JPS61274223A - Level detection of liquid reservoir by supersonic wave - Google Patents

Level detection of liquid reservoir by supersonic wave

Info

Publication number
JPS61274223A
JPS61274223A JP60115327A JP11532785A JPS61274223A JP S61274223 A JPS61274223 A JP S61274223A JP 60115327 A JP60115327 A JP 60115327A JP 11532785 A JP11532785 A JP 11532785A JP S61274223 A JPS61274223 A JP S61274223A
Authority
JP
Japan
Prior art keywords
liquid
tank
liquid level
wave
tank wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60115327A
Other languages
Japanese (ja)
Inventor
Takeshi Miyajima
宮島 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60115327A priority Critical patent/JPS61274223A/en
Publication of JPS61274223A publication Critical patent/JPS61274223A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a level height of liquid unaffected by dimensions and construction of a liquid reservoir, condition in the reservoir, classification and characteristic of the liquid, by introducing supersonic wave from outside surface of the reservoir wall and detecting the liquid level inside the reservoir by comparing damping rates of the reflected wave. CONSTITUTION:Regarding a sound pressure reflecting rate of a supersonic wave, when the supersonic wave (Longitudinal wave) is projected vertically onto the border surface 5 of reservoir wall S and air A, the sound pressure reflecting rate RA reaches 99.9981%. This represents approximate total reflection on this surface 5. On the other hand, the sound pressure reflecting rate RW for vertical irradiation of the supersonic wave (Longitudinal wave) onto the border surface 6 of reservoir wall S and water W reaches 93.7684%. As the sound pressure is proportional to the height of echo appearing on CRT, when values of RA and RW are compared, the comparison value h becomes 0.559dB. When the echo heights of multiple recting waves are compared, every reflection accumulates the difference of echo heights by 0.559dB and thus, detection of the water level 2 becomes available.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波を利用して液槽の外側から液槽内の液
面を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of detecting a liquid level in a liquid tank from the outside of the liquid tank using ultrasonic waves.

ここにいう液槽とは、液体(水、油、燃料、塗料、酸類
など)が貯溜されている容器たとえば、自動車・航空機
等の燃料タンク、絶縁油が一定量注入さ、れている変圧
器、化学プラントにおける各種液体の貯蔵タンク、水力
発電所用のサージタンクなどをいい、液体の種類および
性状、容器の大小、形状および器壁の厚さは間はない。
A liquid tank here refers to a container in which liquid (water, oil, fuel, paint, acids, etc.) is stored, such as a fuel tank of an automobile or aircraft, or a transformer in which a fixed amount of insulating oil is poured. , storage tanks for various liquids in chemical plants, surge tanks for hydroelectric power plants, etc., and there are no differences in the type and properties of the liquid, the size and shape of the container, and the thickness of the container wall.

また容器の材質は、超音波が伝搬され得る物体であれば
よく、金属、非金属(ガラス、セラミック、コンクリー
ト、合成樹脂など)を間はない。
The container may be made of any material that can transmit ultrasonic waves, including metals and non-metals (glass, ceramic, concrete, synthetic resin, etc.).

また、液槽の外側からとは、前記液槽を形成している容
器の直接液体と接している槽壁の外面からをいう。
Moreover, from the outside of the liquid tank means from the outer surface of the tank wall that is in direct contact with the liquid of the container forming the liquid tank.

〔発明の背景〕[Background of the invention]

液槽内の液面の測定は、基準の水平面から液体の表面ま
での距離を測定するものであるが、そのためには、まず
液面の検出が前提条件となる。従来の液面の測定方法は
、液槽の寸法および構造、液槽内の圧力および温度、液
面の変動量および変動速度、液面の測定精度などに応じ
て多くの方法があり、そしてそれらの測定方法は、(1
)変位、長さの測定による方法、(2)圧力、差圧の測
定による方法、(3)液面の変化に伴う他の物理量の測
定による方法に分類される(日本機械学会1968年発
行「機械工学便覧」第5版6−31〜32参照)が、同
時にこれらの各方法に応じて液面の検出方法がある。
Measuring the liquid level in a liquid tank involves measuring the distance from a reference horizontal plane to the liquid surface, but for this purpose, detection of the liquid level is a prerequisite. There are many conventional methods for measuring the liquid level, depending on the dimensions and structure of the liquid tank, the pressure and temperature inside the liquid tank, the amount and speed of fluctuation in the liquid level, the measurement accuracy of the liquid level, etc. The measurement method is (1
) Methods based on measuring displacement and length, (2) Methods based on measuring pressure and differential pressure, and (3) Methods based on measuring other physical quantities associated with changes in liquid level (Japan Society of Mechanical Engineers, published in 1968. (Refer to "Mechanical Engineering Handbook" 5th edition 6-31 to 32), but there are also liquid level detection methods corresponding to each of these methods.

前記Hの方法には、まずフックr−ジあるいはポイント
r−ゾとよばれる、液面との接触が明確に認められるよ
うに円すい形状をしたポイントを、目盛り付きの金属性
の角柱あるいは金属性のテープやクイヤローデの先端に
取り付けたものを、液面上方の固定点から鉛直方向に降
ろし、4インドの先端が液面に接触したときの目盛を読
んで、液面までの距離を直接測定する方法があり、つぎ
に液面にフロートを浮かべておき、液面の変化に伴うフ
ロートの垂直方向の変位量を機械量あるいは電気量に変
換した値から液面を検出し、液面の変化量を求める方法
、さらに液体内に置かれた物体の浮力が、その物体が排
除した液体の重量に等しいことを利用し、一部分液体中
に置かれた物体の浮力を機械量あるいは電気量に変換し
た値から液面を検出し、液面の変化を求める方法などが
ある。
In the above method H, first, a conical point called a hook r-ji or a point r-zo, which has a conical shape so that contact with the liquid surface can be clearly recognized, is attached to a metallic prism with a scale or a metallic prism. Lower the tape attached to the tip of the kuiyarode vertically from a fixed point above the liquid level, read the scale when the tip of the 4-inch contacts the liquid level, and directly measure the distance to the liquid level. There is a method. Next, a float is floated on the liquid level, and the liquid level is detected from the value converted into a mechanical or electrical quantity of the amount of vertical displacement of the float due to changes in the liquid level, and the amount of change in the liquid level is detected. In addition, by using the fact that the buoyant force of an object placed in a liquid is equal to the weight of the liquid displaced by that object, the buoyant force of an object placed partially in the liquid was converted into a mechanical quantity or an electrical quantity. There are methods such as detecting the liquid level from the value and determining changes in the liquid level.

これらの方法における液面の検出は、検出機構が簡単な
長所はあるが、ポイントを液面に接触させたり、フロー
トあるいは物体を液面または液中に設けるなど、液槽内
に測定器具を設置する必要があることから、密閉構造の
液槽例えば柱上トランス内の液面を検出するには、その
液槽を改めて分解しなければならず、また液面の変動が
大きい場合、液槽内の圧力や温度が特に高い場合、反対
に特に低い場合、あるいは液槽の寸法が非常に大きい場
合などには測定目盛の変動が大きくて測定が困難となシ
、またリアルタイムに対応することができない不具合点
がある。つぎに前記(2)の方法には、まず液体内の各
点における静水圧が、その点から液面までの高さに比例
することを利用し、通常の圧力計を使用するか、または
タンク壁に直接取り付けたダイアフラムの圧力による変
形を、機械的あるいは電気的に検出することによシ静水
圧を測定し、液面を検出してタンク内の液面高さを求め
る方法がある。またタンク内部の圧力が変動する例えば
高圧タンクなどにおいては、タンクの液体内の圧力もそ
の影響を受けて変動するので、気相の圧力を検出し、液
体底部の圧力との差を差圧計を用いて測定して液面を検
出し、液面高さを求める方法、さらKまた液体内に挿入
した細管の先端から圧縮空気を噴出させ、噴出させる空
気流量と細管内の圧力を、液体の静水圧にほぼ等しくし
た場合の細管の背圧から液面を検出し、液面高さを求め
るエアパーツによる方法などがある。これら(2)の方
法における液面の検出は、圧力計または差圧計の目盛夛
表示などを目視して行うため簡単に行える長所はあるが
、液槽内の圧力、温度および液面などの変動に対しては
、正確な追従が困難で測定精度が悪く、また液槽の寸法
が大きく、構造が複雑な場合には、液面の検出装置が大
形となる欠点を有する。つぎに前記(3)の方法には、
まず放射線特にコ・9ルト60のr線の吸収が、液体と
気体によシ著しく差がある性質を利用する放射線液面計
による方法があり、これにはほぼ3種類の形式がある。
These methods of detecting the liquid level have the advantage of a simple detection mechanism, but they do not require the installation of measuring instruments within the liquid tank, such as by bringing a point into contact with the liquid surface, or by placing a float or object on the liquid surface or in the liquid. Therefore, in order to detect the liquid level in a sealed liquid tank, such as a column-mounted transformer, the liquid tank must be disassembled again. If the pressure or temperature of the liquid is particularly high or low, or if the size of the liquid tank is very large, the measurement scale will fluctuate greatly, making measurement difficult and making it impossible to respond in real time. There are some defects. Next, for method (2) above, first, the hydrostatic pressure at each point in the liquid is proportional to the height from that point to the liquid level, and either a normal pressure gauge or a tank is used. There is a method of measuring hydrostatic pressure by mechanically or electrically detecting the deformation caused by the pressure of a diaphragm attached directly to the wall, and detecting the liquid level to determine the liquid level height in the tank. In addition, in high-pressure tanks, etc., where the pressure inside the tank fluctuates, the pressure inside the liquid in the tank also fluctuates, so the pressure in the gas phase is detected and the difference between the pressure at the bottom of the liquid and the pressure at the bottom of the liquid is measured using a differential pressure gauge. In addition, compressed air is ejected from the tip of a thin tube inserted into the liquid, and the flow rate of the air to be ejected and the pressure inside the thin tube are determined by measuring the liquid level. There is a method using air parts that detects the liquid level from the back pressure of a thin tube when it is made almost equal to the hydrostatic pressure, and calculates the liquid level height. Detection of the liquid level in method (2) has the advantage of being easy because it is done by visually observing the scale display of the pressure gauge or differential pressure gauge, but it is difficult to detect the liquid level due to fluctuations in pressure, temperature, liquid level, etc. in the liquid tank. However, accurate tracking is difficult and measurement accuracy is poor, and if the liquid tank is large and has a complicated structure, the liquid level detection device becomes large. Next, in the method (3) above,
First, there is a method using a radiation liquid level meter, which takes advantage of the fact that the absorption of radiation, particularly the r-rays of COR-60, is significantly different between liquids and gases, and there are approximately three types of methods.

形式1は、液面に浮かべたフロート上に線源を設け、液
槽上部にその検出器を線源に対向させて設けるもので、
液面変化に伴う両者間の距離の変化から、検出器に到達
する放射線の強度変化を検知し、その変化量から液面を
検出する70−ト形である。形式2は、線源および検出
器を対向させて槽壁に固定し、その間の液体の厚さによ
り透過する放射線強度が変化するその変化量から液面を
検出する透過形である。そして形式3は、線源および検
出器を対向させて上下に滑動できるように槽壁に配置し
、かつ線源、検出器および液面の相互位置関係が、常に
同一になるようにサーゲ機構を介して追尾させる液面追
尾形で、検重器の位置から液面が検出される。上記形式
1ないし形式3の方法は、液槽内の圧力、温度および液
面などの変動による影響は比較的小さいが、いずれも線
源および検出器を必要とし、かつ予め対向させて配設し
なければならない。このため所望の液槽に対してリアル
タイムに液面を検出することができず、また液槽の寸法
が大きい場合や槽壁構造が複雑な場合などには、対向さ
せて配設することが困難で、かつ煩わしい。そしてまた
放射線を取シ扱うことから他の方法にない安全上の不安
が残るという問題点も有する。つぎに前記(3)の方法
に分類される方法に、対向する電極間の静電容量が、電
極間にある媒質の誘電率の関数である性質を利用する静
電容量形液面計がある。たとえば、気体と液体の誘電率
は数倍ないし数十倍異なる。
In type 1, a radiation source is installed on a float floating on the liquid surface, and a detector is installed at the top of the liquid tank facing the radiation source.
It is a 70-meter type detector that detects changes in the intensity of radiation reaching the detector from changes in the distance between the two as the liquid level changes, and detects the liquid level from the amount of change. Type 2 is a transmission type in which a radiation source and a detector are fixed to the tank wall facing each other, and the liquid level is detected from the amount of change in the intensity of the transmitted radiation between them, which changes depending on the thickness of the liquid. In Type 3, the radiation source and detector are placed on the tank wall so that they can slide up and down, facing each other, and a serge mechanism is installed so that the mutual positional relationship of the radiation source, detector, and liquid level is always the same. The liquid level is detected from the position of the gravimeter. The methods of Types 1 to 3 above are relatively less affected by fluctuations in pressure, temperature, liquid level, etc. in the liquid tank, but they all require a radiation source and a detector, and they must be arranged in advance to face each other. There must be. For this reason, it is not possible to detect the liquid level in real time for the desired liquid tank, and it is difficult to install them facing each other when the liquid tank is large in size or has a complicated tank wall structure. And it's annoying. Another problem is that since radiation is involved, safety concerns that do not exist with other methods remain. Next, a method classified as method (3) above is a capacitive liquid level meter that utilizes the property that the capacitance between opposing electrodes is a function of the dielectric constant of the medium between the electrodes. . For example, the dielectric constants of gas and liquid differ by a factor of several to several tens of times.

いま液槽内に対向させておく電極を、液面の変化に伴う
液体の高さの変化によって、電極間に介在する液体の量
が異なるような構造にしておけば、液面の高さを静電容
量の大きさに変換することができ、また静電容量の大き
さから液面を検出することができる。液体が導電性であ
る場合には、その液体を一方の電極とし、液面高さの変
化によシ対向する電極の面積が変化する構造にする方法
もある。しかし仁の方法においても、液槽内に電極を予
め配置する必要があシ、放射線液面計の場合と同様の問
題点を有するほか、電極の配置の仕方、形状、寸法など
により測定精度が大きく影響を受ける不具合点を有する
If the electrodes that are placed facing each other in the liquid tank are structured so that the amount of liquid interposed between the electrodes differs depending on the change in the height of the liquid due to changes in the liquid level, the height of the liquid level can be changed. It can be converted to the size of capacitance, and the liquid level can be detected from the size of capacitance. If the liquid is conductive, there is a method in which the liquid is used as one electrode and the area of the opposing electrode changes as the liquid level changes. However, Jin's method also requires electrodes to be placed in the liquid tank in advance, and has the same problems as the radiation liquid level meter, as well as the measurement accuracy being affected by the placement, shape, and dimensions of the electrodes. It has a defect that is greatly affected.

一方、前記(3)の方法に分類されるものとして超音波
を利用する方法がある。これは超音波液面計と呼ばれる
もので、超音波の鋭い指向性と、超音波が媒質の境界面
で反射する性質を利用したものである。具体的にはその
1として、送信用および受信用の両超音波探触子を液槽
の底面に設置し、液面に向けて発射された超音波が、液
面で反射され、その反射波が受信されるまでの液体中の
伝搬時間を測定する方法があり、その2として前記送・
受信用の両超音波探触子を、液槽の液面よシ上部に設置
し、液面に向けて発射された超音波の受信されるまでの
気体中の伝搬時間を測定する方法がある。そして、この
具体例が、日刊工業新聞社1978年発行「超音波技術
便覧」新訂版第749頁ないし第751頁に記載されて
いる。すなわち、具体例の1は、発電機の起動、負荷の
急遮断などによって、水位の変動が大きい水力発電所の
サージタンクの水位を、記録・監視する例である。そし
て上述した超音波の液体中の伝搬時間を測定する方法は
水中式として、また気体中の伝搬時間を測定する方法は
空中式として報告されており、大規模なサージタンク用
で高精度据置用には水中式が、やや軽便なものとしては
空中式が適するとされている。
On the other hand, there is a method using ultrasonic waves that falls under the method (3) above. This is called an ultrasonic liquid level gauge, and it takes advantage of the sharp directivity of ultrasonic waves and the property of ultrasonic waves being reflected at boundaries between media. Specifically, as part 1, both transmitting and receiving ultrasonic probes are installed on the bottom of the liquid tank, and the ultrasonic waves emitted toward the liquid surface are reflected by the liquid surface, and the reflected waves are generated. There is a method of measuring the propagation time in a liquid until it is received.
There is a method of installing both receiving ultrasonic probes above the liquid level in a liquid tank and measuring the propagation time in the gas until the ultrasonic waves emitted towards the liquid surface are received. . A specific example of this is described on pages 749 to 751 of the newly revised edition of "Ultrasonic Technology Handbook" published by Nikkan Kogyo Shimbun in 1978. That is, the first specific example is an example in which the water level of a surge tank of a hydroelectric power plant is recorded and monitored, where the water level fluctuates greatly due to startup of a generator, sudden load cutoff, and the like. The above-mentioned method for measuring the propagation time of ultrasonic waves in liquid has been reported as an underwater method, and the method for measuring the propagation time in gas has been reported as an aerial method. An underwater type is suitable for this purpose, and an aerial type is considered to be suitable for something that is a little more convenient.

具体例の2は、燃料タンクや薬品タンクの液面を測定す
る例で、前記水中式が使用されている。そして具体例の
3は、液面警報器の例で、航空機の燃料タンク内の燃料
が、所定の液面まであるか否かを知るため、探触子を所
定の液面の位置に設け、探触子が燃料に浸漬されている
か否かでリレー動作がきめられ、液面を検出する例であ
る。上記した従来の超音波液面計は、前記文献にも記載
されているように、(+)広範囲の液面変動を高精度で
測定できる。(11)早い液面変動に追従しやすい。(
II+)液面の遠方指示、連続記録、警報、10進法表
示などが比較的容易。などの長所を有し、やや高価では
あるが普及しかけている。と紹介されている。しかし、
上記した従来の超音波液面計による液面の検出は、上述
した他の液面計と同様に、液槽内に超音波探触子を予め
設置しておかなければならない。このだめ、トランスの
ような密閉構造の液槽の液面を、リアルタイムに検出す
ることはできないなど、前記他の液面計が液槽内に測定
器具を設置するために発生する問題点を有するほか、液
体の性状による影響を大きく受ける。すなわち、液体の
濃度が高い場合、例えば泥水、塗料、染料などにおいて
濃度が高い場合には、その液体内を超音波が通過する際
の散乱減衰が大きく、また濃度によって減衰度も異なシ
、精度のよい測定はできず、また超音波の伝搬速度は、
温度によって著しく変化するから、前記超音波の液体中
の伝搬時間の測定値は、その−1ま使用することができ
ず各温度に応じて補正が必要とな夛、測定精度の低下が
避けられない。などの大きな問題点を有する。さらに液
槽内の水位が特に高い場合には、液面からの反射波が得
られない場合があり、このような場合には液面検出がで
きないなど多くの問題点を有している。
Specific example 2 is an example in which the liquid level of a fuel tank or a chemical tank is measured, and the underwater type is used. Specific example 3 is an example of a liquid level alarm, in which a probe is installed at a predetermined liquid level in order to know whether the fuel in the aircraft fuel tank is at a predetermined liquid level. In this example, the relay operation is determined depending on whether or not the probe is immersed in the fuel, and the liquid level is detected. As described in the above-mentioned literature, the above-mentioned conventional ultrasonic liquid level gauge can measure liquid level fluctuations over a (+) wide range with high precision. (11) Easy to follow rapid liquid level fluctuations. (
II+) Remote indication of liquid level, continuous recording, alarm, decimal display, etc. are relatively easy. It has the following advantages, and although it is somewhat expensive, it is becoming popular. It is introduced as but,
In order to detect the liquid level using the conventional ultrasonic liquid level gauge described above, an ultrasonic probe must be installed in the liquid tank in advance, similar to the other liquid level gauges described above. However, the other liquid level meters have problems that occur because the measuring device is installed inside the liquid tank, such as not being able to detect the liquid level in a liquid tank with a closed structure such as a transformer in real time. In addition, it is greatly affected by the properties of the liquid. In other words, when the concentration of a liquid is high, such as muddy water, paint, dye, etc., the scattering attenuation is large when ultrasonic waves pass through the liquid, and the degree of attenuation varies depending on the concentration. cannot be measured well, and the propagation velocity of ultrasonic waves is
Since it changes significantly depending on temperature, the measured value of the propagation time of the ultrasonic wave in a liquid cannot be used until -1 and must be corrected according to each temperature, so that a decrease in measurement accuracy can be avoided. do not have. There are major problems such as: Furthermore, if the water level in the liquid tank is particularly high, there are cases where reflected waves from the liquid surface cannot be obtained, and in such cases, there are many problems such as the inability to detect the liquid level.

以上説明したように、従来の液槽内の液面検出方法にお
いては、いずれの方法によっても容易に、かつきわめて
短時間に精度よく、しかもリアルタイムに検出すること
はできず、汎用性の高い検出方法が待望されていた。
As explained above, none of the conventional methods for detecting the liquid level in a liquid tank can detect the liquid level easily, in an extremely short period of time, with high accuracy, and in real time. A method has been awaited.

〔発明の目的〕[Purpose of the invention]

本発明は、前記した従来技術の問題点を解消し、液槽内
の液面の検出を、液槽の寸法および構造、液槽内の状態
(圧力、温度、液面変動の量および速度など)、液体の
種類(水、油、燃料、塗料。
The present invention solves the problems of the prior art as described above, and detects the liquid level in a liquid tank based on the dimensions and structure of the liquid tank, the conditions inside the liquid tank (pressure, temperature, amount and speed of liquid level fluctuation, etc.). ), type of liquid (water, oil, fuel, paint.

酸類、その他の各種液体を含む)および性状(濃度、温
度、密度、粘度など)などに影響を受けることなく、き
わめて短時間に、精度のよい検出が、容易にしかもリア
ルタイムにできる、超音波による液槽内の液面検出方法
を提供することを目的とする。
Ultrasonic technology enables highly accurate detection in an extremely short time, easily and in real time, without being affected by the properties (concentration, temperature, density, viscosity, etc.) The purpose of the present invention is to provide a method for detecting a liquid level in a liquid tank.

〔発明の概要〕[Summary of the invention]

本発明は、液槽の槽壁の外面から槽壁を介して液槽内に
超音波を入射させ、その超音波の液槽内の液体と槽壁と
の境界面と、同じく気体と槽壁との境界面とから反射す
る多重反射波の減衰度を比較し、その比較値を評価指標
とすることにより液槽内の液面の検出を、液槽の寸法お
よび構造、液槽内の状態、液体の種類および性状などに
影響を受けることなく、きわめて短時間に、精度のよい
検出が容易にしかもリアルタイムにできるようにした方
法である。
The present invention involves injecting ultrasonic waves into the liquid tank from the outer surface of the tank wall of the liquid tank through the tank wall, and detecting the interface between the liquid in the liquid tank and the tank wall, and the interface between the gas and the tank wall. By comparing the degree of attenuation of multiple reflected waves reflected from the interface between the This method allows highly accurate detection to be easily performed in a very short time and in real time, without being affected by the type and properties of the liquid.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図ないし第3図を参照して説明す
る。本実施例は、鋼板製の水槽に20℃の水を貯水した
場合における液面の検出方法である。
Embodiments of the present invention will be described with reference to FIGS. 1 to 3. This example is a method for detecting the liquid level when water at 20° C. is stored in a water tank made of a steel plate.

第1図は液面の検出方法を示す説明図である。FIG. 1 is an explanatory diagram showing a method of detecting a liquid level.

1は水槽で、板厚が3.2蛎の鋼板(材質5S41− 
JISG 3101 )製の底および槽壁Sからなる容
器である。
1 is an aquarium, made of a steel plate with a thickness of 3.2 mm (material: 5S41-
This is a container consisting of a bottom and a tank wall S made of JIS G 3101).

水槽1内には水Wが貯えられており、2はその水面であ
る。3は槽壁Sの外面で、外面3に垂直探触子4が上下
に走査可能に当接されている。5は槽壁Sと空気Aの境
界面、6は槽壁Sと水Wの境界面である。垂直探触子4
はAスコープ表示の・fルス反射式超音波探傷装置(以
下単に超音波探傷器という)7と高周波ケーブルで接続
されている。
Water W is stored in a water tank 1, and 2 is the water surface. 3 is the outer surface of the tank wall S, and a vertical probe 4 is in contact with the outer surface 3 so as to be able to scan vertically. 5 is an interface between the tank wall S and air A, and 6 is an interface between the tank wall S and water W. Vertical probe 4
is connected by a high-frequency cable to an f-lux reflection type ultrasonic flaw detector (hereinafter simply referred to as an ultrasonic flaw detector) 7 displayed on the A scope display.

8はそのCRTである。8 is the CRT.

いま超音波の音圧反射率についてみると、槽壁Sと空気
Aの境界面5に超音波(縦波)が垂直入射された場合に
は、そのときの音圧反射率RAは次式で示される。
Now looking at the sound pressure reflectance of ultrasonic waves, when an ultrasonic wave (longitudinal wave) is perpendicularly incident on the interface 5 between the tank wall S and the air A, the sound pressure reflectance RA at that time is expressed by the following formula. shown.

ここに、   zg=ρ8・Cs      ・・・・
・・・・・・・・・・・(2)zA=ρえ・C,・・・
・・・・・・・・・・・・(3)で、z8=槽壁Sの音
響インピーダンス、4=空気Aの音響インピーダンス、
ρ3=槽壁Sの密度、ρえ=空気入の密度、C,=槽壁
Sの縦波の音速、CA=空気Aの音速である。これらの
各値は既知で、ρ3= 7 、8 f/Ctll 、 
CB = 5900 rrV/s 、ρA =0.00
13 f/C1/l 、 Ca= 344 minとし
て式f2)、 (31に代入して計算したzS rzA
を、式(1)に代入すると、RA= 99.9981%
となる。
Here, zg=ρ8・Cs...
・・・・・・・・・・・・(2) zA=ρe・C,...
・・・・・・・・・・・・(3), z8=acoustic impedance of tank wall S, 4=acoustic impedance of air A,
ρ3=density of tank wall S, ρe=density of air, C,=sound velocity of longitudinal wave in tank wall S, CA=sound velocity of air A. Each of these values is known, ρ3=7, 8 f/Ctll,
CB = 5900 rrV/s, ρA = 0.00
13 f/C1/l, Ca=344 min, formula f2), (zS rzA calculated by substituting into 31)
Substituting into equation (1), RA = 99.9981%
becomes.

これは第2図に示すように境界面5においてほぼ全反射
していることを示すが、僅かに0.0019%は通過波
9となシ空気A内へ伝搬する。一方、槽壁Sと水Wの境
界面6に、超音波(縦波)が垂直入射された場合におけ
る音圧反射率R,は、で示され、水Wの音響インピーダ
ンスzwは、2、 =ρ7・Cw         ・
・・・・・・・・・・・・・・(5)で示される。ここ
で、ρ、=水Wの密度、Cw==水Wの音速である。既
知であるρ、 = 1.O5F76yf、 Cw=14
85rn/sの値を式(5)に代入してzWを求め、さ
らに式(4)で計算すると、R,== 93.7684
1となる。これは第3図に示すように境界面6において
93.7684%が反射し、残りの6.2316%が通
過波10となり水W内へ伝搬することを示している。つ
ぎに、音圧はCRT上に現われるエコー高さに比例する
ことから、式(1)および(4)で求めた音圧反射率R
4およびR,の値を比較すると、その比較値h、つまシ
デシペル表示のエコー高さの差は、下式で求められる。
As shown in FIG. 2, this indicates that almost total reflection occurs at the boundary surface 5, but only 0.0019% is propagated into the air A as a passing wave 9. On the other hand, when an ultrasonic wave (longitudinal wave) is perpendicularly incident on the interface 6 between the tank wall S and the water W, the sound pressure reflectance R, is expressed as, and the acoustic impedance zw of the water W is 2, = ρ7・Cw・
・・・・・・・・・・・・・・・(5) shows. Here, ρ=density of water W, Cw==sound velocity of water W. Known ρ, = 1. O5F76yf, Cw=14
Substituting the value of 85rn/s into equation (5) to find zW, and further calculating using equation (4), R, == 93.7684
It becomes 1. This indicates that, as shown in FIG. 3, 93.7684% of the light is reflected at the boundary surface 6, and the remaining 6.2316% becomes the passing wave 10 and propagates into the water W. Next, since the sound pressure is proportional to the echo height appearing on the CRT, the sound pressure reflectance R calculated using equations (1) and (4)
When the values of 4 and R are compared, the comparison value h and the difference in echo height expressed in side decipels can be determined by the following formula.

式(6)にRA= 99.9981%、 Rw: 93
.7684%を代入して計算すると、デシベル表示のエ
コー高さの差h= 0.559 (dB)となる。この
ことは、槽壁Sの外面3を上下に垂直探触子4を走査し
た場合に、境界面5と6からの1番目の反射波のエコー
高さの差は、僅かに0.559 dBであることを示し
ておシ、これは通常の測定の誤差範囲で、水面2の検出
はできない。ところが、前記の値は1番目の反射波だけ
の値であシ、境界面5と6からの反射波のエコーを数多
く出現する多重反射波のエコー高さを比較すれば、反射
回数が1回増すごとに0.559 dBずつエコー高さ
の差が累積され、差が拡大していく。
In formula (6), RA=99.9981%, Rw: 93
.. When calculated by substituting 7684%, the difference in echo height expressed in decibels h=0.559 (dB). This means that when the vertical probe 4 is scanned up and down the outer surface 3 of the tank wall S, the difference in echo height of the first reflected waves from the boundary surfaces 5 and 6 is only 0.559 dB. This shows that this is within the error range of normal measurement, and the water surface 2 cannot be detected. However, the above value is only for the first reflected wave, and if we compare the echo heights of multiple reflected waves that appear many echoes of reflected waves from interfaces 5 and 6, we can see that the number of reflections is 1. With each increase, the difference in echo height is accumulated by 0.559 dB, and the difference expands.

そしてCRT a上に出現したエコーの最終のn番目で
は、エコー高さの差は十分拡大され、境界面5からの多
重反射波のエコーであるか、境界面6からのものである
かが容易に比較して判別でき、画境界面5,6からの多
重反射波のエコー高さが、CRTa上で切シ換わる位置
から水面2が検出できる。前記説明でも判るように、境
界面5,6からの反射波のエコーは、その数が多いほど
エコー高さの差が拡大されるから、それだけ水面2の検
出は容易になる。また、水面2の検出の別の方法として
、境界面5と6からの反射波のエコーをCRTs上に出
現させ、反射波のエコー高さが両者の2になるように、
垂直探触子4を上下に走査する方法がある。この場合は
、エコー高さが画境界面のエコー高さの2の位置が水面
2となる。
Then, in the final n-th echo that appears on CRT a, the difference in echo height is sufficiently expanded, and it is easy to determine whether the echo is the multiple reflected wave from the boundary surface 5 or the echo from the boundary surface 6. The water surface 2 can be detected from the position where the echo heights of the multiple reflected waves from the image boundary surfaces 5 and 6 switch on the CRTa. As can be seen from the above description, the greater the number of echoes of the reflected waves from the boundary surfaces 5 and 6, the greater the difference in echo height, which makes detection of the water surface 2 easier. Another method for detecting the water surface 2 is to make the echoes of the reflected waves from the interfaces 5 and 6 appear on the CRTs, so that the echo height of the reflected waves is 2 for both.
There is a method of scanning the vertical probe 4 up and down. In this case, the water surface 2 is located at the echo height 2 of the image boundary surface.

本発明の方法においては、槽壁と液槽内の液体および気
体の境界面から反射する多重反射波を得る必要があシ、
そして多重反射波はできるだけ明瞭に分解された状態で
得ることが望ましい。このため槽壁の厚さは、一定の厚
さ、例えば鋼板では約5−以上の厚さを有することが望
ましい。これは通常の市販の垂直探触子でも明瞭に多重
反射波が得られ、よシ容易にしかもリアルタイムに液面
の検出ができるからである。ところが、槽壁には鋼板製
であっても、板厚が5瓢よシ薄い場合、例えば小形の変
圧器のように約2.3mないし3.2■の薄い板厚の場
合もあシ、市販の垂直探触子では多重反射波を明瞭に分
解しにくい場合がある。しかしかかる場合には、高周波
数で、かつ高分解能の垂直探触子を使用すれば、明瞭に
多重反射波が得られるから、板厚5+w以下の薄い場合
でありても、板厚5ffi11以上の場合と同様に、容
易に液面の検出が可能である。
In the method of the present invention, it is necessary to obtain multiple reflected waves reflected from the interface between the tank wall and the liquid and gas in the liquid tank.
It is desirable to obtain the multiple reflected waves in a state where they are resolved as clearly as possible. For this reason, it is desirable that the tank wall has a certain thickness, for example, a thickness of about 5 mm or more in the case of a steel plate. This is because even a normal commercially available vertical probe can clearly obtain multiple reflected waves, making it easy to detect the liquid level in real time. However, even if the tank wall is made of steel plate, the thickness of the plate may be as thin as 2.3m to 3.2cm, such as in a small transformer. It may be difficult to clearly resolve multiple reflected waves with commercially available vertical probes. However, in such cases, if a vertical probe with high frequency and high resolution is used, multiple reflected waves can be clearly obtained. As in the case, the liquid level can be easily detected.

つぎに本発明の方法を、実際の製品に適用した例につい
て第4図ないし第7図を参照して説明する。
Next, an example in which the method of the present invention is applied to an actual product will be explained with reference to FIGS. 4 to 7.

対象とした製品は変圧器で、板厚3.2 mの鋼板(材
質: 5S41− JISG 3101 )製のケース
内に、密度0.95 t/cr/l、音速1557.9
 m1m、音響インピーダンス0.148 y/s−一
の特性を有する絶縁油が封入されている。封入されてい
る絶縁油の液面は、封入時の検査のほか、その後の蒸発
や漏洩などによる自然消耗に対して検査を要する。本例
における検査は、前記第1図ないし第3図に示す°方法
にもとづき、周波数10 MHzの高分解能の垂直探触
子を変圧器のケースの外側面に当接し、上下に走査しな
がらケースと絶縁油および空気との境界面から反射する
多重反射波のエコーを超音波探傷器のCRT上に出現さ
せ、そのエコーを観察して行ったものである。第4図に
変圧器のケースと空気の境界面から反射する多重反射波
のエコーをCBr4上に表示させたものを示し、第5図
に同じくケースと絶縁油の境界面から反射する多重反射
波のエコーをCRTs上に表示させたものを示す。両図
とも横軸はビーム路程で、鋼の縦波の音速で100 w
mのスケールにセットされ、縦軸は多重反射波の・や−
セント(4)表示のエコー高さで、第1番目の反射波の
エコー高さを100%にした感度でセットされている。
The target product is a transformer, which is housed in a case made of steel plate (material: 5S41-JISG 3101) with a thickness of 3.2 m, and has a density of 0.95 t/cr/l and a sound velocity of 1557.9 m.
It is filled with insulating oil having characteristics of m1m and acoustic impedance of 0.148 y/s-1. The liquid level of the sealed insulating oil must be inspected not only at the time of sealing, but also for natural consumption due to evaporation, leakage, etc. The inspection in this example is based on the method shown in Figures 1 to 3 above, in which a high-resolution vertical probe with a frequency of 10 MHz is brought into contact with the outer surface of the transformer case, and the probe is scanned up and down while moving the case. The echoes of multiple reflected waves reflected from the interface between the insulating oil and the air were made to appear on the CRT of an ultrasonic flaw detector, and the echoes were observed. Figure 4 shows the echoes of the multiple reflected waves reflected from the interface between the transformer case and the air displayed on CBr4, and Figure 5 shows the multiple reflected waves reflected from the interface between the case and the insulating oil. This shows the echo of the image displayed on CRTs. In both figures, the horizontal axis is the beam path, which is 100 W at the sound speed of longitudinal waves in steel.
m scale, and the vertical axis is the multi-reflected wave.
The echo height is displayed in cents (4), and the sensitivity is set to 100% of the echo height of the first reflected wave.

両図とも100 wmのスケール中に、31番目までの
反射波のエコーが分解されて出現しておシ、この多重反
射波のエコー高さを点線で結ぶと、第4図においては包
絡線11が、第5図においては包絡線12がそれぞれ得
られる。ここで第4図と第5図のグラフを比較してみる
と、ケース・空気境界面の第4図に比し、ケース・絶縁
油境界面の第5図におけるエコー高さの低下割合つまシ
多重反射波の減衰度が急激であることが明瞭に観察でき
る。具体的に第6番目のエコー高さの減衰度を比較して
みると、第4図では約45%であるのに対し、第5図で
はほぼ25%と急減している。これは前記した音圧反射
率の差によるものであるが、点線で示した包絡線の勾配
を比較してもその差が明瞭に観察できる。この観察から
判るように、液面は、第4図から第5図にまたはその反
対に第5図から第4図に多重反射波のエコー高さが変化
する位置、つまり両図の多重反射波の波形の中間の波形
のエコー高さが得られた位置となる。そのグラフを第6
図に示す。横軸、縦軸とも第4図、第5図と同じである
。また包絡線は13である。第4図から第6図までのC
RT g上のエコー高さおよび包絡線の出現・ぐターン
を比較すれば、容易に液面の検出ができることが判る。
In both figures, on a scale of 100 wm, the echoes of up to the 31st reflected wave are resolved and appear, and if the echo heights of these multiple reflected waves are connected with dotted lines, the envelope 11 in Figure 4 can be seen. However, in FIG. 5, envelopes 12 are obtained. Comparing the graphs in Figures 4 and 5, we find that the echo height decreases at the case-insulating oil interface in Figure 5 compared to the case-air interface in Figure 4. It can be clearly observed that the degree of attenuation of multiple reflected waves is rapid. Specifically, when comparing the degree of attenuation of the sixth echo height, it is approximately 45% in FIG. 4, while it rapidly decreases to approximately 25% in FIG. This is due to the above-described difference in sound pressure reflectance, and the difference can be clearly observed by comparing the slopes of the envelopes shown by dotted lines. As can be seen from this observation, the liquid level is located at the position where the echo height of the multiple reflected waves changes from Figure 4 to Figure 5 or vice versa, that is, the multiple reflected waves in both Figures. This is the position where the echo height of the middle waveform is obtained. 6th graph
As shown in the figure. Both the horizontal and vertical axes are the same as in FIGS. 4 and 5. Also, the envelope is 13. C from Figure 4 to Figure 6
It can be seen that the liquid level can be easily detected by comparing the echo height on RTg and the appearance/gutter of the envelope.

つぎに、第4図および第5図で得られた多重反射波のエ
コー高さとビーム路程の関係について纏めると第7図が
得られる。図の横軸はビーム路程X(単位W)、縦軸は
第1番目のエコー高さを基準感度Oとした場合のエコー
高さh(単位dB)である。図中・印は、第4図に示し
た変圧器のケースと空気の境界面における値をプロット
したものであり、O印は第5図に示した変圧器のケース
と絶縁油の境界面における値をプロットしたものである
。グラフは・印、O印とも、ビーム路程Xとエコー高さ
hとの間に、直線的な相関関係が成立することを示して
おり、それぞれの回帰式を最小2乗法により求めると、
変圧器のケースと空気の境界面にお゛ける・印の場合、
実線で示すh =−0,43x + 1.38    
・・・・・・・・・・・・・・・・・・・・・(7)と
なシ、ケースと絶縁油の境界面におけるO印の場合、点
線で示す h = −0,73x + 2.34    ・・・・
・・・・・・・・・・・・・・・・・(8)となる。式
(7)、 (8)を比較すると、式(力に比し式(8)
のエコー高さhの低下の程度は、約1.7倍であること
が判る。具体的に第31番目の値を比較すると、・印の
値が−41dBであるのに対し、O印のケースと絶縁油
の境界面における値は一69dBで、その差は28dB
の大差となシ、液面の検出が精度よく容易にできること
が判る。本例においては、変圧器のケースの外側面に当
接した垂直探触子を、上下に走査して液面の検出をする
場合について説明したが、常時所定の液面を維持する必
要のある液槽、所定の液面以上または以下になりた状態
を知る必要のある液槽、特に大形の液槽などで広範囲の
液面変動を知る必要のある液槽、遠方指示や連続記録を
必要とする液槽などに対しては、その液槽の槽壁の外面
に、単数または複数の垂直探触子を所定位置に固定して
当接しておくことによシ、精度よく容易に液面を検出し
て対応することができる。
Next, FIG. 7 is obtained by summarizing the relationship between the echo height of the multiple reflected waves and the beam path obtained in FIGS. 4 and 5. The horizontal axis of the figure is the beam path length X (unit: W), and the vertical axis is the echo height h (unit: dB) when the first echo height is the reference sensitivity O. In the figure, the mark is a plot of the value at the interface between the transformer case and the air shown in Figure 4, and the O mark is the value at the interface between the transformer case and the insulating oil shown in Figure 5. The values are plotted. Both the * and O marks on the graph indicate that a linear correlation exists between the beam path length
In the case of a mark at the interface between the transformer case and the air,
h shown by solid line = -0,43x + 1.38
・・・・・・・・・・・・・・・・・・・・・(7) In the case of O mark at the interface between the case and the insulating oil, h = −0,73x shown by the dotted line. +2.34...
・・・・・・・・・・・・・・・・・・(8) Comparing equations (7) and (8), we find that equation (8)
It can be seen that the degree of decrease in the echo height h is approximately 1.7 times. Specifically, when comparing the 31st value, the value marked with . is -41 dB, while the value at the interface between the case marked O and the insulating oil is -69 dB, and the difference is 28 dB.
It can be seen that the liquid level can be easily detected with high accuracy. In this example, we explained the case where the liquid level is detected by scanning vertically up and down with a vertical probe that is in contact with the outer surface of the transformer case, but it is necessary to always maintain a predetermined liquid level. Liquid tanks, liquid tanks where it is necessary to know when the liquid level is above or below a predetermined level, liquid tanks where it is necessary to know a wide range of liquid level fluctuations, especially large liquid tanks, etc., where remote indication or continuous recording is required. For liquid tanks, etc., it is possible to accurately and easily measure the liquid level by fixing one or more vertical probes in a predetermined position and contacting the outer surface of the tank wall of the liquid tank. can be detected and responded to.

そして本発明の方法は、垂直探触子を槽壁の外面に当接
する方法であるから、当接する位置は、必要に応じ任意
に変更し得る利点をも有する。なお、前記回帰式を、被
検する各種の液槽について求めておくことにより、前述
の実施例と同様にきわめて簡単かつ容易k、精度よく液
面検出をすることができる。
Since the method of the present invention is a method in which the vertical probe is brought into contact with the outer surface of the tank wall, it also has the advantage that the position of contact can be arbitrarily changed as required. By calculating the regression equation for each type of liquid tank to be tested, it is possible to detect the liquid level very simply and easily, and with high precision, as in the above-described embodiment.

本実施例において説明した液面検出方法は、CRT上に
多重反射波のエコーを表示して目視による検出方法であ
るが、CRT上に表示せず、エコーの高さおよびビーム
路程または包絡線のアナログ量を、通常慣用されている
手段によってデジタル化して記憶装置に記憶させ、多重
反射波の減衰度と、空気および液体の音圧反射率との相
関関係から液面位置を計算させ、液面位置を数値化して
表示させることも可能である。
The liquid level detection method explained in this example is a visual detection method by displaying echoes of multiple reflected waves on a CRT. The analog quantity is digitized by commonly used means and stored in a storage device, and the liquid level position is calculated from the correlation between the degree of attenuation of multiple reflected waves and the sound pressure reflectance of air and liquid. It is also possible to display the position numerically.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、液槽の槽壁の外面から槽
壁を介して液槽内に超音波を入射させ、その超音波の液
槽内の液体と槽壁との境界面と、液槽内の気体と槽壁と
の境界面とから反射する多重反射波の減衰度を比較し、
その比較値を評価指標として液槽内の液面を検出する方
法であるから、液槽の寸法および構造、液槽内の状態、
液体の種類および性状などに同等影響を受けることなく
、きわめて短時間に、容易に精度のよい液面の検出がで
き、しかもリアルタイムに行うことができる実用上顕著
な効果を奏するものである。
As explained above, the present invention allows ultrasonic waves to be incident into a liquid tank from the outer surface of the tank wall of a liquid tank through the tank wall, and to detect the interface between the liquid in the liquid tank and the tank wall of the ultrasonic wave, Comparing the degree of attenuation of multiple reflected waves reflected from the interface between the gas in the liquid tank and the tank wall,
Since this is a method of detecting the liquid level in the liquid tank using the comparison value as an evaluation index, it is possible to
It is possible to easily and accurately detect the liquid level in a very short time without being affected by the type and properties of the liquid, and moreover, it has a remarkable practical effect in that it can be carried out in real time.

【図面の簡単な説明】 図は、すべて本発明の説明図である。 第1図ないし第3図は本発明の詳細な説明図で、第1図
は本実施例における液面検出方法を示す説明図、第2図
は槽壁(鋼板製)と空気の境界面における音圧反射率の
説明図、第3図は槽壁(鋼板製)と水の境界面における
音圧反射率の説明図である。 第4図ないし第7図は本発明を実際の製品の変圧器に適
用した例の説明図で、第4図は変圧器のケース(鋼板製
)と空気の境界面における多重反射波のCRT上のエコ
ー・譬ターンを示す図、第5図は同じく変圧器のケース
と絶縁油の境界面におけるCRT上の多重反射波のエコ
ーパターンを示す図、第6図は同じく液面におけるCR
T上の多重反射波のエコー・9ターンを示す図、第7図
は第4図および第5図のビーム路程とエコー高さの関係
を示す説明図である。 1・・・水槽、2・・・水面、3・・・槽壁の外面、4
・・・垂直探触子、5・・・槽壁と空気の境界面、6・
・・槽壁と水との境界面、8・・・CRT、9.10・
・・通過波、11゜12、13・・・包絡線、A・・・
空気、W・・・水、S・・・槽壁。
BRIEF DESCRIPTION OF THE DRAWINGS The figures are all explanatory diagrams of the present invention. Figures 1 to 3 are detailed explanatory diagrams of the present invention, Figure 1 is an explanatory diagram showing the liquid level detection method in this embodiment, and Figure 2 is a diagram showing the interface between the tank wall (made of steel plate) and air. FIG. 3 is an explanatory diagram of the sound pressure reflectance at the interface between the tank wall (made of steel plate) and water. Figures 4 to 7 are explanatory diagrams of examples in which the present invention is applied to an actual product transformer. Figure 4 shows a CRT image of multiple reflected waves at the interface between the transformer case (made of steel plate) and air. Figure 5 is a diagram showing the echo pattern of multiple reflected waves on a CRT at the interface between the transformer case and insulating oil, and Figure 6 is a diagram showing the echo pattern of multiple reflected waves on the CRT at the interface between the transformer case and the insulating oil.
FIG. 7 is an explanatory diagram showing the relationship between the beam path length and the echo height in FIGS. 4 and 5. 1...Aquarium, 2...Water surface, 3...Outer surface of tank wall, 4
... Vertical probe, 5... Interface between tank wall and air, 6.
・・Interface between tank wall and water, 8...CRT, 9.10・
... Passing wave, 11°12, 13... Envelope, A...
Air, W...water, S...tank wall.

Claims (1)

【特許請求の範囲】 1、液槽の槽壁の外面から槽壁を介して液槽内に超音波
を入射させ、その超音波の液槽内の液体と槽壁との境界
面と、液槽内の気体と槽壁との境界面とから反射する多
重反射波の減衰度を比較し、その比較値を評価指標とし
て液槽内の液面を検出する方法。 2、液槽の槽壁の外面に垂直探触子を当接し、槽壁に対
してほぼ垂直に入射されるように、液槽内に超音波を入
射させることを特徴とする特許請求の範囲第1項記載の
液槽内の液面検出方法。 3、多重反射波のエコーの減衰度をAスコープ表示のC
RT上に表示させ、その表示されたエコーの減衰度を比
較し、その比較値を評価指標とすることを特徴とする特
許請求の範囲第1項記載の液槽内の液面検出方法。 4、垂直探触子を槽壁に沿わせて上下に走査しながら、
液槽内に超音波を入射させることを特徴とする特許請求
の範囲第2項記載の液槽内の液面検出方法。
[Claims] 1. Ultrasonic waves are introduced into the liquid tank from the outer surface of the tank wall through the tank wall, and the ultrasonic waves are transmitted to the interface between the liquid in the liquid tank and the tank wall, and the liquid A method of detecting the liquid level in a liquid tank by comparing the degree of attenuation of multiple reflected waves reflected from the interface between the gas in the tank and the tank wall, and using the comparison value as an evaluation index. 2. Claims characterized in that a vertical probe is brought into contact with the outer surface of the tank wall of the liquid tank, and the ultrasonic waves are made to enter the liquid tank so as to be incident almost perpendicularly to the tank wall. 2. The method for detecting a liquid level in a liquid tank according to item 1. 3. The degree of attenuation of the echo of multiple reflected waves is shown in C on the A scope display.
The method for detecting a liquid level in a liquid tank according to claim 1, characterized in that the attenuation degree of the displayed echoes is compared and the comparison value is used as an evaluation index. 4. While scanning the vertical probe up and down along the tank wall,
A method for detecting a liquid level in a liquid tank according to claim 2, characterized in that an ultrasonic wave is made incident into the liquid tank.
JP60115327A 1985-05-30 1985-05-30 Level detection of liquid reservoir by supersonic wave Pending JPS61274223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60115327A JPS61274223A (en) 1985-05-30 1985-05-30 Level detection of liquid reservoir by supersonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60115327A JPS61274223A (en) 1985-05-30 1985-05-30 Level detection of liquid reservoir by supersonic wave

Publications (1)

Publication Number Publication Date
JPS61274223A true JPS61274223A (en) 1986-12-04

Family

ID=14659819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60115327A Pending JPS61274223A (en) 1985-05-30 1985-05-30 Level detection of liquid reservoir by supersonic wave

Country Status (1)

Country Link
JP (1) JPS61274223A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311718A (en) * 1989-05-26 1990-12-27 Jgc Corp Method for detecting liquid in container
JP2010276593A (en) * 2009-04-27 2010-12-09 Toshiba Corp Level measuring device
WO2013100046A1 (en) * 2011-12-28 2013-07-04 株式会社東芝 Liquid surface level measurement device, method, and program
GB2509914A (en) * 2013-01-16 2014-07-23 Cygnus Instr Ltd Device for detecting flooding of a hollow structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026225A (en) * 1973-07-10 1975-03-19
JPS5522177A (en) * 1978-08-04 1980-02-16 Baumooru Jiyosefu Ultrasonic liquid level detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026225A (en) * 1973-07-10 1975-03-19
JPS5522177A (en) * 1978-08-04 1980-02-16 Baumooru Jiyosefu Ultrasonic liquid level detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311718A (en) * 1989-05-26 1990-12-27 Jgc Corp Method for detecting liquid in container
JP2010276593A (en) * 2009-04-27 2010-12-09 Toshiba Corp Level measuring device
WO2013100046A1 (en) * 2011-12-28 2013-07-04 株式会社東芝 Liquid surface level measurement device, method, and program
JP2013140029A (en) * 2011-12-28 2013-07-18 Toshiba Corp Liquid level measuring device, method and program
US9557208B2 (en) 2011-12-28 2017-01-31 Kabushiki Kaisha Toshiba Liquid level measuring apparatus, method, and program
GB2509914A (en) * 2013-01-16 2014-07-23 Cygnus Instr Ltd Device for detecting flooding of a hollow structure

Similar Documents

Publication Publication Date Title
US20080060431A1 (en) Radar level gauging
US6598473B2 (en) Quantity gauging
Ultrasonics Industrial Applications of Ultrasound-A Review II. Measurements, Tests, and Process Control Using Low-Intensity Ultrasound
US5036703A (en) Method and apparatus for testing liquid fillings in tanks
US4873863A (en) Volumetric leak detection means and method
JPH05231905A (en) Distance measuring equipment and method
CN205642557U (en) Magnetic induced shrinkage or elongation formula liquid level measurement device
US4565088A (en) Process and apparatus for the detection of changes of composition in a medium with the aid of ultrasound
US4914952A (en) Ultrasonic method for measurement of size of any flaw within solid mass
US5062295A (en) Dual tube sonic level gage
JPS6410778B2 (en)
Mohindru Development of liquid level measurement technology: A review
EP0106677A2 (en) Tank gauging system and methods
US4747062A (en) Method and apparatus for detecting the level of a liquid in a tank
JPS61274223A (en) Level detection of liquid reservoir by supersonic wave
CN111693109A (en) Multifunctional storage tank liquid level meter
JPH05273033A (en) Water level measuring apparatus for nuclear reactor
US4739663A (en) Acoustically monitored manometer
CN212058977U (en) Liquid level sensor and liquid level detection device
SU620828A1 (en) Ultrasonic level indicator
CN2100612U (en) Sonar levelmeter
RU2125715C1 (en) Aid measuring level of liquid
CN115752661B (en) Liquid level calibration method based on lamb wave out-of-plane energy characteristics
Liu et al. Flexural wave sidewall sensor for noninvasive measurement of discrete liquid levels in large storage tanks
CN2274763Y (en) Portable device for immersing oil meter for vehicle tanker