び観察装置

Similar Documents

Publication Publication Date Title
JP2011002514A (ja) 位相差顕微鏡
JP6264377B2 (ja) 構造化照明装置及び構造化照明顕微鏡装置
US10558030B2 (en) Structures illumination microscopy system, method, and non-transitory storage medium storing program
US9041788B2 (en) Method and apparatus for visualizing phase object
JP3708246B2 (ja) 光制御部材を有する光学顕微鏡
JP3663920B2 (ja) 位相差観察装置
JP4883086B2 (ja) 顕微鏡装置
JP6708667B2 (ja) ビーム整形及び光シート顕微鏡検査のためのアセンブリ及び方法
JPWO2016125281A1 (ja) 構造化照明顕微鏡、観察方法、及び制御プログラム
EP3143451B1 (en) Phase-contrast microscope and phase plate with annular phase-shift region
WO2015098242A1 (ja) 標本観察装置および標本観察方法
JPWO2016185619A1 (ja) 標本観察装置及び標本観察方法
WO2017098657A1 (ja) 観察装置
JPWO2018220670A1 (ja) 観察装置
JP2009237109A (ja) 位相差顕微鏡
JP3186369U (ja) 位相差顕微鏡および位相差観察用鏡筒ユニット
WO2018092247A1 (ja) 標本形状測定方法及び標本形状測定装置
JP2004318185A (ja) 光制御部材を有する光学顕微鏡
JPWO2018092246A1 (ja) 標本観察装置
CN113039471B (zh) 显微的透射光对比方法
JP2016122027A (ja) 位相差顕微鏡
US20150185486A1 (en) Holographic imaging element operable to generate multiple different images of an object
JP4370636B2 (ja) 位相差観察装置
JP2013242418A (ja) 落射型位相差顕微鏡
WO2016132563A1 (ja) 標本観察装置及び標本観察方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423