JP2010517030A - 神経変性疾患の診断を支援するためのツール - Google Patents

神経変性疾患の診断を支援するためのツール Download PDF

Info

Publication number
JP2010517030A
JP2010517030A JP2009546812A JP2009546812A JP2010517030A JP 2010517030 A JP2010517030 A JP 2010517030A JP 2009546812 A JP2009546812 A JP 2009546812A JP 2009546812 A JP2009546812 A JP 2009546812A JP 2010517030 A JP2010517030 A JP 2010517030A
Authority
JP
Japan
Prior art keywords
brain
subject
image
image data
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009546812A
Other languages
English (en)
Other versions
JP5468905B2 (ja
Inventor
リルヤ,ジョハン・アクセル
サーフジェル,ニルス・レナート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Ltd
Original Assignee
GE Healthcare Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Healthcare Ltd filed Critical GE Healthcare Ltd
Publication of JP2010517030A publication Critical patent/JP2010517030A/ja
Application granted granted Critical
Publication of JP5468905B2 publication Critical patent/JP5468905B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • G06T7/41Analysis of texture based on statistical description of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Neurology (AREA)
  • Quality & Reliability (AREA)
  • Probability & Statistics with Applications (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Nuclear Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】ADの病理学的プロセスの検出するために臨床前フェーズ、予備的診断フェーズ及び診断フェーズのすべてに関して患者を迅速かつ正確に評定する改良型の方法を提供すること。
【解決手段】対象内に存在する神経変性疾患の臨床的評価のためのシステム(100)及び方法について記載している。システム(100)は、対象の脳を表す画像データを収集するように動作可能な画像収集モジュール(122)と、画像解析器(124)と、を備える。画像解析器(124)は、画像データから対象の脳内に存在する神経変性疾患のレベルを意味している1つの定量値を決定するように動作可能である。本発明の様々な実施形態は、神経変性疾患(例えば、アルツハイマー病(AD)など)に対する早期診断及び監視の向上を支援するツールを提供する。
【選択図】図1

Description

本発明は、神経変性疾患の診断を支援するためのツールに関する。具体的には本発明は、神経変性疾患(例えば、アルツハイマー病(AD)など)の診断を支援するために脳画像データに対して画像解析技法を適用するための装置及び方法に関する。
様々な神経変性疾患(例えば、アルツハイマー病など)はインビボにおいて確定的に診断することが困難であることが知られている。例えばAD発症に対する遺伝的な素因を有する可能性のある対象者を特定することは可能である[1、2]が、予備的診断の提供は、様々な特徴的な症状が熟練した臨床医に対して明らかとなった時点における実験室的、臨床的かつ晩期の神経撮像検査に由来するデータに基づいてのみ可能であることが多い。
こうしたADに対する予備的診断の生成を支援するためには様々な技法が使用されてきた。これらの技法には、患者の眼がADの進行に一致する神経節細胞喪失を受けているか否かを判定するために光学技法が利用されるような例えばNewmanにより考案された光学テスト[3]などの様々な物理的スクリーニングテストが含まれる。
こうした予備的診断は有用である。しかし最近、何らかのこうした予備的診断が実施される(すなわち所謂、疾病の臨床前段階の)数十年前であってもADの病理学的プロセスが始まっている可能性があるという証拠の出現が増えつつある。この臨床前段階は、主たる2つのフェーズ(すなわち、観察可能な症状が全く存在しない初めの「潜伏フェーズ」と、これに続く予備的臨床診断には不十分な穏やかな症状が存在している「前駆的フェーズ」)に分割することができる。
したがって、この2つの臨床前フェーズの間に病理学的プロセスの様々な兆候を特定しようと試みることによって、より早い段階で診断を提供しようとする様々な試みもなされてきた。ADの早期段階病理に関連する可能性がある何らかの異常な変動を特定するためには、これまで2つの主たる技法(すなわち、a)脳の磁気共鳴撮像(MRI)及び機能的磁気共鳴撮像(fMRI)[4、7]並びにb)陽電子放出断層(PET)スキャナを用いて放射性の18F−2−フルオロ−2−デオキシ−D−グルコース(FDG)の取り込みを監視することによる脳の代謝性変化の評価[2、5、6])が使用されてきた。
US2003/0233197(Carlos E.Padilla及びValeri I.Karlov) US2005/0283054(Eric M.Reiman) US2005/0094099(Richard W.Newman及びCorinn C.Fahrenkrug) US2005/0197560(Stephen M.Rao及びCatherine L.Elsinger) US2005/0215889(James C.Patterson II) US2005/0273007(Ziad Burbar) WO02/101407(Nicholas Fox及びIlya Charles) WO2006/083378(Vladimir Kepeら)
許諾された場合、上述の参考文献の内容も参照によりその全体を本出願に組み入れるものとする。
こうした技法はADの診断において実際に役に立っているが、上で言及した方法のすべては疾病の2次的影響を計測することに関して限界があり、またADの病理学的プロセスの検出するために疾病の臨床前フェーズ、予備的診断フェーズ及び診断フェーズの3つのフェーズすべてに関して患者を迅速かつ正確に評定する改良型の方法の提供が必要である。このことは、臨床前段階において特に重要であり、この段階での疾病プロセス及び治療の早期の特定は疾病の進行を阻止または遅らせるために望ましい。さらに、この3つの疾病フェーズのいずれかにある患者について治療に対する応答を含むADの進行を評定するためのより適当な方法が存在することが必要とされている。
本発明の様々な態様及び実施形態は、従来の技法に関する上述の欠点を考慮に入れながら神経変性疾患(例えば、ADなど)の診断及び監視を支援するためのツールを提供するために開発したものである。
本発明の第1の態様では、対象内に存在する神経変性疾患の臨床的評価のためのシステムを提供する。本システムは、対象の脳を表す画像データを収集するように動作可能な画像収集モジュールと、画像解析器と、を備える。この画像解析器は画像データから1つの定量値を決定するように動作可能であり、該定量値は対象の脳内に存在する神経変性疾患のレベルを意味している。
本発明の第2の態様では、対象内に存在する神経変性疾患の臨床的評価のための方法を提供する。本方法は、対象の脳を表す画像データを収集する工程と、該画像データから1つの定量値を決定するために画像データを解析する工程と、を含む。この定量値は、対象の脳内に存在する神経変性疾患のレベルを意味している。
本発明の第3の態様では、データ処理装置を構成するように動作可能なコンピュータコードを備えており本発明の態様及び実施形態に従った様々な方法の工程のうちの1つまたは幾つかを実現することを可能とさせたコンピュータプログラム成果物を提供する。
本発明のこれらの態様によるシステム、方法及びコンピュータプログラム成果物の様々な実施形態は、その定量値が様々なヘルスケア専門家がその診断を支援するために使用可能なある精密な値(例えば、数値)を表しているので有利である。したがってこの定量値は、ある特定の神経変性疾患に関する様々なインジケータの有無を計測するため、並びに疾病重篤度に関する指示を提供するために利用することが可能である。さらにこうした値は定量的であるため、ヘルスケア専門家が様々な時間期間にわたって患者状態の変化を追跡する際の支援として使用することができ、これによってこうしたシステム、方法及びコンピュータプログラム成果物は疾病の進行(例えば、悪化/寛解)、施した治療の有効性、その他を監視する際の支援において用途を見出し得る。
添付の図面を参照しながらここで本発明の様々な態様及び実施形態について記載することにする。
本発明の一実施形態による対象内に存在する神経変性疾患の臨床的評価のためのシステムを表した図である。 本発明の様々な実施形態による対象内に存在する神経変性疾患の臨床的評価を支援するための方法を表した図である 本発明の態様に従った様々な方法を含んだワークフローを表した図である。 異方性フィルタを用いて平滑化済みの単一対象MRIテンプレートを用いたPETデータの解剖学的標準化を表した図である。 本発明の一態様による灰白質対白質比を用いた診断性フィーチャの抽出を表した図である。 本発明の一態様によるADを有する対象から撮像された画像からの強度プロフィールを診断性フィーチャとして使用する様子を表した図である。 本発明の一態様による健常対照(NC)の対象から撮像された画像からの強度プロフィールを診断性フィーチャとして使用する様子を表した図である。 本発明の一態様に従って導出された関心対象脳ボリューム(VOI)及び灰白質対白質計測値に関する結果を3次元(3D)グラフィック表示で示した図である。 本発明の一態様に従って導出された脳強度プロフィール解析に関する結果をグラフィック表示で示した図である。 本発明の一態様に従って導出された脳ボクセルベースのフィーチャ解析に関する結果をグラフィック表示で示した図である。 本発明の一態様に従って導出されたADを有する対象の脳強度プロフィール解析に関する結果を3Dグラフィック表示で示した図である。 本発明の一態様に従って導出されたADを有しない健常対象の脳強度プロフィール解析に関する結果を3Dグラフィック表示で示した図である。
図1は、本発明の一実施形態による対象内に存在する神経変性疾患の臨床的評価のためのシステム100を表している。システム100は、様々なインタフェース123、126、画像収集モジュール122及び画像解析器124を提供するように構成されたデータ処理装置120を含む。インタフェース123、126、画像収集モジュール122及び画像解析器124は中央処理ユニット(図示せず)の制御下でデータバス125によって一体に論理的に結合させることが可能である。
データ処理装置120を外部の構成要素とインタフェースさせるために、データ処理装置120は第1の汎用インタフェース126を提供する。この実施形態における外部の構成要素としては、ユーザ入力デバイス128(例えば、マウス/キーボード/その他)と結合させた入力データリンク127、インターネット142と結合させたネットワークデータリンク143、及びディスプレイ130と結合させたディスプレイデータリンク129が含まれる。さらに汎用インタフェース126は、グラフィカルユーザインタフェース(GUI)123も提供しており、これを介してシステム100のユーザは、データ、コマンドその他を入力すること並びにディスプレイ130を観察することによって視覚的情報を受け取ることが可能である。
GUI123は、対象の脳の少なくとも一部に関する2次元及び/または3次元描出を作成するように動作可能とさせることがある。こうした描出には、脳の領域内のそれぞれにおける物質の取り込みに従った領域のカラーコード化を含むことがある。これによってシステム100のユーザに対する視覚化の容易性がもたらされる。さらに様々な実施形態では、入力デバイス128を用いたGUI123の操作によってユーザは画像及び/またはスライス3D画像を回転させることも可能である。
GUI123はさらに、表形式のデータをその3次元描出とリンクさせるように動作可能とさせることもできる。例えばユーザは、表示されたテーブル内のデータ値をクリックし、脳のある画像内の対応する領域をライトアップさせること、あるいはこの逆の操作を行うこともあり得る。これによればユーザは表示された画像から定量値に迅速にアクセスすることが可能となる。
様々な実施形態では、データ処理装置120は汎用のコンピュータ(例えば、パーソナルコンピュータ(PC))によって提供することが可能である。こうした汎用のコンピュータはソフトウェアモジュールを用いて画像収集モジュール122と画像解析器124の両者を提供することが可能であり、このためソフトウェアアップグレードを用いて既存装置の機能能力をアップグレードすることによってこれを実現することが可能である。例えば、コンピュータコードを備えたコンピュータプログラム成果物144を遠隔のサーバー(図示せず)からインターネット142を介しネットワークデータリンク143を通してデータ処理装置120に転送することがある。
システム100はまた、データリンク139によってデータ処理装置120と結合させた任意選択の陽電子放出断層(PET)スキャナ140と、データリンク131によってデータ処理装置120と結合させた任意選択のデータ記憶132と、を備える。PETスキャナ140及び/またはデータ記憶132は、画像収集モジュール122に対して画像データを提供するように構成されることがある。例えばPETスキャナを設けない場合に、その内部に記憶してある以前に作成した画像データを包含することができるデータ記憶132から画像データが提供される可能性がある。こうした以前に作成した画像データは、システム100から離れた場所(例えば、適当な画像データ作成施設が利用可能であるような遠隔の病院やその他の場所)で作成され、引き続いて画像収集モジュール122により取り出し可能な箇所からデータ記憶132に転送される可能性もある。画像収集モジュール122はさらに、PETスキャナ140により作成された画像データをアーカイブ目的でデータ記憶132に転送するように動作可能である。
画像解析器124は、画像データから1つの定量値を決定するように動作可能であり、該定量値は対象の脳内に存在する神経変性疾患のレベルを意味している。この定量値は、1組の健常者画像データからの様々な解剖学的及び/または化学的な変動の存在を基にして決定される数値とすることができる。好ましい一動作モードではその画像解析器124は、PETスキャナ140からの画像データを用い、対象の脳内におけるアミロイドプラーク濃度を決定することによって該画像データから1つの定量値を決定する。ヒトの脳内にあるアミロイドプラーク濃度を画像化することは、ADの疾病プロセスと直接結合させた尺度を取得するための有望な技法の1つであり、またしたがってアミロイド画像化データを量的に評価する方法が重要である。
例えばβ−アミロイドなどのアミロイド含有の決定は、ADの診断並びに治療効果の監視において特に重要である。PETやSPECTを用いてアミロイド含有を画像化するために幾つかの放射性トレーサが開発中であり、本発明の一態様はこうしたデータの自動解析に関する。さらに本技法のこの態様によればさらに、データ収集の複雑さを低減して簡略化したプロトコルの使用を可能とさせることができ、またこのため複数の撮像技法で要求される長い収集時間が回避されることによって任意の神経変性疾患のレベルを示す定量値の取得に要する時間を短縮することが可能である。
システム100は脳アミロイド含有を解析するためのアミロイドの有無を検出する少なくとも1つのモードを用いて動作させることが好ましいが、システム100は必ずしもこの動作モードに限定する必要がないことを理解されたい。例えばシステム100の様々な動作モードを、アミロイド含有のPET撮像、脳代謝のFDG撮像、MRI、fMRI、その他のうちの1つまたは幾つかと組み合わせることが可能である。こうしたモードは、特に組み合わせて用いることによって、例えば画像データ収集時間、画像データ処理時間、その他を犠牲にすればシステム100の特定の任意の所望の臨床応用に従ったより正確な撮像またしたがってより正確な定量計測値を取得することができる。
図2は、対象内に存在する神経変性疾患の臨床的評価を支援するための方法200の一実施形態を表している。方法200は、本発明に従って製作した装置(例えば、図1に示したシステム100など)の様々な実施形態を用いて実現することができる。
方法200は脳画像データを収集する工程220を含む。この工程それ自体はさらに、例えばデータ記憶デバイスから画像データを単に取得する工程を含むことがあり、あるいは対象の脳の少なくとも一部に関してPETスキャンを実行する工程を含むことがある。後者のケースでは、患者に対して放射性トレーサ物質が投与されることがある。例えばその放射性トレーサ物質は、WO02/16333及びWO2004/083195に記載されているようなGE Pittsburgh Compound B(PiB)族のトレーサのような放射性医薬品、あるいはWO00/10614に記載されているようなトレーサFDDNP及び類似物などアミロイドたんぱくと選択的に結合する化学物質を含むことがあり得る。したがって、神経変性疾患の診断を支援するために有用な対象の脳内のアミロイド濃度から1つの定量値を決定することができる。
方法200は、画像データを解析する工程240及び定量値を決定する工程260を含む。この2つの工程240、260の組み合わせによって多種多様な技法を得ることができる(そのうちの幾つかの例について以下でさらに詳細に記載することにする)。例えば画像データを解析する工程240は、画像データによって規定された画像内に基準領域を規定する工程、脳灰白質内の取り込みの脳白質内の取り込みに対する比として物質の取り込みから定量値を決定する工程、脳内の所定の投影に沿った画像データ規模の変化率として定量値を決定する工程、その他のうちの1つまたは幾つかの工程を含むことがある。
方法200の様々な実施形態では、対象のPETスキャンの解析のために利用可能な画像情報を最大限に利用するようにされている。例えばMRIスキャンが利用可能であれば、MRIスキャンによって解剖学的標準化を駆動させることが可能である。PET/CTデータが利用可能であれば、CT成分を使用することが可能である。このスキームは、解析の時点で利用可能な情報が与えられたときに確実に最大確度を実現させるのに役立つ。この方法について以下でより詳細に記載することにする。
図3は、本発明のある種の態様及び実施形態による様々な方法320、350、380を含むワークフロー300を表している。例えば、方法320、350、380のうちの1つまたは幾つかは、図1のシステム100によって実現させること、あるいは図2の方法200の一部として含まれることがある。
ワークフロー300の第1の態様は、健常者画像データベース(NID)を取得するための方法320を提供する。NIDは1組の制御データを提供するために使用されており、この制御データ組は引き続いて神経変性疾患の有無を指示することが可能な異常な生理学的、化学的または解剖学的データインジケータを特定するために使用することが可能である。NIDは、例えば中央の医療施設で取得した後に配布されることがあり、あるいは健常対象者のテストに基づいて1つまたは複数のシステムのところで局所的に提供される可能性もある。
本発明の様々な実施形態ではそのNIDは、その内部のデータの確度を向上させるためにある特定の箇所において健常対象者をスキャンすることによって恒常的に更新することが可能である。こうしたNIDデータはさらに、異なる箇所に提供された多くのシステム間で共有される可能性があり、これによってこれら箇所のすべてにおけるNID内のデータの広域的全体確度を向上させることができる。このことは例えば、本発明の一実施形態によるシステムが小さい病院に提供されているが、それ自体としては局所的に導出された統計的に有用なNIDデータ組を提供可能とするには使用する対象/患者の数が十分でないような場合に特に有用である。
工程322、322’において、多くの数の健常対象者からのスキャンを処理しNID内に含めることが可能である。明瞭にするために2つのスキャン322、322’だけを表しているが、Nは任意の正の整数に対応しており、Nは最適化NIDを取得するために実際上可能な限り大きくすることが好ましい。
工程324では、工程322、322’におけるスキャンから取得した画像データに対する処理が実行される。この画像データに対する処理は3つの工程(すなわち、1)解剖学的標準化、2)強度正規化及び3)フィーチャ抽出)からなる。これらの3つの処理を実現するための様々な方法について、以下でそれぞれの見出しの下に記載することにする。
[解剖学的標準化]
解剖学的標準化(ときに、空間的正規化とも呼ぶ)の目的は、異なる対象からのデータを、例えばTalairach及びMNI(Montreal Neurological Institute)空間などの標準的な解剖学的空間に変換することである。解剖学的標準化は、1つの画像組(フローティング画像と呼ぶこともある)に対して第2の画像組(基準画像と呼ぶこともある)とマッチングさせるような空間的変換を適用することによって達成される。大部分の方法は変換したフローティング画像とこれに対応する基準画像との間で算出されるある類似性尺度を最大化するようにその変換を反復式に調整することによって進められる。適当な変換を見出すには、最適化アルゴリズムを使用することを必要とするのが通常である。変換のタイプ及び使用されるパラメータの数によって解剖学的標準化の確度が決定される。一般的な解剖学的標準化では、PETやSPECTなどの機能性画像を用いる場合と比べてより高い確度で高分解能の解剖学的画像(例えば、MRI)の利用を実施することが可能である。
解剖学的標準化では、指定されたある解剖学的構造は標準空間内でも同じ箇所を占有しているため、異なる対象からのデータの直接比較が可能である。解剖学的標準化ではまた例えば、健常者画像データベースを作成すること、並びに例えば対象に対して様々なトレーサを投与した場合に異なる領域における取り込みの自動定量化のために関心対象ボリューム(VOI)テンプレートを使用すること、が可能である。
正確な解剖学的標準化が重要であると共に、また一般に本処理は解剖学的画像をPET由来の撮像データと連携して用いた場合により正確となる。しかし解剖学的画像は常に利用可能であるとは限らないため、PETデータを直接用いて正確な解剖学的標準化を実行することが可能な方法があることが重要である。この理由により、上で言及したような画像データのクラス(または、複数のクラス)に応じて画像解析モードを自動選択するような方法を利用することが可能である。こうした選択技法は以下のものを含むことがある。
a)対象のMRIデータが利用可能である場合、対象のMRIをPETスキャンと相互位置合わせする。このMRI画像は、対象のMRIと標準化空間のMRIテンプレートとの間の類似性を最大化するような非リジッドな(non−rigid)位置合わせを適用することによって空間的に正規化させる。この結果、MRIを標準化空間に対してマッピングする変換が得られる。次いで、前の工程で取得した変換を用いてPETスキャンを標準化空間に変換させる。
b)MRIデータが利用可能でないがPETとコンピュータ断層撮像(CT)の複合スキャナ(PET/CT)を用いたPET画像データが取得されている場合、CTスキャンとPETスキャンからの画像データは既に位置合わせ状態にあるのが通常である。しかしこの前提をチェックして画像データが整列していなければ、CT画像データをPET画像データと相互位置合わせする。PET/CT画像データのCT成分は、対象のCTと標準化空間のテンプレートとの間の類似性を最大化するような非リジッドな位置合わせを適用することによって空間的に正規化させる。この結果、CTデータを標準化空間に対してマッピングする変換が得られる。次いで、前の工程で取得した変換を用いてPETスキャン画像データを標準化空間に変換させる。
c)PET画像データだけが利用可能である場合、PETスキャン画像データは、PETデータと標準化空間のテンプレートとの間の類似性を最大化するような非リジッドな位置合わせを適用することによって空間的に正規化させる。アミロイドデータ(例えば、PIB)については、アルツハイマーの対象からの画像を健常対照からの画像と比較したときに画像パターンに特徴的な差異が存在する。これによってPETデータを解剖学的に標準化するために標準的な方法を利用したとしても系統誤差が生じることがあり得る。さらにアミロイドデータでは、基準領域(以下を参照)の周りのエリアで良好な位置合わせを有することが特に重要である。これらの困難を克服するには、以下の方法が利用される。基準テンプレートとしては、MNI空間に対して位置合わせされた単一対象MRI脳(例えば、図4参照)が用いられる。類似性関数において極小値が得られるリスクを低減するために、その基準テンプレートは、組織境界を依然として保全する一方でテンプレートをより平滑とさせる異方性フィルタによるフィルタ処理を受ける。
基準テンプレートに対するPETスキャンの位置合わせでは、正規化した相互情報に基づいた類似性関数が使用される。さらにこの位置合わせは2段階式で実行される。その第1の段階では、18個のパラメータをもつ多項式変換を用いてPETスキャンが基準テンプレートに対して広域性に位置合わせされる。第2の段階では、基準領域の周りで局所的位置合わせが実行される。内側及び外側の3D形状(ボックス、球状または不規則形状)によって規定された枠取りボックスが基準領域の周りに配置されると共に、内側形状の内部でリジッドな(rigid)変換を用いてデータの局所的位置合わせが実行される。内側形状と外側形状の間のエリアにあるデータは、枠取りボックスの内部と外部のデータ間の平滑な遷移を確実にするために補間を受ける。この方法によって、基準領域の近傍域(すなわち、枠取りボックス内部)におけるデータの確度を上昇させて対象の脳に関する良好な全体的位置合わせが保証される。図4は、基準領域を脳橋の周りとした枠取りボックス410を表しているが、これ以外の基準領域(例えば、小脳)を使用することも可能であることを理解されたい。
手順b)で使用されるテンプレートはMRIやCTベースのものとすることができるが、工程c)で使用されるテンプレートはMRIベースのものであることに留意されたい。使用する位置合わせ方法は、相関性、相互情報、正規化相互情報を含む類似性尺度の最大化、並びに例えばアフィン、多項式、離散コサイン変換(DCT)、その他を含むデータの空間的正規化に使用される変換に基づいた方法とすることができる。
[強度正規化(基準領域)]
様々な対象にわたる画像データの比較を可能にするために、そのデータは、注入された活量、様々な対象の重量、その他を考慮に入れるようにスケール調整した強度とすることが可能である。利用し得る技法の1つは、如何なる関心対象の神経変性疾患が調査対象であるかによって影響を受けないと考えられる領域内における取り込みに従ってデータをスケール調整することである。
本発明の様々な実施形態では、対象内に存在する神経変性疾患のレベルをそこから決定するための画像データによって規定された画像内で1つの基準領域が規定される。この基準領域は例えば、脳の下位エリア(例えば、脳橋、視床、小脳、その他など)に対応することがある。こうした比較的小さい基準エリアを利用すると、このエリアに関する堅実な画定を有する必要性が増大する。
例えばアミロイド画像化(例えば、C11−PIBを用いる)では、使用する領域を小脳の灰白質エリアとすることがある。典型的にはこの領域は、相互位置合わせされたMRI内で手作業で輪郭抽出される。しかし自動化方法では、基準領域を標準化空間内において規定しなければならない。この工程を堅実なものとするためには、さらに最大確率マスクを利用することが可能である。以下の説明では、a)こうしたマスクを作成する方法、並びにb)マスクの使用方法に関して例で説明することにする。
a)基準領域確率マスクの作成:1)N個の対象について、MRIとPETスキャンの間で画像データを相互位置合わせし;2)エキスパートを利用し相互位置合わせ済みのMRIデータ内で小脳基準領域を輪郭抽出させ;3)この方法を使用し前セクションで輪郭抽出したデータをすべて標準化空間に変換し;かつ4)各ボクセルごとに当該ボクセルがN個の対象のすべての基準領域内に存在する確率を示す確率マップを算出するという技法に従って、最大確率灰白質マスクを作成した。このため、すべての対象内の基準領域の一部となったボクセルには1.0という数値を与え、1つを除いてすべての領域の一部となったボクセルには値(N−1)/Nを与え、また以下同様とした。基準領域(例えば、脳橋や皮質下白質など)に関する確率基準マスクを作成するために、他の領域についても同じ方式を利用した。
b)強度正規化データに対する基準領域確率マスクの使用:1)解剖学的に標準化したPET画像データに対して確率マスクを適用し;2)マスクによって規定されたすべてのボクセルに関する平均ボクセル値を算出すると共に、マスク内の対応する確率に従ってこれらのボクセルに相対的寄与度を与え;3)全体画像を算出された平均値で割り算する、という技法を用いてマスクを適用した。こうして比画像が取得され、これにより基準領域に基づいてトレーサ取り込みをスケール調整した。
こうした確率マスクを基準領域の周りのエリアで高い確度を有する解剖学的標準化技法と組み合わせて使用することによって、基準値の堅実な抽出が可能となると共に、スキャン全体にわたる比較の確度が向上することに留意されたい。
[フィーチャ抽出]
フィーチャ抽出の目的は、調査対象のある具体的な神経変性疾患に特徴的な情報を抽出することにある。異なる計測値(または、フィーチャ)は補完的であると共に、これらは、診断情報の提供、長期のフォローアップのための正確な計測値の提供、さらには様々な画像データの視覚的解釈の強化のために用いることが可能である。
関心対象フィーチャを特定するためには様々な技法が用いられることがあり、これらのうちの4つの例についてここでより詳細に説明することにする。
a)標的領域対基準領域の比を決定するためにデータに対してVOIを適用することが可能である。これを実施するための一方法は、1)比画像(すなわち、解剖学的に標準化しかつ強度正規化したスキャン)に対して脳葉、Brodmannエリアその他などの解剖学的領域の画定を含んだVOIアトラスを適用すること、並び2)該アトラスによって規定された異なるVOIの内部において統計値を算出すること、によっている。VOIアトラスは、ラベル付けしたボリュームまたは多角形を含む様々なフォーマットで保存することが可能である。次いで、このアトラスから標準化空間へのマッピングを存在させなければならない。その最も単純な形式ではこれは、ラベル付けしたボリューム内の各ボクセルが標準化空間内の1つのボクセルに対応するような一対一マッピングとなる。次いで、VOIアトラス内の任意の構造を標準化空間における画像に対して適用可能なVOIとして使用することが可能であり、またVOIによって規定されたすべてのボクセル値に関する平均、分散及び標準偏差などVOI内部のボクセルの異なる特性を算出することが可能である。
b)PETアミロイドデータは、その対象がアルツハイマー病であるか否かに応じて特徴的に異なったパターンを示すことに留意されたい。AD患者のPETアミロイドスキャンは皮質エリアにおいて高信号を示し、一方健常な対象では白質領域において高信号をかつ皮質領域において低信号を示す。この理由により、アミロイドデータの解析に特に有用なVOIベースのフィーチャでは灰白質/白質比が使用される。この値は、1)比画像(すなわち、解剖学的に標準化しかつ強度正規化したスキャン)に対して脳葉、Brodmannエリアその他などの解剖学的領域の画定を含み、さらに脳の灰白質と白質エリアを規定するVOIアトラスを適用すること、2)脳葉などのVOIについて灰白質領域においてVOI及び灰白質マスクによって規定されたボクセルのみを考慮した取り込みを算出すること、3)同じVOIについて白質領域においてVOI及び白質マスクによって規定されたボクセルのみを考慮した取り込みを算出すること、並びに4)各VOIごとに灰白質/白質比を算出すること、によって取得することができる。
様々な実施形態では、脳白質内の物質取り込みに対する脳灰白質内の物質取り込みの比として1つの定量値が決定される。この物質は例えば、神経変性疾患が存在する場合にその比が変化するような任意の物質(例えば、PET撮像用のFDG、PET撮像に伴うアミロイドトレーサ、その他)とすることができる。こうした技法の利点の1つは、必ずしも基準エリア正規化を必要としないことである。
このような灰白質対白質比の利用の一方法について図5に関連しながら以下でより詳細に記載することにする。
c)強度プロフィールフィーチャを用いることが可能である。これを実施するための一方法は、1)標準化空間内の表面点数及び面法線に沿ったレイ数、並びに各表面点がVOIアトラス内のどのVOI(すなわち、どの解剖学的領域)に属するかを規定するラベルを規定すること;2)比画像(すなわち、解剖学的に標準化しかつ強度正規化したスキャン)を利用し脳表面と直交するトレースを用いて(例えば、図5a及び5b参照)事前定義のVOIに関する強度プロフィールを計算すること;3)各レイに沿った強度分布を描いた1つの特性(こうした特性の1つは各レイに沿って強度の変化率を描いた傾斜である)を算出すること;並びに4)各VOI内部のすべてのレイに関して算出された特性(例えば、傾斜値)を平均化し対象の脳内に存在する神経変性疾患のレベルを意味している1つの定量値を規定するために使用可能な1つの数値を見出すこと、によっている。
様々な実施形態では、その定量値は脳内の所定の投影に沿った画像データ規模の変化率として決定される。これによって、神経変性疾患が存在するか否かの判定、並びに対象に対する後続の検査/テスト/スキャンに関するその定量化が可能となる。
こうした強度プロフィールフィーチャを使用するための一方法について図6a及び6bに関連させながら以下で詳細に記載することにする。
d)ボクセルベースのフィーチャを用いることが可能である。これを実施するための一方法は、診断用及び監視用フィーチャとして脳全体における(あるいは、VOIアトラスによって規定された解剖学的領域によるマスクに従って)ボクセル強度を利用することによっている。
e)アミロイドデータでは、算出されたフィーチャを組み合わせて1つの「アミロイド指標」にすることが望ましい。この組み合わせは、VOI解析及び/または強度プロフィール解析により算出されたVOI値の加重平均を算出し、これを1つまたは幾つかの基準領域内で対応する値によって割り算することによって実施することができる。
上で言及した技法のうちの1つまたは幾つかに従ってNIDに関する画像データが決定された後、次いで健常者画像データは様々な統計情報(例えば、年齢の一致した対象群に関する抽出フィーチャの平均値及び分散など)と一緒にデータベース326内に保存される。
図3はまた、ワークフロー300の第2の態様も表している。ワークフロー300のこの態様は、対象の脳内に存在する任意の神経変性疾患のレベルを指示する定量値を画像データから決定するという方式によって対象内に存在する神経変性疾患の臨床的評価のための方法350を提供する。
方法350は、対象/患者に対してスキャンを実行する工程352を含む。このスキャンは、PETスキャン、MRIスキャン、CTスキャンその他のうちの1つまたは幾つかとすることがある。好ましい一動作モードでは、そのスキャンは、患者の脳のアミロイド含有に関するPETスキャンを含む。このスキャン(複数のこともある)からの画像データは、臨床的に重要な情報を抽出するように工程354で処理される。例えば工程354の処理によって、画像データから1つの定量値が提供されることがある。工程356では、工程354の処理の結果が健常対象者の結果と比較され、神経変性疾患が対象の脳内に存在することを示す何らかの異常が存在するか否かが判定される。この比較の結果は工程358において提示され、次いで工程360でレポートが作成される。
図示した例ではその工程354の処理は、上で言及した技法のいずれかを、NIDを提供するために使用した工程324の処理と連携して使用することが可能である。しかし当業者であれば、本発明の態様及び実施形態は必ずしもこのように限定されるものでないことを理解されよう。
工程356では、スキャン352の抽出フィーチャをNIDと比較するために様々な方法が可能である。一方法は様々な診断性フィーチャの比較によっている。例えば、a)異なるVOIの内部の平均値をNIDによる規定に従った健常レンジと比較しzスコアを含む偏差を算出するためのVOIフィーチャを用いることが可能であり;b)異なるVOIに関する比をNIDによる規定に従った健常レンジと比較しzスコアを含む偏差を算出するための灰白質対白質比を用いることが可能であり;c)各レイに沿った強度特性に対応する値(max強度、max傾斜及び別のフィーチャ)をNIDによる規定に従った健常レンジと比較しzスコアを含む偏差を算出するための強度プロフィールフィーチャを用いることが可能であり;かつ/またはd)ボクセルデータをNID内の平均値及び標準偏差データと比較し、zスコア画像が算出し、かつデータ及びすべてのクラスターに対してあるサイズ未満のものを棄却するようなクラスター解析法が適用されるようなボクセルベースのフィーチャを用いることが可能である。
工程356においてそのスキャンがNIDと比較され終わると、その結果が次いで工程358において提示することができる。以下の図7a〜7c並びに8a及び8bは、これをどの様にして達成できるかに関して2次元と3次元の両方についての様々な例を表している。もちろんこうした結果は、健常対象者からのスキャンとの偏差の存在をさらに強調するように色相によってより良好に提示されることもある。
VOIフィーチャまたは灰白質対白質比が使用されるような一実施形態では、データは表形式並びに輪郭抽出したVOI画定による標準化空間内での脳画像のサーフェスレンダリングによるグラフィック形式で提示される。このVOI及び/または灰白質対白質はその有意性に従ってカラーコード化される。強度プロフィールフィーチャでは、そのデータは各レイに沿った値(max強度、max傾斜及びその他のフィーチャ)を有する表面投影として提示することが可能であり(図8a及び8b)、かつ/または2Dスライス内に投影された健常のデータと比較した強度プロフィールフィーチャのzスコアデータとして及び標準化空間内で脳の3Dレンダリング上で提示することが可能である(図7a〜7c)。ボクセルベースのフィーチャでは、偏差画像及びzスコアマップもMRIデータ上に重ね合わせて表示させることが可能である。
この実施形態では、レポート作成360も提供される。このレポートは、将来利用するためにアーカイブしておくこと、かつ/または関心のある担当者による検討のために遠隔の箇所(病院その他)に伝達することが可能である。このレポートは次の情報:すなわち、a)患者情報、日付その他;b)元の患者スキャンを示す画像;c)結果を示す処理済み画像;d)計測値(例えば、VOI結果)のテーブル;並びにある調査の知見が健常レンジの域内にあるか否かを指示するステートメント;を含むことがある。
図3はまた、ワークフロー300の第3の態様も表している。ワークフロー300のこの態様は、対象内に存在する任意の神経変性疾患の進行を監視するための方法380を提供する。
方法380は、以前に患者ベースラインスキャン382を実行したことがある対象/患者に対するフォローアップスキャンを実行する工程384を含む。これらのスキャンは、PETスキャン、MRIスキャン、CTスキャンその他のうちの1つまたは幾つかとすることができる。好ましい一動作モードではそのスキャンは、患者の脳のアミロイド含有に関するPETスキャンを含む。
診断スキャン350と同様に、スキャン(複数のこともある)からの画像データは臨床的に重要な情報を抽出するように工程386で処理される。例えば工程386の処理は、画像データから1つの定量値を提供することがある。工程388では、工程386の処理結果が、対象の脳内に存在する神経変性疾患の進行を定量化するように以前のベースラインスキャン382の結果と比較される。この比較の結果は工程390で提示され、さらに工程392においてレポートが作成される。これらの結果の提示390並びにレポートの作成392に関する方法は上で言及したような診断ワークフローに関するそれぞれ工程358と360と同様とすることができる。
図示した例では工程386の処理は、NIDの提供のために使用される工程324の処理と連携して上で言及した技法のうちのいずれかを用いることができる。しかし当業者であれば、本発明の態様及び実施形態をこのように限定する必要はないことを理解されよう。
比較工程388では、フォローアップスキャンについて様々なVOI内部の平均値をベースラインスキャンの対応する値と比較するためのVOIフィーチャを用いることが可能である。次いで差異が算出され、これをNIDによって規定された健常レンジと比較することが可能である。フォローアップスキャンについて様々なVOIの比をベースラインスキャンの対応する値と比較するための灰白質対白質比を用いることも可能である。次いで差異が算出され、これをNIDによって規定された健常レンジと比較することが可能である。フォローアップスキャンに関する各レイに沿った値(max強度、max傾斜及び別のフィーチャ)をベースラインスキャンの対応する値と比較するための強度プロフィールフィーチャを用いることが可能である。次いで差異が算出され、これをNIDによって規定された健常レンジと比較することが可能である。差分画像及び増減を示す統計パラメータマップを算出するためのボクセルベースのフィーチャを用いることも可能である。
図4は、PETアミロイドスキャンの位置合わせを表している。基準画像(最下段)はMNI空間で規定される単一対象MRIスキャンである。このMRIスキャンは組織クラス内にあるデータは平滑化するが組織間の境界は保全するような異方性フィルタを用いてボケさせて(blurred)ある。この図には、解剖学的標準化前のPETデータ(最上段)と解剖学的標準化後のPETデータ(中段)を表している。図4にはさらに、2段階式位置合わせで使用される枠取りボックス410の使用についても図示している。
図5は、本発明の一態様による灰白質対白質比を用いた診断性フィーチャの抽出を表している。使用した標準空間(例えば、MNI空間)内において多数の解剖学的領域が、関心対象ボリューム(VOI)並びに白質マスク530及び灰白質マスク540を規定している。図5に示した具体的なVOIは前頭葉520に対応するものである。
定量化は以下のように動作する。論理ANDを用いて前頭葉のVOI520を白質マスク530と合成させ前頭葉の白質領域のみを覆うVOI535を作成する。この新たなVOIを画像データ550に適用し、これを用いて前頭葉内の白質の値を抽出する。同様に、論理ANDを用いて前頭葉VOI520を灰白質マスク540と合成し、前頭葉の灰白質領域のみを覆うVOI535を作成する。このVOIを画像データ550に適用し、これを用いて前頭葉内の灰白質の値を抽出する。次いでこの2つの値を組み合わせて前頭葉の灰白質対白質比を作成すると共に、ボックスプロット560によってアルツハイマー対象(AD)と健常対照(NC)の間をこの比により分離する方法を示している。灰白質領域と白質領域は必ずしも上述の手順に従って算出する必要はないこと、例えば灰白質及び白質のVOIを作成するために対話式に灰白質VOIと白質VOIが同等に良好に線引きされてある可能性もあり得ることは、当業者には明らかであろう。
図6aは、本発明の一態様によるADを有する対象から撮像された画像からの強度プロフィールを診断性フィーチャとして使用する様子を表した図である。
図6bは、本発明の一態様による健常対照(NC)の対象から撮像された画像からの強度プロフィールを診断性フィーチャとして使用する様子を表した図である。
本方法のこの実施形態は以下のように動作する。標準化空間(例えば、MNI)にある標準脳を用い、バックグラウンドと対面したすべてのボクセルを表面ボクセルと見なす。表面ボクセルのすべてについて、座標(x,y,z)を当該点における面法線と一緒に表面点リストと名付けたリスト内に保存する。さらに、ある表面点がどの解剖学的領域に属するかを示す表面点リストと関連付けさせたラベルリストを存在させている。すなわち表面点リスト内の各入力項目は、その表面点がどの解剖学的領域に属するかを示しているラベルリスト内の1つの対応する入力項目を有することになる。複数のリストを有することによって複数の所属が可能になる(例えば、1つの表面点が左前頭回と左前頭葉との両方に属することができる)。
画像を解析するときには先ず、これを空間的に正規化し表面点リスト内の座標によって規定された表面点を解析対象画像内の脳の表面上の点と対応させるようにしなければならない。次いでこの表面点のリストが参照されると共に、各点ごとに面法線の負方向に沿ったレイ620、640が算出される。このレイは表面点を開始点として横動させ(あるいは、本方法をより堅実なものにするには若干外にすることもある)、脳内に至るレイを追跡しながらこのレイに沿った値を記録しアレイの形で保存する。このデータは副次サンプリング(subsample)され、このレイに沿った各点間の距離並びに脳に至る最大距離を変動する可能性があるパラメータとしている。この手順によって、アレイ内に保存されたレイに沿った強度プロフィール625、645が各表面点ごとに得られることになる。次いでこの強度プロフィールが解析され、診断性フィーチャが抽出される。本発明の一例では、ある固定の距離にある2つの点間の差として算出した最大傾斜が診断性フィーチャとして使用される。本発明の第2の例では、レイに沿った最大強度が算出される。本発明の第3の例では、レイに沿ったある距離にある点同士の比が算出される。もちろん、強度プロフィールに関する様々な別の特性を算出することも可能であることは当業者であれば理解されよう。
図7aは、本発明の一態様に従って導出された脳関心対象ボリューム(VOI)及び灰白質対白質計測値に関する結果を3次元(3D)グラフィック表示で示した図である。
選択した動作モードにより取得した解析結果に従って3Dレンダリングした脳がカラーコード化される。本発明の一態様では、max傾斜などの強度プロフィールフィーチャが脳構造(例えば、前頭葉)の全体にわたって平均化され、次いでこの算出した平均値がNIDと比較されてzスコアが作成される。次いで、様々な脳構造に関して取得したzスコアを用いて3Dレンダリングした脳がカラーコード化される。このためには、NIDによる判定に従った正常性からの有意の変化を伴うエリアをハイライトさせるような適当なカラースケールが用いられる。
図7bは、本発明の一態様に従って導出された脳強度プロフィール解析に関する結果をグラフィック表示で示した図である。本発明のこの態様では、強度プロフィールフィーチャは脳領域全体にわたって平均化されていない。これに代えて、各表面点をNIDと比較してzスコアを作成し、このzスコアを用いて標準化空間内のジェネリックなMRテンプレートをカラーコード化することができる。ユーザはカットオフ値を設定しておきそのしきい値を超えたzスコアのみが表示されるようにすることができる。例えばデフォルトのカットオフが2.0であれば、表示させるためには値は平均値から少なくとも2標準偏差だけ離れていなければならない。ユーザに対して内部皮質エリアも同様に検査できるようにさせるには、標準脳が2つの半球に分割されると共に、これらの表面点も内部表面上で規定される。
図7cは、本発明の一態様に従って導出された脳ボクセルベースのフィーチャ解析に関する結果をグラフィック表示で示した図である。この図は、ボクセルベース解析の結果を表している。
図8aは、本発明の一態様に従って導出されたADを有する対象の脳強度プロフィール解析に関する結果を3Dグラフィック表示で示した図である。強度プロフィールは上述のようにして算出される、すなわち表面点のリストが参照されると共に、各点ごとに面法線の負方向に沿ったレイを算出してこのレイを横動させている。レイに沿ったデータは副次サンプリングされ、強度プロフィールが算出される。この強度プロフィールに基づいて、プロフィールに沿ったmax値やmax傾斜などの様々なフィーチャが算出される。次いで各表面点の値を用いて、3Dレンダリングした脳上の対応する点に対してユーザにより変更可能な事前定義のカラースケールを用いたカラーコード化がなされる。この図はMax傾斜法により解析したAD脳を表している。
図8bは、本発明の一態様に従って導出されたADを有しない健常対象の脳強度プロフィール解析に関する結果を3Dグラフィック表示で示した図である。この表示を駆動させる原理は図8aに関連して上に記載した原理と同じである。
本発明の様々な実施形態はハードウェア、ソフトウェア及び/またはファームウェアのうちの1つまたは幾つかを用いて実現することができる。一実施形態では、本発明の様々な態様及び/または実施形態に従った新たな機能を提供するために既存の従来システムをアップグレードするように動作可能なソフトウェア成果物としてコンピュータコードを提供することができる。このコンピュータコードはさらに、あるいは追加として、例えば運搬媒体上に設け得るコンピュータプログラム成果物として提供することもできる。例えばこうした運搬媒体は、例えばインターネット、ワイヤレスリンク、光学リンク、無線周波数リンク、電子リンク、専用のデータ/電話リンク、LAN/WAN、その他などの様々なリンクを介して伝送可能な信号を含むことがあり、また運搬媒体は既存のシステムのアップグレードのために用いられることがあり、かつ/または運搬媒体は磁気ディスク、磁気テープ、光ディスク、半導体デバイス、その他などの従来の運搬媒体上のコンピュータコードを含むことがある。
当業者であれば、既存のシステムをアップグレードするために様々な実施形態が利用されることがあることを理解されよう。当業者であればまた、異なるデータ処理装置によって異なる機能が実行されるようにした分散システムを用いたある種の実施形態が実現可能であることも理解されよう。例えば様々な実施形態では、PETスキャナ内に画像収集モジュールが組み込まれることがあり、かつ/またはデータ処理装置をPETスキャナの一部とすることも可能である。
本発明について様々な実施形態に関連して記載してきたが、当業者であれば本発明がこうした実施形態に限定されるものでないこと、並びに添付の特許請求の範囲によって規定される本発明の趣旨の域内にあるようにして多くの変形形態が考案可能であることを理解されよう。
100 神経変性疾患の臨床的評価のためのシステム
120 データ処理装置
122 画像収集モジュール
123 グラフィカルユーザインタフェース(GUI)
124 画像解析器
125 データバス
126 インタフェース
127 入力データリンク
128 ユーザ入力デバイス
129 ディスプレイデータリンク
130 ディスプレイ
131 データリンク
132 データ記憶
139 データリンク
140 陽電子放出断層(PET)スキャナ
142 インターネット
143 ネットワークデータリンク
144 コンピュータプログラム
200 神経変性疾患の臨床的評価を支援するための方法
300 ワークフロー
410 枠取りボックス
520 前頭葉
530 白質マスク
535 白質領域のみを覆うVOI
535 灰白質領域のみを覆うVOI
540 灰白質マスク
550 画像データ
560 ボックスプロット
620 レイ
625 強度プロフィール
640 レイ
645 強度プロフィール

Claims (27)

  1. 対象内に存在する神経変性疾患の臨床的評価のためのシステム(100)であって、
    対象の脳を表す画像データを収集するように動作可能な画像収集モジュール(122)と、
    画像データから1つの定量値を決定するように動作可能な画像解析器(124)であって、該定量値は対象の脳内に存在する神経変性疾患のレベルを意味している画像解析器と、
    を備えるシステム(100)。
  2. 画像収集モジュール(122)及び画像解析器(124)を提供するように構成されたデータ処理装置(120)をさらに備える請求項1に記載のシステム(100)。
  3. 画像収集モジュール(122)に撮像データを提供するように動作可能な陽電子放出断層(PET)スキャナ(140)をさらに備える請求項1または請求項2に記載のシステム(100)。
  4. 前記画像解析器(124)はさらに前記定量値を、対象の脳内のアミロイドプラーク濃度を決定することによって画像データから決定するように動作可能である、前記請求項のいずれかに記載のシステム(100)。
  5. 画像解析器(124)はさらに、画像データによって規定された画像内において対象内に存在する神経変性疾患のレベルをそこから決定するための基準領域を規定するように動作可能である、前記請求項のいずれかに記載のシステム(100)。
  6. 前記画像解析器(124)はさらに前記定量値を、脳白質内の物質取り込みに対する脳灰白質内の物質取り込みの比として決定するように動作可能である、前記請求項のいずれかに記載のシステム(100)。
  7. 前記画像解析器(124)はさらに前記定量値を、画像データ強度の脳内の所定の投影に沿った変化率として決定するように動作可能である、前記請求項のいずれかに記載のシステム(100)。
  8. 前記画像解析器(124)はさらに、画像データのクラス(または、複数のクラス)に応じて解剖学的標準化及び/または画像解析モードを自動的に選択するように動作可能である、前記請求項のいずれかに記載のシステム(100)。
  9. 対象の脳の3次元描出を作成するように動作可能なグラフィカルユーザインタフェース(GUI)(123)をさらに備えると共に、該3次元描出は脳の領域内のそれぞれにおける物質の取り込みに従った領域のカラーコード化を含む、前記請求項のいずれかに記載のシステム(100)。
  10. 前記GUI(123)はさらに表形式のデータを前記3次元描出とリンクさせるように動作可能である、請求項9に記載のシステム(100)。
  11. 対象内に存在する神経変性疾患の臨床的評価を支援するための方法(200)であって、
    対象の脳を表す画像データを収集する工程(220)と、
    前記画像データから1つの定量値を決定する(260)ように画像データを解析する工程(240)であって、該定量値は対象の脳内に存在する神経変性疾患のレベルを意味している解析工程と、
    を含む方法(200)。
  12. 画像データを収集する前記工程(220)は、対象の脳の少なくとも一部に関してPETスキャンを実行する工程をさらに含む、請求項11に記載の方法(200)。
  13. アミロイドたんぱくと選択的に結合する化学物質を備えた放射性トレーサ物質を患者に投与する工程をさらに含む請求項12に記載の方法(200)
  14. 前記定量値は対象の脳内のアミロイド濃度として決定される、請求項11〜13のいずれか一項に記載の方法(200)。
  15. 画像データを解析する前記工程(240)は画像データによって規定された画像内に基準領域を規定するために確率マスクを利用する工程を含む、請求項11〜14のいずれか一項に記載の方法(200)。
  16. 画像データを解析する前記工程(240)は、物質の取り込みから前記定量値を脳灰白質内の取り込みの脳白質内の取り込みに対する比として決定する工程を含む、請求項11〜15のいずれか一項に記載の方法(200)。
  17. 画像データを解析する前記工程(240)は、前記定量値を脳内の所定の投影に沿った画像データ強度の変化率として決定する工程を含む、請求項11〜16のいずれか一項に記載の方法(200)。
  18. 画像データのクラス(または、複数のクラス)に応じて解剖学的標準化及び/または画像解析モードを自動的に選択する工程をさらに含む請求項11〜17のいずれか一項に記載の方法(200)。
  19. 解剖学的標準化の処理過程が、
    広域的位置合わせの実行、
    内側と外側の3D形状によって境界設定されたエリアでリジッドな位置合わせを用いることによって位置合わせを改良することであって、最終の位置合わせは広域的位置合わせとリジッドな位置合わせの組み合わせであり、かつ内側と外側の3D形状間のデータは局所的に改良したエリアと広域的位置合わせされたデータの間の平滑な遷移を作成するように補間されている位置合わせの改良、
    という2段階式方法で実行されている、請求項11〜18のいずれか一項に記載の方法(200)。
  20. アミロイドPETデータに対して解剖学的標準化を実行する工程であって、標準化空間内の単一対象MRIスキャンから基準テンプレートが取得されており、かつ最適化のために相互情報または正規化相互情報が用いられている解剖学的標準化の実行工程をさらに含む請求項11〜19のいずれか一項に記載の方法(200)。
  21. 前記単一対象MRI基準テンプレートは、組織境界を保全するために異方性フィルタによってボケさせている、請求項20に記載の方法(200)。
  22. 1組の解剖学的領域内で算出された値の加重平均を少なくとも1つの基準領域内の対応する値で割り算した値としてアミロイド指標を算出する工程であって、各領域内の値はVOI解析及び/または強度プロフィール解析を用いて算出されているアミロイド指標算出工程をさらに含む請求項11〜21のいずれか一項に記載の方法(200)。
  23. 脳の領域内のそれぞれにおける物質の取り込みに従った領域のカラーコード化を含む対象の脳に対する3次元描出を作成する工程をさらに含む請求項11〜22のいずれか一項に記載の方法(200)。
  24. 対象内に存在する神経変性疾患の有無に関する指示、定量値、対象内に存在する神経変性疾患の有無に関する定量的指示、患者情報、日付、時刻、元の患者スキャンの画像、請求項11〜22のいずれか一項に記載の方法の結果の処理済み画像、計測値を伴うテーブル、VOI結果、アミロイド指標、並びに任意の知見について健常のパラメータレンジの域内に属するか否かに関するステートメントのうちの1つまたは幾つかを含んだレポートを作成する工程をさらに含む請求項11〜23のいずれか一項に記載の方法(200)。
  25. 前記請求項11〜24のいずれか一項に記載の方法(200)の工程のうちの1つまたは幾つかを実現するためのデータ処理装置(120)を構成するように動作可能なコンピュータコードを含むコンピュータプログラム成果物(144)。
  26. 運搬媒体(142)上に設けられている請求項25に記載のコンピュータプログラム成果物(144)。
  27. 前記運搬媒体(142)は、磁気ディスク、磁気テープ、光ディスク、電子信号、光学信号、無線周波数信号及び半導体デバイスのうちの1つまたは幾つかを含む、請求項26に記載のコンピュータプログラム成果物(144)。
JP2009546812A 2007-01-30 2008-01-25 神経変性疾患の診断を支援するためのツール Active JP5468905B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88716307P 2007-01-30 2007-01-30
US60/887,163 2007-01-30
PCT/GB2008/000272 WO2008093057A1 (en) 2007-01-30 2008-01-25 Tools for aiding in the diagnosis of neurodegenerative diseases

Publications (2)

Publication Number Publication Date
JP2010517030A true JP2010517030A (ja) 2010-05-20
JP5468905B2 JP5468905B2 (ja) 2014-04-09

Family

ID=39203198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009546812A Active JP5468905B2 (ja) 2007-01-30 2008-01-25 神経変性疾患の診断を支援するためのツール

Country Status (12)

Country Link
US (1) US20100080432A1 (ja)
EP (1) EP2126609B1 (ja)
JP (1) JP5468905B2 (ja)
KR (1) KR101503940B1 (ja)
CN (1) CN101600973B (ja)
AU (1) AU2008211786B2 (ja)
BR (1) BRPI0806785A2 (ja)
CA (1) CA2675228A1 (ja)
ES (1) ES2414614T3 (ja)
MX (1) MX2009007880A (ja)
RU (1) RU2494669C2 (ja)
WO (1) WO2008093057A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000439A (ja) * 2009-06-18 2011-01-06 General Electric Co <Ge> 画像内の領域を分離するための装置および方法
JP2012527923A (ja) * 2009-05-29 2012-11-12 インスティテュート テレコム−テレコム パリ テック 本体のボリュームの変化を伴う病変、とりわけ腫瘍の増殖量を表示するための方法
JP2013061196A (ja) * 2011-09-12 2013-04-04 Fujifilm Ri Pharma Co Ltd 受容体結合能画像化プログラム、記録媒体及び方法
JP2014516414A (ja) * 2011-04-26 2014-07-10 コーニンクレッカ フィリップス エヌ ヴェ 脳の画像診断
JP2014530352A (ja) * 2011-09-20 2014-11-17 ジーイー・ヘルスケア・リミテッド 陽電子放射断層撮影画像の空間標準化方法
JP2015502535A (ja) * 2011-11-16 2015-01-22 コーニンクレッカ フィリップス エヌ ヴェ 灰白質における脳アミロイドを算出及び表示する方法
JP2016064004A (ja) * 2014-09-25 2016-04-28 大日本印刷株式会社 医用画像表示処理方法、医用画像表示処理装置およびプログラム
JP2020054579A (ja) * 2018-10-01 2020-04-09 富士フイルム株式会社 疾患領域抽出装置、方法及びプログラム
JP2022040486A (ja) * 2020-08-31 2022-03-11 Brain Linkage合同会社 脳画像を扱う装置、方法及びプログラム

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524458B2 (ja) * 2008-07-18 2014-06-18 富士フイルムRiファーマ株式会社 器官表面画像の表示装置及び方法
US8811706B2 (en) * 2008-08-07 2014-08-19 New York University System, method and computer accessible medium for providing real-time diffusional kurtosis imaging and for facilitating estimation of tensors and tensor-derived measures in diffusional kurtosis imaging
US9965862B2 (en) 2008-08-07 2018-05-08 New York University System, method and computer accessible medium for providing real-time diffusional kurtosis imaging and for facilitating estimation of tensors and tensor-derived measures in diffusional kurtosis imaging
US20100074480A1 (en) * 2008-09-22 2010-03-25 University Of Washington Device for generating alternative of normal brain database
US9008394B2 (en) * 2008-11-26 2015-04-14 General Electric Company Methods and apparatus for determining brain cortical thickness
JP5061131B2 (ja) * 2009-01-29 2012-10-31 富士フイルムRiファーマ株式会社 器官表面画像の表示装置及び方法
WO2010085856A1 (en) * 2009-02-02 2010-08-05 Commonwealth Scientific And Industrial Research Organisation Brain disease progression scoring method and apparatus
JP5373470B2 (ja) * 2009-04-28 2013-12-18 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー モデリング装置、磁気共鳴イメージング装置、モデリング方法、およびプログラム
US8355927B2 (en) 2010-11-05 2013-01-15 Genomind, Llc Neuropsychiatric test reports
JP5524589B2 (ja) * 2009-12-01 2014-06-18 富士フイルムRiファーマ株式会社 診断支援システム、方法及びコンピュータプログラム
WO2011107892A1 (en) * 2010-03-02 2011-09-09 Koninklijke Philips Electronics N.V. A normative dataset for neuropsychiatric disorders
EP2407106B1 (en) * 2010-07-15 2018-06-27 Agfa HealthCare NV Method of determining the spatial response signature of a detector in computed radiography
DE102011085404A1 (de) * 2011-10-28 2013-05-02 Siemens Aktiengesellschaft Verfahren zur Vermessung von Strukturen des menschlichen Gehirns
AU2012350363B2 (en) * 2011-12-15 2018-01-18 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for the assessment of medical images
WO2013102215A1 (en) * 2011-12-30 2013-07-04 The Johns Hopkins University Bioimaging grid
WO2013119326A1 (en) * 2012-02-10 2013-08-15 Genomind, Llc Neuropsychiatric test reports
CN105263416B (zh) * 2013-06-07 2021-07-06 皇家飞利浦有限公司 基于皮质分布图的淀粉样蛋白pet脑扫描量化
DE102014213409A1 (de) * 2014-07-10 2016-01-14 Centre Hospitalier Universitaire Vaudois Verfahren und Vorrichtung zur Darstellung von pathologischen Veränderungen in einem Untersuchungsobjekt basierend auf 3D-Datensätzen
EP3217859B1 (en) * 2014-11-14 2019-08-07 Koninklijke Philips N.V. Patient headphones with integrated sensor system
TWI587841B (zh) * 2015-03-06 2017-06-21 國立陽明大學 定量分析核子醫學腦部影像的系統及方法
JP2016180649A (ja) * 2015-03-24 2016-10-13 日本メジフィジックス株式会社 画像処理装置、画像処理方法、及びプログラム
KR101872001B1 (ko) * 2016-08-26 2018-06-27 연세대학교 산학협력단 알츠하이머병의 지표 성분의 전파 경로 결정 장치 및 방법과 그에 따른 알츠하이머병의 진행 단계 결정 방법
WO2018075685A1 (en) * 2016-10-18 2018-04-26 The Regents Of The University Of California Method for positron emission tomography (pet) imaging analysis for classifying and diagnosing of neurological diseases
CN106778036B (zh) * 2017-01-10 2017-12-29 首都医科大学附属北京友谊医院 一种数据处理的方法及装置
TWI651688B (zh) * 2017-03-17 2019-02-21 長庚大學 利用磁振造影影像預測神經疾病的臨床嚴重度的方法
CN108877922A (zh) * 2017-05-15 2018-11-23 沈渊瑶 病变程度判断系统及其方法
US11229810B2 (en) * 2017-05-17 2022-01-25 University Of Virginia Patent Foundation Methods and systems for producing neuronal lesions using magnetic resonance and acoustic energy
EP3677179B1 (en) * 2017-08-29 2024-08-07 FUJIFILM Corporation Medical information display apparatus, medical information display method and medical information display program
JP7038370B2 (ja) * 2017-08-30 2022-03-18 社会福祉法人兵庫県社会福祉事業団 画像処理方法、画像処理装置、およびプログラム
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
KR102004964B1 (ko) * 2017-10-12 2019-07-29 전남대학교산학협력단 Pet 뇌 영상 아밀로이드 측정을 위한 부피 기반 정량지표 분석 방법 및 컴퓨터 프로그램
GB201717397D0 (en) * 2017-10-23 2017-12-06 Brainomix Ltd Tomographic data analysis
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
KR102051666B1 (ko) * 2017-12-07 2019-12-04 사회복지법인 삼성생명공익재단 아밀로이드 페트(pet) 영상을 이용한 알츠하이머 치매의 병기 측정 방법 및 장치
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
KR102173197B1 (ko) 2018-05-21 2020-11-03 고려대학교 산학협력단 딥러닝을 기반으로 하는 아밀로이드 양성 또는 음성을 예측하기 위한 방법 및 장치
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
DK180231B1 (en) * 2018-10-31 2020-08-28 Synaptic Aps Method of establishing a brain status indication parameter and system therefor
KR102140383B1 (ko) * 2018-11-30 2020-07-31 숭실대학교산학협력단 현미경 기반 증강현실 네비게이션 방법, 이를 수행하기 위한 장치 및 기록매체
WO2020212750A1 (en) * 2019-04-17 2020-10-22 Performance Phenomics Inc. Methods and apparatus for detecting injury using multiple types of magnetic resonance imaging data
CN110233521A (zh) * 2019-07-10 2019-09-13 云南电网有限责任公司电力科学研究院 一种配电网运行监控方法
CN110693459B (zh) * 2019-10-31 2022-04-29 北京乐器研究所 诊断阿尔茨海默症的应用及诊断阿尔茨海默症的装置
US11627288B2 (en) * 2021-03-31 2023-04-11 Avaya Management L.P. Systems and methods of automatic surveillance and reporting
US11263749B1 (en) 2021-06-04 2022-03-01 In-Med Prognostics Inc. Predictive prognosis based on multimodal analysis
CN116382465B (zh) * 2023-02-17 2024-02-13 中国科学院自动化研究所 光学脑机接口系统和方法
CN116344058B (zh) * 2023-05-29 2023-08-18 之江实验室 一种基于图信号的阿尔兹海默风险标注方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268534A (ja) * 1986-05-16 1987-11-21 株式会社日立製作所 診断レポ−ト作成方式
JPH10308899A (ja) * 1997-05-09 1998-11-17 Hitachi Medical Corp X線装置
JP2000287964A (ja) * 1999-04-02 2000-10-17 Terarikon Inc 三次元画像表示装置
JP2002032735A (ja) * 2000-05-12 2002-01-31 Fuji Photo Film Co Ltd 画像の位置合わせ方法および装置
JP2002325761A (ja) * 2000-06-30 2002-11-12 Hitachi Medical Corp 画像診断支援装置
US20050273007A1 (en) * 2004-06-02 2005-12-08 Cti Pet Systems, Inc. Automated detection of alzheimer's disease by statistical analysis with positron emission tomography images
WO2006014382A1 (en) * 2004-07-02 2006-02-09 University Of Pittsburgh A method of diagnosing prodromal forms of diseases associated with amyloid deposition
US20060074290A1 (en) * 2004-10-04 2006-04-06 Banner Health Methodologies linking patterns from multi-modality datasets
JP2006167187A (ja) * 2004-12-16 2006-06-29 Hitachi Medical Corp 医用画像表示装置
JP2006522104A (ja) * 2003-03-14 2006-09-28 ユニバーシティー オブ ピッツバーグ ベンゾチアゾール誘導体化合物、組成物および使用
JP2006325937A (ja) * 2005-05-26 2006-12-07 Fujifilm Holdings Corp 画像判定装置、画像判定方法およびそのプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048699A1 (en) * 1997-04-30 1998-11-05 The Board Of Trustees Of The Leland Stanford Junior University Method of imaging cell death in vivo
US6366797B1 (en) * 1998-08-25 2002-04-02 The Cleveland Clinic Foundation Method and system for brain volume analysis
ES2536449T3 (es) * 2000-08-24 2015-05-25 University Of Pittsburgh Of The Commonwealth System Of Higher Education Derivados de tioflavina para uso en diagnosis de la enfermedad de Alzheimer
AUPR554301A0 (en) * 2001-06-07 2001-07-12 Howard Florey Institute Of Experimental Physiology And Medicine A map of a property
US20050020904A1 (en) * 2003-07-10 2005-01-27 Cline Harvey Ellis System and method for the detection of brain iron using magnetic resonance imaging
US20050215889A1 (en) * 2004-03-29 2005-09-29 The Board of Supervisory of Louisiana State University Methods for using pet measured metabolism to determine cognitive impairment
US7742800B2 (en) * 2004-05-10 2010-06-22 General Electric Company Methods and systems for detection and monitoring of neurodegenerative diseases using magnetic resonance spectroscopy
WO2006083378A2 (en) * 2004-11-29 2006-08-10 The Regents Of The University Of California IN VIVO MONITORING OF β-AMYLOID PLAQUES AND NEUROFIBRILLARY TANGLES

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268534A (ja) * 1986-05-16 1987-11-21 株式会社日立製作所 診断レポ−ト作成方式
JPH10308899A (ja) * 1997-05-09 1998-11-17 Hitachi Medical Corp X線装置
JP2000287964A (ja) * 1999-04-02 2000-10-17 Terarikon Inc 三次元画像表示装置
JP2002032735A (ja) * 2000-05-12 2002-01-31 Fuji Photo Film Co Ltd 画像の位置合わせ方法および装置
JP2002325761A (ja) * 2000-06-30 2002-11-12 Hitachi Medical Corp 画像診断支援装置
JP2006522104A (ja) * 2003-03-14 2006-09-28 ユニバーシティー オブ ピッツバーグ ベンゾチアゾール誘導体化合物、組成物および使用
US20050273007A1 (en) * 2004-06-02 2005-12-08 Cti Pet Systems, Inc. Automated detection of alzheimer's disease by statistical analysis with positron emission tomography images
WO2005117707A2 (en) * 2004-06-02 2005-12-15 Siemens Medical Solutions Usa. Inc. Automated detection of alzheimer's disease by statistical analysis with positron emission tomography images
WO2006014382A1 (en) * 2004-07-02 2006-02-09 University Of Pittsburgh A method of diagnosing prodromal forms of diseases associated with amyloid deposition
US20060074290A1 (en) * 2004-10-04 2006-04-06 Banner Health Methodologies linking patterns from multi-modality datasets
JP2006167187A (ja) * 2004-12-16 2006-06-29 Hitachi Medical Corp 医用画像表示装置
JP2006325937A (ja) * 2005-05-26 2006-12-07 Fujifilm Holdings Corp 画像判定装置、画像判定方法およびそのプログラム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527923A (ja) * 2009-05-29 2012-11-12 インスティテュート テレコム−テレコム パリ テック 本体のボリュームの変化を伴う病変、とりわけ腫瘍の増殖量を表示するための方法
JP2011000439A (ja) * 2009-06-18 2011-01-06 General Electric Co <Ge> 画像内の領域を分離するための装置および方法
JP2014516414A (ja) * 2011-04-26 2014-07-10 コーニンクレッカ フィリップス エヌ ヴェ 脳の画像診断
JP2013061196A (ja) * 2011-09-12 2013-04-04 Fujifilm Ri Pharma Co Ltd 受容体結合能画像化プログラム、記録媒体及び方法
US10614547B2 (en) 2011-09-20 2020-04-07 Ge Healthcare Limited Methods of spatial normalization of positron emission tomography images
JP2014530352A (ja) * 2011-09-20 2014-11-17 ジーイー・ヘルスケア・リミテッド 陽電子放射断層撮影画像の空間標準化方法
US11488282B2 (en) 2011-09-20 2022-11-01 Ge Healthcare Limited Methods of spatial normalization of positron emission tomography images
JP2015502535A (ja) * 2011-11-16 2015-01-22 コーニンクレッカ フィリップス エヌ ヴェ 灰白質における脳アミロイドを算出及び表示する方法
JP2016064004A (ja) * 2014-09-25 2016-04-28 大日本印刷株式会社 医用画像表示処理方法、医用画像表示処理装置およびプログラム
US10285657B2 (en) 2014-09-25 2019-05-14 Dai Nippon Printing Co., Ltd. Medical image display processing method, medical image display processing device, and program
JP2020054579A (ja) * 2018-10-01 2020-04-09 富士フイルム株式会社 疾患領域抽出装置、方法及びプログラム
JP7129869B2 (ja) 2018-10-01 2022-09-02 富士フイルム株式会社 疾患領域抽出装置、方法及びプログラム
US11580642B2 (en) 2018-10-01 2023-02-14 Fujifilm Corporation Disease region extraction apparatus, disease region extraction method, and disease region extraction program
JP2022040486A (ja) * 2020-08-31 2022-03-11 Brain Linkage合同会社 脳画像を扱う装置、方法及びプログラム

Also Published As

Publication number Publication date
JP5468905B2 (ja) 2014-04-09
KR101503940B1 (ko) 2015-03-18
KR20090104845A (ko) 2009-10-06
EP2126609B1 (en) 2013-03-27
ES2414614T3 (es) 2013-07-22
CN101600973A (zh) 2009-12-09
AU2008211786A1 (en) 2008-08-07
RU2009122935A (ru) 2011-03-10
RU2494669C2 (ru) 2013-10-10
MX2009007880A (es) 2009-08-18
BRPI0806785A2 (pt) 2011-09-13
CN101600973B (zh) 2014-05-14
EP2126609A1 (en) 2009-12-02
US20100080432A1 (en) 2010-04-01
CA2675228A1 (en) 2008-07-07
WO2008093057A1 (en) 2008-08-07
AU2008211786B2 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5468905B2 (ja) 神経変性疾患の診断を支援するためのツール
US11335015B2 (en) Segmentation of structures for state determination
JP5424902B2 (ja) Pet/mrフロー推定を用いて補われる自動診断及び自動整列
Dewey et al. Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study
US9424644B2 (en) Methods and systems for evaluating bone lesions
CN102855618B (zh) 用于图像产生和图像分析的方法
US8170347B2 (en) ROI-based assessment of abnormality using transformation invariant features
US9361686B2 (en) Method and apparatus for the assessment of medical images
Kim et al. Automatic hippocampal segmentation in temporal lobe epilepsy: impact of developmental abnormalities
US20130129168A1 (en) Voxel-Based Approach for Disease Detection and Evolution
US20060239524A1 (en) Dedicated display for processing and analyzing multi-modality cardiac data
EP2747658B1 (en) Method to compute and present brain amyloid in gray matter
EP2577604B1 (en) Processing system for medical scan images
WO2013086026A1 (en) System and method of automatically detecting tissue abnormalities
Sun et al. Automated template-based PET region of interest analyses in the aging brain
US9020215B2 (en) Systems and methods for detecting and visualizing correspondence corridors on two-dimensional and volumetric medical images
US20160166192A1 (en) Magnetic resonance imaging tool to detect clinical difference in brain anatomy
Ingalhalikar Deep Learning in Radiology
Linh et al. IBK–A new tool for medical image processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121015

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5468905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250