JP2010280543A - フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター - Google Patents

フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター Download PDF

Info

Publication number
JP2010280543A
JP2010280543A JP2009136182A JP2009136182A JP2010280543A JP 2010280543 A JP2010280543 A JP 2010280543A JP 2009136182 A JP2009136182 A JP 2009136182A JP 2009136182 A JP2009136182 A JP 2009136182A JP 2010280543 A JP2010280543 A JP 2010280543A
Authority
JP
Japan
Prior art keywords
vacuum ultraviolet
ultraviolet light
light emitting
fluoride crystal
luf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009136182A
Other languages
English (en)
Other versions
JP5127778B2 (ja
Inventor
Noriaki Kawaguchi
範明 河口
Kentaro Fukuda
健太郎 福田
Toshihisa Suyama
敏尚 須山
Akira Yoshikawa
彰 吉川
Takeyuki Yanagida
健之 柳田
Aritame Yokota
有為 横田
Naoto Abe
直人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokuyama Corp
Original Assignee
Tohoku University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokuyama Corp filed Critical Tohoku University NUC
Priority to JP2009136182A priority Critical patent/JP5127778B2/ja
Publication of JP2010280543A publication Critical patent/JP2010280543A/ja
Application granted granted Critical
Publication of JP5127778B2 publication Critical patent/JP5127778B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】 真空紫外領域で高輝度発光するフッ化物結晶を提供する。また、該フッ化物結晶からなり、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用できる新規な真空紫外発光素子、及び低バックグラウンドノイズのダイヤモンド受光素子やAlGaN受光素子を、従来の光電子増倍管の代替として組み込んだ小型の放射線検出器に好適に使用できる真空紫外発光シンチレーターを提供する。
【解決手段】 KLuFとKFの混合相からなるフッ化物結晶及び、該フッ化物結晶からなることを特徴とする真空紫外発光素子、及び真空紫外発光シンチレーターである。
【選択図】 なし

Description

本発明は、新規なフッ化物結晶に関する。該フッ化物結晶はフォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に用いられる真空紫外発光素子、及びPETによる癌診断やX線CTに用いられる放射線検出器用真空紫外発光シンチレーターとして公的に使用できる。
紫外線発光材料は、紫外線発光素子として利用されている。中でも高輝度紫外発光素子は、半導体分野、情報分野、医療分野等における先端技術を支える材料であり、近年では、記録媒体への記録密度の向上を始めとする多くの需要に応えるべく、より短波長で発光する紫外発光素子の開発が進められている。この短波長で発光する紫外発光素子としては、GaN等の材料による発光波長約360nmの発光素子が市販されている。
より短波長の発光波長200nm以下の真空紫外発光材料は、真空紫外発光素子として、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌等にも好適に使用できるため、開発が望まれているが、かかる真空紫外発光素子を得ることは容易ではなく、わずかな例しか知られていないのが現状である。
また、放射線の照射によって発光するものはシンチレーターとしても用いることができる。
PETによる癌診断やX線CTに用いられる放射線検出器は、シンチレーターという放射線が照射された際に発光する材料と、光電子増倍管や半導体受光素子などの微弱光検出器を組み合わせて構成される。
微弱光検出器には光電子増倍管やSi受光素子を用いるのが主流であるが、近年、ダイヤモンドやAlGaNを受光面に用いた真空紫外光受光素子が開発されており、これらの受光素子は従来のSi半導体受光素子に比べ、真空紫外光よりもエネルギーの低い可視光には感応しないため、低バックグラウンドノイズが実現可能で、放射線検出器に組み込むのに有望な受光素子である。そのため、これらの受光素子に好適な新しい真空紫外発光シンチレーターの開発が求められている。
従来は可視光受光素子が用いられてきたことから、可視光発光を示すシンチレーター結晶が主に開発されてきており、真空紫外発光シンチレーターは十分に検討されていない。
一例として、Ndを添加したフッ化ランタン結晶があるが(非特許文献1参照)、既に実用化されているLYSOやLSO(発光波長約400nmのCe添加Lu系酸化物)と比べ、175nmの短波長発光を実現しているものの、Lu(原子番号Z=71)より原子番号が低いLa(Z=57)を母材として主に含有している。Laの原子番号は全元素中では比較的高く、Ndを添加したフッ化ランタン結晶のガンマ線阻止能は良好な特性を有するものの、LYSOやLSOに比べると十分ではない。
真空紫外発光材料の開発が困難である要因としては、真空紫外線は多くの物質に吸収されてしまうため、自己吸収を起こさない物質が限られる点が挙げられる。
さらに、真空紫外領域における発光特性は、材料中の不純物の影響を受けやすく、また、たとえ真空紫外領域に発光のエネルギー準位を有する材料であっても、より低いエネルギー準位に基づく長波長の発光が支配的であったり、非輻射遷移による損失が甚大であったりする等の理由により、所望の真空紫外発光を得られない場合が多い。
したがって、真空紫外領域における発光特性を予め予測することは極めて困難であり、このことが真空紫外発光材料の開発における大きな障壁となっている。
P.SHOTAUS et al.、"DETECTION OF LaF3:Nd3+ SCINTILLATION LIGHT IN A PHOTOSENSITIVE MULTIWIRE CHAMBER" Nuclear Instruments and Methods in Physics Research A272,913−916(1988).
本発明は、真空紫外領域で高輝度発光するフッ化物結晶を提供する。また、該フッ化物結晶からなり、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用できる新たな真空紫外発光素子及び、PETによる癌診断やX線CTに使用できる放射線検出器用真空紫外発光シンチレーターを提供することを目的とする。
本発明者等は、真空紫外領域で発光する材料を探索し、種々検討した結果、KLuFとKFの混合相からなる結晶を放射線で励起することにより、高輝度な真空紫外発光が得られることを見出し、本発明を完成するに至った。
即ち、本発明は、KLuFとKFの混合相からなるフッ化物結晶、及び該フッ化物結晶を用いた真空紫外発光素子及び真空紫外発光シンチレーターである。
本発明のフッ化物結晶によれば、放射線の照射により真空紫外領域における高輝度な発光を得ることができる。該フッ化物からなる真空紫外発光素は、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用することができる。また、ダイヤモンド受光素子やAlGaN受光素子等の真空紫外用の微弱光検出器に対する真空紫外発光シンチレーターとして好適に使用できる。
本図は、マイクロ引き下げ法による結晶製造装置の概略図である。 本図は、本発明のKLuFとKFの混合相からなるフッ化物結晶の粉末X線回折パターンである。 本図は、X線励起発光スペクトルの測定装置の概略図である。 本図は、本発明のKLuFとKFの混合相からなるフッ化物結晶のX線励起発光スペクトルである。
以下、本発明のKLuFとKFの混合相からなるフッ化物結晶について説明する。本発明において真空紫外発光とは200nm以下の波長の発光のことを言う。
本発明のKLuFとKFの混合相からなるフッ化物結晶は、一般に化学式KLuFで表されるフッ化カリウムルテシウム(以下、KLuFという)と化学式KFで表されるフッ化カリウム(以下、KFという)の混合相の結晶からなるものである。
本発明のKLuFとKFの混合相のフッ化物結晶とは、KLuFとKFの相が両方存在し、粉末X線回折法によりKFの存在が確認できるKLuFの結晶である。ただし、それぞれ別々に結晶を作製してから混合するのではなく、原料の段階で単結晶KLuFを作製する場合よりもKFを過剰に混合して溶融、結晶化して作製された結晶であることが好ましい。
一般的な発光材料は、粉末X線回折法によって確認できる程度に不純物を添加すると、発光強度が低減してしまうことが多いが、本発明のフッ化物結晶は例外的に発光強度が低減していない。その原理は明らかではないが、KFが粒界に効果的に分散して結晶性を高めている、などのことが考えられる。また、KLuFに対するKFの存在比は特に限定されず、粉末X線回折法によりKFとKLuFの両方が確認できれば良い。
LuFとKFの混合相からなるフッ化物結晶の製造方法は特に限定されないが、チョクラルスキー法やマイクロ引き下げ法に代表される一般的な融液成長法によって製造することができる。
マイクロ引き下げ法とは、図1に示すような装置を用いて、坩堝5の底部に設けた穴より原料融液を引き出して結晶を製造する方法である。
以下、マイクロ引き下げ法によってKLuFとKFの混合相からなるフッ化物結晶を製造する際の、一般的な方法について説明する。
まず、所定量の原料を、底部に孔を設けた坩堝5に充填する。坩堝底部に設ける孔の形状は、特に限定されないが、直径が0.5〜4mm、長さが0〜2mmの円柱状とすることが好ましい。
本発明において原料は特に限定されないが、純度がそれぞれ99.99%以上のKF、LuFを混合した混合原料を用いることが好ましい。かかる混合原料を用いることにより、KLuFとKFの混合相からなる結晶の純度を高めることができ、発光の輝度等の特性が向上する。混合原料は、混合後に焼結或いは溶融固化させてから用いても良い。
上記混合原料におけるLuFに対するKFのモル比は、通常4.0〜6.0とする。KFの揮発性がLuFに比べて高いためである。育成雰囲気や温度など、製造の条件によってKFの揮発のしやすさは変わるため、原料仕込み時のKF混合比を一般化することは難しく、予備実験をして決めるのが望ましい。
次いで、上記原料を充填した坩堝5、アフターヒーター1、ヒーター2、断熱材3、及びステージ4を図1に示すようにセットする。真空排気装置を用いて、チャンバー6内を1.0×10−3Pa以下まで真空排気した後、高純度アルゴン等の不活性ガスをチャンバー6内に導入してガス置換を行う。ガス置換後のチャンバー内の圧力は特に限定されないが、大気圧が一般的である。
該ガス置換操作によって、原料或いはチャンバー内に付着した水分を除去することができ、かかる水分に由来する結晶の劣化を妨げることができる。上記ガス置換操作によっても除去できない水分による影響を避けるため、フッ化亜鉛等の固体スカベンジャー或いは四フッ化メタン等の気体スカベンジャーを用いることが好ましい。固体スカベンジャーを用いる場合には原料中に予め混合しておく方法が好適であり、気体スカベンジャーを用いる場合には上記不活性ガスに混合してチャンバー内に導入する方法が好適である。
ガス置換操作を行った後、高周波コイル7で原料を加熱して溶融せしめ、溶融した原料融液を坩堝底部の孔から引き出して、結晶の育成を開始する。
ここで、金属ワイヤーを引き下げロッドの先端に設け、該金属ワイヤーを坩堝底部の孔から坩堝内部に挿入し、該金属ワイヤーに原料融液を付着せしめた後、原料融液を金属ワイヤーと共に引き下げることによって結晶の育成が可能となる。
即ち、高周波の出力を調整し、原料の温度を徐々に上げながら、該金属ワイヤーを坩堝底部の孔に挿入し、引き出しを行う。この操作を、原料融液が金属ワイヤーと共に引き出されるまで繰り返して、結晶の育成を開始する。該金属ワイヤーの材質は、原料融液と実質的に反応しない材質であれば制限無く使用できるが、W−Re合金等の高温における耐食性に優れた材質が好適である。
上記金属ワイヤーによる原料融液の引き出しを行った後、一定の引き下げ速度で連続的に引き下げることにより、結晶を得ることができる。
該引き下げ速度は、特に限定されないが、0.5〜10mm/hrの範囲とすることが好ましい。
本発明のKLuFとKFの混合相からなるフッ化物結晶の製造においては、熱歪に起因する結晶欠陥を除去する目的で、製造後にアニール操作を行っても良い。
得られたKLuFとKFの混合相からなるフッ化物結晶は、良好な加工性を有しており、所望の形状に加工して用いることが容易である。加工に際しては、公知のブレードソー、ワイヤーソー等の切断機、研削機、或いは研磨盤を何ら制限無く用いることができる。
LuFとKFの混合相からなるフッ化物結晶は所望の形状に加工して本発明の真空紫外発光素子、及び真空紫外発光シンチレーターとすることができる。本発明の真空紫外発光素子は、励起源である放射線源と組み合わせることにより、真空紫外光発生装置とすることができる。かかる真空紫外光発生装置は、フォトリソグラフィー、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等の分野において、好適に使用される。また、本発明の真空紫外発光シンチレーターは、ダイヤモンド受光素子やAlGaN受光素子等の真空紫外用の微弱光検出器と組み合わせて、低バックグラウンドノイズの放射線検出器として好適に使用できる。
以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
実施例1
図1に示す結晶製造装置を用いてKLuFとKFの混合相からなるフッ化物結晶を製造した。原料としては、純度が99.99%のKF、LuFを用いた。アフターヒーター1、ヒーター2、断熱材3、ステージ4、及び坩堝5は、高純度カーボン製のものを使用し、坩堝底部に設けた孔の形状は直径2mm、長さ0.5mmの円柱状とした。
まず、KF、LuFをそれぞれ0.546g、0.454g秤量し、よく混合した後に坩堝5に充填した。
原料を充填した坩堝5を、アフターヒーター1の上部にセットし、その周囲にヒーター2、及び断熱材3を順次セットした。次いで、油回転ポンプ及び油拡散ポンプからなる真空排気装置を用いて、チャンバー6内を1.0×10−4Paまで真空排気した後、アルゴン−四フッ化メタン混合ガスをチャンバー6内に導入してガス置換を行った。
ガス置換後のチャンバー6内の圧力は大気圧とした後、高周波コイル7で原料を約400度まで加熱したが、原料融液の坩堝5底部の孔からの滲出は認められなかった。そこで、高周波の出力を調整して原料融液の温度を徐々に上げながら、引き下げロッド8の先端に設けたW−Reワイヤーを、上記孔に挿入し、引き下げる操作を繰り返したところ、原料の融液を上記孔より引き出すことができた。
この時点の温度が保たれるように高周波の出力を固定し、原料の融液を引き下げ、結晶化を開始した。6mm/hrの速度で連続的に12時間引き下げ、最終的に直径2mm、長さ約70mmの結晶を得た。
得られた単結晶を、ワイヤーソーによって約10mmの長さに切断し、側面を研削して長さ10mm、幅約2mm、厚さ1mmの形状に加工した後、長さ10mm、幅約2mmの両面を鏡面研磨して発光特性測定用の試料を作製した。
X線回折法による分析の結果より、実施例1の結晶は、図2に示すKLuFとKFの混合相の粉末X線回折パターンが得られる結晶であることが確認でされた。
得られた実施例1の単結晶のX線励起による真空紫外発光特性を、図3に示す測定装置を用いて以下のようにして測定した。なお、測定は室温において行った。
測定装置内の所定の位置に本発明の試料9をセットし、装置内部全体を窒素ガスで置換した。励起源であるX線発生器10(RIGAKU SA−HFM3用X線発生装置)からのX線を60kV、35mAの出力で試料9に照射し、試料9からの発光を発光分光器11(分光計器製、KV201型極紫外分光器)で分光した。発光分光器11による分光の波長を120〜250nmの範囲で掃引し、各発光波長における発光強度を光電子増倍管12で記録した。得られた発光スペクトルを図4に示した。
参考例1
また、参考例1として、KF、LuFをそれぞれ0.453g、0.547g秤量した以外は実施例1と同様の方法で、KLuF単相の結晶を作製し、X線励起による真空紫外発光特性を測定した。得られた発光スペクトルを図4に示した。
比較例1
比較例1として、KFを1.000g秤量した以外は実施例1と同様の方法で、KF単相の結晶を作製し、X線励起による真空紫外発光特性を測定した。得られた発光スペクトルを図4に示した。
図4に示す発光スペクトルから、KLuFとKFの混合相からなるフッ化物結晶は、200nm以下の波長において、KLuF単相の結晶(参考例1)及びKF単相の結晶(比較例1)とは異なる発光スペクトルを示すうえ、これらに比べて、高い発光強度を示しており、充分な輝度で発光し、真空紫外発光素子として動作することが確認された。また、放射線により励起されて真空紫外発光することから、シンチレーターとして動作することも確認された。これにより、本発明が、真空紫外発光素子及び真空紫外発光シンチレーターとして好適に利用できることがわかった。
1 アフターヒーター
2 ヒーター
3 断熱材
4 ステージ
5 坩堝
6 チャンバー
7 高周波コイル
8 引き下げロッド
9 試料
10 X線発生器
11 発光分光器
12 光電子増倍管

Claims (3)

  1. KFとKLuFの混合相からなるフッ化物結晶。
  2. 請求項1記載のフッ化物結晶からなることを特徴とする真空紫外発光素子。
  3. 請求項1記載のフッ化物結晶からなることを特徴とする真空紫外発光シンチレーター。
JP2009136182A 2009-06-05 2009-06-05 フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター Expired - Fee Related JP5127778B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136182A JP5127778B2 (ja) 2009-06-05 2009-06-05 フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136182A JP5127778B2 (ja) 2009-06-05 2009-06-05 フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター

Publications (2)

Publication Number Publication Date
JP2010280543A true JP2010280543A (ja) 2010-12-16
JP5127778B2 JP5127778B2 (ja) 2013-01-23

Family

ID=43537677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136182A Expired - Fee Related JP5127778B2 (ja) 2009-06-05 2009-06-05 フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター

Country Status (1)

Country Link
JP (1) JP5127778B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161227A1 (ja) 2012-04-26 2013-10-31 株式会社トクヤマ 金属フッ化物結晶、発光素子、シンチレーター、中性子の検出方法及び金属フッ化物結晶の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019862A1 (ja) * 2003-08-25 2005-03-03 Fukuda Crystal Laboratory シンチレータ及び放射線検出器並びに放射線検査装置
WO2005100645A1 (ja) * 2004-04-12 2005-10-27 Stella Chemifa Corporation 希土類フッ化物固溶体材料(多結晶及び/又は単結晶)、及びその製造方法並びに放射線検出器及び検査装置
JP2005536765A (ja) * 2001-11-20 2005-12-02 コーニング インコーポレイテッド 160nmより短波長の光を利用する光リソグラフィのための光リソグラフィ用分散制御光学結晶及びその作成方法
JP2007532746A (ja) * 2004-04-14 2007-11-15 サン−ゴバン クリストー エ デテクトゥール 核バックグラウンドノイズの低減を伴う希土類系シンチレーター材料
JP2008019126A (ja) * 2006-07-13 2008-01-31 Tohoku Univ 真空紫外発光素子
JP2008201599A (ja) * 2007-02-16 2008-09-04 Tokuyama Corp フッ化物結晶及び真空紫外発光素子
JP2009102194A (ja) * 2007-10-23 2009-05-14 Tokuyama Corp フッ化金属単結晶体引上げ装置及び該装置を用いたフッ化金属単結晶体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536765A (ja) * 2001-11-20 2005-12-02 コーニング インコーポレイテッド 160nmより短波長の光を利用する光リソグラフィのための光リソグラフィ用分散制御光学結晶及びその作成方法
WO2005019862A1 (ja) * 2003-08-25 2005-03-03 Fukuda Crystal Laboratory シンチレータ及び放射線検出器並びに放射線検査装置
WO2005100645A1 (ja) * 2004-04-12 2005-10-27 Stella Chemifa Corporation 希土類フッ化物固溶体材料(多結晶及び/又は単結晶)、及びその製造方法並びに放射線検出器及び検査装置
JP2007532746A (ja) * 2004-04-14 2007-11-15 サン−ゴバン クリストー エ デテクトゥール 核バックグラウンドノイズの低減を伴う希土類系シンチレーター材料
JP2008019126A (ja) * 2006-07-13 2008-01-31 Tohoku Univ 真空紫外発光素子
JP2008201599A (ja) * 2007-02-16 2008-09-04 Tokuyama Corp フッ化物結晶及び真空紫外発光素子
JP2009102194A (ja) * 2007-10-23 2009-05-14 Tokuyama Corp フッ化金属単結晶体引上げ装置及び該装置を用いたフッ化金属単結晶体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012050573; B.N.Wani and U.R.Rao: 'On Low Temperature Preparation of delta-K3REF6(RE=Dy-Lu)' JOURNAL OF SOLID STATE CHEMISTRY 112, 19931202, 199-202 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161227A1 (ja) 2012-04-26 2013-10-31 株式会社トクヤマ 金属フッ化物結晶、発光素子、シンチレーター、中性子の検出方法及び金属フッ化物結晶の製造方法
US9388337B2 (en) 2012-04-26 2016-07-12 Tokuyama Corporation Metal fluoride crystal, light emitting element, scintillator, method of detecting neutron, and method of producing metal fluoride crystal

Also Published As

Publication number Publication date
JP5127778B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5389328B2 (ja) Prを含むシンチレータ用単結晶及びその製造方法並びに放射線検出器及び検査装置
JP5378356B2 (ja) 中性子検出用シンチレーターおよび中性子検出装置
JP5858370B1 (ja) シンチレーター及びその製造方法、並びに放射線検出器
JP5245176B2 (ja) ヨウ化物系単結晶体の製造方法
JP5566218B2 (ja) フッ化物単結晶、真空紫外発光素子、シンチレーター及びフッ化物単結晶の製造方法
JP2017036160A (ja) 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
JPWO2012137738A1 (ja) シンチレーター、放射線検出装置および放射線検出方法
JP4785198B2 (ja) フッ化物結晶及び真空紫外発光素子
JP5455881B2 (ja) フッ化物単結晶、真空紫外発光素子及びシンチレーター
JP5127778B2 (ja) フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター
JP5393266B2 (ja) 希土類含有K3LuF6、真空紫外発光素子及び真空紫外発光シンチレーター
JP5365720B2 (ja) シンチレータ用単結晶及びその製造方法
JP5994149B2 (ja) X線シンチレータ用材料
JP2011184206A (ja) フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター
JP5904538B2 (ja) シンチレータ材料及びx線検出器
JP5317952B2 (ja) フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター
JP2017066245A (ja) シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置
JP2010280541A (ja) 真空紫外発光素子及び真空紫外発光シンチレーター
JP5611239B2 (ja) 金属フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター
JP2011190393A (ja) 真空紫外発光素子及びシンチレーター
JP2010073936A (ja) 真空紫外発光素子
JP5729954B2 (ja) フッ化物単結晶、シンチレーター及びフッ化物単結晶の製造方法
JP6021135B2 (ja) X線検出器
JP2011016694A (ja) 真空紫外発光素子
WO2012026585A1 (ja) フッ化物結晶、放射線検出用シンチレーター及び放射線検出器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees