JP2008070388A - Liquid level detection method by means of sound and its device - Google Patents

Liquid level detection method by means of sound and its device Download PDF

Info

Publication number
JP2008070388A
JP2008070388A JP2007312155A JP2007312155A JP2008070388A JP 2008070388 A JP2008070388 A JP 2008070388A JP 2007312155 A JP2007312155 A JP 2007312155A JP 2007312155 A JP2007312155 A JP 2007312155A JP 2008070388 A JP2008070388 A JP 2008070388A
Authority
JP
Japan
Prior art keywords
liquid level
container
liquid
sound
level detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007312155A
Other languages
Japanese (ja)
Inventor
Yoshinori Takesute
義則 武捨
Masahiro Koike
正浩 小池
Tetsuya Matsui
哲也 松井
Shinji Fukai
▲慎▼司 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007312155A priority Critical patent/JP2008070388A/en
Publication of JP2008070388A publication Critical patent/JP2008070388A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid level detection method by means of sound and its device for performing sure and stable determination even if a gaseous phase or a solid phase exists in an intra-container liquid phase. <P>SOLUTION: This liquid level detection device detecting a liquid level in a container from outside the container 1 by an acoustic sensor 30, is equipped with a multitude of sound wave receivers 301 to 30n vertically aligned along an outer wall of the container for receiving sound waves of several tens of hertz to several hundreds of kilohertz generated in the container, a received signal observation part 8 observing the reception conditions of the multitude of sound wave receivers on a receiver-by-receiver basis, and a liquid level determination part 9 determining the liquid level from an observation result of the observation part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、容器の外から音響センサにより容器内の液位を検出する音響による液位検出方法及び装置の改良に関し、特に、圧力タンク内のエチレンの液位等の検出に好適な液位検出方法及び装置に係る。   The present invention relates to an improvement in an acoustic liquid level detection method and apparatus for detecting a liquid level in a container with an acoustic sensor from the outside of the container, and in particular, a liquid level detection suitable for detecting the ethylene level in a pressure tank. It relates to a method and apparatus.

従来から、容器の外壁面から音響的手段により内部の液位を計測する多くの方法が知られている。まず、(1)特許文献1及び特許文献2では、超音波を入射した壁面の対向側の内壁面反射波を容器内の液相を通して受信し液相の有無を検出するとともに、この対向側内壁面からの反射波のみを受信する工夫により、液位を確実に判定しようとしている。また、(2)特許文献3には、容器の外壁面から容器内液中の斜め上方に向かって超音波を発射し、液面と容器内壁が接するコーナ部から反射して戻ってきた超音波を検出し、その伝播時間から液面を検出することが開示されている。更に、(3)特許文献4及び特許文献5には、超音波センサを設置した側の内壁面からの反射波を受信し、容器内液相の有無による壁内の多重反射波の減衰特性の違いから液位を判定することが開示されている。   Conventionally, many methods for measuring an internal liquid level from an outer wall surface of a container by acoustic means are known. First, (1) In Patent Document 1 and Patent Document 2, an inner wall reflected wave on the opposite side of a wall surface on which ultrasonic waves are incident is received through the liquid phase in the container to detect the presence or absence of the liquid phase, By trying to receive only the reflected wave from the wall surface, the liquid level is reliably determined. Also, (2) Patent Document 3 discloses that ultrasonic waves are emitted from the outer wall surface of the container obliquely upward in the liquid in the container and reflected back from the corner portion where the liquid surface and the inner wall of the container are in contact. It is disclosed that the liquid level is detected from the propagation time. Furthermore, (3) Patent Document 4 and Patent Document 5 receive the reflected wave from the inner wall surface on the side where the ultrasonic sensor is installed, and the attenuation characteristics of the multiple reflected waves in the wall due to the presence or absence of the liquid phase in the container. It is disclosed that the liquid level is determined from the difference.

特開昭61−3012号公報Japanese Patent Laid-Open No. 61-3012 特開平8−136320号公報JP-A-8-136320 特開平5−133792号公報Japanese Patent Laid-Open No. 5-133792 特開平11−218436号公報Japanese Patent Laid-Open No. 11-218436 特開2000−121410号公報JP 2000-121410 A

上記従来技術(1)や(2)では、超音波が容器内液相中を伝播して対向側の内壁面またはコーナ部で反射して戻ってくることを利用するものであるため、液相中に気相や固相があると、気相または固相によって超音波が散乱・減衰し、対向側の内壁面やコーナ部からの反射波が得られず、確実で安定した液位判定はできない。   In the prior arts (1) and (2), since the ultrasonic wave propagates in the liquid phase in the container and is reflected and returned by the inner wall surface or the corner portion on the opposite side, the liquid phase If there is a gas phase or solid phase inside, the ultrasonic wave is scattered and attenuated by the gas phase or solid phase, and the reflected wave from the inner wall surface and corner of the opposite side cannot be obtained, so reliable and stable liquid level judgment is possible Can not.

また、従来技術(3)では、超音波センサを設置した側の内壁面からの(多重)反射波が液相の存在で大きく減衰することを利用している。しかし、容器の材質がプラスチック系で液体の音響インピーダンスとの差が小さい場合には、容器内の液相により反射波は例えば30%程度に減衰し顕著であるが、容器が鋼材のタンクの場合には、液相の存在によっても94%までしか減衰せず、判定が必ずしも確実ではない欠点がある。   Further, in the prior art (3), the fact that (multiple) reflected waves from the inner wall surface on the side where the ultrasonic sensor is installed is greatly attenuated due to the presence of the liquid phase. However, when the material of the container is plastic and the difference from the acoustic impedance of the liquid is small, the reflected wave is noticeably attenuated by about 30% due to the liquid phase in the container, but the container is a steel tank. However, there is a drawback in that the attenuation is only 94% due to the presence of the liquid phase and the determination is not necessarily reliable.

本発明の目的は、容器内液相中に気相や固相がある場合にも、確実で安定した判定が行える音響による液位検出方法及び装置を提供することである。   An object of the present invention is to provide an acoustic liquid level detection method and apparatus that can perform a reliable and stable determination even when a liquid phase in a container has a gas phase or a solid phase.

本発明の望ましい実施態様においては、音響センサにより、容器内の液位を検出する液位検出方法において、容器外壁に配置した数十ヘルツ〜数百キロヘルツ内の音波受信器による音波の受信により、容器内液相中の気相の発生音もしくは気相の破裂音を受信するステップと、この受信信号の有無もしくはこの受信信号の周波数分析,位置評定,相関処理等の信号分析処理結果に基づいて容器内の液位を判定するステップを含むことを特徴とする。   In a preferred embodiment of the present invention, in a liquid level detection method for detecting a liquid level in a container by an acoustic sensor, by receiving a sound wave by a sound wave receiver in the tens to hundreds of kilohertz arranged on the outer wall of the container, Based on the step of receiving the gas phase generation sound or gas phase burst sound in the liquid phase in the container, and the presence or absence of this received signal or the signal analysis processing results such as frequency analysis, position evaluation, correlation processing, etc. of this received signal The method includes the step of determining the liquid level in the container.

本発明の望ましい他の実施態様においては、音響センサにより、容器の外から容器内の液位を検出する液位検出装置において、容器の外壁に沿って上下方向に列設され、容器内から発生する数十ヘルツ〜数百キロヘルツの音波を受信する多数の音波受信器と、これらの多数の音波受信器の受信状況を前記各受信器毎に観測する受信信号観測部と、前記受信信号観測部の観測結果から液位を判定する液位判定部とを備えたことを特徴とする。   In another preferred embodiment of the present invention, in the liquid level detection device for detecting the liquid level in the container from the outside of the container by the acoustic sensor, the liquid level detection apparatus is arranged in the vertical direction along the outer wall of the container and is generated from the inside of the container. A plurality of sound wave receivers for receiving sound waves of several tens of hertz to several hundred kilohertz, a reception signal observation unit for observing the reception status of these many sound wave receivers for each receiver, and the reception signal observation unit And a liquid level determination unit for determining the liquid level from the observation results of the above.

本発明のこれら望ましい実施態様によれば、容器内液相中に気相や固相が存在しても、容器内液位を容器外面から安定して確実に検出することができる。   According to these desirable embodiments of the present invention, even if a gas phase or a solid phase is present in the liquid phase in the container, the liquid level in the container can be stably and reliably detected from the outer surface of the container.

以下、図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施例における液位検出方法の原理説明図である。図において、圧力タンク等の容器1内にはエチレン等の液体(液相)2が存在し、その液位は液面21である。超音波送受信器(以下、単にセンサと呼ぶ)3は、図のセンサ31や32で示すように容器外壁に複数個設置され、あるいは1個のセンサが容器外壁に沿って上下方向に移動可能に配置される。センサ3から容器内に向かって、ほぼ水平方向に超音波を送信すれば、センサ3は液相2中の気相4や固相5による散乱反射波Nを受信する。通常エチレンは沸騰しており、多くの気相4が存在する。   FIG. 1 is a diagram illustrating the principle of a liquid level detection method according to an embodiment of the present invention. In the figure, a liquid (liquid phase) 2 such as ethylene exists in a container 1 such as a pressure tank, and the liquid level is a liquid level 21. A plurality of ultrasonic transmitters / receivers (hereinafter simply referred to as sensors) 3 are installed on the outer wall of the container as shown by the sensors 31 and 32 in the figure, or one sensor can move vertically along the outer wall of the container. Be placed. If ultrasonic waves are transmitted from the sensor 3 into the container in a substantially horizontal direction, the sensor 3 receives the scattered reflected wave N from the gas phase 4 and the solid phase 5 in the liquid phase 2. Usually ethylene is boiling and there are many gas phases 4.

図2は、本発明の第1の実施例における液位検出方法による受信波形説明図である。超音波センサ3が容器1内液面21よりも下方に位置する、すなわちセンサ31の位置にあるときの受信波形は、図2(a)液相有りに示すようになり、送信パルスTの後に、最初の内壁面反射波B1以降に、液相2中の気相4や固相5からの散乱反射波N(N1〜N4)が受信される。超音波センサ3を上方に移動して、容器1内液相2の上面21より上の超音波センサ32の位置に移動させると、その受信波形は図2(b)液相無しに示すようになり、内壁面反射波B1及びその多重反射波B2、B3…のみが受信される。従って、超音波センサ3を複数設けるか、あるいは1個のセンサを移動させながら、内壁面反射波B1及びその多重反射波B2、B3…の間に受信する気相4や固相5からの散乱反射波N(N1,N2,N3…)の有無を監視することによって、液相2内に気相4や固相5を含む場合にも、容器1内の液位を検出できる。また、液相2内に気相4や固相5を含まない場合には、対向側の内壁面の反射波Aを検出することで液位を検出できることは言うまでもない。   FIG. 2 is an explanatory diagram of received waveforms by the liquid level detection method in the first embodiment of the present invention. The received waveform when the ultrasonic sensor 3 is positioned below the liquid level 21 in the container 1, that is, at the position of the sensor 31, is as shown in FIG. The scattered reflected waves N (N1 to N4) from the gas phase 4 and the solid phase 5 in the liquid phase 2 are received after the first inner wall surface reflected wave B1. When the ultrasonic sensor 3 is moved upward and moved to the position of the ultrasonic sensor 32 above the upper surface 21 of the liquid phase 2 in the container 1, the received waveform is as shown in FIG. Thus, only the inner wall surface reflected wave B1 and its multiple reflected waves B2, B3... Are received. Therefore, scattering from the gas phase 4 and the solid phase 5 received between the inner wall reflected wave B1 and the multiple reflected waves B2, B3... While providing a plurality of ultrasonic sensors 3 or moving one sensor. By monitoring the presence or absence of the reflected wave N (N1, N2, N3...), The liquid level in the container 1 can be detected even when the liquid phase 2 includes the gas phase 4 or the solid phase 5. Needless to say, when the liquid phase 2 does not include the gas phase 4 or the solid phase 5, the liquid level can be detected by detecting the reflected wave A on the opposite inner wall surface.

図3は、容器壁が薄い場合の本発明の第1の実施例における液位検出方法による液相が存在する場合の受信波形説明図である。同図(a)、(b)に示すように、内壁面反射波B1及びその多重反射波B2、B3…の受信時刻以降から、本来対向側の内壁面反射波Aが受信される時刻までの間に受信する液相2中の気相4や固相5による散乱反射波N(N1,N2…)を監視すれば、センサの高さ位置における液相2及び気相4や固相5の有無を検出できるので、同様にして容器1内の液位を判定できる。   FIG. 3 is an explanatory diagram of received waveforms when a liquid phase is present by the liquid level detection method in the first embodiment of the present invention when the container wall is thin. As shown in FIGS. 6A and 6B, from the time after receiving the inner wall surface reflected wave B1 and its multiple reflected waves B2, B3... To the time when the opposed inner wall surface reflected wave A is received. If the scattered reflected wave N (N1, N2,...) By the gas phase 4 or the solid phase 5 in the liquid phase 2 received in between is monitored, the liquid phase 2, the gas phase 4 or the solid phase 5 at the sensor height position. Since the presence or absence can be detected, the liquid level in the container 1 can be similarly determined.

図4は、本発明の第一実施例による液位検出装置の全体構成ブロック図である。超音波センサ3として、多数(N個)のセンサ31,32,…3Nが容器1の壁面に沿って上下方向に列設されている。切替え回路6は、信号処理及び液位判定部9からの切替え信号によって、これらの超音波センサ3群を電気的に切替え、順次タンク1内液相2中の気相4や固相5からの反射波Nを受信する。反射波の受信状況は、超音波送受信部7、受信信号観測部8を介して観測され、信号処理及び液位判定部9にて液位を判定する。   FIG. 4 is an overall configuration block diagram of the liquid level detection device according to the first embodiment of the present invention. As the ultrasonic sensor 3, a large number (N) of sensors 31, 32,... 3N are arranged in the vertical direction along the wall surface of the container 1. The switching circuit 6 electrically switches these ultrasonic sensors 3 group by the signal processing and switching signal from the liquid level determination unit 9, and sequentially from the gas phase 4 and the solid phase 5 in the liquid phase 2 in the tank 1. A reflected wave N is received. The reception state of the reflected wave is observed through the ultrasonic transmission / reception unit 7 and the reception signal observation unit 8, and the liquid level is determined by the signal processing and liquid level determination unit 9.

図5は、図4の本発明の第一実施例による液位検出方法の処理フロー図である。まず、ステップ501で感度調整の後、センサ31をONにする初期条件設定を行う。ステップ502では、気相4や固相5からの反射波N波または対向内壁面反射波A波の有無を判断し、無ければステップ503にて次のセンサをONして再びステップ502の判断を行う。これをN波またはA波を検出するまで繰り返し、ステップ504へ進む。ステップ504では、受信したセンサのナンバーすなわち上下方向の位置を確認する。予め設定された複数のセンサの取付位置から、どのセンサが受信したかが分かれば液位を検出できる。これによってステップ505にて液位を判定し、その結果を表示する。   FIG. 5 is a process flow diagram of the liquid level detection method according to the first embodiment of the present invention shown in FIG. First, after adjusting the sensitivity in step 501, initial conditions are set to turn on the sensor 31. In step 502, the presence or absence of the reflected wave N wave from the gas phase 4 or the solid phase 5 or the opposed inner wall surface reflected wave A wave is determined. If not, the next sensor is turned on in step 503 and the determination in step 502 is performed again. Do. This is repeated until an N wave or an A wave is detected, and the process proceeds to step 504. In step 504, the number of the received sensor, that is, the vertical position is confirmed. The liquid level can be detected if it is known which sensor has received from a plurality of preset sensor mounting positions. Accordingly, the liquid level is determined in step 505, and the result is displayed.

本実施例によれば、順次センサを切替えることによって、気相4や固相5からの反射波Nあるいは対向内壁面反射波Aが無くなりあるいは現れるセンサ位置から、液位を知ることができ、気相4や固相5が多く、対向内壁面反射波Aが得られにくい液体2であっても、確実に液位を判定できる。   According to the present embodiment, by sequentially switching the sensors, the liquid level can be known from the sensor position where the reflected wave N from the gas phase 4 or the solid phase 5 or the reflected wave A on the opposite inner wall surface disappears or appears. Even in the case of the liquid 2 in which the phase 4 and the solid phase 5 are large and the opposed inner wall surface reflected wave A is difficult to obtain, the liquid level can be reliably determined.

図6は、本発明の第二実施例による液位検出装置の全体構成ブロック図である。図4と同一符号はほぼ同様の機能を持つものであり重複説明は省略する。この実施例においては、センサ3は1個とし、駆動及び位置測定部10で上下方向に駆動するとともにその現在位置を測定する。符号31及び32は、移動した1個のセンサの2つの位置を表すものである。   FIG. 6 is a block diagram showing the overall configuration of the liquid level detection device according to the second embodiment of the present invention. The same reference numerals as those in FIG. 4 have substantially the same functions, and redundant description is omitted. In this embodiment, the number of sensors 3 is one, and the drive and position measurement unit 10 drives the sensor 3 in the vertical direction and measures its current position. Reference numerals 31 and 32 represent two positions of the moved one sensor.

図7に、図6の本発明の第二実施例における液位判定のフローチャート図を示す。最初、ステップ701において、超音波センサ3を容器外壁面に音響的に接触し、容器内壁面反射波B等を受信して感度など装置の初期設定を行う。次に、ステップ702で、受信波形から容器1内液相2中の気相4や固相5による散乱反射波Nまたは対向内壁面反射波Aの有無を判断する。反射波NまたはAを確認した場合は、ステップ703に進み、超音波センサ3を上方に移動させ、ステップ704にて反射波NやAの消失を確認するまでセンサ3の移動を繰返す。反射波NやAの消失を確認すれば、ステップ705でその時点の超音波センサ位置を駆動及び位置測定部10で測定する。前記ステップ702で、最初から反射波NもAもが無かった場合には、ステップ706に進んで、逆にセンサ3を下方へ移動させる。同様にステップ707で反射波NまたはAの出現を確認するまでセンサ3を移動させ、ステップ705でそのセンサ位置を測定する。この結果によりステップ708にて液位を判定する。   FIG. 7 is a flow chart for determining the liquid level in the second embodiment of the present invention shown in FIG. First, in step 701, the ultrasonic sensor 3 is acoustically brought into contact with the outer wall surface of the container, and the inner wall surface reflected wave B or the like is received to perform initial setting of the apparatus such as sensitivity. Next, in step 702, the presence or absence of the scattered reflected wave N or the opposed inner wall surface reflected wave A due to the gas phase 4 or the solid phase 5 in the liquid phase 2 in the container 1 is determined from the received waveform. If the reflected wave N or A is confirmed, the process proceeds to step 703, the ultrasonic sensor 3 is moved upward, and the movement of the sensor 3 is repeated until the disappearance of the reflected wave N or A is confirmed in step 704. If the disappearance of the reflected waves N and A is confirmed, the position of the ultrasonic sensor at that time is measured by the driving and position measuring unit 10 in step 705. If there is no reflected wave N or A from the beginning in step 702, the process proceeds to step 706, and conversely the sensor 3 is moved downward. Similarly, the sensor 3 is moved until the appearance of the reflected wave N or A is confirmed in step 707, and the sensor position is measured in step 705. Based on this result, the liquid level is determined in step 708.

なお、超音波センサ3の移動や位置読み取りは手動、自動いずれでもよい。   The movement and position reading of the ultrasonic sensor 3 may be either manual or automatic.

以上の図4〜7にて説明した本発明の第一、第二実施例においては、特に、エチレン等の気泡4の多い液相2の液位測定の場合には、散乱反射波Nのみを受信し、対向内壁面反射波Aはタイミング的に受信しないように構成しても、液位判定は十分に可能である。この場合、あらかじめ超音波センサの位置と受信信号情報から真の液位の位置を把握した状態で、データを収集し、その結果により受信パターン情報と判定結果のモデルを作っておき、実際の測定に当っては、このようなモデルデータと比較することで液位を判定するようにすれば、液位をさらに精度良く判定できる。   In the first and second embodiments of the present invention described above with reference to FIGS. 4 to 7, in particular, in the case of the liquid level measurement of the liquid phase 2 having many bubbles 4 such as ethylene, only the scattered reflected wave N is used. Even if it is configured so that the reflected wave A on the opposite inner wall surface is not received in a timely manner, the liquid level can be determined sufficiently. In this case, data is collected in advance with the true liquid level position grasped from the position of the ultrasonic sensor and the received signal information, and a model of the received pattern information and judgment result is created based on the result, and actual measurement is performed. In this case, if the liquid level is determined by comparing with such model data, the liquid level can be determined with higher accuracy.

図8は、本発明の第三実施例による液位検出装置の全体構成ブロック図である。斜角の超音波センサ3を容器外壁面に当て、超音波を容器1内の液面21の下方側(液相側)から液面21方向に向かって送信している。超音波は液面21が容器内壁11と接する境界部(液面コーナ)12すなわち表面張力の接触角で成す液面で反射し、その反射波Rは超音波センサ3(31または32)で受信できる。   FIG. 8 is a block diagram of the overall configuration of the liquid level detection device according to the third embodiment of the present invention. The oblique angle ultrasonic sensor 3 is applied to the outer wall surface of the container, and ultrasonic waves are transmitted from the lower side (liquid phase side) of the liquid surface 21 in the container 1 toward the liquid surface 21. The ultrasonic wave is reflected by the boundary surface (liquid surface corner) 12 where the liquid surface 21 is in contact with the inner wall 11 of the container, that is, the liquid surface formed by the contact angle of the surface tension, and the reflected wave R is received by the ultrasonic sensor 3 (31 or 32). it can.

図9は、図8の実施例における受信波形説明図である。液面21の位置は、超音波センサ3を上下方向に移動して前記反射波Rの最大受信強度位置において、超音波送信時刻T1から反射波Rを受信する時刻T2までの時間Thと、容器壁内への超音波入射角度θ、容器壁の厚さL及び容器壁材中の超音波音速等から算出できる。たとえば図8に示すように、容器壁中にθ度で超音波を入射すると、超音波入射点位置から液面21までの距離ΔYは、式(1)で算出できる。   FIG. 9 is an explanatory diagram of received waveforms in the embodiment of FIG. The position of the liquid surface 21 is determined by moving the ultrasonic sensor 3 in the vertical direction to a time Th from the ultrasonic transmission time T1 to the time T2 at which the reflected wave R is received at the position of the maximum reception intensity of the reflected wave R, and the container. It can be calculated from the ultrasonic incident angle θ into the wall, the thickness L of the container wall, the ultrasonic velocity of sound in the container wall material, and the like. For example, as shown in FIG. 8, when an ultrasonic wave is incident on the container wall at θ degrees, the distance ΔY from the position of the ultrasonic wave incident point to the liquid surface 21 can be calculated by Expression (1).

ΔY=(tan−1θ)×L …(1)
したがって、液位Pは、センサ位置をP31とすれば、(2)式で求められる。
ΔY = (tan −1 θ) × L (1)
Therefore, the liquid level P can be obtained by the equation (2) if the sensor position is P31.

液位P=P31+ΔY …(2)
この場合、容器内壁面11から液面コーナ12までの距離は無視しているが、必要に応じてこの距離を加味して計算したり校正することもできる。また、超音波を送信した時刻T1から反射波Rを受信するまでの時間Thは、超音波センサ3内の距離とその音速、容器壁中の距離とその音速及び容器内壁面から液面コーナ12までの距離とその音速によって計算できる。
Liquid level P = P31 + ΔY (2)
In this case, the distance from the inner wall surface 11 of the container to the liquid surface corner 12 is ignored, but can be calculated or calibrated by taking this distance into account as necessary. The time Th from the time T1 at which the ultrasonic wave is transmitted until the reflected wave R is received is the distance in the ultrasonic sensor 3 and its sound speed, the distance in the container wall and its sound speed, and the liquid surface corner 12 from the inner wall surface of the container. Can be calculated by the distance to and the speed of sound.

図10は、図8,9の実施例における処理フローチャートである。ステップ101で初期設定後、ステップ102でセンサ3を液面21より下方から上方に移動させ、ステップ103にてコーナ反射波Rの受信を確認できるまで繰返す。反射波Rを検出すると、ステップ104にて音響センサ3を上下に移動して、ステップ105で反射波Rの振幅がピークを示す位置又は消滅する位置を特定する。内壁11への超音波の到達点が液面コーナ12を過ぎると、コーナ反射波Rは受信できなくなる。したがって、コーナ反射波Rがピークとなる位置又は消滅する位置を液位Pと判定する。ステップ107でセンサ位置P31と距離ΔYから前述のようにして液位Pを判定する。   FIG. 10 is a processing flowchart in the embodiment of FIGS. After the initial setting in step 101, the sensor 3 is moved from the lower side to the upper side in step 102, and the process is repeated until the reception of the corner reflected wave R can be confirmed in step 103. When the reflected wave R is detected, the acoustic sensor 3 is moved up and down in step 104, and a position where the amplitude of the reflected wave R shows a peak or disappears is specified in step 105. When the arrival point of the ultrasonic wave to the inner wall 11 passes the liquid surface corner 12, the corner reflected wave R cannot be received. Therefore, the position where the corner reflected wave R reaches the peak or disappears is determined as the liquid level P. In step 107, the liquid level P is determined from the sensor position P31 and the distance ΔY as described above.

図11は、本発明による第四実施例の液位検出装置の全体構成ブロック図である。図8と同一符号は殆ど同一機能を持つものであり重複説明は避ける。本実施例では、容器壁中に横波で伝播し、内壁面で一種の縦波にモード変換され、壁面に沿って伝播する波(クリーピング波と呼ばれる)の反射を利用する。本構成では音響センサの種類が異なり、今まで垂直に伝播する超音波を利用していたが、ここでは超音波を特定の角度で斜めに入射する。鋼中への縦波の入射角度θを70〜90度で入射すると、30〜33度の横波が発生する。タンク(容器)1の内壁11に到達した横波は内壁11面に沿って伝播するクリーピング波となる。クリーピング波は液中に漏れ込みながら伝播し、液面21のコーナ12の表面張力による曲線部で反射して散乱し、同じ経路を戻る波を同じセンサ31で受信する。あるいは、散乱した反射波を別のセンサ32で受信しても良い。また、超音波アレイセンサ等を用いて前記コーナ12からの反射波を最適条件で常に効率良く受信しても良い。さらに、液位が上下に揺動する場合や容器内壁面11と液面21の接触角が鈍角になる場合には、超音波を容器1内液相2の液面21の上方側(気相側)から送受信して液位を検出することもできる。   FIG. 11 is a block diagram showing the overall configuration of the liquid level detection device according to the fourth embodiment of the present invention. The same reference numerals as those in FIG. 8 have almost the same functions, and redundant description is avoided. In the present embodiment, the reflection of a wave (referred to as a creeping wave) that propagates in the container wall with a transverse wave, is mode-converted into a kind of longitudinal wave on the inner wall surface, and propagates along the wall surface is used. In this configuration, the type of acoustic sensor is different and ultrasonic waves propagating vertically have been used so far, but here, the ultrasonic waves are incident obliquely at a specific angle. If the incident angle θ of the longitudinal wave into the steel is 70 to 90 degrees, a transverse wave of 30 to 33 degrees is generated. The transverse wave that reaches the inner wall 11 of the tank (container) 1 becomes a creeping wave that propagates along the surface of the inner wall 11. The creeping wave propagates while leaking into the liquid, and is reflected and scattered by a curved portion due to the surface tension of the corner 12 of the liquid surface 21, and a wave returning in the same path is received by the same sensor 31. Alternatively, the scattered reflected wave may be received by another sensor 32. In addition, the reflected wave from the corner 12 may be always received efficiently and optimally using an ultrasonic array sensor or the like. Furthermore, when the liquid level fluctuates up and down or when the contact angle between the inner wall surface 11 and the liquid surface 21 becomes an obtuse angle, ultrasonic waves above the liquid surface 21 of the liquid phase 2 in the container 1 (gas phase The liquid level can also be detected by transmitting and receiving from the side).

図12は、図11の実施例における液位検出方法の処理フローチャートである。このフローチャートはセンサ31で受信する場合である。ステップ121で初期設定後、ステップ122でセンサ3を液面21より下方から上方に移動させ、ステップ123にてコーナ反射波Rの受信を確認できるまで繰返す。反射波Rを検出すると、ステップ124にて音響センサ3を上下に移動して、ステップ125で反射波Rが消滅する位置を特定する。受信したコーナ反射波はセンサが液面コーナ部に近づくに連れて時間的に速く受信され、内壁面への超音波の到達点がコーナ部を過ぎるとコーナ反射波は受信できなくなる。従ってコーナ反射波が消滅する位置を持って液位と判定する。ステップ126で、コーナ反射波Rが消滅するセンサ位置を測定し、ステップ127でセンサ位置P31と距離ΔYから前述のようにして液位Pを判定する。   FIG. 12 is a process flowchart of the liquid level detection method in the embodiment of FIG. This flowchart is a case where the sensor 31 receives data. After the initial setting in step 121, the sensor 3 is moved from the lower side to the upper side in step 122, and the process is repeated until the reception of the corner reflected wave R can be confirmed in step 123. When the reflected wave R is detected, the acoustic sensor 3 is moved up and down in step 124, and the position where the reflected wave R disappears is specified in step 125. The received corner reflected wave is received faster in time as the sensor approaches the liquid level corner portion, and when the arrival point of the ultrasonic wave on the inner wall surface passes the corner portion, the corner reflected wave cannot be received. Accordingly, the liquid level is determined with a position where the corner reflected wave disappears. In step 126, the sensor position where the corner reflected wave R disappears is measured, and in step 127, the liquid level P is determined from the sensor position P31 and the distance ΔY as described above.

図13は、本発明による液位検出装置の第五実施例の全体構成ブロック図である。本構成の音響センサ30は、数十ヘルツ〜数百キロヘルツ内の音波受信器で、容器1の内部で発生する気相4の破裂音や発生音を受信するのみで、自身では音波を発生しない。この実施例においても類似物の重複説明は避ける。これまでの実施例と構成は似ているが、異なるのは受信のみのセンサ30(301,302、…30N)のほか、超音波送受信部7に代えて単なる音波受信部70で良く、またセンサ30の各位置における受信信号の基準パターンを蓄積したデータ13を用意している。   FIG. 13 is a block diagram showing the overall configuration of a fifth embodiment of the liquid level detection device according to the present invention. The acoustic sensor 30 of this configuration is a sound wave receiver in the range of several tens of hertz to several hundreds of kilohertz, and only receives a burst sound or generated sound of the gas phase 4 generated inside the container 1, and does not generate sound waves by itself. . Also in this embodiment, a duplicate description of similar substances is avoided. Although the configuration is similar to the previous embodiments, the only difference is a sensor 30 (301, 302,... 30N) only for reception, or a simple acoustic wave receiver 70 instead of the ultrasonic transmitter / receiver 7. Data 13 in which reference patterns of received signals at 30 positions are accumulated is prepared.

図14は、本発明の第五実施例による液位検出方法の処理フローチャートである。ステップ141で初期設定を行い、ステップ142で受信信号を取り込む。ステップ143では、受信信号を前記の基準パターン13のどれかに合致するかどうかを照合し、合致しなければステップ145で次のセンサに切替える。合致すればステップ146にて仮の水位として判定し、ステップ147ですべてのセンサでの終了を確認する。そしてステップ148にて最終水位の判定を行い、結果を表示する。このように、センサ301〜30Nを切替えて受信信号を受信する度に前記の基準パターン13のどれかに合致するかどうかを照合し、合致すれば仮の水位として判定し、最終的には全部のセンサの受信信号の合致状況を総合的に判断して水位を決定している。水位決定に当っては、水位の付近に設置した2個以上のセンサの受信信号パターンが基準パターンとほぼ合致することを確認することが望ましい。このとき、受信信号に対して、破裂音発生位置の位置標定、相関処理、周波数分析等の処理法を適用しても良い。   FIG. 14 is a process flowchart of a liquid level detection method according to the fifth embodiment of the present invention. In step 141, initialization is performed, and in step 142, a received signal is captured. In step 143, it is checked whether or not the received signal matches any of the reference patterns 13, and if not, the next sensor is switched to in step 145. If they match, it is determined as a temporary water level in step 146, and the end of all sensors is confirmed in step 147. In step 148, the final water level is determined and the result is displayed. In this way, each time the received signals are received by switching the sensors 301 to 30N, it is checked whether or not the reference pattern 13 matches, and if it matches, it is determined as a temporary water level, and finally all The water level is determined by comprehensively judging the matching status of the received signals of the sensors. In determining the water level, it is desirable to confirm that the received signal patterns of two or more sensors installed near the water level substantially match the reference pattern. At this time, a processing method such as position determination of the plosive sound generation position, correlation processing, frequency analysis, or the like may be applied to the received signal.

以上の実施例において、容器が高温あるいは低温状態にある場合には、高温用及び低温用の音響センサを使い分けて液位を検出することもできる。   In the above embodiment, when the container is in a high temperature or low temperature state, the liquid level can also be detected by using different high temperature and low temperature acoustic sensors.

以上の実施例によれば、容器内液相中に発生する気相や固相からの反射波並びに容器内液面と内壁面との境界部(液面コーナ)からの反射波を検出して液位を検出することにより、容器内の液相中に気相や固相が存在し、対向する容器の内壁面からの反射波を得にくい場合にも、液位を容器外面から安定・確実かつ簡単な構成で検出することができる。   According to the above embodiment, the reflected wave from the gas phase and the solid phase generated in the liquid phase in the container and the reflected wave from the boundary portion (liquid surface corner) between the liquid surface and the inner wall surface in the container are detected. By detecting the liquid level, even if there is a gas phase or solid phase in the liquid phase in the container and it is difficult to obtain a reflected wave from the inner wall surface of the opposite container, the liquid level is stable and reliable from the outer surface of the container. And it can detect with a simple structure.

本発明の一実施例における液位検出方法の原理説明図。The principle explanatory drawing of the liquid level detection method in one Example of this invention. 本発明の一実施例における液位検出方法による受信波形説明図。The received waveform explanatory drawing by the liquid level detection method in one Example of this invention. 容器壁が薄い場合の本発明の一実施例の液位検出方法による受信波形説明図。The received waveform explanatory drawing by the liquid level detection method of one Example of this invention when a container wall is thin. 本発明の第一実施例による液位検出装置の全体構成ブロック図。1 is an overall configuration block diagram of a liquid level detection device according to a first embodiment of the present invention. 本発明の第一実施例による液位検出方法の処理フロー図。The processing flowchart of the liquid level detection method by 1st Example of this invention. 本発明の第二実施例による液位検出装置の全体構成ブロック図。The block diagram of the whole structure of the liquid level detection apparatus by 2nd Example of this invention. 本発明の第二実施例による液位検出方法の処理フロー図。The processing flowchart of the liquid level detection method by 2nd Example of this invention. 本発明の第三実施例による液位検出装置の全体構成ブロック図。The block diagram of the whole structure of the liquid level detection apparatus by 3rd Example of this invention. 本発明の第三実施例の液位検出方法における受信波形説明図。The received waveform explanatory drawing in the liquid level detection method of the 3rd Example of this invention. 本発明の第三実施例による液位検出方法の処理フロー図。The processing flowchart of the liquid level detection method by the 3rd Example of this invention. 本発明の第四実施例による液位検出装置の全体構成ブロック図。The block diagram of the whole structure of the liquid level detection apparatus by 4th Example of this invention. 本発明の第四実施例による液位検出方法の処理フロー図。The processing flowchart of the liquid level detection method by 4th Example of this invention. 本発明の第五実施例による液位検出装置の全体構成ブロック図。The block diagram of the whole structure of the liquid level detection apparatus by 5th Example of this invention. 本発明の第五実施例による液位検出方法の処理フロー図。The processing flowchart of the liquid level detection method by 5th Example of this invention.

符号の説明Explanation of symbols

1…容器、2…液相、21…液面、3,31,32,3N…超音波送受信器(超音波センサ)、30,301,302,30N…音波受信器(受信のみの音波センサ)、4…気相、5…固相、6…切替え回路、7…超音波送受信部、70…音波受信部、8…受信信号観測部、9…信号処理及び液位判定部、10…駆動及び位置測定部、11…容器内壁、12…境界部(液面コーナ)、13…受信信号の基準パターン蓄積データ、T…送信波、A…対向する容器内壁からの反射波、B…送受信器を配置した容器壁の内壁からの反射波、N…気相や固相からの反射波、R…境界部(液面コーナ)からの反射波。   DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Liquid phase, 21 ... Liquid level, 3, 31, 32, 3N ... Ultrasonic transmitter / receiver (ultrasonic sensor), 30, 301, 302, 30N ... Sound wave receiver (acoustic sensor for reception only) DESCRIPTION OF SYMBOLS 4 ... Gas phase, 5 ... Solid phase, 6 ... Switching circuit, 7 ... Ultrasonic transmission / reception part, 70 ... Sound wave reception part, 8 ... Received signal observation part, 9 ... Signal processing and liquid level determination part, 10 ... Drive and Position measurement unit, 11 ... inner wall of container, 12 ... boundary (liquid level corner), 13 ... reference pattern accumulated data of received signal, T ... transmitted wave, A ... reflected wave from inner wall of opposite container, B ... transmitter / receiver A reflected wave from the inner wall of the arranged container wall, N: a reflected wave from a gas phase or a solid phase, R: a reflected wave from a boundary (liquid surface corner).

Claims (2)

音響センサにより、容器内の液位を検出する液位検出方法において、容器外壁に配置した数十ヘルツ〜数百キロヘルツ内の音波受信器による音波の受信により、容器内液相中の気相の発生音もしくは気相の破裂音を受信するステップと、この受信信号の有無もしくはこの受信信号の周波数分析,位置評定,相関処理等の信号分析処理結果に基づいて容器内の液位を判定するステップを含むことを特徴とする音響による液位検出方法。   In the liquid level detection method for detecting the liquid level in the container by the acoustic sensor, the gas phase in the liquid phase in the container is received by receiving the sound wave by the sound wave receiver in the tens to hundreds of kilohertz arranged on the outer wall of the container. A step of receiving a generated sound or a gas phase burst sound, and a step of determining the liquid level in the container based on the presence or absence of the received signal or a signal analysis processing result such as frequency analysis, position evaluation, correlation processing, etc. of the received signal. A method for detecting a liquid level by sound. 音響センサにより、容器の外から容器内の液位を検出する液位検出装置において、容器の外壁に沿って上下方向に列設され、容器内から発生する数十ヘルツ〜数百キロヘルツの音波を受信する多数の音波受信器と、これらの多数の音波受信器の受信状況を前記各受信器毎に観測する受信信号観測部と、前記受信信号観測部の観測結果から液位を判定する液位判定部とを備えたことを特徴とする音響による液位検出装置。   In the liquid level detection device that detects the liquid level in the container from the outside by the acoustic sensor, the acoustic wave of several tens to several hundreds of kilohertz generated in the container is arranged in the vertical direction along the outer wall of the container. A number of sound wave receivers to be received, a reception signal observation unit for observing the reception status of these many sound wave receivers for each of the receivers, and a liquid level for determining a liquid level from the observation results of the reception signal observation unit An acoustic liquid level detection device comprising: a determination unit.
JP2007312155A 2007-12-03 2007-12-03 Liquid level detection method by means of sound and its device Pending JP2008070388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312155A JP2008070388A (en) 2007-12-03 2007-12-03 Liquid level detection method by means of sound and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312155A JP2008070388A (en) 2007-12-03 2007-12-03 Liquid level detection method by means of sound and its device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001149644A Division JP2002340654A (en) 2001-05-18 2001-05-18 Method and device for detecting liquid level by sound

Publications (1)

Publication Number Publication Date
JP2008070388A true JP2008070388A (en) 2008-03-27

Family

ID=39292058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312155A Pending JP2008070388A (en) 2007-12-03 2007-12-03 Liquid level detection method by means of sound and its device

Country Status (1)

Country Link
JP (1) JP2008070388A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040319A (en) * 2008-08-05 2010-02-18 Toyota Motor Corp Method and apparatus for detecting electrolyte amount of secondary battery
JP2013140119A (en) * 2012-01-06 2013-07-18 Hitachi-Ge Nuclear Energy Ltd Method of monitoring reactor bottom section, apparatus for monitoring reactor bottom section, and nuclear reactor
CN106768186A (en) * 2017-02-10 2017-05-31 桂林新洲机械设备有限公司 High precision large-sized feed storage tank storing elevation carrection display device
KR102257473B1 (en) * 2020-09-11 2021-05-31 한국지질자원연구원 Method and apparatus for measuring level of sludge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281020A (en) * 1987-05-13 1988-11-17 Ube Ind Ltd Liquid level drop detector
JPH0421499B2 (en) * 1985-04-25 1992-04-10 Hiroyuki Urata
JPH0432329B2 (en) * 1987-06-02 1992-05-29
JPH06297726A (en) * 1993-04-12 1994-10-25 Canon Inc Ink jet recording apparatus and ink residual amount detecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421499B2 (en) * 1985-04-25 1992-04-10 Hiroyuki Urata
JPS63281020A (en) * 1987-05-13 1988-11-17 Ube Ind Ltd Liquid level drop detector
JPH0432329B2 (en) * 1987-06-02 1992-05-29
JPH06297726A (en) * 1993-04-12 1994-10-25 Canon Inc Ink jet recording apparatus and ink residual amount detecting method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040319A (en) * 2008-08-05 2010-02-18 Toyota Motor Corp Method and apparatus for detecting electrolyte amount of secondary battery
JP2013140119A (en) * 2012-01-06 2013-07-18 Hitachi-Ge Nuclear Energy Ltd Method of monitoring reactor bottom section, apparatus for monitoring reactor bottom section, and nuclear reactor
CN106768186A (en) * 2017-02-10 2017-05-31 桂林新洲机械设备有限公司 High precision large-sized feed storage tank storing elevation carrection display device
CN106768186B (en) * 2017-02-10 2023-04-07 桂林新洲机械设备有限公司 High-precision large-scale feed storage tank storage height measurement display device
KR102257473B1 (en) * 2020-09-11 2021-05-31 한국지질자원연구원 Method and apparatus for measuring level of sludge

Similar Documents

Publication Publication Date Title
US7789286B2 (en) Method and apparatus for assessing the quality of spot welds
CA2496370C (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
US20190078927A1 (en) Sensor
US20180031525A1 (en) Shear wave sensors for acoustic emission and hybrid guided wave testing
US9099206B2 (en) Nuclear reactor vibration monitoring device and monitoring method thereof
JP2002340654A (en) Method and device for detecting liquid level by sound
CN103591975A (en) Ultrasonic wave sensor index detection method and device
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP2008070388A (en) Liquid level detection method by means of sound and its device
RU2278378C1 (en) Method of revealing disturbances of polymer coating/metal tubes connection
JP2011141211A (en) Apparatus, method, and program for evaluating defect of underground structure
JP5730644B2 (en) Ultrasonic measurement method and apparatus for surface crack depth
JP2014196996A (en) Liquid detection method and liquid detection device
JP2009092471A (en) Flaw detection method and apparatus
KR101137984B1 (en) Method and apparatus for ultrasonic testing of an object
JP4329773B2 (en) Ultrasonic inspection method for fluororesin inspection object
JP2008070387A (en) Liquid level detection method by means of sound and its device
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
JP3406511B2 (en) Abnormal location detector
JP4682921B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2002055092A (en) Method and apparatus for diagnosing structure
US20150212220A1 (en) Acoustic piston track
JP2011185892A (en) Nondestructive inspection method and nondestructive inspection apparatus for determining degree of grout filling
CN104272066A (en) Method for measuring the fill level of a fluid
JP5868653B2 (en) Interface inspection method and interface inspection apparatus for composite structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208