JP2002055092A - Method and apparatus for diagnosing structure - Google Patents

Method and apparatus for diagnosing structure

Info

Publication number
JP2002055092A
JP2002055092A JP2000242013A JP2000242013A JP2002055092A JP 2002055092 A JP2002055092 A JP 2002055092A JP 2000242013 A JP2000242013 A JP 2000242013A JP 2000242013 A JP2000242013 A JP 2000242013A JP 2002055092 A JP2002055092 A JP 2002055092A
Authority
JP
Japan
Prior art keywords
frequency
transmitter
receiver
attenuation
attenuation characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000242013A
Other languages
Japanese (ja)
Other versions
JP4553459B2 (en
Inventor
Shinichi Hattori
晋一 服部
Takashi Shimada
隆史 島田
Koichiro Kai
公一郎 甲斐
Shuichi Nakamura
修一 中村
Yoshinobu Yamaguchi
義信 山口
Seiichi Matsui
精一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
West Japan Railway Co
Original Assignee
Mitsubishi Electric Corp
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, West Japan Railway Co filed Critical Mitsubishi Electric Corp
Priority to JP2000242013A priority Critical patent/JP4553459B2/en
Publication of JP2002055092A publication Critical patent/JP2002055092A/en
Application granted granted Critical
Publication of JP4553459B2 publication Critical patent/JP4553459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve such the problem that conventionally ultrasonic waves are used in a diagnostic apparatus, constituted so that a sound transmitter and a sound receiver are arranged on the surface of concrete structure or the like, and acoustic elastic waves are transmitted to the interior of an object to be inspected and a receiving signals is analyzed to investigate and internal structural flaw, directionality is sharp and a range capable of being inspected at one transmitter position is narrow, and for example, in the inspection of a wide range, such as the wall surface of a tunnel or the like, a long time is required and there is restriction is the arrangement of the transmitter and the receiver. SOLUTION: Frequency which is 100 Hz-100 kHz lower than conventional is used. First, the frequency characteristics of an object 101 to be inspected are measured within this frequency range and frequency wherein a receiving signal becomes large is calculated. Next, the object 101 to be inspected is excited for a prescribed time by the calculated frequency, to measure the attenuation characteristics of vibration. Sound velocity is calculated from the calculated attenuation characteristics and the data base 113 of the attenuation characteristics and the sound velocity preliminarily calculated with respect to a similar material and the compression strength of the object to be inspected is calculated from a data base 113 of preliminarily calculated sound velocity and compression strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、コンクリート構
造物などの内部欠陥を、内部の音響特性を計測すること
で発見する、あるいは、その音響速度、圧縮強度を推定
する構造物診断方法、および構造物診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure diagnosis method for finding an internal defect such as a concrete structure by measuring its internal acoustic characteristics, or estimating its acoustic velocity and compressive strength, and a structure thereof. The present invention relates to an object diagnostic device.

【0002】[0002]

【従来の技術】第1例。 図10は従来の構造物診断装置の第1の例を示す構成図
である。図において401は例えばコンクリートなどの
被検査物、402は被検査物401の1つの面401a
に密着して設置された受信子、403は受信子402か
らの信号を増幅する受信信号増幅器、404は受信信号
増幅器403の出力信号をディジタル信号に変換するA
/D変換器である。405は被検査物401の1つの面
401a(受信子402が設置された同じ面)に密着し
て設置された送信子、406は送信子405に信号を送
る信号発生器である。407はA/D変換器404によ
りディジタル化された受信信号(エコー信号波形または
単にエコーとも言う)を信号処理して必要な音響特性を
得る波形処理機構である。408は診断結果を表示する
表示装置、409は診断結果を記憶する記憶装置であ
る。
2. Description of the Related Art First example. FIG. 10 is a configuration diagram showing a first example of a conventional structure diagnostic apparatus. In the drawing, reference numeral 401 denotes an inspection object such as concrete, and 402 denotes one surface 401a of the inspection object 401.
403 is a receiving signal amplifier for amplifying a signal from the receiving element 402, and 404 is an A for converting an output signal of the receiving signal amplifier 403 into a digital signal.
/ D converter. Reference numeral 405 denotes a transmitter mounted in close contact with one surface 401 a of the inspection object 401 (the same surface on which the receiver 402 is mounted), and 406 denotes a signal generator for sending a signal to the transmitter 405. Reference numeral 407 denotes a waveform processing mechanism for performing signal processing on the received signal (echo signal waveform or simply echo) digitized by the A / D converter 404 to obtain necessary acoustic characteristics. Reference numeral 408 denotes a display device for displaying a diagnosis result, and 409 denotes a storage device for storing the diagnosis result.

【0003】次に動作について説明する。高周波帯域
(超音波域)の弾性波パルスを送信子405から被検査
物401の内部に伝搬させ、被検査物401中の異常部
( 図示しない欠陥部) によって反射されてくるエコーを
受信子402により検出し、そのエコー信号の特性(大
きさ、送信信号からの時間的ずれ、時間幅、周波数成分
の変化など)から異常部の大きさや位置、種類を推定す
る。
Next, the operation will be described. An elastic wave pulse in a high frequency band (ultrasonic range) is propagated from the transmitter 405 to the inside of the inspection object 401, and an abnormal portion in the inspection object 401 is transmitted.
The echo reflected by the defective part (not shown) is detected by the receiver 402, and the characteristic of the echo signal (magnitude, time deviation from the transmission signal, time width, change in frequency component, etc.) is determined based on the characteristic of the abnormal part. Estimate size, position and type.

【0004】第2例。 図11は従来の構造物診断装置の第2の例を示す構成図
である。図において501はコンクリートなどの被検査
物、502は被検査物501の1つの面501aに密着
して設置された受信子、503は受信子502からの信
号を増幅する受信信号増幅器、504は被検査物501
のもう一つの面501b(受信子502が設置された面
に対向する面)に密着して設置された送信子、505は
送信子504に信号を送る信号発生器である。506は
信号発生器505からのトリガ信号と受信信号増幅器5
03からの信号を受けて、そのタイミングのずれにより
被検査物501の内部の伝搬時間を計算する伝搬時間計
測装置である。507は診断処理機構であり被検査物5
01の内部での音速(信号の伝播速度、以下、音響速度
とも言う)の計算を行うと共に、診断データベース50
8から引き出した情報(予め類似する各種の構造物につ
いて音速と圧縮強度との関係を調べたもの)に基づい
て、被検査物501の圧縮強度の推定を行う。509は
診断結果を表示する表示装置、510は診断結果を記憶
する記憶装置である。
[0004] Second example. FIG. 11 is a configuration diagram showing a second example of a conventional structure diagnostic apparatus. In the figure, reference numeral 501 denotes an object to be inspected such as concrete; 502, a receiver mounted in close contact with one surface 501a of the object 501; 503, a reception signal amplifier for amplifying a signal from the receiver 502; Inspection object 501
A transmitter 505 is provided in close contact with another surface 501b (a surface facing the surface on which the receiver 502 is provided), and a signal generator 505 for sending a signal to the transmitter 504. Reference numeral 506 denotes a trigger signal from the signal generator 505 and the received signal amplifier 5.
This is a propagation time measuring device that receives a signal from the device 03 and calculates a propagation time inside the object 501 based on a timing shift. Reference numeral 507 denotes a diagnostic processing mechanism,
01, a sound speed (signal propagation speed, hereinafter also referred to as an acoustic speed) is calculated, and the diagnostic database 50 is calculated.
The compression strength of the inspection object 501 is estimated on the basis of the information extracted from 8 (the relationship between the sound speed and the compression strength of various similar structures is checked in advance). Reference numeral 509 denotes a display device for displaying a diagnosis result, and 510 denotes a storage device for storing the diagnosis result.

【0005】次に動作について説明する。被検査物50
1の1つの面501aに接触させた送信子504から伝
搬させた弾性波パルスを対向した面501bに接触させ
た受信子502により検出し、その伝搬時間と予め求め
た伝搬距離(図11の場合は被検査物501の厚み)か
ら被検査物501内部の音速を計算する。次に、求めた
音速をもとに、予め求めてある音速と圧縮強度の関係
(診断データベース508として保管してある)より、
被検査物501の圧縮強度を推定し、表示装置509に
表示する。また、推定した圧縮強度と被検査物501の
正常な状態での圧縮強度との差が、ある限界を越えてい
るか否かによって異常部位の有無を表示する。
Next, the operation will be described. Inspection object 50
11, an acoustic wave pulse propagated from the transmitter 504 contacting one surface 501a is detected by the receiver 502 contacting the opposing surface 501b, and the propagation time and the propagation distance determined in advance (in the case of FIG. 11) Is calculated from the thickness of the object 501). Next, based on the relationship between the sound speed and the compression strength obtained in advance based on the obtained sound speed (stored as the diagnostic database 508),
The compression strength of the inspection object 501 is estimated and displayed on the display device 509. Further, the presence or absence of an abnormal part is displayed based on whether or not the difference between the estimated compressive strength and the compressive strength of the test object 501 in a normal state exceeds a certain limit.

【0006】[0006]

【発明が解決しようとする課題】従来の構造物診断装置
は以上のように構成されているため、第1の例では、高
周波パルスを用いているので異常部分の構造が不均質物
質の場合には、弾性波の減衰が大きく、被検査物の異常
部分からの反射波を検出することが困難となり適用でき
ないという問題があった。また、そのため、減衰に打ち
勝つ大きなエネルギーを送信する必要があり、装置が大
形、高価となるという問題があった。また、指向性が鋭
く1つの送信子位置で診断できる範囲が極めて狭く、例
えばトンネル壁面などの広い範囲を検査するには多大の
時間を必要とするという問題があった。また、指向性が
鋭いことから送信子と受信子の位置関係に制約、例えば
同じ面に配置しなければならないなど、があった。
Since the conventional structure diagnostic apparatus is configured as described above, the first example uses a high-frequency pulse, so that the structure of the abnormal part is a heterogeneous substance. However, there is a problem in that the elastic wave is greatly attenuated, and it is difficult to detect a reflected wave from an abnormal portion of the inspection object, so that the method cannot be applied. Further, therefore, it is necessary to transmit a large amount of energy that overcomes the attenuation, and there is a problem that the device becomes large and expensive. Further, there is a problem that the directivity is sharp and the range that can be diagnosed at one transmitter position is extremely narrow, and it takes a lot of time to inspect a wide range such as a tunnel wall. In addition, since the directivity is sharp, there is a restriction on the positional relationship between the transmitter and the receiver, for example, they must be arranged on the same plane.

【0007】また、第2の例では、あらかじめ、送信子
と受信子との距離(弾性波の伝搬距離)を求めておく必
要があるが、構造物の構造によっては求められない場合
があり、音速を計測できない(診断そのものを実施でき
ない)という問題があった。また被検査物の構造上、被
検査物の対向する2つの面に送信子と受信子を設置でき
ない場合も、診断そのものが実施できないという問題が
あった。
In the second example, the distance between the transmitter and the receiver (elastic wave propagation distance) must be obtained in advance, but it may not be obtained depending on the structure of the structure. There was a problem that the sound velocity could not be measured (diagnosis itself could not be performed). In addition, when the transmitter and the receiver cannot be installed on the two opposing surfaces of the object due to the structure of the object, the diagnosis itself cannot be performed.

【0008】この発明は上記のような課題を解決するた
めになされたものであり、減衰の少ない周波数を用い
て、小さいエネルギーの送信で診断が可能で、送信子と
受信子との配置に制約がなく、従って、その間の距離
(伝搬距離)を計測する必要がなく、被検査物の任意の
2つの面に配置して計測できるとともに、1つの送信子
位置で被検査物の広範囲面積の計測を行うことができる
構造物診断装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. Diagnosis can be performed by transmitting a small amount of energy using a frequency with low attenuation, and the arrangement of a transmitter and a receiver is restricted. Therefore, there is no need to measure the distance between them (propagation distance), it is possible to arrange and measure on any two surfaces of the test object, and to measure the wide area of the test object at one transmitter position. It is an object of the present invention to obtain a structure diagnosis device capable of performing the above.

【0009】[0009]

【課題を解決するための手段】この発明による構造物診
断方法は、被検査物の表面に送信子と受信子とを設置す
る手順と、前記送信子に送信信号をその周波数を掃引さ
せつつ印加する手順と、前記送信子に前記送信信号を印
加している間に前記受信子が受信した信号をFFT解析
し、1つ以上のピーク周波数を検出する手順と、前記ピ
ーク周波数の信号を前記送信子に所定時間の間印加し、
その遮断後に、前記受信子が受信する信号の減衰特性を
計測する手順と、計測した減衰特性をあらかじめ測定し
た正常な被検査物の減衰特性と比較し、その差が所定の
範囲を越えたとき異常と判定する手順を含むものであ
る。
According to the present invention, there is provided a method for diagnosing a structure, comprising the steps of installing a transmitter and a receiver on the surface of an object to be inspected, and applying a transmission signal to the transmitter while sweeping its frequency. Performing FFT analysis on a signal received by the receiver while applying the transmission signal to the transmitter, detecting one or more peak frequencies, and transmitting the signal at the peak frequency. To the child for a predetermined time,
After the cutoff, a procedure for measuring the attenuation characteristic of the signal received by the receiver, and comparing the measured attenuation characteristic with the attenuation characteristic of a normal test object measured in advance, and when the difference exceeds a predetermined range. This includes a procedure for determining an abnormality.

【0010】また、送信子と受信子とを被検査物の表面
の互いに平行でない面にそれぞれ設置する手順を含むも
のである。
[0010] The method further includes a step of setting the transmitter and the receiver on the non-parallel surfaces of the surface of the inspection object.

【0011】また、計測した減衰特性とあらかじめ記憶
しているデータベースから、前記被検査物の圧縮強度ま
たは音速を推定する手順を含むものである。
Further, the method includes a step of estimating the compression strength or the sound speed of the inspection object from the measured attenuation characteristics and a database stored in advance.

【0012】この発明の構造物診断装置は、被検査物の
表面に設置された送信子と受信子、周波数掃引発振を行
って送信信号を出力する周波数特性計測用回路と、指定
された周波数の発振を行う減衰特性計測用回路と、前記
周波数特性計測用回路と前記減衰特性計測用回路のいず
れかを選択する切り替え回路とを含み、前記送信子に信
号を送信する信号発生器、前記受信子が受信した信号を
解析して、大きい受信信号が得られる周波数と、前記被
検査物の減衰特性とを得る波形処理装置、前記被検査物
を構成する素材と類似する素材に関する前記減衰特性と
音速との関係を示す第1のデータベース、前記被検査物
を構成する素材と類似する素材に関する前記減衰特性ま
たは前記音速のいずれかと圧縮強度との関係を示す第2
のデータベース、前記波形処理装置が得た前記減衰特性
と前記第1及び第2のデータベースのデータから、前記
被検査物の圧縮強度と音速を求める診断処理装置を備え
たものである。
A structure diagnostic apparatus according to the present invention includes a transmitter and a receiver installed on the surface of an object to be inspected, a frequency characteristic measuring circuit for performing a frequency sweep oscillation and outputting a transmission signal, and a circuit for measuring a specified frequency. A signal generator for transmitting a signal to the transmitter, the signal generator including a circuit for measuring an attenuation characteristic for performing oscillation, a switching circuit for selecting one of the circuit for measuring the frequency characteristic and the circuit for measuring the attenuation characteristic, and the receiver Analyzes the received signal, the waveform processing apparatus to obtain the frequency at which a large received signal is obtained, and the attenuation characteristics of the test object, the attenuation characteristics and sound speed of a material similar to the material constituting the test object A first database indicating the relationship between the compression characteristics and the attenuation characteristic or the sound velocity of a material similar to the material constituting the inspection object.
And a diagnostic processing device for obtaining the compression strength and sound speed of the inspection object from the attenuation characteristics obtained by the waveform processing device and the data of the first and second databases.

【0013】また、周波数特性計測用回路が送信子に送
信する掃引発振の周波数は100Hz〜100kHzの
間にあり、減衰特性計測用回路が送信子に送信する周波
数は前記掃引発振の周波数内の単一周波数を使用したも
のである。
The frequency of the sweep oscillation transmitted by the frequency characteristic measuring circuit to the transmitter is between 100 Hz and 100 kHz, and the frequency transmitted by the attenuation characteristic measuring circuit to the transmitter is a single frequency within the frequency of the sweep oscillation. It uses one frequency.

【0014】また、波形処理装置は、受信子が受信した
信号をFFT変換し、その周波数成分が大きい方から複
数のピーク周波数を検出して減衰特性計測用回路の周波
数とし、かつ、波形処理装置は複数の周波数のそれぞれ
に対応して得た複数の減衰時定数を平均して被検査物の
減衰特性としたものである。
Further, the waveform processing apparatus performs FFT conversion on the signal received by the receiver, detects a plurality of peak frequencies from the one having the largest frequency component, and sets the peak frequency as the frequency of the attenuation characteristic measuring circuit. Is obtained by averaging a plurality of attenuation time constants obtained for each of a plurality of frequencies to obtain an attenuation characteristic of the inspection object.

【0015】また、減衰特性計測用回路は、波形処理装
置から得られたピーク周波数の正弦波を、所定の時間の
間送信子に印加し、前記印加を停止した後に、波形処理
装置が受信子の受信信号の減衰時間を計測して、減衰特
性を算出したものである。
Further, the attenuation characteristic measuring circuit applies the sine wave of the peak frequency obtained from the waveform processing device to the transmitter for a predetermined time, stops the application, and then the waveform processing device The attenuation characteristic of the received signal is calculated by measuring the attenuation time of the received signal.

【0016】また、減衰特性計測用回路は、予め求めて
おいた被検査物の固有振動数の正弦波を、所定の時間の
間送信子に印加し、前記印加を停止した後に、波形処理
装置が受信子の受信信号の減衰時間を計測して、減衰特
性を算出したものである。
Further, the attenuation characteristic measuring circuit applies the sine wave of the natural frequency of the object to be inspected to the transmitter for a predetermined time, and stops the application. Is the result of measuring the decay time of the received signal of the receiver and calculating the attenuation characteristic.

【0017】また、診断処理装置は計測した減衰時間
と、予め求めた診断データベースを基に、被検査物内の
音速を算出したものである。
The diagnostic processing device calculates the sound speed in the test object based on the measured decay time and a previously obtained diagnostic database.

【0018】また、診断処理装置は計測した減衰時間
と、予め求めた診断データベースを基に、被検査物内部
の圧縮強度を推定したものである。
The diagnostic processing device estimates the compressive strength inside the test object based on the measured decay time and the diagnostic database obtained in advance.

【0019】また、送信子と受信子は被検査物の表面の
互いに平行でない面に設置したものである。
Further, the transmitter and the receiver are provided on surfaces of the inspection object which are not parallel to each other.

【0020】また、波形処理装置は、受信子が受信した
信号をFFT変換し、その中から一つのピーク周波数を
検出して減衰特性計測用回路の周波数とし、かつ、ピー
ク周波数に対応して得た減衰時定数を被検査物の減衰特
性としたものである。
Further, the waveform processing apparatus performs an FFT conversion on the signal received by the receiver, detects one peak frequency from the FFT, sets the peak frequency as the frequency of the attenuation characteristic measuring circuit, and obtains the peak frequency corresponding to the peak frequency. The obtained attenuation time constant is used as the attenuation characteristic of the inspection object.

【0021】[0021]

【発明の実施の形態】実施の形態1.図1はこの発明に
よる構造物診断装置の構成図である。図において101
はコンクリートなどの被検査物、102は被検査物10
1の1つの面101bに密着設置した受信子、103は
受信子102の受信信号を増幅する受信信号増幅器、1
04は受信信号増幅器103の出力をディジタル信号に
変換するA/D変換器である。105は被検査物101
のもう一つの面101a(面101aと101bとは互
いに平行でない)に密着設置した送信子、106は送信
子105に送信信号を送る信号発生器である。信号発生
器106は周波数特性計測用回路107と減衰特性計測
用回路108と、この2つの回路のいずれかを選択する
切り替え回路109とを含んでいる。信号発生器106
は計測制御装置110により制御される。111はA/
D変換器104によりディジタル化された信号波形を解
析、処理する波形処理機構(波形処理装置)である。1
12は診断処理機構(診断処理装置)であり波形処理装
置111の処理結果と診断データベース113から、被
検査物101の音速や圧縮強度などの推定を行う。11
4は解析結果及び診断結果を表示する表示装置、115
は解析結果及び診断結果を記憶する記憶装置である。
ここで、送信子105と受信子102とは同じ面に平行
に設置してもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram of a structure diagnostic apparatus according to the present invention. In the figure, 101
Is an inspection object such as concrete, and 102 is an inspection object 10
1, a receiving element closely mounted on one surface 101b; 103, a receiving signal amplifier for amplifying a receiving signal of the receiving element 102;
An A / D converter 04 converts the output of the reception signal amplifier 103 into a digital signal. 105 is the inspection object 101
Is a transmitter closely mounted on another surface 101a (the surfaces 101a and 101b are not parallel to each other), and 106 is a signal generator for transmitting a transmission signal to the transmitter 105. The signal generator 106 includes a frequency characteristic measuring circuit 107, an attenuation characteristic measuring circuit 108, and a switching circuit 109 for selecting one of the two circuits. Signal generator 106
Is controlled by the measurement control device 110. 111 is A /
A waveform processing mechanism (waveform processing device) that analyzes and processes the signal waveform digitized by the D converter 104. 1
Reference numeral 12 denotes a diagnosis processing mechanism (diagnosis processing device) which estimates the sound speed, compression strength, and the like of the inspection object 101 from the processing result of the waveform processing device 111 and the diagnosis database 113. 11
4 is a display device for displaying analysis results and diagnosis results, 115
Is a storage device for storing analysis results and diagnosis results.
Here, the transmitter 105 and the receiver 102 may be installed in parallel on the same plane.

【0022】以下、図1の構造物診断装置の動作につい
て説明する。図2は診断手順を示すフローチャートであ
る。まず、ステップS01で診断を行う被検査物101
に送信子105と受信子102を設置する。ここで送信
子105と受信子102との位置関係は被検査物101
に対し同一面である必要はなく、任意の場所に(図1の
ように角度の異なる2つの面101a,101bに)設
置してもよい。したがって、被検査物101の対向面に
送信子105と受信子102を設置できない場合や、同
一面に設置できない場合においても計測を行うことがで
き、診断実施の可否は被検査物101の形や設置状況に
依存しない。この手順はこの発明に言う、被検査物の表
面の互いに平行でない面に、それぞれ設置する手順、を
含んでいる。勿論、平行な面に設置しても以下の動作に
変わりはない。
Hereinafter, the operation of the structure diagnostic apparatus of FIG. 1 will be described. FIG. 2 is a flowchart showing a diagnosis procedure. First, the test object 101 to be diagnosed in step S01
, A transmitter 105 and a receiver 102 are installed. Here, the positional relationship between the transmitter 105 and the receiver 102 is determined by the inspection object 101.
Need not be the same surface, and may be installed at an arbitrary place (on two surfaces 101a and 101b having different angles as shown in FIG. 1). Therefore, the measurement can be performed even when the transmitter 105 and the receiver 102 cannot be installed on the opposite surface of the inspection object 101 or when they cannot be installed on the same surface. It does not depend on the installation situation. This procedure includes a procedure according to the present invention, in which the components are installed on non-parallel surfaces of the surface of the inspection object. Of course, the following operation does not change even if the sensors are installed on parallel surfaces.

【0023】次に、ステップS02で、信号発生器10
6の切替え回路109により周波数特性計測用回路10
7を選択し、送信信号を周波数掃引により発振して被検
査物101を加振する。この手順はこの発明に言う送信
子に送信信号をその周波数を掃引させつつ印加する手順
である。図3に周波数掃引の送信信号を示す。図3
(a)と(b)において横軸は同じ時間軸であり、図
(a)の縦軸は駆動電流の電流値、図(b)の縦軸は周
波数である。図3に示す例では低周波から高周波(約1
00Hz〜約100kHz)へ連続的に周波数が変化す
る駆動信号を示している。ここで変化の仕方は直線的で
も、上に凸の曲線でも、上に凹の曲線でもよいが、一様
に変化するものとする。勿論、高い周波数から低い周波
数の方へ掃引してもかまわない。この送信信号が送信子
105により被検査物101に伝達され、被検査物10
1の応答が受信子102により検出される。
Next, in step S02, the signal generator 10
6 switching circuit 109, the frequency characteristic measuring circuit 10
7 is selected, and the transmission signal is oscillated by frequency sweep to vibrate the DUT 101. This procedure is a procedure for applying a transmission signal to the transmitter according to the present invention while sweeping its frequency. FIG. 3 shows a transmission signal of the frequency sweep. FIG.
In (a) and (b), the horizontal axis is the same time axis, the vertical axis in FIG. (A) is the current value of the drive current, and the vertical axis in FIG. (B) is the frequency. In the example shown in FIG.
A drive signal whose frequency continuously changes from 00 Hz to about 100 kHz) is shown. Here, the manner of change may be a straight line, an upwardly convex curve, or an upwardly concave curve, but it is assumed that the change is uniform. Of course, you may sweep from a high frequency to a low frequency. This transmission signal is transmitted to the inspection object 101 by the transmitter 105, and the inspection object 10
One response is detected by the receiver 102.

【0024】次に、ステップS03で、受信子102に
より得られた信号を波形処理機構111がFFT解析し
周波数スペクトルを求める。図4は得られた周波数スペ
クトルの一例を示す。図の縦軸は振幅の比例尺である。
この周波数スペクトルのピークの大きい順にとった複数
のピーク(図4に符号71、72、73、74として示
す)から、被検査物101と探触子(送信子105と受
信子102)を含んだ系の固有周波数を求める。被検査
物101の構造はさまざまで共振のモードが数多く存在
し、音響学的に共振しやすい構造には一般にはなってい
ないから、固有周波数は数点以上表れる場合が多い。次
に、ステップS04で、これら固有周波数の内で受信レ
ベルが大きく、さらに数百Hz〜数十kHzの低周波領
域のものを一つあるいは複数個決定する。例えば図4に
おいては71を選択する。この例では固有周波数71の
周波数は3.5kHzである。送信周波数は固有周波数
で100Hz〜100kHzの低周波領域のものを用い
るので、減衰の大きい被検査物や広範囲の計測が可能に
なる。この手順は、この発明に言う、送信子に送信信号
を印加している間に受信子が受信した信号をFFT解析
し、1つ以上のピーク周波数を検出する手順に相当す
る。勿論、予め固有周波数が分っている場合はステップ
S02〜S04の送信周波数を決める計測は行わなくて
よい。
Next, in step S03, the signal obtained by the receiver 102 is subjected to FFT analysis by the waveform processing mechanism 111 to obtain a frequency spectrum. FIG. 4 shows an example of the obtained frequency spectrum. The vertical axis in the figure is a proportional scale of the amplitude.
From a plurality of peaks (shown as reference numerals 71, 72, 73, and 74 in FIG. 4) taken in descending order of the peak of the frequency spectrum, the test object 101 and the probe (the transmitter 105 and the receiver 102) were included. Find the natural frequency of the system. The structure of the test object 101 is various and has many resonance modes, and it is not generally used for a structure that easily resonates acoustically. Therefore, the natural frequency often appears at several points or more. Next, in step S04, one or a plurality of low-frequency ranges of several hundred Hz to several tens of kHz that have a high reception level among these natural frequencies are determined. For example, in FIG. 4, 71 is selected. In this example, the frequency of the natural frequency 71 is 3.5 kHz. Since the transmission frequency is a natural frequency in a low frequency range of 100 Hz to 100 kHz, it is possible to measure a test object having a large attenuation or a wide range. This procedure corresponds to the procedure of the present invention in which a signal received by a receiver while a transmission signal is applied to the transmitter is subjected to FFT analysis to detect one or more peak frequencies. Of course, if the natural frequency is known in advance, the measurement for determining the transmission frequency in steps S02 to S04 need not be performed.

【0025】次に、決定した固有周波数71の周波数を
用いて、ステップS05で送信子105により予め定め
た一定時間(例えば一例として0.5秒)加振し、その
後、加振をやめる。まず切替え回路109により信号発
生器106の減衰特性計測用回路108を選択する。減
衰特性計測用回路108は図5に示す駆動信号を出力
し、送信子105を駆動する。図5において駆動信号は
先程決定された周波数71の正弦波であり、時刻t1に
オンし、時刻t2にオフされるような一定時間長の連続
波である。この駆動信号が送信子105に出力される。
ここで送信は単一周波数で正弦波を用いるので、効率良
く弾性波を被検査物101に伝搬させることができる。
Next, using the determined frequency of the natural frequency 71, the transmitter 105 applies vibration for a predetermined period of time (for example, 0.5 seconds as an example) in step S05, and then stops applying vibration. First, the switching circuit 109 selects the attenuation characteristic measuring circuit 108 of the signal generator 106. The attenuation characteristic measuring circuit 108 outputs the drive signal shown in FIG. In FIG. 5, the drive signal is a sine wave of the frequency 71 determined previously, and is a continuous wave of a fixed time length that is turned on at time t1 and turned off at time t2. This drive signal is output to the transmitter 105.
Here, since a sinusoidal wave is used for transmission at a single frequency, an elastic wave can be efficiently propagated to the inspection object 101.

【0026】次に、ステップS06で、前記加振を止め
た後に受信子102により得られた受信信号の減衰特性
を求める。被検査物101の応答を受信子102により
検出する。求める減衰特性は自由振動時間領域での減衰
時定数である。減衰特性を検出する一手順を以下に述べ
る。図6は受信子102より検出された受信信号の例
(図4で示した固有周波数71(3.5kHz)の例)
を示す。図6でt2が図5の信号オフ時点t2に対応す
る。減衰特性は信号オフt2後の応答から算出される。
ここでは減衰特性として減衰時定数を計測する。一般に
減衰特性は対数減衰の傾向を示すため、図7に示すよう
に受信レベルを対数軸で表示することにより、減衰特性
が直線的な変化として検知しやすくなる。図中の説明補
助線11は減衰していく振動振幅を直線にて近似した近
似線である。この近似線から減衰時定数τは下記のよう
に計算される。図7中の直線11上に取った任意の2点
P3、及びP4の座標をそれぞれ (t3,y3)、及び
(t4,y4)とすると、
Next, in step S06, the attenuation characteristic of the received signal obtained by the receiver 102 after the excitation is stopped is determined. The response of the test object 101 is detected by the receiver 102. The desired damping characteristic is a damping time constant in the free vibration time domain. One procedure for detecting the attenuation characteristic is described below. FIG. 6 shows an example of a received signal detected by the receiver 102 (an example of the natural frequency 71 (3.5 kHz) shown in FIG. 4).
Is shown. In FIG. 6, t2 corresponds to the signal-off time point t2 in FIG. The attenuation characteristic is calculated from the response after the signal is turned off t2.
Here, an attenuation time constant is measured as the attenuation characteristic. In general, since the attenuation characteristic shows a tendency of logarithmic attenuation, displaying the reception level on a logarithmic axis as shown in FIG. 7 makes it easier to detect the attenuation characteristic as a linear change. The explanation auxiliary line 11 in the figure is an approximation line that approximates the damping vibration amplitude with a straight line. From this approximation line, the decay time constant τ is calculated as follows. The coordinates of arbitrary two points P3 and P4 taken on the straight line 11 in FIG. 7 are (t3, y3), and
(t4, y4)

【0027】[0027]

【数1】 (Equation 1)

【0028】として求められる。今、図7の例では、P
3(101.6ms,0.350)、P4(102.7
ms,0.071)であるため、τ=0.69msと計
算される。以上の解析や計算は波形処理機構111で行
う。ステップS05とS06の手順はこの発明に言う、
ピーク周波数の信号を送信子に所定時間の間印加し、そ
の遮断後に、受信子が受信する信号の減衰特性を計測す
る手順に相当する。
Is obtained. Now, in the example of FIG.
3 (101.6 ms, 0.350), P4 (102.7
ms, 0.071), so that τ = 0.69 ms is calculated. The above analysis and calculation are performed by the waveform processing mechanism 111. The procedure of steps S05 and S06 refers to the present invention.
This corresponds to a procedure in which a signal of the peak frequency is applied to the transmitter for a predetermined time, and after the signal is cut off, the attenuation characteristic of the signal received by the receiver is measured.

【0029】次に、ステップS07で異常部分の有無の
検知を行うかどうかを選択する。行う場合は、ステップ
S08で、前述の求めた減衰特性すなわち減衰時定数
が、診断データベース113(あるいは記録してある過
去の測定結果)に記憶している正常値と比較して異常か
否かを調べる。例えば求めた自由振動時間領域での減衰
時定数が正常部分の減衰時定数より、あらかじめ定めた
差以上にかけ離れている場合は異常部分であると推定す
る。異常であれば、ステップS09で、被検査物101
の診断データベース113(あるいは記録してある過去
の判定結果)に記憶しているデータから、異常部分の材
質の判定など、より詳しい判定を行う。この処理は診断
処理機構112で行う。
Next, in step S07, whether or not to detect the presence or absence of an abnormal portion is selected. If so, in step S08, it is determined whether or not the obtained attenuation characteristic, that is, the attenuation time constant, is abnormal by comparing with the normal value stored in the diagnosis database 113 (or the recorded past measurement result). Find out. For example, if the obtained decay time constant in the free vibration time domain is more than a predetermined difference from the decay time constant of the normal part, it is estimated that the part is abnormal. If abnormal, the inspection object 101 is determined in step S09.
From the data stored in the diagnosis database 113 (or the recorded past determination result), a more detailed determination such as a determination of a material of an abnormal portion is performed. This processing is performed by the diagnosis processing mechanism 112.

【0030】ステップS10以降で、被検査物の圧縮強
度と音速を推定する場合は、前述のS08〜S09で求
めた減衰特性を指標として、データ(データベース11
3)より推定する。図8は自由振動時間領域(送信子1
05の励振を停止した後の振動)での減衰時定数と音速
との関係を示した図(第1のデータベースと言う)であ
る。自由振動時間領域での減衰時定数と音速の間に、図
8中に黒点で示した関係があることが分っている場合、
データの隙間はあらかじめ補完して、点線で示したデー
タ曲線を得ておく。(ステップS11) この図より、求めた自由振動時間領域での減衰時定数よ
り被検査物101の音速が推定できる。(ステップS1
2) 同様に圧縮強度も自由振動時間領域での減衰時定数また
は音速との相関関係を図9(第2のデータベースとい
う)のように、予め求めておく。(ステップS13) そして、得られた減衰時定数または音速から圧縮強度を
推定する。(ステップS14) 図9は音速と圧縮強度との関係を示す図である。
When estimating the compressive strength and sound speed of the inspection object after step S10, the data (database 11) is determined by using the attenuation characteristics obtained in steps S08 to S09 as indices.
3) Estimate from FIG. 8 shows the free vibration time domain (transmitter 1
FIG. 11 is a diagram (referred to as a first database) showing a relationship between a damping time constant and a sound speed in the vibration after stopping the excitation in FIG. When it is known that there is a relationship indicated by a black dot in FIG. 8 between the damping time constant and the sound velocity in the free vibration time domain,
Data gaps are complemented in advance to obtain a data curve indicated by a dotted line. (Step S11) From this figure, the sound velocity of the test object 101 can be estimated from the obtained attenuation time constant in the free vibration time domain. (Step S1
2) Similarly, the correlation between the compressive strength and the decay time constant or the sound speed in the free vibration time domain is obtained in advance as shown in FIG. 9 (second database). (Step S13) Then, the compression strength is estimated from the obtained attenuation time constant or sound speed. (Step S14) FIG. 9 is a diagram showing the relationship between the speed of sound and the compressive strength.

【0031】また、減衰特性は周波数に依存することが
分っている。そこで決定した複数個の周波数でそれぞれ
減衰特性を求め加算平均化を行うことにより診断項目の
精度を向上することができる。
It has been found that the attenuation characteristic depends on the frequency. Therefore, the accuracy of the diagnosis item can be improved by obtaining the attenuation characteristics at the plurality of determined frequencies and performing averaging.

【0032】次にデータベース113を構築するための
手順を説明する。データベース113としては、音響速
度がそれぞれ異なるコアサンプル(被検査物サンプル)
を多数準備し、各コアの音響速度を計測するとともに、
前述の説明に基づいて減衰時定数を計測し、また圧縮強
度を測定して、更にデータ間を補完して、両者間の相関
を明確にしたデータベース113を構築する。音響速度
の異なるコアサンプルを入手する手段としては、種々の
構造物からコアリングを行い、これを収集することによ
り音響速度が分布するコアのサンプル集合を入手する。
さらに、例えば水−セメント比の異なるコンクリートコ
アを多数種類製作し、この音響速度と減衰時定数、およ
び圧縮強度を計測するという方法もある。図8、図9は
実際の構造物からサンプルしたデータを補完して、デー
タベースを構築したものの一例を示している。図8、図
9から減衰時定数と圧縮強度の図を容易に得られること
はいうまでもない。
Next, a procedure for constructing the database 113 will be described. As the database 113, core samples having different acoustic velocities (test sample)
Prepare a large number of and measure the acoustic velocity of each core,
Based on the above description, the damping time constant is measured, the compressive strength is measured, and the data is further complemented to construct the database 113 in which the correlation between the two is clarified. As a means for obtaining core samples having different acoustic velocities, coring is performed from various structures, and a collection of core samples in which the acoustic velocities are distributed is obtained by collecting the cores.
Furthermore, for example, there is a method in which many types of concrete cores having different water-cement ratios are manufactured, and the acoustic velocity, the damping time constant, and the compressive strength are measured. FIGS. 8 and 9 show an example of a database constructed by complementing data sampled from actual structures. It goes without saying that the diagrams of the damping time constant and the compressive strength can be easily obtained from FIGS.

【0033】次に、診断の手順につき説明する。以上の
説明で、診断を実施した被検査物101の減衰時定数が
得られたので、図8に示す減衰時定数−音響速度のデー
タベースから、被検査物101の減衰時定数に対応する
音響速度のデータを読み取ることにより、音響速度が予
測できることとなる。例えば、減衰時定数が0.69m
sであれば、得られる音響速度の予測値は(図8中に点
線で示したように)3533m/sとなる。正常なサン
プルの音速がどの範囲であるかを、あらかじめ調べてあ
れば前述の結果から、被検査物が正常なものかどうかの
診断を音速の面からも行うことができる。
Next, the procedure of diagnosis will be described. In the above description, the attenuation time constant of the test object 101 for which the diagnosis has been performed is obtained. Therefore, the acoustic velocity corresponding to the attenuation time constant of the test object 101 is obtained from the database of the attenuation time constant and the acoustic velocity shown in FIG. By reading the data, the acoustic velocity can be predicted. For example, the decay time constant is 0.69 m
If it is s, the predicted value of the obtained acoustic velocity is 3533 m / s (as shown by the dotted line in FIG. 8). If the range of the sound speed of the normal sample is checked in advance, the diagnosis as to whether or not the inspection object is normal can be made from the viewpoint of the sound speed based on the above-described results.

【0034】一方、音響速度と圧縮強度との相関データ
ベース( 図9) をさらに適用することにより、得られた
音響速度の値に対応する圧縮強度値が19N/mm2
求まり、減衰時定数から被検査物101の強度予測まで
が可能になり、この面からの診断を行うこともできる。
On the other hand, by further applying the correlation database between the acoustic velocity and the compressive strength (FIG. 9), the compressive strength value corresponding to the obtained acoustic velocity value is obtained as 19 N / mm 2, and is obtained from the attenuation time constant. It is possible to predict the strength of the inspection object 101, and a diagnosis can be made from this aspect.

【0035】[0035]

【発明の効果】以上のように、この発明の構造物診断方
法によれば、被検査物のピーク周波数を検出する手順
と、このピーク周波数で減衰特性を計測する手順と、減
衰特性だけで被検査物の異常を診断する手順とを含んで
いるので、比較的低い送信信号で診断、検査を行うこと
が出来るという作用効果が得られる。
As described above, according to the method for diagnosing a structure of the present invention, the procedure for detecting the peak frequency of the object to be inspected, the procedure for measuring the attenuation characteristic at this peak frequency, and the method for detecting the attenuation characteristic only with the attenuation characteristic are used. Since the procedure includes a procedure for diagnosing an abnormality of the inspection object, the operation and effect of performing diagnosis and inspection with a relatively low transmission signal can be obtained.

【0036】また、送信子と受信子とは互いに平行でな
いように設置する手順を含むので、送信子と受信子の設
置に制約が少なくなり、容易に設置できるという作用効
果が得られる。
Since the transmitter and the receiver are arranged so as not to be parallel to each other, the installation of the transmitter and the receiver is less restricted, and the operation and effect that the transmitter and the receiver can be easily installed can be obtained.

【0037】また、減衰特性から音速または圧縮強度を
もとめる手順を含むので、被検査物の異常の種類を推定
することができる作用効果が得られる。
Further, since a procedure for determining the sound speed or the compressive strength from the attenuation characteristics is included, an operation and effect that can estimate the type of abnormality of the inspection object can be obtained.

【0038】この発明の構造物診断装置によれば、受信
子により得られた信号の減衰特性より被検査物の異常部
分の検知と圧縮強度および音速の推定を行うので、被検
査物の破壊を伴わず被検査物の任意の面で計測を行うこ
とができる。
According to the structure diagnostic apparatus of the present invention, an abnormal portion of the inspection object is detected and the compression strength and the sound speed are estimated from the attenuation characteristics of the signal obtained by the receiver, so that the inspection object is not destroyed. The measurement can be performed on any surface of the inspection object without accompanying.

【0039】また、発信周波数として約100Hz〜約
100kHzという低周波領域で、また、被検査物の固
有周波数を用いるので効率的に信号を被検査物に伝搬さ
せることができ、減衰の大きい被検査物の計測が可能
で、また、1つの送信子位置で広い範囲の計測を行える
効果がある。
Further, since the transmission frequency is in a low frequency range of about 100 Hz to about 100 kHz and the natural frequency of the object to be inspected is used, the signal can be efficiently propagated to the object to be inspected. An object can be measured, and there is an effect that a wide range can be measured at one transmitter position.

【0040】また、複数のピーク周波数で計測を行い、
得た複数の減衰時定数の平均から減衰特性を得るので、
精度が向上するという作用効果が得られる。
Further, measurement is performed at a plurality of peak frequencies,
Since the attenuation characteristic is obtained from the average of the obtained multiple attenuation time constants,
The effect of improving accuracy is obtained.

【0041】また、減衰特性はピーク周波数の正弦波を
所定時間印加したのちの自由振動を計測しているので比
較的低い送信信号で診断、検査を行うことが出来るとい
う作用効果が得られる。
In the attenuation characteristic, since the free vibration is measured after applying the sine wave of the peak frequency for a predetermined time, it is possible to obtain an effect of performing diagnosis and inspection with a relatively low transmission signal.

【0042】また、減衰特性はあらかじめ求めた被検査
物の固有振動周波数の正弦波を所定時間印加したのちの
自由振動を計測しているので比較的低い送信信号で診
断、検査を行うことが出来るという作用効果が得られ
る。
Since the attenuation characteristic measures the free vibration after applying a sine wave of the natural vibration frequency of the object to be inspected for a predetermined time, diagnosis and inspection can be performed with a relatively low transmission signal. The operation and effect are obtained.

【0043】また、被検査物の音速を測定するので、内
部構造の異常を更に詳しく知ることができる。
Further, since the sound velocity of the inspection object is measured, it is possible to know the abnormality of the internal structure in more detail.

【0044】また、被検査物の圧縮強度を測定するの
で、内部構造の異常を更に詳しく知ることができる。
Further, since the compressive strength of the inspection object is measured, it is possible to know the abnormality of the internal structure in more detail.

【0045】また、送信子と受信子はそれぞれが互いに
平行でない面に設置されることを許容しているので、設
置の自由度が高くなるという作用効果が得られる。
Further, since the transmitter and the receiver are allowed to be installed on surfaces that are not parallel to each other, the effect of increasing the degree of freedom in installation can be obtained.

【0046】また、一つのピーク周波数で計測を行い、
得た減衰時定数から減衰特性を得るので、構成を単純化
できるという作用効果が得られる。
Further, measurement is performed at one peak frequency,
Since the damping characteristic is obtained from the obtained damping time constant, the operation and effect that the configuration can be simplified can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の構造物診断装置を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a structure diagnostic apparatus according to the present invention.

【図2】 この発明の診断手順を示すフロー図である。FIG. 2 is a flowchart showing a diagnostic procedure according to the present invention.

【図3】 周波数掃引の駆動信号を説明する図である。FIG. 3 is a diagram illustrating a drive signal for frequency sweep.

【図4】 受信子により得られた周波数スペクトルの一
例を示す図である。
FIG. 4 is a diagram illustrating an example of a frequency spectrum obtained by a receiver.

【図5】 減衰特性計測用駆動信号を示す図であるFIG. 5 is a diagram showing a drive signal for measuring attenuation characteristics.

【図6】 受信子により得られた時間応答の一例を示す
図である。
FIG. 6 is a diagram illustrating an example of a time response obtained by a receiver.

【図7】 受信子により得られた時間応答の減衰特性算
出例を示す図である。
FIG. 7 is a diagram illustrating an example of calculating a time response attenuation characteristic obtained by a receiver.

【図8】 減衰時間と音速の関係を示すデータベースの
例図である。
FIG. 8 is an example diagram of a database showing a relationship between a decay time and a sound speed.

【図9】 音響速度と圧縮強度の相関データベース例を
示す図である。
FIG. 9 is a diagram showing an example of a correlation database between acoustic velocity and compression strength.

【図10】 従来の構造物診断装置の第1例を示す構成
図である。
FIG. 10 is a configuration diagram showing a first example of a conventional structure diagnosis apparatus.

【図11】 従来の構造物診断装置の第2例を示す構成
図である。
FIG. 11 is a configuration diagram showing a second example of a conventional structure diagnostic apparatus.

【符号の説明】 101 被検査物、 102 受信子、 103 受信
増幅器、105 送信子、 106 信号発生器、10
7 周波数特性計測用回路、 108 減衰特性計測
用回路、109 切替え回路、 111 波形処理装
置、 112 診断処理装置、113 診断データベー
ス。
[Description of Signs] 101 inspected object, 102 receiver, 103 receiver amplifier, 105 transmitter, 106 signal generator, 10
7 Frequency characteristic measurement circuit, 108 Attenuation characteristic measurement circuit, 109 switching circuit, 111 waveform processing device, 112 diagnostic processing device, 113 diagnostic database.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島田 隆史 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 甲斐 公一郎 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中村 修一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 山口 義信 大阪府大阪市北区芝田二丁目4番24号 西 日本旅客鉄道株式会社内 (72)発明者 松井 精一 大阪府大阪市北区芝田二丁目4番24号 西 日本旅客鉄道株式会社内 Fターム(参考) 2G047 AA10 BB00 BC03 BC04 BC09 BC20 GF11 GG12 GG19 GG24 GG36  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Shimada 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Koichiro Kai 2-3-2 Marunouchi, Chiyoda-ku, Tokyo 3 Rishi Electric Co., Ltd. (72) Inventor Shuichi Nakamura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Yoshinobu Yamaguchi 2-4-2, Shibata, Kita-ku, Osaka-shi, Osaka West Within Japan Railway Company (72) Inventor Seiichi Matsui 2-4-2, Shibata, Kita-ku, Osaka-shi, Osaka West Japan Railway Company F-term (reference) 2G047 AA10 BB00 BC03 BC04 BC09 BC20 GF11 GG12 GG19 GG24 GG36

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 被検査物の表面に送信子と受信子とを設
置する手順と、 前記送信子に送信信号をその周波数を掃引させつつ印加
する手順と、 前記送信子に前記送信信号を印加している間に前記受信
子が受信した信号をFFT解析し、1つ以上のピーク周
波数を検出する手順と、 前記ピーク周波数の信号を前記送信子に所定時間の間印
加し、その遮断後に、前記受信子が受信する信号の減衰
特性を計測する手順と、 計測した減衰特性をあらかじめ測定した正常な被検査物
の減衰特性と比較し、その差が所定の範囲を越えたとき
異常と判定する手順を含むことを特徴とする構造物診断
方法。
1. a step of installing a transmitter and a receiver on the surface of an object to be inspected; a step of applying a transmission signal to the transmitter while sweeping its frequency; and applying the transmission signal to the transmitter. While performing a FFT analysis of the signal received by the receiver, detecting one or more peak frequencies, applying a signal of the peak frequency to the transmitter for a predetermined time, after the cutoff, A procedure for measuring the attenuation characteristic of the signal received by the receiver, comparing the measured attenuation characteristic with the attenuation characteristic of a normal test object measured in advance, and determining that the difference is abnormal when the difference exceeds a predetermined range. A method of diagnosing a structure, comprising a procedure.
【請求項2】 送信子と受信子とを被検査物の表面の互
いに平行でない面にそれぞれ設置する手順を含むことを
特徴とする請求項1に記載の構造物診断方法。
2. The method according to claim 1, further comprising a step of installing the transmitter and the receiver on surfaces that are not parallel to each other on the surface of the inspection object.
【請求項3】 計測した減衰特性とあらかじめ記憶して
いるデータベースから、前記被検査物の圧縮強度または
音速を推定する手順を含むことを特徴とする請求項1ま
たは2に記載の構造物診断方法。
3. The structure diagnosis method according to claim 1, further comprising a step of estimating a compression strength or a sound velocity of the inspection object from the measured attenuation characteristics and a database stored in advance. .
【請求項4】 被検査物の表面に設置された送信子と受
信子、周波数掃引発振を行って送信信号を出力する周波
数特性計測用回路と、指定された周波数の発振を行う減
衰特性計測用回路と、前記周波数特性計測用回路と前記
減衰特性計測用回路のいずれかを選択する切り替え回路
とを含み、前記送信子に送信信号を送信する信号発生
器、 前記受信子が受信した信号を解析して、大きい受信信号
が得られる周波数と、前記被検査物の減衰特性とを得る
波形処理装置、 前記被検査物を構成する素材と類似する素材に関する前
記減衰特性と音速との関係を示す第1のデータベース、 前記被検査物を構成する素材と類似する素材に関する前
記減衰特性または前記音速のいずれかと圧縮強度との関
係を示す第2のデータベース、 前記波形処理装置が得た前記減衰特性と前記第1及び第
2のデータベースのデータから、前記被検査物の圧縮強
度と音速を求める診断処理装置を備えたことを特徴とす
る構造物診断装置。
4. A transmitter and a receiver mounted on the surface of an object to be inspected, a frequency characteristic measuring circuit for outputting a transmission signal by performing frequency sweep oscillation, and an attenuation characteristic measuring circuit for oscillating at a specified frequency. A signal generator for transmitting a transmission signal to the transmitter, including a circuit and a switching circuit for selecting one of the frequency characteristic measurement circuit and the attenuation characteristic measurement circuit, and analyzing the signal received by the receiver. And a waveform processing apparatus that obtains a frequency at which a large received signal is obtained and an attenuation characteristic of the object to be inspected, and a relationship between the attenuation characteristic and sound speed of a material similar to the material constituting the object to be inspected. A first database, a second database indicating a relationship between any one of the attenuation characteristic or the sound speed and a compression strength for a material similar to the material constituting the inspection object, Structure diagnostic apparatus characterized by the data of the attenuation characteristic and the first and second databases, with the diagnostic processor for determining the compressive strength and the speed of sound the inspection object.
【請求項5】 周波数特性計測用回路が送信子に送信す
る送信信号の掃引周波数は100Hz〜100kHzの
間にあり、減衰特性計測用回路が送信子に送信する周波
数は前記掃引発振の周波数内の単一周波数を使用したこ
とを特徴とする請求項4に記載の構造物診断装置。
5. The sweep frequency of a transmission signal transmitted by the frequency characteristic measurement circuit to the transmitter is between 100 Hz and 100 kHz, and the frequency transmitted by the attenuation characteristic measurement circuit to the transmitter is within the frequency of the sweep oscillation. The structure diagnostic apparatus according to claim 4, wherein a single frequency is used.
【請求項6】 波形処理装置は、受信子が受信した信号
をFFT変換し、その周波数成分が大きい方から複数の
ピーク周波数を検出して減衰特性計測用回路の周波数と
し、かつ、波形処理装置は前記複数の周波数のそれぞれ
に対応して得た複数の減衰時定数を平均して被検査物の
減衰特性としたことを特徴とする請求項4または5に記
載の構造物診断装置。
6. A waveform processing device which performs FFT conversion on a signal received by a receiver, detects a plurality of peak frequencies in descending order of the frequency component, and sets the peak frequency as a frequency of an attenuation characteristic measuring circuit. The structure diagnostic apparatus according to claim 4, wherein a plurality of attenuation time constants obtained corresponding to each of the plurality of frequencies are averaged to obtain an attenuation characteristic of the inspection object.
【請求項7】 減衰特性計測用回路は、波形処理装置か
ら得られたピーク周波数の正弦波を、所定の時間の間送
信子に印加し、前記印加を停止した後に、波形処理装置
が受信子の受信信号の減衰時間を計測して減衰特性を算
出したことを特徴とする請求項6に記載の構造物診断装
置。
7. The attenuation characteristic measuring circuit applies a sine wave having a peak frequency obtained from the waveform processing device to a transmitter for a predetermined time, and after the application is stopped, the waveform processing device causes the receiver to The structure diagnostic apparatus according to claim 6, wherein the attenuation characteristic is calculated by measuring an attenuation time of the received signal.
【請求項8】 減衰特性計測用回路は、予め求めておい
た被検査物の固有振動数の正弦波を、所定の時間の間送
信子に印加し、前記印加を停止した後に、波形処理装置
が受信子の受信信号の減衰時間を計測して減衰特性を算
出したことを特徴とする請求項6に記載の構造物診断装
置。
8. A waveform processing apparatus for applying a predetermined characteristic sine wave of a natural frequency of an object to be inspected to a transmitter for a predetermined period of time, and stopping the application of the sine wave. 7. The structure diagnostic apparatus according to claim 6, wherein the measuring unit calculates an attenuation characteristic by measuring an attenuation time of a reception signal of the receiver.
【請求項9】 診断処理装置は、計測した減衰時間と予
め求めた診断データベースを基に、被検査物内の音速を
算出したことを特徴とする請求項7または8に記載の構
造物診断装置。
9. The structure diagnosis apparatus according to claim 7, wherein the diagnosis processing device calculates a sound speed in the inspection object based on the measured attenuation time and a diagnosis database obtained in advance. .
【請求項10】 診断処理装置は、計測した減衰時間
と、予め求めた診断データベースを基に、被検査物内部
の圧縮強度を推定したことを特徴とする請求項7または
8に記載の構造物診断装置。
10. The structure according to claim 7, wherein the diagnosis processing device estimates the compression strength inside the test object based on the measured decay time and a diagnosis database obtained in advance. Diagnostic device.
【請求項11】 送信子と受信子は、被検査物の表面の
互いに平行でない面にそれぞれ設置したことを特徴とす
る請求項4乃至10のいずれか一項に記載の構造物診断
装置。
11. The structure diagnostic apparatus according to claim 4, wherein the transmitter and the receiver are provided on surfaces of the inspection object that are not parallel to each other.
【請求項12】 波形処理装置は、受信子が受信した信
号をFFT変換し、その中から一つのピーク周波数を検
出して減衰特性計測用回路の周波数とするとともに、前
記ピーク周波数に対応して得た減衰時定数を被検査物の
減衰特性としたことを特徴とする請求項4または5に記
載の構造物診断装置。
12. A waveform processing apparatus performs FFT conversion on a signal received by a receiver, detects one peak frequency from the signals, sets the detected peak frequency as a frequency of an attenuation characteristic measuring circuit, and responds to the peak frequency. The structure diagnostic apparatus according to claim 4, wherein the obtained attenuation time constant is used as an attenuation characteristic of the inspection object.
JP2000242013A 2000-08-10 2000-08-10 Structure diagnosis method and structure diagnosis apparatus Expired - Fee Related JP4553459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242013A JP4553459B2 (en) 2000-08-10 2000-08-10 Structure diagnosis method and structure diagnosis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242013A JP4553459B2 (en) 2000-08-10 2000-08-10 Structure diagnosis method and structure diagnosis apparatus

Publications (2)

Publication Number Publication Date
JP2002055092A true JP2002055092A (en) 2002-02-20
JP4553459B2 JP4553459B2 (en) 2010-09-29

Family

ID=18733101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242013A Expired - Fee Related JP4553459B2 (en) 2000-08-10 2000-08-10 Structure diagnosis method and structure diagnosis apparatus

Country Status (1)

Country Link
JP (1) JP4553459B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033141A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing method
JP2007333498A (en) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc Quality evaluation method of concrete and quality evaluation device thereof
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
JP2012118047A (en) * 2010-07-21 2012-06-21 Sekisui Chem Co Ltd Inspection method and regeneration method for underground pipe
CN105200982A (en) * 2015-09-25 2015-12-30 中国二十冶集团有限公司 Cast-in-place pile concrete interface recognition and super-cast loosening device and use method thereof
JP2016090583A (en) * 2014-11-05 2016-05-23 ピエゾテック・エルエルシー High frequency inspection of downhole environment
WO2021145034A1 (en) * 2020-01-17 2021-07-22 株式会社島津製作所 Defect inspection device and defect inspection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399505B (en) * 2013-07-23 2016-01-06 中国矿业大学 Intensity of similar material model watch-dog

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231851A (en) * 1992-02-24 1993-09-07 Dainippon Toryo Co Ltd Method and device for detecting void depth by blow with hammer
JPH05231852A (en) * 1992-02-24 1993-09-07 Dainippon Toryo Co Ltd Void depth detecting method utilizing void resonance and device used therefor
JPH0668486B2 (en) * 1986-12-29 1994-08-31 大成建設株式会社 Method for diagnosing peeling on finished surfaces of buildings
JPH0886775A (en) * 1994-09-19 1996-04-02 Yakichi Higo Method for evaluating durability of structure
JPH10170482A (en) * 1996-12-10 1998-06-26 Taisei Corp Exfoliation diagnostic device
JP2000002692A (en) * 1998-06-17 2000-01-07 Taiheiyo Cement Corp Method for searching defect in concrete structure or behind the structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668486B2 (en) * 1986-12-29 1994-08-31 大成建設株式会社 Method for diagnosing peeling on finished surfaces of buildings
JPH05231851A (en) * 1992-02-24 1993-09-07 Dainippon Toryo Co Ltd Method and device for detecting void depth by blow with hammer
JPH05231852A (en) * 1992-02-24 1993-09-07 Dainippon Toryo Co Ltd Void depth detecting method utilizing void resonance and device used therefor
JPH0886775A (en) * 1994-09-19 1996-04-02 Yakichi Higo Method for evaluating durability of structure
JPH10170482A (en) * 1996-12-10 1998-06-26 Taisei Corp Exfoliation diagnostic device
JP2000002692A (en) * 1998-06-17 2000-01-07 Taiheiyo Cement Corp Method for searching defect in concrete structure or behind the structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033141A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing method
JP2007333498A (en) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc Quality evaluation method of concrete and quality evaluation device thereof
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
JP2012118047A (en) * 2010-07-21 2012-06-21 Sekisui Chem Co Ltd Inspection method and regeneration method for underground pipe
JP2016090583A (en) * 2014-11-05 2016-05-23 ピエゾテック・エルエルシー High frequency inspection of downhole environment
CN105200982A (en) * 2015-09-25 2015-12-30 中国二十冶集团有限公司 Cast-in-place pile concrete interface recognition and super-cast loosening device and use method thereof
WO2021145034A1 (en) * 2020-01-17 2021-07-22 株式会社島津製作所 Defect inspection device and defect inspection method
JP7371700B2 (en) 2020-01-17 2023-10-31 株式会社島津製作所 Defect inspection equipment and defect inspection method

Also Published As

Publication number Publication date
JP4553459B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP3022955B2 (en) Ultrasonic wave type detector, method for measuring thickness of film on substrate, and method for identifying delay line
KR20110066353A (en) Crack detecting system and crack detecting method
JP4553459B2 (en) Structure diagnosis method and structure diagnosis apparatus
JP3725515B2 (en) Nondestructive inspection equipment
JPH0511895B2 (en)
KR100553570B1 (en) Method for non-destructive testing of concrete structure
JP2992228B2 (en) Inundation detector
JP4577957B2 (en) Tunnel diagnostic equipment
JP2000241397A (en) Method and apparatus for detecting surface defect
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JP2002148244A (en) Concrete structure examining and diagnosing method
JP3406511B2 (en) Abnormal location detector
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JP2003329656A (en) Degree of adhesion diagnosis method and device for concrete-sprayed slope
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
JP2005221321A (en) Method and device for detecting ultrasonic signal
KR20180011418A (en) Multi-channel ultrasonic diagnostic method for long distance piping
RU2246724C1 (en) Method of ultrasonic testing of material quality
JP4646012B2 (en) Nondestructive inspection equipment for concrete structures
JP5841027B2 (en) Inspection apparatus and inspection method
JP2001201487A (en) Method and apparatus using ultrasonic wave for nondestructive inspection of concrete structure
JP2740871B2 (en) Method and apparatus for measuring shear wave velocity in ultrasonic test
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees