JP2010276593A - Level measuring device - Google Patents

Level measuring device Download PDF

Info

Publication number
JP2010276593A
JP2010276593A JP2009195818A JP2009195818A JP2010276593A JP 2010276593 A JP2010276593 A JP 2010276593A JP 2009195818 A JP2009195818 A JP 2009195818A JP 2009195818 A JP2009195818 A JP 2009195818A JP 2010276593 A JP2010276593 A JP 2010276593A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic transmission
reception means
reception
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009195818A
Other languages
Japanese (ja)
Other versions
JP5606703B2 (en
Inventor
Hidehiko Kuroda
英彦 黒田
Kensaku Ando
健作 安藤
Hideo Namihira
英夫 波平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009195818A priority Critical patent/JP5606703B2/en
Priority to FI20105002A priority patent/FI123194B/en
Publication of JP2010276593A publication Critical patent/JP2010276593A/en
Priority to FI20125852A priority patent/FI125173B/en
Application granted granted Critical
Publication of JP5606703B2 publication Critical patent/JP5606703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem with conventional level measurement using the reflectance of an ultrasonic wave that the reliability of measurement drops depending on the surface state of a pipe to be measured. <P>SOLUTION: With ultrasonic wave transmitting and receiving means 11a, 11b, 11c, 12a, 12b, and 12c attached to a level measuring pipe 4, whether the point of reflection/transmission of an ultrasonic wave is a gas phase or a liquid phase is determined by specifying, from signals received by the ultrasonic wave transmitting and receiving means, the presence or absence of reflected waves from inner walls 4a and 4b of the level measuring pipe 4, transmitted waves from the ultrasonic wave transmitting and receiving means facing each other, and oblique transmitted waves from the ultrasonic wave transmitting and receiving means attached to positions of different heights on the opposite sides of the level measuring pipe 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原子炉圧力容器等の液体を収容した容器の液位を計測するシステムに係る。   The present invention relates to a system for measuring a liquid level of a vessel containing a liquid such as a reactor pressure vessel.

一般に、沸騰水型原子炉の原子炉水位計測には差圧式水位計が用いられており、高い安全性及び信頼性が確保されている。また、原子炉の安全性を更に向上させるため、差圧式水位計と異なる方式の水位計を併設して、複数の方式によって原子炉水位を計測する方法がある。   In general, a differential pressure type water level gauge is used for measuring the reactor water level of a boiling water reactor, and high safety and reliability are ensured. In order to further improve the safety of the reactor, there is a method of measuring the reactor water level by a plurality of methods by providing a water level meter of a method different from the differential pressure type water level meter.

差圧式以外の水位計の一例として、超音波式水位計が用いられている(例えば、特許文献1参照)。従来の超音波式水位計による水位計測について、図11を用いて説明する。図11は水位計測対象である液槽に取り付けられた超音波探触子と、その近傍を拡大した部分拡大縦断面図である。   As an example of a water level meter other than the differential pressure type, an ultrasonic water level meter is used (see, for example, Patent Document 1). The water level measurement by the conventional ultrasonic water level meter will be described with reference to FIG. FIG. 11 is an enlarged longitudinal sectional view of an ultrasonic probe attached to a liquid tank that is a water level measurement target and an enlarged view of the vicinity thereof.

液槽100の表面に、超音波送信用の探触子101aと超音波受信用の探触子101bが取り付けられている。探触子101a、101bはそれぞれ、液槽壁102の外壁102aの、高さが異なる位置に配置されている。探触子101aから液槽100内部へ超音波を送信すると、送信された超音波は経路103や経路104のように液槽壁100の外壁102aと内壁102bの間で反射を繰り返して伝播する。この時、内壁102bの超音波の反射点が液相にあると、反射点が気相にある場合と比較して超音波の反射率が低下する。したがって、超音波を探触子101bで受信し、探触子101aが送信した超音波と探触子101bが受信した超音波の強度を比較し、強度の減少の度合いから反射点が液相か気相かを判定することができる。このような原理により、水位レベルの測定が可能となる。そして、経路103や経路104だけではなく、さらに多くの反射を繰り返す経路の超音波を検出することにより、多数の反射点を用いて水位レベルを判定することができ、水位を細かく測定することが可能となる。   An ultrasonic transmission probe 101 a and an ultrasonic reception probe 101 b are attached to the surface of the liquid tank 100. The probes 101a and 101b are respectively arranged at different heights on the outer wall 102a of the liquid tank wall 102. When ultrasonic waves are transmitted from the probe 101 a to the inside of the liquid tank 100, the transmitted ultrasonic waves are propagated by being repeatedly reflected between the outer wall 102 a and the inner wall 102 b of the liquid tank wall 100 like the path 103 and the path 104. At this time, if the reflection point of the ultrasonic wave on the inner wall 102b is in the liquid phase, the reflectance of the ultrasonic wave is lower than that in the case where the reflection point is in the gas phase. Therefore, the ultrasonic wave is received by the probe 101b, the intensity of the ultrasonic wave transmitted by the probe 101a and the intensity of the ultrasonic wave received by the probe 101b are compared, and the reflection point is determined from the degree of decrease in intensity. It can be determined whether the gas phase. By such a principle, the water level can be measured. Then, by detecting not only the path 103 and the path 104 but also ultrasonic waves of a path that repeats more reflections, the water level can be determined using a large number of reflection points, and the water level can be measured finely. It becomes possible.

特許第3732642号公報Japanese Patent No. 3732642

上述の超音波式水位計は、液槽壁の内壁の反射点における超音波の反射率の減少から反射点が液相か気相かを判定する。しかし、液槽壁の内壁や外壁の反射点における超音波の反射率は、内壁及び外壁の表面状態による影響も大きい。したがって、環境変化や経年劣化、反射点の移動などによる表面状態の変化が水位の計測精度に影響するという課題があった。   The ultrasonic water level meter described above determines whether the reflection point is a liquid phase or a gas phase from a decrease in the reflectance of the ultrasonic wave at the reflection point on the inner wall of the liquid tank wall. However, the reflectivity of ultrasonic waves at the reflection points on the inner wall and outer wall of the liquid tank wall is also greatly influenced by the surface conditions of the inner wall and the outer wall. Therefore, there has been a problem that changes in the surface state due to environmental changes, deterioration over time, movement of reflection points, and the like affect the measurement accuracy of the water level.

また、一般的に、原子炉の状態監視を行う機器は、その信頼性を高めるべく冗長性や計測精度向上の要求が恒常的に存在する。   In general, equipment for monitoring the state of a nuclear reactor always has a demand for improvement in redundancy and measurement accuracy in order to improve its reliability.

本発明は、上述の課題を解決するためになされたものであり、環境変化や経年劣化、射点の移動などが原因となる液槽壁の表面状態の変化による影響が大きい場合でも信頼性が高い液位計測装置の提供を目的とする。   The present invention has been made to solve the above-mentioned problems, and is reliable even when the influence of the change in the surface state of the liquid tank wall caused by environmental changes, deterioration over time, movement of the launch point, etc. is large. The purpose is to provide a high liquid level measuring device.

上記目的を達成するため、本発明による液位計測装置は、配管の外壁に取り付けられ、超音波の送受信を行なう超音波送受信手段と、前記超音波送受信手段に、前記配管内へ超音波を送信させる指示信号を送信する制御手段と、前記超音波送受信手段の超音波受信信号を受信する受信手段と、前記受信手段が受信した前記超音波受信信号に基づき、前記超音波送受信手段が受信した超音波に前記超音波送受信手段が対向する側の前記配管内壁で反射した透過波が含まれるかを判定する演算手段と、を備えることを特徴とする。   In order to achieve the above object, a liquid level measuring apparatus according to the present invention is attached to an outer wall of a pipe and transmits / receives ultrasonic waves to the ultrasonic transmission / reception means and ultrasonic transmission / reception means for transmitting / receiving ultrasonic waves. A control means for transmitting an instruction signal to be received, a reception means for receiving an ultrasonic reception signal of the ultrasonic transmission / reception means, and an ultrasonic wave received by the ultrasonic transmission / reception means based on the ultrasonic reception signal received by the reception means. Arithmetic means for determining whether a sound wave includes a transmitted wave reflected by the inner wall of the pipe on the side facing the ultrasonic transmission / reception means.

また、本発明による液位計測装置は、配管の外壁に取り付けられ、超音波の送受信を行なう超音波送受信手段と、前記超音波送受信手段と対向する側の前記配管外壁に取り付けられた第2超音波送受信手段と、前記超音波送受信手段に、前記配管内へ超音波を送信させる指示信号を送信する制御手段と、前記第2超音波送受信手段の超音波受信信号を受信する受信手段と、前記受信手段が受信した前記超音波送受信信号に基づき、前記第2超音波送受信手段が受信した超音波に前記超音波送信手段から送信され前記配管を透過した超音波である透過波が含まれるかを判定する演算手段と、を備えることを特徴とする。   The liquid level measuring device according to the present invention is attached to an outer wall of a pipe, and transmits and receives an ultrasonic wave transmitting / receiving means, and a second ultra-high wave attached to the pipe outer wall on the side facing the ultrasonic wave transmitting / receiving means. An ultrasonic wave transmitting / receiving means, a control means for transmitting an ultrasonic signal to the ultrasonic wave transmitting / receiving means into the pipe, a receiving means for receiving an ultrasonic wave reception signal of the second ultrasonic wave transmitting / receiving means, Based on the ultrasonic transmission / reception signal received by the reception unit, whether the ultrasonic wave received by the second ultrasonic transmission / reception unit includes a transmitted wave that is an ultrasonic wave transmitted from the ultrasonic transmission unit and transmitted through the pipe And calculating means for determining.

また、本発明による液位計測装置は、配管の外壁に取り付けられ、超音波の送受信を行なう第1超音波送受信手段と、前記配管を挟んで前記第1超音波送受信手段と対向する位置に取り付けられた第2超音波送受信手段と、前記第1超音波送受信手段と前記配管軸方向に異なる位置に取り付けられた第3超音波送受信手段と、前記配管を挟んで前記第3超音波送受信手段と対向する位置に取り付けられた第4超音波送受信手段と、前記第1超音波送受信手段、前記第2超音波送受信手段、前記第3超音波送受信手段、前記第4超音波送受信手段の各々に前記配管内へ超音波を送信させる指示信号を送信する制御手段と、前記第1超音波送受信手段、前記第2超音波送受信手段、前記第3超音波送受信手段、前記第4超音波送受信手段の各々の超音波受信信号を受信する受信手段と、前記超音波受信信号に基づき、前記第1超音波送受信手段、前記第2超音波送受信手段、前記第3超音波送受信手段、前記第4超音波送受信手段の各々について、前記配管の対向する側の内壁からの反射波の有無、対向する位置の超音波送受信手段からの透過波の有無、前記配管の対向する側の外壁に取り付けられ前記配管軸方向に位置が異なる超音波受信手段からの透過波の有無を判定する演算手段と、を備えることを特徴とする。   The liquid level measuring device according to the present invention is attached to an outer wall of a pipe, and is attached to a position facing the first ultrasonic transmission / reception means across the pipe, and a first ultrasonic transmission / reception means for transmitting / receiving ultrasonic waves. Second ultrasonic transmission / reception means, third ultrasonic transmission / reception means attached to the first ultrasonic transmission / reception means at different positions in the pipe axis direction, and the third ultrasonic transmission / reception means across the pipe. Each of the fourth ultrasonic transmission / reception means, the first ultrasonic transmission / reception means, the second ultrasonic transmission / reception means, the third ultrasonic transmission / reception means, and the fourth ultrasonic transmission / reception means attached at opposite positions Each of control means for transmitting an instruction signal for transmitting ultrasonic waves into the pipe, each of the first ultrasonic transmission / reception means, the second ultrasonic transmission / reception means, the third ultrasonic transmission / reception means, and the fourth ultrasonic transmission / reception means of A receiving means for receiving a sound wave reception signal, and a first ultrasonic transmission / reception means, a second ultrasonic transmission / reception means, a third ultrasonic transmission / reception means, and a fourth ultrasonic transmission / reception means based on the ultrasonic reception signal. About each, the presence or absence of the reflected wave from the inner wall on the opposite side of the pipe, the presence or absence of the transmitted wave from the ultrasonic transmitting / receiving means at the opposite position, and the position attached to the outer wall on the opposite side of the pipe in the pipe axis direction Calculating means for determining the presence / absence of transmitted waves from ultrasonic wave receiving means different from each other.

本発明の液位計測装置によれば、水位計測管における反射波等の有無を用いて液相か気相かを判定することにより、計測対象の表面状態の変化による影響が小さく、信頼性が高い計測を行うことが可能である。   According to the liquid level measuring device of the present invention, the presence or absence of a reflected wave in the water level measuring tube is used to determine whether it is a liquid phase or a gas phase. High measurement is possible.

実施例1による液位計測装置が取り付けられる水位計測管の概略を示す縦断面図。The longitudinal cross-sectional view which shows the outline of the water level measurement pipe | tube with which the liquid level measuring device by Example 1 is attached. 実施例1による液位計測装置が取り付けられた水位計測管の部分拡大縦断面図。The partial expanded longitudinal cross-sectional view of the water level measurement pipe | tube with which the liquid level measuring device by Example 1 was attached. 実施例1による液位計測装置の作用を説明するための水位計測管の部分拡大縦断面図。FIG. 3 is a partially enlarged longitudinal sectional view of a water level measuring tube for explaining the operation of the liquid level measuring device according to the first embodiment. (a)反射点が気相の場合の受信信号を示した図。(b)反射点が液相の場合の受信信号を示した図。(A) The figure which showed the received signal in case a reflective point is a gaseous phase. (B) The figure which showed the received signal in case a reflective point is a liquid phase. 実施例1による液位計測装置の作用を説明するための水位計測管の部分拡大縦断面図。FIG. 3 is a partially enlarged longitudinal sectional view of a water level measuring tube for explaining the operation of the liquid level measuring device according to the first embodiment. 実施例1による液位計測装置の作用を説明するための水位計測管の部分拡大縦断面図。FIG. 3 is a partially enlarged longitudinal sectional view of a water level measuring tube for explaining the operation of the liquid level measuring device according to the first embodiment. 実施例2による液位計測装置が取り付けられた水位計測管の部分拡大縦断面図。The partial expanded longitudinal cross-sectional view of the water level measurement pipe | tube with which the liquid level measuring device by Example 2 was attached. (a)反射板24の正面図、(b)図8(a)に示すA−A線矢視断面図。(A) The front view of the reflecting plate 24, (b) AA arrow sectional drawing shown to Fig.8 (a). 実施例3による液位計測装置が取り付けられた水位計測管の部分拡大縦断面図。The partial expanded longitudinal cross-sectional view of the water level measurement pipe | tube with which the liquid level measuring device by Example 3 was attached. 実施例4による液位計測装置が取り付けられた水素計測管の横断面図。The cross-sectional view of the hydrogen measuring tube with which the liquid level measuring device by Example 4 was attached. 従来の液位計測装置を示す図。The figure which shows the conventional liquid level measuring apparatus.

以下本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例1について、図面を用いて以下説明する。図1は、本実施例による液位計測装置が取り付けられる原子炉圧力容器の水位計測管を簡略的に示した縦断面図である。図1に示すように、沸騰水型原子炉の原子炉圧力容器1に、圧力容器の水位を計測するための上部配管2、下部配管3、および上部配管2と下部配管3を接続する水位計測管4が設けられている。この水位計測管4の側面に複数の超音波送受信手段11、12が取り付けられる。また、原子炉圧力容器1には冷却材である水が注入されている。   Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing a water level measuring tube of a reactor pressure vessel to which a liquid level measuring device according to this embodiment is attached. As shown in FIG. 1, an upper pipe 2 and a lower pipe 3 for measuring the water level of a pressure vessel and a water level measurement for connecting the upper pipe 2 and the lower pipe 3 to a reactor pressure vessel 1 of a boiling water reactor. A tube 4 is provided. A plurality of ultrasonic transmission / reception means 11 and 12 are attached to the side surface of the water level measurement tube 4. Further, water as a coolant is injected into the reactor pressure vessel 1.

図2を用い、本発明による液位計測装置の構成について説明する。図2は、本実施例による液位計測装置が取り付けられた水位計測管を拡大した拡大縦断面図である。水位計測管4の側部表面に超音波送受信手段11a、11b、11cが水位計測管4の軸方向に並べて取り付けられている。また、超音波送受信手段11a、11b、11cと反対側の水位計測管4側部表面に超音波送受信手段12a、12b、12cが取り付けられている。超音波送受信手段11a、11b、11cと超音波送受信手段12a、12b、12cとは、水位計測管4を挟んで対向するように配置されている。   The configuration of the liquid level measuring device according to the present invention will be described with reference to FIG. FIG. 2 is an enlarged vertical cross-sectional view of an enlarged water level measuring tube to which the liquid level measuring device according to this embodiment is attached. Ultrasonic transmission / reception means 11 a, 11 b, 11 c are attached to the side surface of the water level measuring tube 4 side by side in the axial direction of the water level measuring tube 4. Further, ultrasonic transmission / reception means 12a, 12b, 12c are attached to the surface of the side of the water level measurement tube 4 opposite to the ultrasonic transmission / reception means 11a, 11b, 11c. The ultrasonic transmission / reception means 11a, 11b, 11c and the ultrasonic transmission / reception means 12a, 12b, 12c are arranged so as to face each other with the water level measurement tube 4 interposed therebetween.

これら超音波送受信手段11a、11b、11c、12a、12b、12cは、水位計測管4の内部に超音波パルスを送信し、送信した超音波パルスが水位計測管4の内壁4a及び反対側の内壁4bで反射した反射波を受信する。また、超音波送受信手段11a、11b、11c、12a、12b、12cは、対向する超音波送受信手段から送信され水位計測管4を透過した超音波パルスの透過波を受信する。例えば、超音波送受信手段11aは、超音波送受信手段11aが送信した超音波パルスが内壁4a及び内壁4bで反射した反射波を受信し、また超音波送受信手段12aが送信した超音波パルスの透過波を受信する。なお、図2では3対の超音波送受信手段11a、11b、11c、12a、12b、12cのみ示しているが、超音波送受信手段の個数制限はなく、さらに多数の超音波送受信手段を設置することが可能である。例えば、超音波送受信手段の軸方向の設置間隔が水位の測定精度を表し、軸方向の設置数が水位の測定範囲を表わすことから、水位の測定精度と測定範囲から超音波送受信手段の個数を決定することも可能である。また、別の例として、水位計測管4に設定された水位線の数から超音波送受信手段の個数を決定することもできる。さらには、現在の水位の上側及び下側に超音波送受信手段をそれぞれ1個だけ設置する方法もある。   These ultrasonic transmission / reception means 11 a, 11 b, 11 c, 12 a, 12 b, 12 c transmit ultrasonic pulses to the inside of the water level measurement tube 4, and the transmitted ultrasonic pulses are the inner wall 4 a of the water level measurement tube 4 and the inner wall on the opposite side. The reflected wave reflected at 4b is received. Further, the ultrasonic transmission / reception means 11 a, 11 b, 11 c, 12 a, 12 b, 12 c receive the transmitted wave of the ultrasonic pulse transmitted from the opposing ultrasonic transmission / reception means and transmitted through the water level measurement tube 4. For example, the ultrasonic transmission / reception unit 11a receives a reflected wave reflected by the inner wall 4a and the inner wall 4b of the ultrasonic pulse transmitted by the ultrasonic transmission / reception unit 11a, and transmits a transmitted wave of the ultrasonic pulse transmitted by the ultrasonic transmission / reception unit 12a. Receive. In FIG. 2, only three pairs of ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, and 12c are shown. However, the number of ultrasonic transmission / reception means is not limited, and a larger number of ultrasonic transmission / reception means should be installed. Is possible. For example, since the installation interval in the axial direction of the ultrasonic transmission / reception means represents the measurement accuracy of the water level, and the number of installations in the axial direction represents the measurement range of the water level, the number of ultrasonic transmission / reception means is determined from the measurement accuracy of the water level and the measurement range. It is also possible to decide. As another example, the number of ultrasonic transmission / reception means can be determined from the number of water level lines set in the water level measuring tube 4. Further, there is a method in which only one ultrasonic transmission / reception unit is installed above and below the current water level.

また、超音波送受信手段11a、11b、11c、12a、12b、12cは、各超音波送受信手段に電気信号を送信し、また各超音波送受信手段から電気信号を受信する制御手段21と接続されている。また、各超音波送受信手段と制御手段21の間には変調手段22が設置されている。変調手段22は、制御手段21が各超音波送受信手段に送信する電気信号について、振幅強度、時間幅、サイクル数を変調して伝送する。また、制御手段21は、制御手段21が各超音波送受信手段から受信した信号に基づいて、水位計測管4内が気相か液相かを判定する水位演算手段23と接続されている。   The ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, and 12c are connected to the control means 21 that transmits an electrical signal to each ultrasonic transmission / reception means and receives an electrical signal from each ultrasonic transmission / reception means. Yes. Further, a modulation means 22 is installed between each ultrasonic transmission / reception means and the control means 21. The modulation means 22 modulates and transmits the amplitude intensity, the time width, and the number of cycles for the electrical signal transmitted from the control means 21 to each ultrasonic transmission / reception means. The control means 21 is connected to a water level calculation means 23 that determines whether the water level measuring tube 4 is in a gas phase or a liquid phase based on a signal received by the control means 21 from each ultrasonic transmission / reception means.

制御手段21が各超音波送受信手段に送信する電気信号は、各超音波送受信手段に超音波の送信を指示する信号(以下、指示信号と呼称する。)である。また、制御手段21が各超音波送受信手段から受信する電気信号は、各超音波送受信手段が超音波を受信した場合に発する信号(以下、受信信号と呼称する。)である。   The electrical signal that the control means 21 transmits to each ultrasonic transmission / reception means is a signal that instructs each ultrasonic transmission / reception means to transmit ultrasonic waves (hereinafter referred to as an instruction signal). The electrical signal received by the control means 21 from each ultrasonic transmission / reception means is a signal (hereinafter referred to as a reception signal) that is emitted when each ultrasonic transmission / reception means receives an ultrasonic wave.

これらの制御手段21、変調手段22、水位演算手段23は、原子力発電所の中央制御室や管理区域外等の原子炉格納容器の外部に設置される。制御手段21、変調手段22、水位演算手段23と各超音波送受信手段は格納容器貫通部配管を介して電気的に接続され、電気信号の送受信を行う。   These control means 21, modulation means 22, and water level calculation means 23 are installed outside the reactor containment vessel such as the central control room of the nuclear power plant or outside the management area. The control means 21, the modulation means 22, the water level calculation means 23, and each ultrasonic transmission / reception means are electrically connected via the containment vessel penetration pipe and transmit / receive electrical signals.

上部配管2、下部配管3、水位計測管4は、例えばステンレス鋼、ニッケル基合金、低合金鋼、炭素鋼等の材料で構成される。また、水位計測管4の全長は、水位を測定する所望の範囲に基づいて決定される。水位計測管4の内径には指定は無く、どのような大きさでも良い。また、水位計測管4の外径は、異常時に想定される高温高圧条件においても損傷や破断が起きない肉厚となるように設定される。上部配管2と下部配管3は、外径及び内径、長さに指定は無い。また、上部配管2と下部配管3は、内部に非凝縮性気体が蓄積しないように傾斜している。なお、本実施例では、水位計測管4、上部配管2と下部配管3の断面形状はいずれも円形であるが、内外面の形状を楕円形や多角形とすることも可能である。具体的には、例えば内面の断面形状を円形、外面の形状を正六角形等とすることが可能である。また、水位計測管4、上部配管2や下部配管3の内外面の断面形状を場所によって変えることもできる。例えば、円形の水位計測管4を用い、超音波送受信手段11a、11b、11c、12a、12b、12cを取り付ける部位の外表面を多角形とし、超音波送受信手段11a、11b、11c、12a、12b、12cを多角形の平面に取り付ける方法がある。   The upper pipe 2, the lower pipe 3, and the water level measuring pipe 4 are made of a material such as stainless steel, nickel base alloy, low alloy steel, carbon steel, or the like. Further, the total length of the water level measuring tube 4 is determined based on a desired range for measuring the water level. There is no designation for the inner diameter of the water level measuring tube 4, and it may be of any size. In addition, the outer diameter of the water level measuring tube 4 is set so as to have a thickness that does not cause damage or breakage even under high temperature and high pressure conditions assumed in an abnormal state. The upper pipe 2 and the lower pipe 3 are not specified for the outer diameter, inner diameter, and length. Further, the upper pipe 2 and the lower pipe 3 are inclined so that non-condensable gas does not accumulate inside. In the present embodiment, the cross-sectional shapes of the water level measuring pipe 4, the upper pipe 2 and the lower pipe 3 are all circular, but the inner and outer surfaces can be elliptical or polygonal. Specifically, for example, the cross-sectional shape of the inner surface can be a circle, and the outer surface can be a regular hexagon. Moreover, the cross-sectional shapes of the inner and outer surfaces of the water level measurement pipe 4, the upper pipe 2, and the lower pipe 3 can be changed depending on the location. For example, a circular water level measuring tube 4 is used, and the outer surface of the part to which the ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, 12c is attached is polygonal, and the ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b , 12c can be attached to a polygonal plane.

超音波送受信手段11a、11b、11c、12a、12b、12cは、ニオブ酸リチウム等の耐熱性及び耐放性を有する振動子で構成された超音波プローブである。各超音波送受信手段は金属や液体のカプラントを用いて水位計測管4の側部表面に取り付けられる。超音波パルスの周波数は、水位計測管4及び液相中を伝播するように数百KHz〜数百MHzの範囲で設定される。超音波プローブは、個別の振動子を並べてもよいし、フェーズアレイセンサ等のような配列された振動子を用いてもよい。   The ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, and 12c are ultrasonic probes composed of vibrators having heat resistance and release resistance such as lithium niobate. Each ultrasonic transmission / reception means is attached to the side surface of the water level measuring tube 4 using a metal or liquid co-plant. The frequency of the ultrasonic pulse is set in the range of several hundred KHz to several hundred MHz so as to propagate through the water level measuring tube 4 and the liquid phase. As the ultrasonic probe, individual vibrators may be arranged, or arranged vibrators such as a phase array sensor may be used.

制御手段21は、超音波送受信手段11a、11b、11c、12a、12b、12cに対する指示信号を生成する高電圧生成回路、超音波送受信手段11a、11b、11c、12a、12b、12cの受信信号を検出する電圧増幅回路で構成される。   The control means 21 is a high voltage generation circuit for generating instruction signals for the ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, 12c, and the reception signals of the ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, 12c. It consists of a voltage amplification circuit to detect.

変調手段22は、制御手段21の高電圧生成回路に接続され、電気信号の電圧、時間幅、サイクル数を変えてパルス出力する電圧変調回路である。超音波送受信手段11a、11b、11c、12a、12b、12cから送信される超音波パルスは、指示信号の電圧等によって決定される。したがって、変調手段22が指示信号を変調することにより、超音波送受信手段11a、11b、11c、12a、12b、12cから送信される超音波パルスが変調される。変調手段22は各超音波送受信手段に送信される指示信号を個別に変調することができる。したがって、超音波送受信手段11a、11b、11c、12a、12b、12cの各々から発せられる超音波パルスの周波数や振幅等を、超音波送受信手段毎に異なるものとすることができる。   The modulation means 22 is a voltage modulation circuit that is connected to the high voltage generation circuit of the control means 21 and outputs a pulse by changing the voltage, time width, and cycle number of the electric signal. The ultrasonic pulses transmitted from the ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, and 12c are determined by the voltage of the instruction signal and the like. Therefore, the modulation means 22 modulates the instruction signal, whereby the ultrasonic pulses transmitted from the ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, and 12c are modulated. The modulation unit 22 can individually modulate the instruction signal transmitted to each ultrasonic transmission / reception unit. Accordingly, the frequency and amplitude of the ultrasonic pulse emitted from each of the ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, and 12c can be different for each ultrasonic transmission / reception means.

水位演算手段23は、制御手段21の電圧増幅回路により検出される受信信号に基づいて演算を行い、各超音波送受信手段が受信した超音波に反射波や透過波の有無を特定することにより、水位計測管4内部が気相か液相かを判定する。例えば、超音波送受信手段11aの受信信号について演算処理し、超音波送受信手段11aが受信した超音波が、超音波送受信手段11aが送信して内壁4aまたは内壁4bで反射した反射波か、超音波送受信手段12aが送信して水位計測管4を透過した透過波なのかを特定する。なお、受信信号に含まれるノイズが多い場合は、アナログやデジタルのフィルタ回路、またはソフトウエアによる周波数フィルタリング処理によりノイズ除去や波形抽出を前処理として行った後で、反射波や透過波の有無を特定する。   The water level calculation means 23 performs a calculation based on the reception signal detected by the voltage amplification circuit of the control means 21, and specifies the presence or absence of a reflected wave or a transmitted wave in the ultrasonic wave received by each ultrasonic transmission / reception means, It is determined whether the water level measuring tube 4 is in a gas phase or a liquid phase. For example, the received signal of the ultrasonic transmission / reception unit 11a is processed, and the ultrasonic wave received by the ultrasonic transmission / reception unit 11a is a reflected wave transmitted from the ultrasonic transmission / reception unit 11a and reflected by the inner wall 4a or the inner wall 4b. The transmission / reception means 12a determines whether the transmitted wave is transmitted through the water level measuring tube 4. If there is a lot of noise in the received signal, the presence or absence of reflected or transmitted waves should be checked after performing noise removal and waveform extraction as preprocessing by analog or digital filter circuits or frequency filtering processing by software. Identify.

超音波パルスは、水位計測管4の管壁中や水位計測管4の内部液相などにおいて多重反射やモード変換を起こすが、この多重反射やモード変換した反射波や透過波を用いて判定することもできる。本実施例では、多重反射やモード変換がない反射波や透過波を用いるものとして説明する。   The ultrasonic pulse causes multiple reflection and mode conversion in the tube wall of the water level measurement tube 4 and in the internal liquid phase of the water level measurement tube 4. The ultrasonic pulse is determined using the reflected wave and transmitted wave that have been subjected to multiple reflection and mode conversion. You can also In the present embodiment, description will be made assuming that a reflected wave or transmitted wave without multiple reflection or mode conversion is used.

水位演算手段23としては、一般的なパーソナルコンピュータに演算用のプログラムを組み込んで用いても、専用のハードウェアを製作して用いてもよい。   As the water level calculation means 23, a calculation program may be incorporated into a general personal computer, or dedicated hardware may be manufactured.

次に、本実施例による液位計測装置の作用について具体的に説明する。まず、超音波送受信手段11aを用いて、内壁4aと内壁4bにおける反射波を用いた水位計測について、図3を用いて説明する。図3は図2をさらに拡大した図であり、超音波送受信手段11aから送信される超音波パルスと、その反射波の経路について図示している。また、図3(a)と図3(b)では水位が異なっている。また、いくつかの構成要素は図示を省略している。   Next, the operation of the liquid level measuring device according to the present embodiment will be specifically described. First, water level measurement using reflected waves on the inner wall 4a and the inner wall 4b using the ultrasonic transmission / reception means 11a will be described with reference to FIG. FIG. 3 is an enlarged view of FIG. 2, and illustrates the ultrasonic pulse transmitted from the ultrasonic transmission / reception means 11a and the path of the reflected wave. Moreover, the water level is different between FIG. 3 (a) and FIG. 3 (b). Some components are not shown.

制御手段21の指示信号は、変調手段22で変調されて超音波送受信手段12bに送信され、超音波受信手段11aは水位計測管4に超音波パルス31aを送信する。   The instruction signal of the control means 21 is modulated by the modulation means 22 and transmitted to the ultrasonic transmission / reception means 12b, and the ultrasonic reception means 11a transmits an ultrasonic pulse 31a to the water level measurement tube 4.

図3(a)で示すように、超音波パルス31aが内壁4aにおける反射点が水位計測管4内部において気相である場合、超音波パルス31aは内壁4aを透過せず、超音波送受信手段11aは内壁4aからの反射波31bを受信する。なお、反射点とは超音波パルス31aが水位計測管4の内壁で反射する位置を意味する。   As shown in FIG. 3A, when the reflection point of the ultrasonic pulse 31a is a gas phase inside the water level measuring tube 4, the ultrasonic pulse 31a does not pass through the inner wall 4a, and the ultrasonic transmission / reception means 11a. Receives the reflected wave 31b from the inner wall 4a. The reflection point means a position where the ultrasonic pulse 31 a is reflected by the inner wall of the water level measurement tube 4.

図3(b)で示すように、超音波パルス31aの内壁4aにおける反射点が水位計測管4内部において液相である場合、超音波パルス31aの一部は内壁4aで反射し、一部は内壁4aを透過して液相に入射する。液相に入った超音波パルス31aは内壁4bに到達し、反射する。超音波送受信手段11aは内壁4aからの反射は31bと、内壁4bからの反射波31cを受信する。   As shown in FIG. 3B, when the reflection point of the ultrasonic pulse 31a on the inner wall 4a is in the liquid phase inside the water level measuring tube 4, a part of the ultrasonic pulse 31a is reflected by the inner wall 4a, and a part is The light passes through the inner wall 4a and enters the liquid phase. The ultrasonic pulse 31a entering the liquid phase reaches the inner wall 4b and is reflected. The ultrasonic transmission / reception means 11a receives the reflection 31b from the inner wall 4a and the reflected wave 31c from the inner wall 4b.

水位演算手段23は、制御手段21が超音波送受信手段11aから受信した受信信号を演算処理し、超音波送受信手段11aが受信した超音波に反射波31b、反射波31cが含まれるかを特定する。具体的には、まず、受信信号に周波数フィルタリング処理を行ってノイズを除去する。次に、超音波パルスの変調状態や観測時間に基づいて反射波31b及び反射波31cを特定する。超音波パルスは超音波送受信手段毎に変調されているため、超音波の周波数等から、反射波が何れの超音波送受信手段から送信された超音波パルスに起因するものか判別することが出来る。また、反射波31b、反射波31cは、超音波送受信手段11aから送信されてから超音波送受信手段11bに受信されるまでの経路長さが異なるため、反射波31cは反射波31bの後に受信される。したがって、超音波パルスの変調状態や観測時間から、反射波31b及び反射波31cを特定することができる。   The water level calculation means 23 calculates the reception signal received by the control means 21 from the ultrasonic transmission / reception means 11a, and specifies whether the reflected waves 31b and 31c are included in the ultrasonic waves received by the ultrasonic transmission / reception means 11a. . Specifically, first, the received signal is subjected to frequency filtering to remove noise. Next, the reflected wave 31b and the reflected wave 31c are specified based on the modulation state and observation time of the ultrasonic pulse. Since the ultrasonic pulse is modulated for each ultrasonic transmission / reception means, it is possible to determine from which ultrasonic transmission / reception means the reflected wave is caused by the ultrasonic pulse transmitted from the ultrasonic frequency or the like. The reflected wave 31b and the reflected wave 31c have different path lengths from when they are transmitted from the ultrasonic transmission / reception means 11a to when they are received by the ultrasonic transmission / reception means 11b. Therefore, the reflected wave 31c is received after the reflected wave 31b. The Therefore, the reflected wave 31b and the reflected wave 31c can be specified from the modulation state and observation time of the ultrasonic pulse.

このような受信信号の一例を図4に示す。図4(a)は反射点が気相であり、反射波31bのみ存在する場合の受信信号を、図4(b)は反射点が液相であり、反射波31b、31cが存在する受信信号を示している。図4(a)(b)ともに、縦軸が信号の振幅強度、横軸が時間を示している。   An example of such a received signal is shown in FIG. 4A shows a reception signal when the reflection point is in the gas phase and only the reflected wave 31b exists, and FIG. 4B shows a reception signal where the reflection point is in the liquid phase and the reflection waves 31b and 31c exist. Is shown. 4 (a) and 4 (b), the vertical axis represents the amplitude intensity of the signal, and the horizontal axis represents time.

反射点が気相の場合、図4(a)に示すように1回だけ超音波の受信を示す振幅が現れる。これに対して、図4(b)では超音波の受信を示す振幅が2回現れている。先に現れたのが反射波31b、後に現れたのが反射波31cに対応している。また、それ以外の部分で現れている信号はノイズである。図4(b)では、図4(a)に比べて反射波31bの受信による振幅が小さいことがわかる。   When the reflection point is a gas phase, an amplitude indicating reception of an ultrasonic wave appears only once as shown in FIG. On the other hand, in FIG. 4B, an amplitude indicating reception of an ultrasonic wave appears twice. The reflected wave 31b appears first, and the reflected wave 31c appears later. Further, the signal appearing in other parts is noise. In FIG. 4B, it can be seen that the amplitude due to reception of the reflected wave 31b is smaller than in FIG.

次に、受信信号の振幅に閾値を設定し、波形振幅が閾値よりも大きければ超音波が受信された、閾値に満たなければ超音波が受信されなかったとする2値判定を行なう。閾値は、ノイズを受信信号として受信することなく、かつ反射波を受信した際の受信信号を適切に受信信号として判定できるように、適切な値を設定する。換言すれば、ノイズが閾値を超えることなく、かつ反射波の受信信号は閾値を超えるような値に設定する。2値判定の結果、反射波31cが存在しない場合は反射点が気相であると判定する。また、2値判定の結果、反射波31cが存在する場合は反射点が液相であると判定する。なお、閾値の設定に関して、反射点が液相の場合の反射波31bの振幅が図4(b)に示すように反射波31cの信号より小さい場合は、反射点が液相の場合の反射波31bの振幅よりも閾値が高い設定であっても良い。反射波31cの有無を判定することが重要であり、反射波31cの振幅が閾値を越える設定であれば充分だからである。   Next, a threshold value is set for the amplitude of the received signal, and a binary determination is made that an ultrasonic wave has been received if the waveform amplitude is greater than the threshold value, and no ultrasonic wave has been received if the waveform amplitude is less than the threshold value. The threshold value is set to an appropriate value so that the received signal when the reflected wave is received can be appropriately determined as the received signal without receiving noise as the received signal. In other words, the value is set such that the noise does not exceed the threshold and the received signal of the reflected wave exceeds the threshold. As a result of the binary determination, when the reflected wave 31c does not exist, it is determined that the reflection point is a gas phase. Moreover, when the reflected wave 31c exists as a result of binary determination, it determines with a reflective point being a liquid phase. Regarding the setting of the threshold value, when the amplitude of the reflected wave 31b when the reflection point is in the liquid phase is smaller than the signal of the reflected wave 31c as shown in FIG. 4B, the reflected wave when the reflection point is in the liquid phase. The threshold may be higher than the amplitude of 31b. This is because it is important to determine the presence or absence of the reflected wave 31c, and it is sufficient if the amplitude of the reflected wave 31c exceeds the threshold value.

このような2値判定を行なうことにより、ノイズや他の超音波に起因する微弱な信号を反射波31b、31cであると誤認することを回避することができる。   By performing such binary determination, it is possible to avoid misidentifying weak signals caused by noise and other ultrasonic waves as the reflected waves 31b and 31c.

また、上述した2値判定とは別の判定方法として、反射波31bおよび反射波31cの受信信号を比較して判定することもできる。具体的には、反射波31bの受信信号の振幅をUa、反射波31cの受信信号の振幅をU’aとし、下記の式(1)で信号の振幅比Vを求める。

Figure 2010276593
Further, as a determination method different from the above-described binary determination, the determination can be made by comparing the reception signals of the reflected wave 31b and the reflected wave 31c. Specifically, the amplitude of the received signal of the reflected wave 31b is Ua, the amplitude of the received signal of the reflected wave 31c is U'a, and the amplitude ratio V of the signal is obtained by the following equation (1).
Figure 2010276593

さらに、求めた振幅比Vについて、閾値を設定して2値判定を行い、V=0の場合は反射点が気相と判定し、V=1の場合は反射点が液相と判定する。この受信信号の振幅比を用いた判定は、上述した反射波31bおよび反射波31cの有無を判定する方法と併用することができ、複数の判定指標を用いることで計測の信頼性を高めることができる。   Further, the threshold value is set for the obtained amplitude ratio V, and binary determination is performed. When V = 0, the reflection point is determined as the gas phase, and when V = 1, the reflection point is determined as the liquid phase. The determination using the amplitude ratio of the received signal can be used in combination with the above-described method for determining the presence or absence of the reflected wave 31b and the reflected wave 31c, and using a plurality of determination indexes can increase the reliability of measurement. it can.

このように、超音波送受信手段11aが内壁4a及び反対側の内壁4bからの反射波を受信したか特定することにより、反射点が液相であるか気相であるかを判定することができる。超音波の反射率を用いないため、従来方式のように水位計測管4の内壁面に凹凸がある場合等、内壁面状態による影響が小さく、信頼性が高い判定が可能である。   In this way, it is possible to determine whether the reflection point is the liquid phase or the gas phase by specifying whether the ultrasonic wave transmitting / receiving means 11a has received the reflected wave from the inner wall 4a and the opposite inner wall 4b. . Since the ultrasonic reflectivity is not used, when the inner wall surface of the water level measuring tube 4 has irregularities as in the conventional method, the influence of the inner wall surface state is small, and determination with high reliability is possible.

上述した反射波を用いた判定は、単独の超音波送受信手段によって行なうことが可能である。また、反射波31cに変え、内壁4bを透過して水位計測管4の外側表面で反射する反射波を用いることも可能である。   The determination using the reflected wave described above can be performed by a single ultrasonic transmission / reception means. Further, instead of the reflected wave 31c, it is also possible to use a reflected wave that is transmitted through the inner wall 4b and reflected by the outer surface of the water level measuring tube 4.

超音波送受信手段12a、12b、12cについても、水位演算手段23の演算処理の結果、内壁4a、または内壁4aを透過して水位計測管4の外側表面における反射波を受信しなかった場合は気相、受信した場合は液相と判定する。   As for the ultrasonic transmission / reception means 12a, 12b, and 12c, if the reflected wave on the outer surface of the water level measuring tube 4 is not received through the inner wall 4a or the inner wall 4a as a result of the calculation processing of the water level calculation means 23, If the phase is received, it is determined as the liquid phase.

最終的には、水位演算手段23が水位計測管4の軸方向に複数取り付けられた各超音波受信手段について判定し、その結果を用いて水位を計測する。例えば、超音波送受信手段11a、12aで気相、超音波送受信手段11b、11c、12b、12cで液相であるとの判定結果が得られた場合、水位は超音波送受信手段11aと超音波送受信手段11bの間となる。したがって、超音波送受信手段を軸方向に多数取り付けるほど、精度の高い水位計測が可能となる。すなわち、超音波送受信手段の軸方向の設置間隔が水位の測定精度を表わし、さらに設置数が測定範囲を表わすことになる。また、目的に応じて水位計測管4に設定された水位線に合わせて超音波送受信手段11a、11b、11c、12a、12b、12cを設置した場合は、設定された水位レベルを検出する液位計測方法となる。さらには、水位の上方及び下方に超音波送受信手段11a、11b、12a、12bを設置した場合は、水位変動の有無を検出する液位計測方法となる。水位変動の有無の検出精度は、超音波送受信手段11a、11b、12a、12bの軸方向の設置間隔となる。   Finally, the water level calculation means 23 makes a determination on each of the ultrasonic receiving means attached in the axial direction of the water level measuring tube 4 and measures the water level using the result. For example, when the ultrasonic transmission / reception means 11a, 12a obtains a determination result that is in the gas phase and the ultrasonic transmission / reception means 11b, 11c, 12b, 12c are in the liquid phase, the water level is ultrasonic transmission / reception with the ultrasonic transmission / reception means 11a. Between the means 11b. Therefore, as the number of ultrasonic transmission / reception means is increased in the axial direction, the water level can be measured with higher accuracy. That is, the installation interval in the axial direction of the ultrasonic transmission / reception means represents the measurement accuracy of the water level, and the number of installations represents the measurement range. Moreover, when the ultrasonic transmission / reception means 11a, 11b, 11c, 12a, 12b, and 12c are installed in accordance with the water level line set in the water level measuring tube 4 according to the purpose, the liquid level for detecting the set water level. It becomes a measurement method. Furthermore, when the ultrasonic transmission / reception means 11a, 11b, 12a, and 12b are installed above and below the water level, the liquid level measurement method detects whether or not the water level has changed. The detection accuracy of the presence or absence of water level fluctuation is the installation interval in the axial direction of the ultrasonic transmission / reception means 11a, 11b, 12a, 12b.

次に、対向する超音波送受信手段からの透過波を用いた水位計測について、超音波送受信手段11a、12aを用いて説明する。図5(a)は図2をさらに拡大した図であり、超音波送受信手段11aから送信される超音波パルスの経路について図示している。また、図5(a)と図5(b)では水位が異なっている。また、いくつかの構成要素は図示を省略している。   Next, water level measurement using transmitted waves from the opposing ultrasonic transmission / reception means will be described using the ultrasonic transmission / reception means 11a and 12a. FIG. 5A is a further enlarged view of FIG. 2, and illustrates the path of an ultrasonic pulse transmitted from the ultrasonic transmission / reception means 11a. Moreover, the water level is different between FIG. 5 (a) and FIG. 5 (b). Some components are not shown.

超音波送受信手段11aは水位計測管4に超音波パルス31aを送信する。特に、超音波送受信手段11aがフェーズアレイセンサの場合は、フェーズアレイセンサの各センサの位相を制御することにより、超音波パルス31aの送信角度を制御することができる。   The ultrasonic transmission / reception means 11 a transmits an ultrasonic pulse 31 a to the water level measurement tube 4. In particular, when the ultrasonic transmission / reception means 11a is a phase array sensor, the transmission angle of the ultrasonic pulse 31a can be controlled by controlling the phase of each sensor of the phase array sensor.

図5(a)で示すように、超音波パルス31aの内壁4aにおける透過点が気相の場合、超音波パルス31aは内壁4aを透過せず超音波送受信手段12aに到達しない。なお、透過点とは超音波パルス31aが水位計測管4の内壁を透過する位置を意味する。実質的に上述した反射点と同じ位置を意味する。   As shown in FIG. 5A, when the transmission point of the ultrasonic pulse 31a on the inner wall 4a is a gas phase, the ultrasonic pulse 31a does not pass through the inner wall 4a and does not reach the ultrasonic transmission / reception means 12a. The transmission point means a position where the ultrasonic pulse 31 a passes through the inner wall of the water level measurement tube 4. It means substantially the same position as the reflection point described above.

他方、図5(b)に示すように、超音波パルス31aの内壁4aにおける透過点が液相の場合、超音波パルス31aの一部が内壁4a、内壁4bを透過して超音波送受信手段12aに到達する。超音波送受信手段11aから超音波送受信手段12aに到達した超音波パルスを透過波31dとする。なお、超音波パルスの内壁4a、内壁4bで反射による反射波は、図5(b)においては図示を省略している。   On the other hand, as shown in FIG. 5B, when the transmission point of the ultrasonic pulse 31a on the inner wall 4a is in the liquid phase, a part of the ultrasonic pulse 31a passes through the inner wall 4a and the inner wall 4b to transmit the ultrasonic transmission / reception means 12a. To reach. The ultrasonic pulse reaching the ultrasonic transmission / reception means 12a from the ultrasonic transmission / reception means 11a is defined as a transmitted wave 31d. The reflected waves of the ultrasonic pulse reflected by the inner wall 4a and the inner wall 4b are not shown in FIG. 5B.

水位演算手段23は、制御手段21が超音波送受信手段12aから受信した信号から、透過波31dの有無を特定する。具体的には、受信信号について周波数フィルタリング処理によりノイズを除去し、超音波パルスの変調状態や観測時間から透過波31dを特定する。   The water level calculation means 23 specifies the presence or absence of the transmitted wave 31d from the signal received by the control means 21 from the ultrasonic transmission / reception means 12a. Specifically, noise is removed from the received signal by frequency filtering, and the transmitted wave 31d is specified from the modulation state and observation time of the ultrasonic pulse.

上述した反射波を用いた判定のでは、超音波送受信手段11aが受信する内壁4a、内壁4bからの反射波は何れも超音波送受信手段11aが送信した超音波パルスに起因するものであった。しかし、透過波を用いた判定の場合、超音波送受信手段11aから送信された超音波パルスに起因し超音波送受信手段12aに到達する超音波は透過波31dのみである。また、水位計測管4の径は既知であるから、超音波送受信手段12aが超音波パルスを送信してから超音波送受信手段11aが透過波31dを観測するまでの時間は推定することが可能である。したがって、変調状態あるいは観測時間のみで透過波31dを特定することが可能である。さらに、変調状態と推定観測時間を併用することで透過波31dを確実に特定することが可能である。   In the above-described determination using the reflected wave, the reflected waves from the inner wall 4a and the inner wall 4b received by the ultrasonic transmission / reception means 11a are both caused by the ultrasonic pulses transmitted by the ultrasonic transmission / reception means 11a. However, in the case of the determination using the transmitted wave, only the transmitted wave 31d is the ultrasonic wave that reaches the ultrasonic transmission / reception unit 12a due to the ultrasonic pulse transmitted from the ultrasonic transmission / reception unit 11a. Moreover, since the diameter of the water level measuring tube 4 is known, it is possible to estimate the time from when the ultrasonic transmission / reception means 12a transmits the ultrasonic pulse until the ultrasonic transmission / reception means 11a observes the transmitted wave 31d. is there. Therefore, the transmitted wave 31d can be specified only by the modulation state or the observation time. Furthermore, it is possible to reliably specify the transmitted wave 31d by using the modulation state and the estimated observation time together.

次に、受信信号の振幅に2値判定の閾値を設定する。2値判定の結果、透過波31dが存在する場合は透過点を液相と判定する。他方、透過波31dが存在しない場合は透過点を気相と判定する。   Next, a threshold value for binary determination is set for the amplitude of the received signal. If the transmitted wave 31d exists as a result of the binary determination, the transmission point is determined as the liquid phase. On the other hand, if there is no transmitted wave 31d, the transmission point is determined to be the gas phase.

さらに、上述した2値判定とは別の判定方法として、透過波31dの受信信号の振幅をU’’aとし、Uaとの振幅比V’を求めて2値判定を行い、V’=0の場合は透過点が気相、逆にV’=1の場合は透過点が液相と判定することもできる。   Further, as a determination method different from the above-described binary determination, the amplitude of the received signal of the transmitted wave 31d is set as U ″ a, and the amplitude ratio V ′ with Ua is obtained to perform the binary determination, and V ′ = 0. In this case, the permeation point can be determined as the gas phase, and conversely, when V ′ = 1, the permeation point can be determined as the liquid phase.

このように、対向する超音波送受信手段からの透過波を用いた判定を、反射波を用いた判定と併用することで、より多数の判定指標を得ることが可能となり判定の信頼性を高めることが可能である。   In this way, by using the determination using the transmitted wave from the opposing ultrasonic transmission / reception means in combination with the determination using the reflected wave, it is possible to obtain a larger number of determination indexes and increase the reliability of the determination. Is possible.

上述した透過波を用いた判定は、対になった超音波送受信手段の各組について行なうことが可能である。また、1対の超音波送受信手段のそれぞれについて行うことが可能である。つまり、例えば超音波送受信手段12aからの透過波の有無に加えて、超音波送受信手段11aからの透過波の有無を特定して判定することができる。すなわち、一対の超音波送受信手段で2つの判定指標を得ることができる。   The above-described determination using transmitted waves can be performed for each pair of ultrasonic transmission / reception means paired. Further, it can be performed for each of the pair of ultrasonic transmission / reception means. That is, for example, in addition to the presence / absence of the transmitted wave from the ultrasonic transmission / reception unit 12a, the presence / absence of the transmitted wave from the ultrasonic transmission / reception unit 11a can be specified and determined. That is, two determination indexes can be obtained by a pair of ultrasonic transmission / reception means.

なお、上述した反射波を用いた判定手法と透過波を用いた判定手法を併用すると、反射点/透過点が液相か気相かは、反射波及び透過波の波形振幅による判定、上述したV及びV’による判定の計4手法による判定結果が得られる。これらの判定結果については、最優先の判定を選択して決定する、各判定に重みを付けて判定する、多数の判定結果を採択する、サポートベクターマシン等のニューラルネットワークにより分類判定する、などの手法により、気相か液相かの最終的な判定を行う。   In addition, when the determination method using the reflected wave described above and the determination method using the transmitted wave are used in combination, whether the reflection point / transmission point is the liquid phase or the gas phase is determined based on the waveform amplitude of the reflection wave and the transmission wave, as described above. A determination result by a total of four methods of determination by V and V ′ is obtained. For these determination results, select and determine the highest-priority determination, weight each determination, determine a number of determination results, classify determination using a neural network such as a support vector machine, etc. A final determination is made as to whether it is a gas phase or a liquid phase by the method.

次に、斜角透過波を用いた水位計測について、超音波送受信手段11a、12bを用いて説明する。図6は図2をさらに拡大した図であり、超音波送受信手段11aから発せられる超音波パルスについて図示している。また、図6(a)と図6(b)では水位が異なっている。また、いくつかの構成要素は図示を省略している。   Next, water level measurement using oblique transmission waves will be described using the ultrasonic transmission / reception means 11a and 12b. FIG. 6 is an enlarged view of FIG. 2 and illustrates an ultrasonic pulse emitted from the ultrasonic transmission / reception means 11a. Moreover, the water level is different between FIG. 6 (a) and FIG. 6 (b). Some components are not shown.

超音波送受信手段11aは水位計測管4に超音波パルス31aを送信する。図6(a)で示すように、超音波パルス31aの内壁4aにおける反射点が気相の場合、超音波パルス31aは内壁4aを透過せず、超音波送受信手段12bに到達しない。   The ultrasonic transmission / reception means 11 a transmits an ultrasonic pulse 31 a to the water level measurement tube 4. As shown in FIG. 6A, when the reflection point on the inner wall 4a of the ultrasonic pulse 31a is a gas phase, the ultrasonic pulse 31a does not pass through the inner wall 4a and does not reach the ultrasonic transmission / reception means 12b.

他方、図6(b)に示すように、超音波パルス31aの内壁4aにおける反射点が液相の場合、超音波パルス31aの一部が内壁4a、内壁4bを透過して液相に入射し、超音波送受信手段12bに到達する。この斜角透過波を31eとする。水位演算手段23は、制御手段21が超音波送受信手段12bから受信した信号から、斜角透過波31eを特定する。   On the other hand, as shown in FIG. 6B, when the reflection point on the inner wall 4a of the ultrasonic pulse 31a is in the liquid phase, a part of the ultrasonic pulse 31a passes through the inner wall 4a and the inner wall 4b and enters the liquid phase. The ultrasonic transmission / reception means 12b is reached. This oblique transmission wave is 31e. The water level calculation means 23 specifies the oblique transmission wave 31e from the signal received by the control means 21 from the ultrasonic transmission / reception means 12b.

具体的には、上述した超音波送受信手段11a、12aの透過波についての判定と同様であり、まず受信信号について周波数フィルタリング処理によりノイズを除去し、超音波パルスの変調状態と観測時間から斜角透過波31eを特定する。上述した透過波31dの場合と同様に、変調状態と観測時間の何れかのみで斜角透過波31eを特定可能であるが、変調状態と観測時間を併用することでより確実に斜角透過波31eを特定することが可能である。次に、斜角透過波の振幅に2値判定の閾値を設定する。2値判定の結果、斜角透過波31eが存在する場合は反射点/透過点を液相と判定する。逆に、斜角透過波31eが存在しない場合は透過点及び反射点を気相と判定する。   Specifically, it is the same as the determination on the transmitted wave of the ultrasonic transmission / reception means 11a and 12a described above. First, noise is removed from the received signal by frequency filtering processing, and the oblique angle is calculated from the modulation state and observation time of the ultrasonic pulse. The transmitted wave 31e is specified. As in the case of the transmitted wave 31d described above, the oblique transmitted wave 31e can be specified only by either the modulation state or the observation time, but the oblique transmitted wave can be more reliably used by using the modulation state and the observation time together. It is possible to specify 31e. Next, a threshold value for binary determination is set to the amplitude of the oblique transmission wave. If the oblique transmission wave 31e exists as a result of the binary determination, the reflection point / transmission point is determined as the liquid phase. On the contrary, when the oblique transmission wave 31e does not exist, the transmission point and the reflection point are determined as the gas phase.

斜角透過波を用いた判定を行なう場合、斜角透過波の内壁4a、4bにおける透過点は、上述した反射波31b、31cや透過波31dと反射点/透過点が異なる。上述した反射波や透過波を用いた判定では、反射点/透過点は各超音波送受信手段の取り付けられた高さに位置する。しかし、斜角透過波を用いた判定の場合は、反射点/透過点は判定に用いる1組の超音波送受信手段の中間の高さに位置する。したがって、内壁4a、4bの反射波や透過波の反射点/透過点における表面状態の影響が大きい場合であっても、斜角透過波は表面状態に影響されず判定をすることができる。   When the determination using the oblique transmission wave is performed, the transmission points of the oblique transmission wave on the inner walls 4a and 4b are different from the reflection waves 31b and 31c and the transmission wave 31d described above. In the determination using the above-described reflected wave or transmitted wave, the reflection point / transmission point is located at the height at which each ultrasonic transmission / reception means is attached. However, in the case of determination using oblique transmission waves, the reflection point / transmission point is located at an intermediate height between a set of ultrasonic transmission / reception means used for determination. Therefore, even if the influence of the surface state at the reflection point / transmission point of the reflected wave or transmitted wave of the inner walls 4a and 4b is large, the oblique transmitted wave can be determined without being influenced by the surface state.

また、上述した通り、斜角透過波は1組の超音波送受信手段のおよそ中間高さについて判定を行うことができる。したがって、超音波送受信手段の取り付け高さと異なる高さについても判定を行なうことが可能である。なお、上述した実施例では超音波送受信手段11a、12bを用いるものとして説明したが、例えば超音波送受信手段11a、12cを用いる等、さらに高さ位置が異なる組合せで判定を行なうことも可能である。したがって、超音波送受信手段の組合せにより、多数の高さ位置について判定を行なうことが可能である。図2に示すように3対の超音波送受信手段を備える場合は、6通りの組合せで、かつ双方向について判定が行なえるため、合計12の斜角透過波を用いた判定結果が得られる。   Further, as described above, the oblique angle transmitted wave can be determined about the intermediate height of a set of ultrasonic transmission / reception means. Therefore, it is possible to determine the height different from the mounting height of the ultrasonic transmission / reception means. In the above-described embodiments, the ultrasonic transmission / reception means 11a and 12b are used. However, for example, the ultrasonic transmission / reception means 11a and 12c are used. . Therefore, it is possible to determine a number of height positions by combining ultrasonic transmission / reception means. As shown in FIG. 2, when three pairs of ultrasonic transmission / reception means are provided, determinations can be made in six combinations and in both directions, so that determination results using a total of 12 oblique transmitted waves can be obtained.

以上述べたように、本実施例による液位計測装置によれば、水位計装管内の内壁及び反対側の内壁による超音波パルスの反射波を用い、液相か気相かを判定して水位を求めることにより、液槽壁の表面状態の変化による影響を受けることがなく、信頼性の高い水位計測が可能となる。   As described above, according to the liquid level measuring device of the present embodiment, the water level is determined by using the reflected wave of the ultrasonic pulse from the inner wall in the water level instrumentation tube and the inner wall on the opposite side to determine whether the liquid level or the gas phase. Therefore, the water level can be measured with high reliability without being affected by the change in the surface state of the liquid tank wall.

また、1対の超音波送受信手段について、対抗する超音波送受信手段からの透過波を用い、液相か気相かを判定して水位を求めることにより、液槽壁の表面状態の変化による影響を受けることがなく、信頼性の高い水位計測が可能となる。   In addition, for a pair of ultrasonic transmission / reception means, the transmitted wave from the opposing ultrasonic transmission / reception means is used to determine whether it is a liquid phase or a gas phase, and the water level is obtained. The water level can be measured with high reliability.

また、斜角透過波を用いた判定では、超音波送受信手段が取り付けられた高さと異なる高さについて判定することができ、精度の高い水位計測が可能である。   Further, in the determination using the oblique transmission wave, it is possible to determine a height different from the height at which the ultrasonic transmission / reception means is attached, and it is possible to measure the water level with high accuracy.

また、斜角透過波を用いた判定では、超音波送受信手段の組合せに応じた多数の判定結果を得ることができ、信頼性の高い水位計測が可能である。   In the determination using the oblique transmitted wave, a large number of determination results corresponding to the combination of the ultrasonic transmission / reception means can be obtained, and the water level measurement with high reliability is possible.

また、これらの反射波/透過波/斜角透過波を用いた判定は併用することが可能であり、判定の冗長化および多重化によって信頼度の高い水位計測を行なうことが可能である。さらに幾つかの超音波送受信手段が壊れた場合や感度低下が起きた場合であっても水位計測が可能である。   Further, determination using these reflected waves / transmitted waves / obliquely transmitted waves can be used in combination, and water level measurement with high reliability can be performed by redundant and multiplexed determination. Further, the water level can be measured even when some ultrasonic transmission / reception means are broken or when the sensitivity is lowered.

また、各超音波送受信手段が送信する超音波パルスを個別に変調することにより、受信した反射波/透過波/斜角透過波が何れの超音波送受信手段から送信されたのか識別でき、超音波送受信手段の近接設置による高精度の水位計測、多数の超音波送受信手段による水位計測、透過波や斜角透過波を用いた信頼性の高い水位計測が可能となる。   Further, by individually modulating the ultrasonic pulse transmitted by each ultrasonic transmission / reception means, it is possible to identify which ultrasonic transmission / reception means the received reflected wave / transmitted wave / oblique transmitted wave is transmitted from. It is possible to measure the water level with high accuracy by installing the transmitting / receiving means in close proximity, to measure the water level using a large number of ultrasonic transmitting / receiving means, and to measure the water level with high reliability using transmitted waves and oblique transmitted waves.

また、送受信手段及び変調手段、水位演算手段を中央制御室や管理区域外等の原子炉格納容器の外部に設置できるため、故障の恐れなく水位計測を行なうことが可能である。   Moreover, since the transmission / reception means, the modulation means, and the water level calculation means can be installed outside the reactor containment vessel such as outside the central control room or the management area, it is possible to measure the water level without fear of failure.

なお、本実施例においては3対の超音波送受信手段を用いるものとして説明するが、前述の通り数量や設置間隔に制限はない。また、超音波送受信手段を上下に移動する、すなわち超音波送受信手段を走査することにより、少数(例えば1個)の超音波送受信手段で水位を計測することが可能である。単独の超音波送受信手段を水位計測管4の軸方向に走査させて判定を複数回行なうことにより、単独の超音波送受信手段で水位を高精度に計測することが可能である。超音波送受信手段の走査は、例えばロボットアームを用いて水位計測管4から離して上下に移動させて再度接触させる、あるいはボールネジ等を用いて超音波走査手段を水位計測管4に接触させたまま上下に移動させることによって行なう。   In the present embodiment, description will be made assuming that three pairs of ultrasonic transmission / reception means are used. However, as described above, there are no restrictions on the quantity or the installation interval. Further, by moving the ultrasonic transmission / reception means up and down, that is, by scanning the ultrasonic transmission / reception means, it is possible to measure the water level with a small number (for example, one) of ultrasonic transmission / reception means. By making a single ultrasonic transmission / reception means scan in the axial direction of the water level measurement tube 4 and making a determination a plurality of times, the single ultrasonic transmission / reception means can measure the water level with high accuracy. The scanning of the ultrasonic transmission / reception means is performed by moving it up and down away from the water level measurement tube 4 using, for example, a robot arm, or bringing it into contact again, or while keeping the ultrasonic scanning means in contact with the water level measurement tube 4 using a ball screw or the like. This is done by moving it up and down.

また、水位計測管4に固定された超音波送受信手段と、水位計測管4を軸方向に走査可能に取り付けられた超音波送受信手段とを併用することも可能である。   Moreover, it is also possible to use together the ultrasonic transmission / reception means fixed to the water level measurement tube 4 and the ultrasonic transmission / reception means attached so that the water level measurement tube 4 can be scanned in the axial direction.

本発明の実施例2について、図面を用いて以下説明する。なお実施例1と同じ構成には同一の符号を付し、重複する説明は省略する。図7は、本実施例による液位計測装置が取り付けられた水位計測管を拡大して示している。   A second embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same structure as Example 1, and the overlapping description is abbreviate | omitted. FIG. 7 shows an enlarged view of the water level measuring tube to which the liquid level measuring device according to this embodiment is attached.

本実施例においては、水位計測管4に超音波送受信手段11a、11b、11cが取り付けられている。また、水位計測管4の内壁4bに反射板24が取り付けられている。反射板24は超音波送受信手段11a、11b、11cからの超音波パルスを反射する反射手段であり、配管内壁4bよりも超音波の反射率が高い。また、水位計測管4の下端に超音波送受信手段13が取り付けられている。この超音波送受信手段13は、制御手段21と別途に設置された第2制御手段25と接続されている。この第2制御手段25は、第2水位演算手段26と接続されている。また、制御手段21及び第2制御手段25と接続された音速演算手段27が設けられている。   In this embodiment, ultrasonic transmission / reception means 11 a, 11 b, 11 c are attached to the water level measurement tube 4. Further, a reflector 24 is attached to the inner wall 4 b of the water level measuring tube 4. The reflection plate 24 is a reflection unit that reflects ultrasonic pulses from the ultrasonic transmission / reception units 11a, 11b, and 11c, and has a higher ultrasonic reflectance than the pipe inner wall 4b. An ultrasonic transmission / reception means 13 is attached to the lower end of the water level measurement tube 4. The ultrasonic transmission / reception means 13 is connected to the control means 21 and the second control means 25 installed separately. The second control means 25 is connected to the second water level calculation means 26. Further, a sound speed calculation means 27 connected to the control means 21 and the second control means 25 is provided.

反射板24は、水位計測管4と同様、ステンレス鋼、ニッケル基合金、低合金鋼、炭素鋼等の材料で構成される。形状は、超音波パルスを正反射するべく、水位計測管4の軸方向に平行な平面を有する平板を用いる。反射板24は溶接により内壁4bに取り付けられる。また、この平板から円錐や多角錐をくりぬいた形状として用いても良い。平板から円錐をくりぬいて反射板24として用いた一例を図8に示す。図8(a)は反射板24の正面図、図8(b)は図8(a)に示したA−A線の矢視断面図である。円錐状にくりぬかれた凹部24aは、円錐の底面積を超音波送受信手段11a、11b、11cの送受信面と同程度の寸法とすることが望ましい。また、水位計測管4の内壁表面を研磨して反射手段とする、内壁を平面に加工して反射手段とする、或いは内壁から直接円錐または多角錐をくりぬいて反射手段とすることもできる。   The reflector 24 is made of a material such as stainless steel, nickel-base alloy, low alloy steel, carbon steel, etc., similar to the water level measuring tube 4. As the shape, a flat plate having a plane parallel to the axial direction of the water level measuring tube 4 is used so as to regularly reflect the ultrasonic pulse. The reflector 24 is attached to the inner wall 4b by welding. Moreover, you may use as a shape which hollowed the cone and the polygonal pyramid from this flat plate. An example in which a cone is cut out from a flat plate and used as the reflector 24 is shown in FIG. 8A is a front view of the reflecting plate 24, and FIG. 8B is a cross-sectional view taken along line AA shown in FIG. 8A. The concave portion 24a hollowed out in a conical shape preferably has a conical bottom area of the same size as the transmission / reception surfaces of the ultrasonic transmission / reception means 11a, 11b, 11c. Further, the inner wall surface of the water level measuring tube 4 can be polished to be a reflecting means, the inner wall can be processed into a flat surface to be a reflecting means, or a conical or polygonal pyramid can be directly cut from the inner wall to be a reflecting means.

本実施例では水位計測管4の軸方向に長い平板を反射板24として取り付けた用いるものとして、以下説明する。   In the present embodiment, the following description will be made assuming that a flat plate that is long in the axial direction of the water level measuring tube 4 is used as the reflecting plate 24.

超音波送受信手段13は、超音波送受信手段11a、11b、11cと同様、ニオブ酸リチウム等の耐熱性及び耐放性を有する振動子で構成され、金属や液体のカプラントを用いて水位計測管4の下端表面に取り付けられる。超音波パルスの周波数については、水位計測管4及び液相中を伝播するように数百kHz〜数百MHzの範囲で設定される。   The ultrasonic transmission / reception means 13 is composed of a heat-resistant and release-resistant vibrator such as lithium niobate, similar to the ultrasonic transmission / reception means 11a, 11b, 11c, and the water level measuring tube 4 using a metal or liquid coplant. It is attached to the lower end surface. The frequency of the ultrasonic pulse is set in the range of several hundred kHz to several hundred MHz so as to propagate through the water level measurement tube 4 and the liquid phase.

第2制御手段25は、制御手段21と同様に、超音波送受信手段13において超音波パルスを発生させる電気信号を生成する高電圧生成回路、超音波送受信手段13において受信された超音波パルスによる電気信号を検出する電圧増幅回路で構成される。   Similarly to the control means 21, the second control means 25 is a high voltage generation circuit that generates an electrical signal for generating an ultrasonic pulse in the ultrasonic transmission / reception means 13, and an electric power generated by the ultrasonic pulses received in the ultrasonic transmission / reception means 13. It consists of a voltage amplifier circuit that detects signals.

なお、第2制御手段25、第2水位演算装置26、音速演算手段27は、制御手段21等と同様に原子力発電所の中央制御室や管理区域外等の原子炉格納容器の外部に設置され、格納容器貫通部配管を介して超音波送受信手段13等と接続される。   The second control means 25, the second water level calculation device 26, and the sonic speed calculation means 27 are installed outside the reactor containment vessel outside the central control room of the nuclear power plant and outside the management area, like the control means 21 and the like. The ultrasonic transmission / reception means 13 and the like are connected through the containment vessel penetration pipe.

第2水位演算手段26は、第2制御手段25により検出される電気信号の中から、水位計測管4内部の液面5で反射する反射波を特定する。すなわち、超音波送受信手段13が水位計測管4内に送信し、液面5で反射して超音波送受信手段13が受信した反射波を特定する。   The second water level calculation means 26 identifies the reflected wave reflected by the liquid level 5 inside the water level measurement tube 4 from the electrical signal detected by the second control means 25. That is, the ultrasonic wave transmission / reception means 13 transmits the signal into the water level measurement tube 4 and the reflected wave reflected by the liquid surface 5 and received by the ultrasonic wave transmission / reception means 13 is specified.

反射波の特定は、実施例1で説明した反射波や透過波の特定と同様に、電気信号の振幅に閾値を設定して2値判定を行なう。また、検出される電気信号にノイズが多い場合は、アナログやデジタルのフィルタ回路、またはソフトウエアによる周波数フィルタリング処理によりノイズ除去や波形抽出を前処理として行い、液面からの反射波を検出する。   The specification of the reflected wave is performed by binary determination by setting a threshold value for the amplitude of the electric signal, similarly to the specification of the reflected wave and the transmitted wave described in the first embodiment. If the detected electrical signal is noisy, noise removal and waveform extraction are performed as preprocessing by frequency filtering processing using an analog or digital filter circuit or software to detect a reflected wave from the liquid surface.

音速演算手段27は、制御手段21の電圧増幅回路により検出される電気信号、すなわち超音波送受信手段11a、11b、11cが超音波を受信した際の受信信号の中から、水位計測管4の内壁4aでの反射波と、反対側の内壁4bに取り付けた反射板24からの反射波とを特定する。特定は、実施例1と同様に、電気信号の振幅に閾値を設定した2値判定により行なう。   The sound speed calculating means 27 is an electric signal detected by the voltage amplification circuit of the control means 21, that is, an inner wall of the water level measuring tube 4 from the received signals when the ultrasonic transmitting / receiving means 11a, 11b, 11c receive the ultrasonic waves. The reflected wave at 4a and the reflected wave from the reflecting plate 24 attached to the inner wall 4b on the opposite side are specified. The identification is performed by binary determination in which a threshold is set for the amplitude of the electric signal, as in the first embodiment.

さらに、音速演算手段27は、内壁4aからの反射波と反射板24からの反射波との観測時間差Δtを求め、既知である内壁4aと反射板24の間隔を用い、以下の式(2)によって超音波パルスの音速vを求める。

Figure 2010276593
Furthermore, the sound speed calculation means 27 obtains an observation time difference Δt between the reflected wave from the inner wall 4a and the reflected wave from the reflecting plate 24, and uses the known interval between the inner wall 4a and the reflecting plate 24 to obtain the following equation (2). Is used to obtain the sound velocity v of the ultrasonic pulse.
Figure 2010276593

なお、反射波は、水位計測管4の管壁や内部液相などにおいて多重反射やモード変換を起こすため、反射波の有無や、超音波パルスの音速vを、多重反射やモード変換した反射波を用いて求めることもできる。   In addition, since the reflected wave causes multiple reflection and mode conversion on the pipe wall of the water level measurement tube 4 and the internal liquid phase, the reflected wave is obtained by multiple reflection or mode conversion of the presence or absence of the reflected wave and the sound velocity v of the ultrasonic pulse. It can also be obtained using.

次に、本実施例による液位計測装置の作用について説明する。超音波送受信手段11a、11b、11cについて、水位計測管4内部からの反射波を用いて液相か気相かを判定する点については実施例1と同様である。本実施例では反射板24が取り付けられているため、内壁4bからの反射波よりも振幅の大きい高S/N比を有する受信信号が得られる。このため、水位演算手段23における反射波31cの特定が容易になる。また、反射波31cの波形振幅や、振幅比Vを用いた気相と液相の判定についても信頼性が高くなる。   Next, the operation of the liquid level measuring apparatus according to this embodiment will be described. About the ultrasonic transmission / reception means 11a, 11b, 11c, the point which determines whether it is a liquid phase or a gaseous phase using the reflected wave from the inside of the water level measurement pipe | tube 4 is the same as that of Example 1. FIG. In the present embodiment, since the reflecting plate 24 is attached, a received signal having a high S / N ratio having a larger amplitude than the reflected wave from the inner wall 4b can be obtained. For this reason, specification of the reflected wave 31c in the water level calculation means 23 becomes easy. Further, the reliability of the determination of the gas phase and the liquid phase using the waveform amplitude of the reflected wave 31c and the amplitude ratio V is also increased.

また、音速演算手段27は上述した式(2)により超音波の音速vを求める。ここで、超音波パルスの音速vと液相温度の関係が既知であることから液相温度が分かる。したがって、超音波送受信手段11a、11b、11c等の機器が仕様の温度範囲内で使用されているか確認可能である。   Moreover, the sound speed calculating means 27 calculates the sound speed v of the ultrasonic wave according to the above-described equation (2). Here, since the relationship between the sound velocity v of the ultrasonic pulse and the liquid phase temperature is known, the liquid phase temperature is known. Therefore, it is possible to confirm whether devices such as the ultrasonic transmission / reception means 11a, 11b, and 11c are used within the specified temperature range.

また、超音波送受信手段13が送信した超音波パルスの反射波は超音波送受信手段13により受信される。この液面での反射波は、第2制御手段25により検出され、超音波パルスの音速vの値と一緒に第2水位演算手段26へ伝送される。超音波送受信手段13が超音波パルスを送信してから液面での反射波を受信するまでの時間差から、超音波の液相中の伝播時間tが求められる。第2水位演算手段26は下記の式(3)を用いて、水位lを算出する。

Figure 2010276593
The reflected wave of the ultrasonic pulse transmitted by the ultrasonic transmission / reception means 13 is received by the ultrasonic transmission / reception means 13. The reflected wave at the liquid level is detected by the second control means 25 and transmitted to the second water level calculation means 26 together with the value of the sound velocity v of the ultrasonic pulse. From the time difference to the ultrasonic transmitting and receiving means 13 receives the reflected wave at the liquid surface from the transmission of the ultrasonic pulse, the propagation time t l in an ultrasonic liquid phase is obtained. The second water level calculation means 26 calculates the water level l using the following equation (3).
Figure 2010276593

このように、水位計測管4の横方向からの水位計測の際に音速を求め、水位計測管4下端に設けた超音波受信手段13の受信信号と音速vを用いることにより、水位を連続的に測定することが可能である。   In this way, the sound speed is obtained when the water level is measured from the lateral direction of the water level measuring tube 4, and the water level is continuously measured by using the received signal and the sound speed v of the ultrasonic wave receiving means 13 provided at the lower end of the water level measuring tube 4. Can be measured.

以上述べたように、本実施例の液位計測装置によれば、内壁4bに反射率の高い反射板24を取り付けることにより、波形振幅が大きい高S/Nの反射波が得られるため、反射波を用いた液相/気相の判定が容易になり、計測の信頼性を高めることが可能である。   As described above, according to the liquid level measuring device of the present embodiment, since the reflection plate 24 having a high reflectance is attached to the inner wall 4b, a reflected wave with a high S / N having a large waveform amplitude can be obtained. The determination of the liquid phase / gas phase using waves becomes easy, and the reliability of measurement can be improved.

また、内壁4aからの反射波と反射板24からの反射波を用いて液相温度を求めることが可能である。液相温度を求めることにより、超音波送受信手段11a、11b、11cが仕様温度範囲内で超音波送受信手段が使用されていることが確認でき、信頼性の高い水位計測が可能となる。   Further, it is possible to obtain the liquidus temperature using the reflected wave from the inner wall 4a and the reflected wave from the reflecting plate 24. By obtaining the liquid phase temperature, it can be confirmed that the ultrasonic transmission / reception means 11a, 11b, 11c are used within the specified temperature range, and the water level can be measured with high reliability.

また、液相下端から液相中を伝播して液面で反射する超音波パルスの反射波を用いて連続的な水位測定を行なうことができる。また、液槽壁の表面状態の変化による影響を受けることがなく、信頼性の高い水位計測が可能となる。   Moreover, continuous water level measurement can be performed using the reflected wave of the ultrasonic pulse that propagates through the liquid phase from the lower end of the liquid phase and reflects off the liquid surface. In addition, the water level can be measured with high reliability without being affected by the change in the surface state of the liquid tank wall.

本発明の実施例3について、図面を用いて以下説明する。なお実施例1と同じ構成には同一の符号を付し、重複する説明は省略する。図9は、本実施例による液位計測装置が取り付けられた水位計測管を拡大して示している。本実施例においては、変調手段22に代えて遅延手段28が設けられている。遅延手段18は制御手段21等と同様、中央制御室や管理区域外等の原子炉格納容器の外部に設置される。   A third embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same structure as Example 1, and the overlapping description is abbreviate | omitted. FIG. 9 shows an enlarged view of the water level measuring tube to which the liquid level measuring device according to this embodiment is attached. In this embodiment, a delay means 28 is provided instead of the modulation means 22. The delay means 18 is installed outside the reactor containment vessel, such as outside the central control room or the management area, like the control means 21 and the like.

遅延手段28は、制御手段21の高電圧生成回路に接続され、制御手段21から出力された電気信号を設定時間だけ時間遅延して各超音波送受信手段へ入力する遅延回路である。   The delay means 28 is connected to the high voltage generation circuit of the control means 21 and is a delay circuit that delays the electrical signal output from the control means 21 by a set time and inputs it to each ultrasonic transmission / reception means.

遅延手段28は、制御手段21から各超音波送受信手段へ送信される指示信号について、対向設置される一対の超音波送受信手段を単位として時間間隔をあけて超音波パルスが送信されるように、遅延時間を設定して指示信号を伝送する。例えば、図9に示した例では、まず超音波送受信手段11a、12aから超音波パルスを送信させ、次に時間間隔をあけて超音波送受信手段11b、12bから超音波パルスを送信させ、次に時間間隔をあけて超音波送受信手段11c、12cから超音波パルスを送信させ・・・となるように遅延時間を設定する。   The delay means 28 transmits an ultrasonic pulse at intervals with respect to the instruction signal transmitted from the control means 21 to each ultrasonic transmission / reception means with a pair of opposed ultrasonic transmission / reception means as a unit. An instruction signal is transmitted by setting a delay time. For example, in the example shown in FIG. 9, first, ultrasonic pulses are transmitted from the ultrasonic transmission / reception means 11a, 12a, then ultrasonic pulses are transmitted from the ultrasonic transmission / reception means 11b, 12b with a time interval, and then The delay time is set so that ultrasonic pulses are transmitted from the ultrasonic transmission / reception means 11c, 12c with a time interval.

このように超音波パルスを送信するタイミングを制御することにより、例えば超音波送受信手段11a、12aを用いる場合はその他の超音波送受信手段から超音波パルスが送信されないため、超音波送受信手段毎に超音波パルスを変調しなくとも、各超音波パルスが何れの超音波送受信手段から送信されたものか誤ることがなく、信頼性の高い水位判定が可能となる。なお、この場合、超音波送受信手段11a、12a以外の超音波送受信手段でも超音波パルスの透過波、斜角透過波が受信されるため、変調手段22を用いる場合と同様に、反射波、透過波、斜角透過波を併用して判定を行うことができる。   By controlling the timing of transmitting ultrasonic pulses in this way, for example, when using the ultrasonic transmission / reception means 11a, 12a, ultrasonic pulses are not transmitted from other ultrasonic transmission / reception means. Even if the sound wave pulse is not modulated, it is possible to determine the water level with high reliability without erroneously determining from which ultrasonic wave transmitting / receiving means each ultrasonic pulse is transmitted. In this case, since the ultrasonic wave transmission / reception means other than the ultrasonic transmission / reception means 11a and 12a receive the transmitted wave and the oblique transmission wave of the ultrasonic pulse, the reflected wave and the transmission wave are transmitted as in the case of using the modulation means 22. It is possible to make a determination using a wave and an oblique transmission wave.

上述したように、各水位について液相か気相かについて複数の判定結果が得られる。これらの判定結果について、最優先の判定を選択して決定する、各判定に重みを付けて判定する、多数の判定結果を採択する、サポートベクターマシン等のニューラルネットワークにより分類判定する、などによって液相か気相かを判定することにより、信頼性の高い水位判定が可能となる。   As described above, a plurality of determination results can be obtained for each water level as to whether it is a liquid phase or a gas phase. These determination results are determined by selecting the highest priority determination, determining each weighted determination, adopting a large number of determination results, determining classification using a neural network such as a support vector machine, etc. By determining whether the phase is the gas phase or not, the water level can be determined with high reliability.

以上述べたように、本実施例の液位計測装置によれば、対向設置される一対の超音波送受信手段を単位として時間間隔をあけて超音波パルスが送信されるように遅延時間を設定することにより、その他の超音波送受信手段が送信する超音波パルスを誤認して判定を誤るようなことなく、超音波パルスを個別に変調せずに信頼性の高い水位判定が可能である。   As described above, according to the liquid level measurement device of the present embodiment, the delay time is set so that the ultrasonic pulses are transmitted with a time interval as a unit of the pair of ultrasonic transmission / reception means installed opposite to each other. Thus, it is possible to perform highly reliable water level determination without individually modulating ultrasonic pulses without erroneously determining the ultrasonic pulses transmitted by other ultrasonic transmission / reception means.

また、反射波、透過波、斜角透過波による判定を併用することが可能であり、信頼性の高い水位計測が可能である。   In addition, it is possible to use judgment by reflected wave, transmitted wave, and oblique angle transmitted wave in combination, and it is possible to measure the water level with high reliability.

また、送受信手段及び遅延手段、さらに水位演算手段を中央制御室や管理区域外等の原子炉格納容器の外部に設置して水位計測管と隔てることにより、高温及び高放射線環境において信頼性の高い水位計測が可能となる。   In addition, it is highly reliable in high temperature and high radiation environments by installing transmission / reception means, delay means, and water level calculation means outside the reactor containment vessel outside the central control room and control area, etc. Water level measurement is possible.

本発明の実施例4について、図面を用いて以下説明する。なお実施例1と同じ構成には同一の符号を付し、重複する説明は省略する。図10は、本実施例による液位計測装置が取り付けられた水位計測管4を、軸方向と垂直な断面を拡大して示した部分拡大横断面図である。本実施例においては、水位計測管4に超音波送受信手段11a、12a、14a、15aが取り付けられており、それぞれ制御手段21と電気的に接続されている。また、その他の構成は図示を省略している。   A fourth embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same structure as Example 1, and the overlapping description is abbreviate | omitted. FIG. 10 is a partial enlarged cross-sectional view showing the water level measuring tube 4 to which the liquid level measuring device according to the present embodiment is attached in an enlarged cross section perpendicular to the axial direction. In the present embodiment, ultrasonic transmission / reception means 11 a, 12 a, 14 a, 15 a are attached to the water level measurement tube 4 and are electrically connected to the control means 21, respectively. Other configurations are not shown.

本実施例においては、超音波送受信手段を水位計測管4の周方向に複数取り付けている。反射波や透過波を用いた気相と液相の判定については、実施例1にて説明した方法と同様である。   In this embodiment, a plurality of ultrasonic transmission / reception means are attached in the circumferential direction of the water level measuring tube 4. The determination of the gas phase and the liquid phase using the reflected wave or the transmitted wave is the same as the method described in the first embodiment.

本実施例の液位計測装置によれば、水位計測管の周方向に超音波送受信手段を複数設置することにより、同一の水位について、液相か気相かの判定結果が複数得られるため、液槽壁の表面状態の変化による影響を受けることがなく、信頼性の高い水位計測が可能となる。   According to the liquid level measurement device of the present embodiment, by installing a plurality of ultrasonic transmission / reception means in the circumferential direction of the water level measurement tube, for the same water level, a plurality of determination results as to whether the liquid phase or the gas phase is obtained, The water level can be measured with high reliability without being affected by changes in the surface state of the liquid tank wall.

また、本実施例では4つの超音波送受信手段11a、12a、14a、15aを取り付けるものとしたが、例えば超音波送受信手段14aが取り付けられている側の水位計測管4の内壁に実施例2で説明した反射手段24を設け、超音波送受信手段11a、12a、14aのみ取り付けた構成とすることも可能である。当然ながら、周方向に取り付ける超音波送受信手段に数量の制限はない。   In the present embodiment, four ultrasonic transmission / reception means 11a, 12a, 14a, 15a are attached. For example, in the second embodiment, the inner wall of the water level measurement tube 4 on the side where the ultrasonic transmission / reception means 14a is attached is used. It is also possible to provide the reflection means 24 described above and attach only the ultrasonic transmission / reception means 11a, 12a, 14a. Of course, there is no limit on the number of ultrasonic transmission / reception means attached in the circumferential direction.

以上本発明の実施例について図を参照して説明してきたが、上記複数の実施例に説明した特徴を任意に組み合わせたところの構成であってもよい。例えば、実施例3では変調手段22に代えて遅延手段28を用いるものとして説明したが、併用してもよい。また、超音波送受信手段は1対になっていなくとも反射波による計測は可能であるため、一部あるいは全ての超音波送受信手段が対になっていなくとも良い。また、各実施例においては原子炉圧力容器の水位計測を例に説明したが、本発明による液位計測装置の適用対象は原子炉圧力容器に限定されない。   The embodiments of the present invention have been described above with reference to the drawings. However, a configuration in which the features described in the plurality of embodiments are arbitrarily combined may be used. For example, in the third embodiment, the delay unit 28 is used in place of the modulation unit 22, but may be used in combination. Moreover, since the measurement by the reflected wave is possible even if the ultrasonic transmission / reception means is not a pair, some or all of the ultrasonic transmission / reception means may not be a pair. Moreover, in each Example, although the water level measurement of the reactor pressure vessel was demonstrated to the example, the application object of the liquid level measuring device by this invention is not limited to a reactor pressure vessel.

1 原子炉圧力容器
2 上部配管
3 下部配管
4 水位計測管
4a、4b 内壁
5 液面
11、11a、11b、11c、12、12a、12b、12c、13,14a、15a 超音波送受信手段
21 制御手段
22 変調手段
23 水位演算手段
24 反射板
24a 凹部
25 第2制御手段
26 第2水位演算手段
27 音速演算手段
28 遅延手段
31a 超音波
31b、31c 反射波
31d 透過波
31e 斜角透過波
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 Upper pipe 3 Lower pipe 4 Water level measuring pipe 4a, 4b Inner wall 5 Liquid surface 11, 11a, 11b, 11c, 12, 12a, 12b, 12c, 13, 14a, 15a Ultrasonic transmission / reception means 21 Control means 22 Modulating means 23 Water level calculating means 24 Reflector 24a Recess 25 Second control means 26 Second water level calculating means 27 Sonic speed calculating means 28 Delay means 31a Ultrasound 31b, 31c Reflected wave 31d Transmitted wave 31e Obliquely transmitted wave

Claims (15)

配管の外壁に取り付けられ、超音波の送受信を行なう超音波送受信手段と、
前記超音波送受信手段に、前記配管内へ超音波を送信させる指示信号を送信する制御手段と、
前記超音波送受信手段の超音波受信信号を受信する受信手段と、
前記受信手段が受信した前記超音波受信信号に基づき、前記超音波送受信手段が受信した超音波に前記超音波送受信手段が対向する側の前記配管内壁で反射した反射波が含まれるかを判定する演算手段と、を備えることを特徴とする液位計測装置。
An ultrasonic transmission / reception means attached to the outer wall of the pipe for transmitting / receiving ultrasonic waves;
Control means for transmitting an instruction signal for transmitting ultrasonic waves into the pipe to the ultrasonic transmission / reception means;
Receiving means for receiving an ultrasonic reception signal of the ultrasonic transmitting / receiving means;
Based on the ultrasonic reception signal received by the reception means, it is determined whether the ultrasonic wave received by the ultrasonic transmission / reception means includes a reflected wave reflected by the pipe inner wall on the side facing the ultrasonic transmission / reception means. And a liquid level measuring device.
前記超音波送受信手段を前記配管の軸方向に走査させる走査手段を備えることを特徴とする請求項1記載の液位計測装置。   The liquid level measuring device according to claim 1, further comprising a scanning unit that scans the ultrasonic transmission / reception unit in an axial direction of the pipe. 前記超音波送受信手段と対向する側の前記配管内壁に取り付けられた反射手段を備えることを特徴とする請求項1に記載の液位計測装置。   2. The liquid level measuring device according to claim 1, further comprising reflecting means attached to the inner wall of the pipe on the side facing the ultrasonic transmitting / receiving means. 配管の外壁に取り付けられ、超音波の送受信を行なう超音波送受信手段と、
前記超音波送受信手段と対向する側の前記配管外壁に取り付けられた第2超音波送受信手段と、
前記超音波送受信手段に、前記配管内へ超音波を送信させる指示信号を送信する制御手段と、
前記第2超音波送受信手段の超音波受信信号を受信する受信手段と、
前記受信手段が受信した前記超音波送受信信号に基づき、前記第2超音波送受信手段が受信した超音波に前記超音波送信手段から送信され前記配管を透過した透過波が含まれるかを判定する演算手段と、を備えることを特徴とする液位計測装置。
An ultrasonic transmission / reception means attached to the outer wall of the pipe for transmitting / receiving ultrasonic waves;
Second ultrasonic transmission / reception means attached to the pipe outer wall on the side facing the ultrasonic transmission / reception means;
Control means for transmitting an instruction signal for transmitting ultrasonic waves into the pipe to the ultrasonic transmission / reception means;
Receiving means for receiving an ultrasonic reception signal of the second ultrasonic transmitting / receiving means;
An operation for determining whether the ultrasonic wave received by the second ultrasonic transmission / reception unit includes a transmitted wave transmitted from the ultrasonic transmission unit and transmitted through the pipe based on the ultrasonic transmission / reception signal received by the reception unit. And a liquid level measuring device.
前記超音波送受信手段と前記第2超音波送受信手段は、前記配管の軸方向に異なる高さに配置されており、前記透過波は前記配管の軸方向に対して斜めに入射する斜角透過波であることを特徴とする請求項4記載の液位計測装置。   The ultrasonic transmission / reception means and the second ultrasonic transmission / reception means are arranged at different heights in the axial direction of the pipe, and the transmitted wave is obliquely transmitted obliquely incident on the axial direction of the pipe. The liquid level measuring device according to claim 4, wherein 前記超音波受信手段は前記配管の軸方向に複数設けられたことを特徴とする請求項1乃至請求項5の何れか1項に記載の液位計測装置。   6. The liquid level measuring device according to claim 1, wherein a plurality of the ultrasonic wave receiving means are provided in the axial direction of the pipe. 前記第2超音波受信手段は前記配管の軸方向に複数設けられたことを特徴とする請求項4乃至請求項6の何れか1項記載の液位計測装置。   The liquid level measuring device according to any one of claims 4 to 6, wherein a plurality of the second ultrasonic wave receiving means are provided in the axial direction of the pipe. 前記指示信号を変調する変調手段を備えることを特徴とする請求項1乃至請求項7の何れか1項記載の液位計測装置。   The liquid level measuring device according to claim 1, further comprising a modulating unit that modulates the instruction signal. 前記指示信号の送信に遅延時間を設定する遅延手段を備えることを特徴とする請求項1乃至請求項8の何れか1項記載の液位計測装置。   9. The liquid level measuring device according to claim 1, further comprising delay means for setting a delay time for transmission of the instruction signal. 前記超音波受信手段または前記第2超音波受信手段を前記配管の周方向に複数取り付けたことを特徴とする請求項1乃至請求項9記載の液位計測装置。   10. The liquid level measuring device according to claim 1, wherein a plurality of the ultrasonic receiving means or the second ultrasonic receiving means are attached in a circumferential direction of the pipe. 前記受信信号が受信した受信信号に基づき、前記配管中の音速を求める音速演算手段と、
前記配管の下端に取り付けられた第3超音波送受信手段と、
前記第3超音波手段に前記配管内へ超音波を送信させる指示信号を送信する第2制御手段と、
前記第3超音波送受信手段の超音波受信信号を受信する第2受信手段と、
前記第3超音波送受信手段が超音波を送信してから超音波を受信するまでの時間差と前記音速演算手段が求めた音速を用いて液位を計算する液位演算手段と、を備えることを特徴とする請求項1乃至請求項9の何れか1項記載の液位計測装置。
Based on the received signal received by the received signal, a sound speed calculating means for obtaining a sound speed in the pipe,
A third ultrasonic transmitting / receiving means attached to the lower end of the pipe;
Second control means for transmitting an instruction signal for causing the third ultrasonic means to transmit ultrasonic waves into the pipe;
Second receiving means for receiving an ultrasonic reception signal of the third ultrasonic transmitting / receiving means;
A liquid level calculation means for calculating a liquid level using a time difference from when the third ultrasonic transmission / reception means transmits an ultrasonic wave until receiving the ultrasonic wave and a sound speed obtained by the sound speed calculation means; The liquid level measuring device according to claim 1, wherein the liquid level measuring device is a liquid level measuring device.
配管の外壁に取り付けられ、超音波の送受信を行なう第1超音波送受信手段と、
前記配管を挟んで前記第1超音波送受信手段と対向する位置に取り付けられた第2超音波送受信手段と、
前記第1超音波送受信手段と前記配管軸方向に異なる位置に取り付けられた第3超音波送受信手段と、
前記配管を挟んで前記第3超音波送受信手段と対向する位置に取り付けられた第4超音波送受信手段と、
前記第1超音波送受信手段、前記第2超音波送受信手段、前記第3超音波送受信手段、前記第4超音波送受信手段の各々に前記配管内へ超音波を送信させる指示信号を送信する制御手段と、
前記第1超音波送受信手段、前記第2超音波送受信手段、前記第3超音波送受信手段、前記第4超音波送受信手段の各々の超音波受信信号を受信する受信手段と、
前記超音波受信信号に基づき、前記第1超音波送受信手段、前記第2超音波送受信手段、前記第3超音波送受信手段、前記第4超音波送受信手段の各々について、前記配管の対向する側の内壁からの反射波の有無、対向する位置の超音波送受信手段からの透過波の有無、前記配管の対向する側の外壁に取り付けられ前記配管軸方向に位置が異なる超音波受信手段からの透過波の有無を判定する演算手段と、を備えることを特徴とする液位計測装置。
A first ultrasonic transmission / reception means attached to the outer wall of the pipe for transmitting / receiving ultrasonic waves;
A second ultrasonic transmission / reception means attached at a position facing the first ultrasonic transmission / reception means across the pipe;
Third ultrasonic transmission / reception means attached to the first ultrasonic transmission / reception means and different positions in the pipe axis direction;
A fourth ultrasonic transmission / reception means attached to a position facing the third ultrasonic transmission / reception means across the pipe;
Control means for transmitting an instruction signal that causes each of the first ultrasonic transmission / reception means, the second ultrasonic transmission / reception means, the third ultrasonic transmission / reception means, and the fourth ultrasonic transmission / reception means to transmit ultrasonic waves into the pipe. When,
Receiving means for receiving ultrasonic reception signals of each of the first ultrasonic transmission / reception means, the second ultrasonic transmission / reception means, the third ultrasonic transmission / reception means, and the fourth ultrasonic transmission / reception means;
Based on the ultrasonic reception signal, each of the first ultrasonic transmission / reception means, the second ultrasonic transmission / reception means, the third ultrasonic transmission / reception means, and the fourth ultrasonic transmission / reception means is arranged on the opposite side of the pipe. Presence / absence of reflected wave from inner wall, presence / absence of transmitted wave from ultrasonic transmitting / receiving means at opposite position, transmitted wave from ultrasonic receiving means attached to outer wall on opposite side of pipe at different positions in pipe axis direction A liquid level measuring device comprising: an arithmetic means for determining the presence or absence of the liquid level.
前記配管内の水位の測定範囲または測定精度の少なくとも一方に基づいて前記超音波受信手段及び前記第2超音波受信手段の設置個数が決定されることを特徴とする請求項6乃至請求項7の何れか1項記載の液位計測装置。   The number of installed ultrasonic receiving means and the second ultrasonic receiving means is determined based on at least one of a measurement range or measurement accuracy of a water level in the pipe. The liquid level measuring device according to any one of the preceding claims. 前記配管内に設定された水位線から前記超音波受信手段及び前記第2超音波受信手段の設置個数が決定されることを特徴とする請求項6乃至請求項7の何れか1項記載の液位計測装置。   The liquid according to any one of claims 6 to 7, wherein the number of the ultrasonic receiving means and the second ultrasonic receiving means is determined from a water level line set in the pipe. Position measuring device. 前記配管内の水位から前記超音波受信手段及び前記第2超音波受信手段をそれぞれ二つ設置することを特徴とする請求項6乃至請求項7の何れか1項記載の液位計測装置。   The liquid level measuring device according to any one of claims 6 to 7, wherein two each of the ultrasonic wave receiving means and the second ultrasonic wave receiving means are installed from the water level in the pipe.
JP2009195818A 2009-01-07 2009-08-26 Liquid level measuring device Active JP5606703B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009195818A JP5606703B2 (en) 2009-04-27 2009-08-26 Liquid level measuring device
FI20105002A FI123194B (en) 2009-01-07 2010-01-04 Reactor water level measurement system and reactor water level measurement method
FI20125852A FI125173B (en) 2009-01-07 2012-08-17 Liquid level measurement system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009108351 2009-04-27
JP2009108351 2009-04-27
JP2009195818A JP5606703B2 (en) 2009-04-27 2009-08-26 Liquid level measuring device

Publications (2)

Publication Number Publication Date
JP2010276593A true JP2010276593A (en) 2010-12-09
JP5606703B2 JP5606703B2 (en) 2014-10-15

Family

ID=43423673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195818A Active JP5606703B2 (en) 2009-01-07 2009-08-26 Liquid level measuring device

Country Status (2)

Country Link
JP (1) JP5606703B2 (en)
FI (1) FI125173B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094737A1 (en) 2011-12-22 2013-06-27 株式会社東芝 Atomic reactor state monitoring device and monitoring method thereof
JP2013217784A (en) * 2012-04-10 2013-10-24 Hitachi-Ge Nuclear Energy Ltd Water level guage of differential pressure type for atomic power plant
US9212943B2 (en) 2012-01-05 2015-12-15 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic reactor water level measuring device and evaluation method
JP2016050942A (en) * 2014-08-29 2016-04-11 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Ultrasonic liquid level sensing systems
JP2017532568A (en) * 2014-10-30 2017-11-02 コリア、ハイドロ、アンド、ニュークリア、パワー、カンパニー、リミテッドKorea Hydro & Nuclear Power Co.,Ltd. Apparatus and method for monitoring water level in piping
JP2018511787A (en) * 2015-02-17 2018-04-26 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Model-based method and apparatus for classifying interfering factors in a sample
KR101877766B1 (en) * 2016-07-20 2018-07-13 (주)엠에스플로우 An Ultrasound Apparatus for Measuring an Interface Surface of an Active Carbon
JP2020148500A (en) * 2019-03-11 2020-09-17 東芝キヤリア株式会社 Liquid amount detector
US20220090955A1 (en) * 2019-01-24 2022-03-24 Dehon Sas System and method for measuring the filling level of a fluid container by means of acoustic waves
WO2022071706A1 (en) * 2020-09-29 2022-04-07 한국수력원자력 주식회사 Water level measurement system
WO2022071705A1 (en) * 2020-09-29 2022-04-07 한국수력원자력 주식회사 Water level measurement system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048280B2 (en) * 2013-03-29 2016-12-21 株式会社Ihi Water level measuring device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109828U (en) * 1979-01-30 1980-08-01
JPS56125625A (en) * 1980-03-07 1981-10-02 Toshiba Corp Ultrasonic liquid level gage
JPS56130616A (en) * 1980-03-19 1981-10-13 Toshiba Corp Ultrasonic liquid level indicator
JPS577519A (en) * 1980-06-17 1982-01-14 Toshiba Corp Liquid level gauge
JPS5713320A (en) * 1980-06-27 1982-01-23 Toshiba Corp Liquid level gauge
JPS5842793U (en) * 1981-09-18 1983-03-22 株式会社日立製作所 Reactor pressure vessel water level detection device
JPS60152934U (en) * 1984-03-22 1985-10-11 ティーディーケイ株式会社 Piezoelectric liquid sensor
JPS60214226A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Ultrasonic level gauge
JPS61274223A (en) * 1985-05-30 1986-12-04 Hitachi Constr Mach Co Ltd Level detection of liquid reservoir by supersonic wave
JPH0360030U (en) * 1989-10-18 1991-06-13
JPH05172610A (en) * 1991-12-25 1993-07-09 Fuji Electric Co Ltd Oil level detection device within closed container according to ultrasonic wave
JPH0798240A (en) * 1993-09-28 1995-04-11 Toshiba Corp Ultrasonic water level measurement method and device
JPH11218436A (en) * 1998-01-30 1999-08-10 Toshiba Corp Ultrasonic liquid level measuring device
JP2001194210A (en) * 2000-01-14 2001-07-19 Tokyo Electric Power Co Inc:The Ultrasonic level measuring apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109828U (en) * 1979-01-30 1980-08-01
JPS56125625A (en) * 1980-03-07 1981-10-02 Toshiba Corp Ultrasonic liquid level gage
JPS56130616A (en) * 1980-03-19 1981-10-13 Toshiba Corp Ultrasonic liquid level indicator
JPS577519A (en) * 1980-06-17 1982-01-14 Toshiba Corp Liquid level gauge
JPS5713320A (en) * 1980-06-27 1982-01-23 Toshiba Corp Liquid level gauge
JPS5842793U (en) * 1981-09-18 1983-03-22 株式会社日立製作所 Reactor pressure vessel water level detection device
JPS60152934U (en) * 1984-03-22 1985-10-11 ティーディーケイ株式会社 Piezoelectric liquid sensor
JPS60214226A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Ultrasonic level gauge
JPS61274223A (en) * 1985-05-30 1986-12-04 Hitachi Constr Mach Co Ltd Level detection of liquid reservoir by supersonic wave
JPH0360030U (en) * 1989-10-18 1991-06-13
JPH05172610A (en) * 1991-12-25 1993-07-09 Fuji Electric Co Ltd Oil level detection device within closed container according to ultrasonic wave
JPH0798240A (en) * 1993-09-28 1995-04-11 Toshiba Corp Ultrasonic water level measurement method and device
JPH11218436A (en) * 1998-01-30 1999-08-10 Toshiba Corp Ultrasonic liquid level measuring device
JP2001194210A (en) * 2000-01-14 2001-07-19 Tokyo Electric Power Co Inc:The Ultrasonic level measuring apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094737A1 (en) 2011-12-22 2013-06-27 株式会社東芝 Atomic reactor state monitoring device and monitoring method thereof
US9212943B2 (en) 2012-01-05 2015-12-15 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic reactor water level measuring device and evaluation method
JP2013217784A (en) * 2012-04-10 2013-10-24 Hitachi-Ge Nuclear Energy Ltd Water level guage of differential pressure type for atomic power plant
US10151618B2 (en) 2014-01-24 2018-12-11 Versum Materials Us, Llc Ultrasonic liquid level sensing systems
JP2016050942A (en) * 2014-08-29 2016-04-11 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Ultrasonic liquid level sensing systems
JP2017532568A (en) * 2014-10-30 2017-11-02 コリア、ハイドロ、アンド、ニュークリア、パワー、カンパニー、リミテッドKorea Hydro & Nuclear Power Co.,Ltd. Apparatus and method for monitoring water level in piping
US10416022B2 (en) 2014-10-30 2019-09-17 Korea Hydro & Nuclear Power Co., Ltd Apparatus and method for monitoring water level within pipe
US11009467B2 (en) 2015-02-17 2021-05-18 Siemens Healthcare Diagnostics Inc. Model-based methods and apparatus for classifying an interferent in specimens
JP2018511787A (en) * 2015-02-17 2018-04-26 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Model-based method and apparatus for classifying interfering factors in a sample
KR101877766B1 (en) * 2016-07-20 2018-07-13 (주)엠에스플로우 An Ultrasound Apparatus for Measuring an Interface Surface of an Active Carbon
US20220090955A1 (en) * 2019-01-24 2022-03-24 Dehon Sas System and method for measuring the filling level of a fluid container by means of acoustic waves
JP2020148500A (en) * 2019-03-11 2020-09-17 東芝キヤリア株式会社 Liquid amount detector
JP7224974B2 (en) 2019-03-11 2023-02-20 東芝キヤリア株式会社 Liquid level detector
WO2022071706A1 (en) * 2020-09-29 2022-04-07 한국수력원자력 주식회사 Water level measurement system
WO2022071705A1 (en) * 2020-09-29 2022-04-07 한국수력원자력 주식회사 Water level measurement system

Also Published As

Publication number Publication date
FI20125852L (en) 2012-08-17
FI125173B (en) 2015-06-30
JP5606703B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5606703B2 (en) Liquid level measuring device
US8701493B2 (en) Vibration monitoring apparatus and vibration monitoring method
US20090031813A1 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
US9099206B2 (en) Nuclear reactor vibration monitoring device and monitoring method thereof
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
US10578480B2 (en) Multi-probe system for measuring height of fluid in pipes with steady-state and turbulent flow conditions
JP2011133241A5 (en)
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP5854141B2 (en) Ultrasonic measurement method and ultrasonic measurement apparatus
JP2012068209A (en) Material diagnostic method and apparatus using ultrasonic wave
KR101110070B1 (en) Monitoring system of pipeline inner wall using sensor networks
JP2008070388A (en) Liquid level detection method by means of sound and its device
JP6383645B2 (en) Ultrasonic flaw detection method
JP2010185884A (en) Device and method for monitoring vibration-deterioration
JP2013140119A (en) Method of monitoring reactor bottom section, apparatus for monitoring reactor bottom section, and nuclear reactor
JP6995028B2 (en) Ultrasonic flaw detection method
JP3968443B2 (en) Health diagnosis method and system for equipment subjected to thermal shock
JP5868653B2 (en) Interface inspection method and interface inspection apparatus for composite structure
JP2011022160A (en) Oscillation-deterioration monitoring device and method
JP5847010B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
KR101403216B1 (en) Apparatus and method of detecting surface defect of wire rod using ultrasonic wave
US9082518B2 (en) Nuclear reactor vibration monitoring apparatus and method of monitoring nuclear reactor vibration
JP7224961B2 (en) Ultrasonic Flaw Detection Method for Thermal Sleeve of Reactor Pressure Vessel
JP2010190794A (en) Thinning detection method
KR20120067573A (en) Double rotation waveguide ultrasonic sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R151 Written notification of patent or utility model registration

Ref document number: 5606703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151