JP2010520497A - フォトニック結晶ファイバおよびそれを製造する方法 - Google Patents

フォトニック結晶ファイバおよびそれを製造する方法 Download PDF

Info

Publication number
JP2010520497A
JP2010520497A JP2009551680A JP2009551680A JP2010520497A JP 2010520497 A JP2010520497 A JP 2010520497A JP 2009551680 A JP2009551680 A JP 2009551680A JP 2009551680 A JP2009551680 A JP 2009551680A JP 2010520497 A JP2010520497 A JP 2010520497A
Authority
JP
Japan
Prior art keywords
tube
photonic crystal
glass
crystal fiber
canes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009551680A
Other languages
English (en)
Inventor
エフ ボレリ,ニコラス
ダブリュ サード コック,カール
ジェイ マッケンロー,デイヴィッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2010520497A publication Critical patent/JP2010520497A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01208Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments for making preforms of microstructured, photonic crystal or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01274Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by extrusion or drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/008Polycrystalline optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • C03B2203/16Hollow core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2978Surface characteristic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

複数の押出し成形された非円形ケインを含むフォトニック結晶ファイバであって、押出し成形された非円形ケインのそれぞれが少なくとも1つの孔を備える。フォトニック結晶ファイバを製造する方法であって、ガラス材料を非円形の外断面を有するガラス管に加熱成形する工程、ガラス管を線引きして複数のケインを得る工程、ケインを積層してプリフォーム構造を生成する工程、および、プリフォーム構造を線引きしてフォトニック結晶ファイバを得る工程を含む。

Description

関連出願の説明
本出願は、その内容を引用し、またその全体を参照により本書に組み込む、2007年2月28日に出願された米国仮特許出願第60/903,901号、タイトル「フォトニック結晶ファイバおよびそれを製造する方法」の利益を主張するものである。
本発明は、フォトニック結晶ファイバおよびその製造方法に関するものである。
従来の光導波路型ファイバは、光損失、非線形性、群速度、分散、および偏光効果の間のバランスを呈している。しかしながら、フォトニック結晶ファイバ(フォトニックバンドギャップファイバなどを含む)は近年、光のパルスとそのバルク成分との間の非線形性光相互作用を向上させる効果的な手法により、関心をますます広範囲に広げてきた。フォトニック結晶ファイバは、ファイバ光通信、ファイバレーザ、非線形装置、ハイパワー伝送、高感度ガスセンサ、およびその他の領域において用途が見出されている。
現在のフォトニック結晶ファイバの製造工程には、微細構造アレイを形成するための積層−延伸法の技術が含まれる。特に、積層−延伸法の工程においては、所望の巨視的な断面形状を生成するため、外側サポート管内の格子状アレイに多数のガラスキャピラリが配列される。このアレイはその後線引きされ、ファイバ内に組み立てられる。この積層−延伸法の工程は、手作業であるため比較的工程が遅く、1つのプリフォーム構造と別のものとが一貫していないといった問題がある。さらに工程の不整合性により、円形に成形されたキャピラリには、その溶融中および/または線引き中にしばしば位置ずれが発生し、ファイバ内に空隙や欠陥が発生する結果となっている。このような意図していない欠陥により、フォトニック結晶ファイバ内の光損失は著しく増加する。
整合性および欠陥に伴う問題に加え、従来の工程では、キャピラリまたはプリフォーム構造の形状を変えることは非常に困難である。例えば、大半のフォトニック結晶ファイバは円形形状のファイバプリフォームから線引きされるが、近年では六角形形状での研究が行われている。六角形プリフォームの従来の作製工程には、CVDにより管を用意し、その後管の外径を研磨して六角形形状を生成する工程が含まれていた。この研磨された六角形管は、予備線引き(redraw)してキャピラリとすることができ、各キャピラリはその後巨視的なアレイの内部へ積層され、真空下で線引きされる。このような六角形の管を作製してプリフォーム構造を組み立てるのに時間や費用が必要となるといった問題だけでなく、組立工程中にキャピラリがよじれたり動いたりするとファイバ内に意図していない空隙が生成されるという問題も生じる。この場合も、意図していない空隙や欠陥により光損失が増加する。
したがって、欠陥が少なく、再現性よく作製可能な特有の幾何学的形状を有する高品質なフォトニック結晶ファイバが必要とされている。
本発明は、問題や欠点に取り組み、かつ取り除くこと、あるいは従来のフォトニック結晶ファイバおよびその製造方法を改善することを意図している。
これを達成するために、本発明の一実施の形態は、フォトニック結晶ファイバを製造する方法であって、ガラス材料を非円形の外断面を有するガラス管に加熱成形する工程、ガラス管を線引きして複数のケインを得る工程、ケインを積層してプリフォーム構造を生成する工程、および、プリフォーム構造を線引きしてフォトニック結晶ファイバを得る工程、を含むことを特徴とするフォトニック結晶ファイバを製造する方法を含む。
上記をさらに達成するために、本発明の一実施の形態は、フォトニック結晶ファイバを製造する方法であって、酸化物基準の重量百分率で表して、55%〜75%のSiO、5%〜10%のNaO、20%〜35%のB、および0%〜5%のAlよりなる組成を有する前駆体ガラス材料を押出ししてガラス管を得、このガラス管がこの管の軸に沿って延在する複数のチャンネルを有する工程、ガラス管を溶出し、重量で少なくとも90%のシリカを含む多孔質ガラス管を得る工程、高密度化されたガラスを形成するために多孔質ガラス管をこのガラス管内の孔が崩壊するように加熱し、高密度化されたガラス管を得る工程、高密度化されたガラス管を線引きし、複数のケインを得る工程、ケインの積層部材を形成し、ケインそれぞれがこの積層部材内の隣接ケインと直接に接する工程、および、積層部材を線引きし、フォトニック結晶ファイバを得る工程、を含むことを特徴とするフォトニック結晶ファイバ製造する方法を含む。
上記をさらに達成するために、本発明の一実施の形態は、フォトニック結晶ファイバプリフォーム構造であって、複数の押出し成形された非円形ケインを備え、押出し成形された非円形ケインそれぞれが、このケインの軸に沿って延在する少なくとも1つのチャンネルを備えていることを特徴とする、フォトニック結晶ファイバプリフォーム構造を含む。
本明細書は、本発明を具体的に示しかつ明確に主張する請求範囲を最後に記すが、これは添付の図面とともに例示される以下の説明から、より理解されるであろうと考えられる。
本発明によるフォトニック結晶ファイバ内で使用される代表的な管を製造するための代表的な金型を示す底面図 本発明によるフォトニック結晶ファイバの代表的な製造工程を示す概略図 本発明によるフォトニック結晶ファイバの代表的な製造工程を示す概略図 本発明によるフォトニック結晶ファイバの代表的な製造工程を示す概略図 本発明の代表的な実施形態により製造される別の代表的な管の画像 本発明の代表的な実施形態により製造される別の代表的な管の画像 本発明の代表的な実施形態により製造される別の代表的な管の画像 本発明によるフォトニック結晶ファイバの別の代表的な製造工程を示す概略図 本発明によるフォトニック結晶ファイバの別の代表的な製造工程を示す概略図 本発明によるフォトニック結晶ファイバの別の代表的な製造工程を示す概略図 本発明によるフォトニック結晶ファイバの別の代表的な製造工程を示す概略図 本発明によるフォトニック結晶ファイバの別の代表的な製造工程を示す概略図
図面で説明される実施の形態は、実際の実例であって、請求の範囲により画定される本発明を限定することを意図したものではない。さらに、図面および本発明の個々の特徴は、詳細な説明を考慮するとより十分に明らかになり、また理解されるであろう。
指示のない限り、本明細書および請求範囲において使用される構成要素の重量パーセント、寸法、および特定の物理的特性値のような全ての数は、全ての場合において「約」という用語により修飾されると理解されたい。また、本明細書および請求項で使用される正確な数値は、本発明の付加的な実施形態を構成するものであることも理解されたい。これまで、実施例において開示される数値の正確性を確実にするための努力がなされてきた。しかしながら、任意の測定数値には本質的に、各測定技術に見られる標準偏差に起因する、ある程度の誤差が含まれる可能性がある。
本発明の記述および請求項で用いられる単数形は、「少なくとも一つ」を意味し、明確にこれに反する指示がなければ「唯一つ」に限定されるべきではない。従って、例えば「ケイン」の引用は、文脈が明らかに別のことを指示していない限り、2つ以上のケインを有する実施形態を含む。本明細書で用いられる、構成要素の「wt%」すなわち「重量パーセント」や「重量によるパーセント」は、特に反する記述がない限り、その構成要素が含まれる組成物すなわち製品の総重量に基づくものである。本明細書の全ての百分率は、特記しない限り重量によるものである。
ここでより詳細に記載するが、本発明者は、非円形の外断面を有する多孔質ガラス管を加熱成形または押出し成形する工程を開発してきた。形成された非円形管は、より小さな径の管へと線引きし、プリフォーム構造を造るために一緒に積層することができる。各管の外径は、プリフォーム構造アレイにこの管を一貫して整列および積層するため、他の管の幾何学的形状と一致する形状とすることもできる。その結果形成される作製物を(所望であれば)ケインへと線引きし、フォトニック結晶ファイバへと線引きするために外側管で被覆することもできる。ここに記載された工程により製造されるフォトニック結晶ファイバは、従来のフォトニック結晶ファイバと比較して、特有の幾何学的特性および伝送特性を有する。
本明細書で使用される「フォトニック結晶ファイバ」という用語には、フォトニック結晶ファイバ、フォトニックバンドギャップファイバ(バンドギャップ効果により光を閉じ込めるフォトニック結晶ファイバ)、ホーリーファイバ(断面に空孔を有するフォトニック結晶ファイバ)、空孔付加型ファイバ(空孔の存在により修正された従来の高屈折率コアにより光を導くフォトニック結晶ファイバ)、および/またはブラッグファイバ(多層の誘電体または金属の膜の同心リングにより形成されるフォトニックバンドギャップファイバ)が含まれることは理解されるであろう。
一実施の形態において、本発明の工程で使用されるガラス材料は、シリカ含有量が高いガラス群から選択されるものであってもよい。一般にこのようなガラスに関連する特性は、幾何学的に複雑な構造体において望ましいと考えられる。例えば、シリカ含有量が高いガラス前駆体は通常、軟化温度が1500℃前後またはそれ以上であり、熱膨張性は低くUV透過性は高い。一実施の形態において、このガラス前駆体/材料には、ニューヨーク州コーニング、コーニング社製のバイコール(VYCOR;登録商標)製品の前駆体を含むこともできる。一般にバイコール(登録商標)はアルカリホウケイ酸塩ガラスとして始まり、アルカリホウケイ酸塩ガラスを少なくとも90%(例えば約95〜96%)のシリカ構造体へと変換する処理工程に通される。この約95〜96%のシリカ構造体は、多孔質体もしくは強化されたガラス体となり得る。
バイコール(登録商標)製品およびそのガラス前駆体は、コーニング社の米国特許第2,106,744号明細書(´744特許)に記載されており、その全てが参照することにより本明細書に組み込まれる。そこで開示されているように、三成分系(RO−B−SiO)のある領域のガラス組成は、適切な熱処理により2つの相に分離される。その相の一方はシリカを非常に多く含み、これに対し他方の相はアルカリおよび酸化ホウ素を非常に多く含む。´744特許は、75%のSiO、5%のNaO、および20%のBの前駆体組成を開示している。しかし、本書に記載された方法に使用する他の前駆体組成には、例えば、60.82%のSiO、7.5%のNaO、28.7%のB、2.83%のAl、および0.15%のClの組成が含まれ、このような組成の軟化温度は670℃前後であり、熱膨張係数は52.5×10−7/K前後である。当然のことながら、(重量パーセントで)55〜75%前後のSiO、5〜10%のNaO、20〜35%のB、0〜5%のAl、0〜0.5%のClといった組成の範囲を有する任意の他のシリカガラス組成が、本発明の方法に使用されるものとして考えられていると理解されたい。
本明細書に記載されているような高シリカガラスおよび/または比較的低い軟化温度を有するガラス(例えば軟化ガラス)は、本発明による工程において使用されるのに理想的であると考えられる一方、本発明はこれに限定されるものではなく、本明細書に記載される高品質なフォトニック結晶ファイバを得るために様々なガラスが使用可能であることを理解されたい。
フォトニック結晶ファイバを製造するための代表的な工程段階が図1および2A〜2Cに概略的に示されている。一実施の形態において金型20(図1に底面図が示されている)は、六角形の形状を備え(例えば金型の周辺は6つの辺22を有する)、37個のピン24アレイを含むことができる。この六角形の外周(例えば、成形形状26の外径)は、非円形管を製造するために構成された非円形金型の一例である。しかしながら金型20は、形状を形作る任意の非円形の外周を有することができると理解されたい。本明細書に使用される「非円形」とは、いくつか例を挙げると、三角形、四角形、五角形、多角形、平行四辺形や台形、または任意の非対称の形状を含むことができる。後述するが、管を所望の形状に加熱成形すなわち押出し成形することができる能力により、製造効率を改善しかつ結果として生じるファイバの特性を向上させる手法で管が積層され、一方欠陥は最小限に抑えられる。
図1の金型20は、37個のピン24を有するものとして図示されている。37という数は六角形構造の空間利用の観点から、一致する数のチャンネル(channel;例えば、図2Aにおける符号34)を形成するために最も効果的な数であると考えられる。しかし、他の実施形態において六角形の金型は、一致する数のチャンネル34を管30の軸に沿って形成するために、1個、7個、19個、37個、55個、79個などのピン(六角対称を考慮したあらゆる数)を有していて差し支えない。図示のように、管30内のチャンネルおよび多数のケイン40の空間周期性(例えば、最も近接したチャンネルの距離は同一であり、また、周辺に存在するものを除き全てのチャンネルは本質的に同じ数の近接チャンネルを有する)は基本的に同じである。さらに、積層部材50内の空間周期性は、個々のケインにおけるものと基本的に同じである。
他の非円形金型のピン数は、用途ごとに、また管の所望の外周の対称性によって変えてもよい。しかし、製造された管30中のチャンネルが多くなるとトンネリング損失は低くなると考えられる。さらに、短波長用途が望まれる場合には、ピッチを狭くするという要求に対応するためにチャンネルの数を増加させてもよい。さらに、図1の金型20のピン24は、(結果的に管30のチャンネル34と同じ)円形形状で例示されているが、金型20内部の全体形状と同様に、ピン24(および結果的にチャンネル34)の形状は、いくつか例を挙げると、三角形、四角形、五角形、多角形、平行四辺形または台形などの任意の形状を含むことができると理解されたい。さらに後述するように、意図的な欠陥(defect)を所望する場合などには、ピン/チャンネルの全てが他のピン/チャンネルと同じサイズである必要はない。例えば、図1に例示されているように、六角形の各ポイントでのピン24を周辺部分のピンよりも大きくしてもよい(例えば、そうしなければ押出し成形中に外側角部が歪んでしまうような押出しされたチャンネルの幾何学的形状を改善するために)。
特に、ここで記述および意図されたガラスの使用を通して、ガラス管は、フォトニック結晶ファイバの製造を改善すると考えられる任意形状(外周/外径および孔形状の両方に関して)を有するように押出しすることが可能であり、これに対し従来の工程での製造および積層では、ガラスキャピラリは円形に限られていた。例えば、図3A〜3Cを参照すると、本発明の代表的な実施形態により製造されるガラス管130の画像が示されている。図3Aにおいてガラス管130は、六角形の外断面/外周/外径132および単一の六角形孔134を備えている。この後、ガラス管130を以下に詳細に記載される方法によりケイン140(図3B参照)へと予備線引きし、積層部材150(図3C参照)へと配列してもよい。この代表的な実施形態により、本発明で使用するための様々な幾何学的に特有の形状を有する管を製造する際の融通性が示され、これが製造可能性およびファイバ特性の両方における長所につながる。
図1および図2A〜2Cを再び参照すると、一実施の形態では、高温ガラスの金型20への押出し成形から工程を始めることができる。押出し成形の前に、ガラス材料を1500℃前後の温度で融解してもよい。ガラスを室温で冷ました後、押出しを可能とするために700℃〜900℃前後まで再加熱する。加熱されたガラスは、直径4インチ(約10cm)のブール(boule)に対し約110kPa〜1.45MPa(16〜210psi)の圧力で、金型20に通すよう押圧される。押出しされた管30(概略上面図を示す)は、金型20と一致した形状となる。
使用されるガラス材料に応じて、この段階もしくは後の段階で管30に追加の処理を施すこともできる。例えば、前述の前駆体ガラスを使用する際には、押出し成形後にガラスに加熱処理を施してもよい。前駆体ガラスの加熱処理は、580℃前後で行ってもよい。加熱処理中には、ガラス内でホウ素・アルカリ群(アルカリと酸化ホウ素を非常に多く含む)とシリカ・酸素群(シリカを非常に多く含む)の相分離が起こる。加熱処理されたガラス材料には、その後アルカリホウ酸塩を取り除く溶出工程を施すこともできる。この溶出工程はHNOを用いて多段階で行うことができる(すなわち、1mm厚のサンプルに対しては45時間以上行い、6mm厚の大きなサンプルでは30日までの間行う)。多孔性を崩壊し一層強固な物質(例えば高密度化されたガラスで形成されるガラス構造体)とするために、溶出工程60後に少なくとも30分間1225℃とすることで、ガラス構造体は強固になる。
ここに記載された加熱処理(例えば押出し成形に関連する処理)は、前述のガラスの相分離を妨げるものではないことが分かっている。従って、本発明のガラス前駆体の処理方法の多くは実現可能なものである。例えば、押出し成形した後に加熱処理するよりもむしろ、別の実施形態においては、ガラス前駆体をまず加熱処理した後、続けて押出し成形を行ってもよい。ここに記載された、加熱処理が施されたガラス前駆体に続けて押出し成形を行うことによって、相分離が妨げられることはないと考えられる。同様に、さらに別の実施形態においては、押出し成形の工程中に相分離が始まるようガラス前駆体に加熱処理を施してもよく、こうすると二つの工程は一本化される。
前述のガラス前駆体(例えばRO−B−SiOの前駆体)に適用されるこれらの工程により、相互接続された1〜6nm前後サイズの相分離されたネットワーク構造を有するガラス構造体が形成される。前述の工程の結果、軟化温度は670℃前後(ガラス前駆体)から1500℃(ガラス基板)へと上昇する。さらに、この段階でのガラス構造体は多孔質(体積比28〜30%)であり、約1nmから約12nmの大きさで平均約5nm〜6nmの孔を有する。さらに、そのガラス構造体は、重量比で少なくとも90%から約96%のシリカを含む(溶出後には通常ガラス構造体に4%の残留ホウ素が存在するため96%のシリカとなる)。このようなガラス構造体のUV透過性は高く、熱膨張性は低く、また軟化温度は高い。例えば、このようなガラスは強化されると、約230nmから350nmで、約80%/mmから約100%/mmの範囲の透過性を有する。当然のことながら、前述したように、使用されるシリカガラスに応じて、処理に任意の数の工程を含んでもよいし含まなくてもよい。
図2A〜2Cを参照すると、形成および潜在的処理を終えた後、管30を予備線引きしてケイン40とすることができる(例えば、線引き比2:1から100:1の間)。一実施の形態において、管30の直径は約3インチ(約7.5cm)、長さは約4フィート(約120cm)である。しかしながら、様々な径や長さが意図されており、所望のケイン40のための線引き比に依存する可能性がある。例えば、ケインは一般に1mmから20mmの間へと線引きされる。管構造体に存在するチャンネルが多くなると、どの程度小さくケインを予備線引きするべきかに関して影響を与えるかもしれない。当然のことながら、ケインが大きくなると、積層部材を形成するために必要なケインの数は少なくなる(詳細に後述する)。
引続き図2A〜2Cを参照するが、いったんケイン40が予備線引きされて切断されると、ケインはアレイに、すなわち積層部材50内に配列される。この積層部材50はその後、プリフォーム構造62を形成するために外側クラッド管60内に配置される。図示のように、積層部材50には54個のケインが配列され、1996孔のアレイ(54ケイン×37チャンネル/ケイン)が製造される。同じ数のチャンネルを達成するために、従来の技術では、少なくとも3から6倍の数のキャピラリを、さらにある用途では、1996個のキャピラリを積層する必要があったであろう。このより大きな構造体で多数のものを製造する能力により、組立ておよび積層に必要とされるケインの総数は減少し、このためプリフォーム、最終的にはここに記載されるようなファイバ、における不整合性が低減される。さらに、より大きな管を積層部材内に配置するため、工程に要する時間が短縮し効率が上がる。
また、各ケインの六角形(非円形)形状により隣接するケインがぴったりと一致するため、ケイン間に必要以上の空隙を設けずにケインを積層して一体化させることができる。積層部材50内のチャンネルの空間周期性は、基本的に個々のケインにおけるものと同じである。また、ファイバプリフォームを形成する際に重要な要素は、プリフォームの長さを通じての整合性および真直度である。しばしば位置ずれや間隙が生じていた従来の積層工程とは対照的に、ここに記載された工程では、管の積層部材内への配列およびクラッド管内での配列を簡潔に行うことができる。整合するよう成形された、より大きく強固なケインを用いることにより、位置ずれの可能性はさらに減少する。その結果、ここに記載された工程で製造されたファイバプリフォームは、より一貫して整列され、ファイバプリフォームの長さを通じて真っ直ぐになる。ここに記載されるように管を簡潔に配列することにより、孔アレイが正しい形状となっているか確認するために全てのケインおよびファイバの長さを調べる必要がなくなり、工程の効率が上がる。
さらに、ここに記載された工程で形成されたアレイにより、制御可能な空気充填率および細かい孔間ピッチを有するファイバを線引きする能力が促進される。特に、押出し成形を通してケイン内の任意の位置に(さらに制御可能なサイズで)多数のチャンネルを配置することが可能であり、またケイン間をぴったりと一致させることによりケイン間の空隙が最小限に抑えられるため、フォトニック結晶ファイバにおける空気充填率および細かいピッチをはっきりと確認することができ、しかるべく製造することができる。所望の空気充填率および細かいピッチを制御および/または予知する能力により、従来の工程で一般的に必要とされるエッチング量を著しく低減することもできる。
図4A〜4Bを参照すると、管、予備線引きされたケイン、および積層部材の別の実施形態が例示されている。例えば図4Aを参照すると、管230は、ここで記述された工程により鋸歯状の外周232を有するように押出し成形されたものである。図4Aの管230は鋸歯状の外周を有するが、外周の最も外側の点をなぞると六角形が生じるであろうことから、全体の断面/外周/外径は、ここでも六角形の形状を成しているとみなすことができる。図4Aに示したような管230が予備線引き240され、積層250されると、管の鋸歯状端部は、パズルのように互いにぴったりと一致する。このような手法で管230を設計すると、各管(さらに最終的には全積層部材)の間の表面領域を大幅に減少することができる。同様に4Bは、ここで記述された工程によって外周に複数の半円332を有するよう押出し成形された管330の、さらに別の実施形態を例示している。ここでも、外周の最も外側の点をなぞると六角形が生じるであろうことから、全外周すなわち外径は依然として六角形の形状を成しているとみなすことができる。図4Bの管330が予備線引き340され、積層350されると、ケイン間でチャンネルを追加形成するように半円が合わさり、表面領域は減少する。図2〜4に示されたように、管および積層部材(および最終的にはフォトニック結晶ファイバ)の実施形態の多くは、ここに記載された工程を通して製造することができる。
再び図2A〜2Cを参照すると、積層部材50は中央チャンネル56すなわち空隙を有して形成される。他の積層部材の実施形態は、中央チャンネル56すなわち他の意図的な孔や中央チャンネルを有していないかもしれないが(例えば、図3A〜3Cおよび図4A〜4Bの積層部材150、250および350)、図2A〜2Cの中央チャンネルは光伝播のために意図的な欠陥を生成する。管を押出し成形する際の融通性により、管30の内部すなわち積層部材50の内部の任意の位置に(図2A〜2Cに例示されるように管を除去することによって)、孔すなわち欠陥を意図的に生成できることが理解されるであろう。さらに、図2A〜2Cに示したように、また上述したように、特に所望のバンドギャップを有するファイバに対し性能を高めると考えられている任意の幾何学形状で、中央チャンネル56を設計することができる。
所望であれば、積層部材50をクラッド管60に挿入する前に、積層部材のケイン40を融合してもよい(結束されていない管をクラッド管内に配置して、後にその構造体の予備線引き中に融合するのとは対照的に)。この工程では、ケインの整列を保持するため、難溶性の治具を用いてアレイ内へケインを積層することができる。この治具は、ケインにわずかな圧力をかけるためその縁間にわずかな間隙を有する、2つの四角い外側片および六角形の内側片とすることができる。この治具およびケインを加熱炉内に設置し、ケインの形状を変形させずにケインを融着する温度まで加熱することができる。所望であれば、治具の上に錘を配置することおよび/または2つの治具片の間の間隙を広くすることにより、ケインに圧力を加えることができる。
図2A〜2Cに関して上述したように、いったんケインが予備線引きされ切断されると、このケインを微細構造アレイ内すなわち積層部材内に配列してもよい。この積層部材は、その後プリフォーム構造を形成するために外側クラッド管内部に配置される。一実施の形態においては、スリーブすなわち管の体積(例えば、スリーブの内側表面と、スリーブの中心軸に垂直な、スリーブ端部の断面とによって画定される、直にスリーブ内側の自由空間の体積)の少なくとも90%をケインが占有する。また、一実施の形態においては、空の中央チャンネルを除いた全てのケイン間の任意の空き空間が、積層部材の全体積の多くても10%となるようにケインを積層することができる。プリフォームをその後、予備線引き70して第2ケイン80とし、ファイバへと線引きするために別の80で覆ってもよい。所望であれば、プリフォーム構造を直接フォトニック結晶ファイバへと線引きすることもできる。ここに記載された工程の結果、ファイバプリフォームを生成する際により大きなケインを使用すれば、より多くのファイバをプリフォームから線引きすることができる。この能力によりファイバの生産量は増加する。
図5A〜5Cを参照すると、クラッド管の前にガラス管内に積層部材を配置する別の実施形態が例示されている。この工程では、管を押出し成形し、さらに前述したようにケイン440へと予備線引きすることができる(図5A〜5Cに示されるケイン440は1つの孔と六角形の外形を含むことに注意する)。カバー管443は、所望の数の成形されたケイン440を受け入れるよう形成された内径444を有するように、その後押出し成形してもよい。そのカバー管は、積層部材50と同様にガラス材料、または任意の他の材料からなるものとすることができる。カバー管443をその後切断して第1および第2の部材445および446とし、研磨工程を施してもよい。ケイン440をカバー管446内に積層してもよい。ケイン440およびカバー管443の内径444の形状により、ケイン440は、カバー管446内に正確に収めることができる。いったんケインが積層されると、第1部材445を第2部材446と結合してカバー管結合447を形成し、その後クラッド管460内に配置することができる。この構造体をケイン470へと予備線引きし、ファイバプリフォーム490を成形した後、フォトニック結晶ファイバ500へと線引きしてもよい。
本発明によるフォトニック結晶ファイバおよびこれを製造する方法は、上述の実施形態に限られるものではないことは当然のことである。多くの代替案、変形例および変更例が、上記教示の当業者には明らかになるであろう。例えば、本発明によるガラス材料は、多くの構造体を製造するために有用な多くのガラスおよび前駆体を含むものとしてもよく、またファイバプリフォームを組み立てるためには種々の押出し管を使用することができる。従って、代替となる実施形態のいくつかを具体的に記述したが、一般的な当業者によって他の実施形態が明白に、すなわち比較的容易に開発されるであろう。
20 金型
24 ピン
30,130,230,330 管
34 チャンネル
40,140,440,470 ケイン
50,150,250,350 積層部材
60,460 クラッド管
62 プリフォーム構造
490 ファイバプリフォーム
500 フォトニック結晶ファイバ

Claims (10)

  1. フォトニック結晶ファイバを製造する方法であって、
    ガラス材料を非円形の外断面を有するガラス管に加熱成形する工程、
    前記ガラス管を線引きして複数のケインを得る工程、
    前記ケインを積層してプリフォーム構造を生成する工程、および、
    前記プリフォーム構造を線引きしてフォトニック結晶ファイバを得る工程、
    を含むことを特徴とするフォトニック結晶ファイバを製造する方法。
  2. 前記プリフォーム構造を線引きする工程が、前記プリフォーム構造を線引きしてファイバプリフォームとする工程、および、該ファイバプリフォームを線引きしてフォトニック結晶ファイバを得る工程、を含むことを特徴とする請求項1記載の方法。
  3. 前記加熱成形する工程が、金型を通して前記ガラス材料を押出しする工程を含むことを特徴とする請求項1記載の方法。
  4. 前記ガラス管が、前記管の軸に沿って延在する複数のチャンネルを備えることを特徴とする請求項1記載の方法。
  5. 前記ガラス管が、基本的に互いに平行で、前記管の軸に沿って延在する少なくとも19個のチャンネルを備えることを特徴とする請求項4記載の方法。
  6. 前記ケインを積層してプリフォーム構造を生成する工程が、前記ケインを整列させて、空の中央チャンネルを中心近傍に含むプリフォーム構造を生成する工程をさらに含むことを特徴とする請求項1記載の方法。
  7. 前記ガラス材料を非円形の外断面を有するガラス管に加熱成形する工程が、前記ガラス材料を押出しして六角形の管とする工程を含むことを特徴とする請求項1記載の方法。
  8. フォトニック結晶ファイバを製造する方法であって、
    酸化物基準の重量百分率で表して、55%〜75%のSiO、5%〜10%のNaO、20%〜35%のB、および0%〜5%のAlより実質的になる組成を有する前駆体ガラス材料を押出ししてガラス管を得、該ガラス管が該管の軸に沿って延在する複数のチャンネルを有する工程、
    前記ガラス管を溶出し、重量で少なくとも90%のシリカを含む多孔質ガラス管を得る工程、
    高密度化されたガラスを形成するために前記多孔質ガラス管を該ガラス管内の孔が崩壊するように加熱し、高密度化されたガラス管を得る工程、
    前記高密度化されたガラス管を線引きし、複数のケインを得る工程、
    前記ケインの積層部材を形成し、該ケインそれぞれが該積層部材内の隣接ケインと直接に接する工程、および、
    前記積層部材を線引きし、フォトニック結晶ファイバを得る工程、
    を含むことを特徴とするフォトニック結晶ファイバ製造する方法。
  9. 前記管が、前記管の軸に沿って延在する少なくとも19個のチャンネルを備えることを特徴とする請求項8記載の方法。
  10. フォトニック結晶ファイバプリフォーム構造であって、複数の押出し成形された非円形ケインを備え、該押出し成形された非円形ケインそれぞれが、該ケインの軸に沿って延在する少なくとも1つのチャンネルを備えていることを特徴とするフォトニック結晶ファイバプリフォーム構造。
JP2009551680A 2007-02-28 2008-02-20 フォトニック結晶ファイバおよびそれを製造する方法 Withdrawn JP2010520497A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90390107P 2007-02-28 2007-02-28
PCT/US2008/002243 WO2008106037A2 (en) 2007-02-28 2008-02-20 Photonic crystal fibers and methods for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010520497A true JP2010520497A (ja) 2010-06-10

Family

ID=39580224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009551680A Withdrawn JP2010520497A (ja) 2007-02-28 2008-02-20 フォトニック結晶ファイバおよびそれを製造する方法

Country Status (4)

Country Link
US (2) US20100104869A1 (ja)
EP (1) EP2114835A2 (ja)
JP (1) JP2010520497A (ja)
WO (1) WO2008106037A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088795A1 (ja) * 2011-12-16 2013-06-20 古河電気工業株式会社 フォトニックバンドギャップファイバの製造方法
KR20170026916A (ko) * 2015-08-31 2017-03-09 삼성디스플레이 주식회사 컬러필터 기판의 제조방법 및 이를 이용한 디스플레이 장치의 제조방법
JP2018185403A (ja) * 2017-04-25 2018-11-22 日亜化学工業株式会社 透過型回折格子とその透過型回折格子を含むレーザ装置及び透過型回折格子の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090260397A1 (en) * 2008-04-21 2009-10-22 Cornejo Ivan A Glass Structure Having Sub-Micron and Nano-Size Bandgap Structures and Method For Producing Same
JP5083298B2 (ja) * 2009-11-20 2012-11-28 アイシン精機株式会社 ステップユニット
JP5633141B2 (ja) * 2009-11-27 2014-12-03 アイシン精機株式会社 車両用ドア開閉装置
CN102261441B (zh) * 2010-05-31 2014-01-15 鸿富锦精密工业(深圳)有限公司 减速装置
CN103443380B (zh) * 2011-02-25 2016-07-20 麦格纳覆盖件有限公司 用于在车辆中使用的电动滑动门的驱动组件
US8684441B2 (en) * 2011-08-11 2014-04-01 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles incorporating tailgate energy management systems
JP6114946B2 (ja) * 2012-06-19 2017-04-19 三井金属アクト株式会社 車両用ドアの開閉駆動装置
DE102012015650A1 (de) * 2012-08-09 2014-02-13 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Antriebsanordnung für die Verstellung einer Klappe eines Kraftfahrzeugs
US9103373B1 (en) 2014-04-30 2015-08-11 Hi-Lex Controls, Inc. Bearing-shaft assembly with bearing and method of attaching a bearing to a shaft
JP6446724B2 (ja) 2014-08-06 2019-01-09 三井金属アクト株式会社 ドア開閉装置
JP6446723B2 (ja) 2014-08-06 2019-01-09 三井金属アクト株式会社 ドア開閉装置
JP6446722B2 (ja) * 2014-08-06 2019-01-09 三井金属アクト株式会社 ドア開閉装置
US9476245B2 (en) * 2014-08-29 2016-10-25 Strattec Power Access Llc Door cable pulley system
WO2016044838A1 (en) 2014-09-19 2016-03-24 Flow Control Llc. Automatic fill control technique
US9856688B2 (en) * 2014-11-06 2018-01-02 Ford Global Technologies, Llc Bi-directional element drive system
CN106517083B (zh) * 2016-11-11 2017-11-07 中国建筑材料科学研究总院 一种微通道阵列及其制备方法
US11787727B2 (en) 2018-04-18 2023-10-17 Lawrence Livermore National Security, Llc Method for fabrication of sleeveless photonic crystal canes with an arbitrary shape
CN113677865A (zh) * 2019-04-10 2021-11-19 麦格纳覆盖件有限公司 用于闭合面板的直接驱动线缆操作的致动系统

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2106744A (en) * 1934-03-19 1938-02-01 Corning Glass Works Treated borosilicate glass
US3485687A (en) * 1966-07-15 1969-12-23 Corning Glass Works Porous high silica glass
GB2164090B (en) * 1984-07-26 1987-10-14 Ohi Seisakusho Co Ltd Automatic sliding door system for vehicles
US20020102674A1 (en) * 1987-05-20 2002-08-01 David M Anderson Stabilized microporous materials
JPH03209042A (ja) * 1990-01-08 1991-09-12 Koito Mfg Co Ltd 昇降装置
US5138795A (en) * 1990-04-25 1992-08-18 General Motors Corporation Power sliding door closer
US5316365A (en) * 1993-01-25 1994-05-31 General Motors Corporation Sliding door closed loop cable closure system with balanced cable tension and varying diameter pulleys
US5319881A (en) * 1993-01-25 1994-06-14 General Motors Corporation Sliding door closed loop cable closure system with balanced cable length and varying diameter pulleys
GB2311811B (en) * 1996-04-04 1998-07-08 Mitsui Mining & Smelting Co Powered sliding device for a vehicle sliding door
JP3656787B2 (ja) * 1997-01-30 2005-06-08 株式会社大井製作所 車輛用スライドドアの自動開閉装置
US6136186A (en) * 1997-01-31 2000-10-24 Lynntech, Inc. Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant
US6452332B1 (en) * 1999-04-26 2002-09-17 Chad Byron Moore Fiber-based plasma addressed liquid crystal display
US6414433B1 (en) * 1999-04-26 2002-07-02 Chad Byron Moore Plasma displays containing fibers
GB2323124B (en) * 1997-03-11 2000-12-06 Delphi Automotive Systems Gmbh Electrically operated slidable door actuator
CA2202716A1 (en) * 1997-04-15 1998-10-15 The University Of Western Ontario Photocatalytic reactor and method for destruction of organic air-borne pollutants
DE19727603C1 (de) * 1997-06-28 1998-07-23 Kiekert Ag Schiebetürantrieb für ein Kraftfahrzeug
US5982169A (en) * 1997-09-24 1999-11-09 Eastman Kodak Company Micro-encoder with molded micro-magnet
AU1390899A (en) * 1997-11-11 1999-05-31 Board Of Regents Of The University Of Oklahoma, The Method and reactor cell for the photooxidation of gases
DE19806762B4 (de) * 1998-02-18 2009-03-12 Volkswagen Ag Betätigungseinrichtung für eine Schiebetür, insbesondere für Kraftfahrzeuge
CA2268469C (en) * 1998-04-10 2004-03-23 University Of Central Florida Apparatus and method for photocatalytic and thermocatalytic pollution control
WO2000006506A1 (en) * 1998-07-30 2000-02-10 Corning Incorporated Method of fabricating photonic structures
US6267864B1 (en) * 1998-09-14 2001-07-31 Nanomaterials Research Corporation Field assisted transformation of chemical and material compositions
US6243522B1 (en) * 1998-12-21 2001-06-05 Corning Incorporated Photonic crystal fiber
KR20020010573A (ko) * 1999-02-18 2002-02-04 알프레드 엘. 미첼슨 실리카 수트 압출로부터의 티타늄-함유 실리카 유리허니컴 구조물
EP1177092A4 (en) * 1999-02-18 2004-11-17 Corning Inc HONEYCOMB SILICA GLASS STRUCTURE MADE BY EXTRUSION OF SILICA SOOT
WO2000053878A1 (en) 1999-03-08 2000-09-14 Atoma International Corp. Drive mechanism for selectively opening and closing a closure panel manually or automatically
US6285816B1 (en) * 1999-04-13 2001-09-04 Wisconsin Alumni Research Foundation Waveguide
US6431935B1 (en) * 1999-04-26 2002-08-13 Chad Byron Moore Lost glass process used in making display
US6354899B1 (en) * 1999-04-26 2002-03-12 Chad Byron Moore Frit-sealing process used in making displays
US6247987B1 (en) * 1999-04-26 2001-06-19 Chad Byron Moore Process for making array of fibers used in fiber-based displays
US6038818A (en) 1999-04-30 2000-03-21 General Motors Corporation Actuator assembly for a powered sliding door system
JP2001115737A (ja) * 1999-10-18 2001-04-24 Koito Mfg Co Ltd パワーウインドの安全装置
US6524447B1 (en) * 1999-11-22 2003-02-25 Titan Technologies Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
US6902653B2 (en) * 1999-11-22 2005-06-07 Titan Technologies Apparatus and method for photocatalytic purification and disinfection of fluids
US20010033483A1 (en) * 2000-03-01 2001-10-25 Moore Chad Byron Fluorescent lamp composed of arrayed glass structures
US7034446B2 (en) * 2000-03-01 2006-04-25 Chad Byron Moore Fluorescent lamp composed of arrayed glass structures
US6444133B1 (en) * 2000-04-28 2002-09-03 Corning Incorporated Method of making photonic band gap fibers
JP3855600B2 (ja) * 2000-05-29 2006-12-13 アイシン精機株式会社 車両用スライドドア装置
US6802154B1 (en) * 2000-06-23 2004-10-12 Multimatic, Inc. Automatic sliding door opening and closing system with a releasing mechanism for fixably and releasably attaching a vehicle door to a belt drive system
NZ505774A (en) * 2000-07-17 2002-12-20 Ind Res Ltd Oxalate stabilised titania solutions and coating compositions and catalysts formed therefrom
JP3872264B2 (ja) * 2000-08-09 2007-01-24 三菱電線工業株式会社 フォトニッククリスタルファイバの製造方法
US6390535B1 (en) * 2000-09-11 2002-05-21 Delphi Technologies, Inc. Sliding door closure apparatus
US6598428B1 (en) * 2000-09-11 2003-07-29 Schott Fiber Optics, Inc. Multi-component all glass photonic band-gap fiber
US6553719B1 (en) * 2000-10-13 2003-04-29 Hi-Lex Corporation Door mounted power sliding door mechanism
US6460295B1 (en) * 2000-10-19 2002-10-08 Delphi Technologies, Inc. Electrically operated closure actuator
JP4103984B2 (ja) * 2001-01-16 2008-06-18 株式会社デンソー ハニカム成形体の製造方法及び乾燥装置
US6640037B2 (en) * 2001-04-17 2003-10-28 Corning Incorporated Thin walled core band-gap waveguides
AUPR566201A0 (en) * 2001-06-13 2001-07-12 Ryder, Carol A device for use in construction
WO2002101422A2 (en) * 2001-06-13 2002-12-19 Samsung Electronics Co., Ltd. Method for fabricating optical fiber preform using extrusion die
WO2003009026A1 (en) * 2001-07-20 2003-01-30 The University Of Sydney Constructing preforms from capillaries and canes
KR200259681Y1 (ko) * 2001-09-21 2002-01-05 박대산 레버 도어록 기구
AU2002347142A1 (en) * 2001-11-29 2003-06-10 Intier Automotive Closures Inc. Drive assembly for a power closure panel
US6570339B1 (en) * 2001-12-19 2003-05-27 Chad Byron Moore Color fiber-based plasma display
US6829421B2 (en) * 2002-03-13 2004-12-07 Micron Technology, Inc. Hollow core photonic bandgap optical fiber
JP3894431B2 (ja) * 2002-04-08 2007-03-22 株式会社大井製作所 移動体のケーブル張力装置
JP3928155B2 (ja) * 2002-05-13 2007-06-13 株式会社大井製作所 スライド開閉体の駆動装置
JP4163915B2 (ja) 2002-09-12 2008-10-08 株式会社ミツバ 車両用自動開閉装置
US6783740B2 (en) * 2002-09-30 2004-08-31 Northrop Grumman Corporation Sintered glass bead filter with active microbial destruction
US6925757B2 (en) 2002-10-02 2005-08-09 Delphi Technologies, Inc. Cable drive assembly
US7521039B2 (en) * 2002-11-08 2009-04-21 Millennium Inorganic Chemicals, Inc. Photocatalytic rutile titanium dioxide
US7305164B2 (en) * 2002-12-20 2007-12-04 Crystal Fibre A/S Enhanced optical waveguide
US7243461B2 (en) * 2003-03-19 2007-07-17 Rogers Jr Lloyd W Hinge mechanism for a sliding door
WO2004095099A1 (en) * 2003-04-01 2004-11-04 Corning Incorporated Photonic band gap optical fiber
IL159533A0 (en) 2003-12-23 2009-02-11 Pixman Corp Electrically-operated sliding door mechanism
WO2006080005A2 (en) * 2005-01-25 2006-08-03 Bar Ilan University Electronic device and a method of its fabrication
US8755658B2 (en) * 2007-02-15 2014-06-17 Institut National D'optique Archimedean-lattice microstructured optical fiber
JP5207678B2 (ja) * 2007-07-20 2013-06-12 株式会社ハイレックスコーポレーション ケーブルガイドおよびそれを用いたスライドドア駆動装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088795A1 (ja) * 2011-12-16 2013-06-20 古河電気工業株式会社 フォトニックバンドギャップファイバの製造方法
JP2013127503A (ja) * 2011-12-16 2013-06-27 Furukawa Electric Co Ltd:The フォトニックバンドギャップファイバの製造方法
KR20170026916A (ko) * 2015-08-31 2017-03-09 삼성디스플레이 주식회사 컬러필터 기판의 제조방법 및 이를 이용한 디스플레이 장치의 제조방법
KR102481379B1 (ko) * 2015-08-31 2022-12-27 삼성디스플레이 주식회사 컬러필터 기판의 제조방법 및 이를 이용한 디스플레이 장치의 제조방법
JP2018185403A (ja) * 2017-04-25 2018-11-22 日亜化学工業株式会社 透過型回折格子とその透過型回折格子を含むレーザ装置及び透過型回折格子の製造方法
JP2021131566A (ja) * 2017-04-25 2021-09-09 日亜化学工業株式会社 透過型回折格子の製造方法
JP7125640B2 (ja) 2017-04-25 2022-08-25 日亜化学工業株式会社 透過型回折格子の製造方法

Also Published As

Publication number Publication date
WO2008106037A2 (en) 2008-09-04
US20100043296A1 (en) 2010-02-25
US7866732B2 (en) 2011-01-11
WO2008106037A3 (en) 2008-10-16
US20100104869A1 (en) 2010-04-29
EP2114835A2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP2010520497A (ja) フォトニック結晶ファイバおよびそれを製造する方法
US11668871B2 (en) Antiresonant hollow core fibre, preform therefor and method of fabrication
JP4465527B2 (ja) 微細構造光ファイバ、プリフォーム及び微細構造光ファイバの製造方法
KR100617713B1 (ko) 다공 광섬유의 제조방법
EP2638419A1 (en) Multi-core optical fiber ribbons and methods for making the same
US20200317557A1 (en) Infrared-transmitting, polarization-maintaining optical fiber and method for making
US8041170B2 (en) Photonic bandgap fiber
US20060153512A1 (en) Fused array preform fabrication of holey optical fibers
JP4466813B2 (ja) ガラスプリフォームおよびその製造方法
JP5384679B2 (ja) 光ファイバ母材を製造する方法及び光ファイバ母材
CN105866880A (zh) 一种保偏光纤的制备方法
JP2004020836A (ja) 光ファイバ及びその製造方法
JP5457089B2 (ja) フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法
JP5941430B2 (ja) 光ファイバ用多孔質ガラス母材の製造方法
WO2013031484A1 (ja) ファイバ
JP6291892B2 (ja) マルチコア光ファイバ母材製造方法
KR100660148B1 (ko) 공기홀을 갖는 광섬유용 모재의 제조 방법
JP6517583B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
JP5492325B2 (ja) 光ファイバ母材を製造する方法及び光ファイバ母材
JP6623146B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
JP5702850B2 (ja) 光ファイバ母材
CN116097141A (zh) 多芯光纤
JPH0930824A (ja) 偏波保持光ファイバの製造方法及び偏波保持光ファイバ
KR100795217B1 (ko) 분산제어용 광섬유 제조방법
JPH06227836A (ja) 偏波面保存光ファイバ用母材

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510