JP2012068209A - Material diagnostic method and apparatus using ultrasonic wave - Google Patents

Material diagnostic method and apparatus using ultrasonic wave Download PDF

Info

Publication number
JP2012068209A
JP2012068209A JP2010215474A JP2010215474A JP2012068209A JP 2012068209 A JP2012068209 A JP 2012068209A JP 2010215474 A JP2010215474 A JP 2010215474A JP 2010215474 A JP2010215474 A JP 2010215474A JP 2012068209 A JP2012068209 A JP 2012068209A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
waveform
measured
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010215474A
Other languages
Japanese (ja)
Inventor
Koichiro Kawashima
紘一郎 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHOONPA ZAIRYO SHINDAN KENKYUSHO KK
Original Assignee
CHOONPA ZAIRYO SHINDAN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHOONPA ZAIRYO SHINDAN KENKYUSHO KK filed Critical CHOONPA ZAIRYO SHINDAN KENKYUSHO KK
Priority to JP2010215474A priority Critical patent/JP2012068209A/en
Publication of JP2012068209A publication Critical patent/JP2012068209A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic diagnostic method and apparatus which nondestructively detects and images an abnormal part, a minute defect, a dislocation, or the like existing inside a thin plate shaped object to be measured by a water immersion resonance method.SOLUTION: A focusing ultrasonic wave probe 4 transmits large amplitude burst waves having a high repeating number at a constant frequency f to a thin plate shaped object to be measured 8 horizontally placed in a water tank, so as to excite resonance in thickness direction. High order harmonic waves leaked in water due to the resonance are sampled through a high-pass filter 5, so as to perform mapping of the maximum amplitude thereof and the time difference between a resonance start time and a time to reach a threshold. Abnormal structures such as an inclusion, a microvoid, a microcrack, or a dislocation in the thin plate shaped object to be measured are thus detected and imaged.

Description

本発明は、水浸あるいは局部水浸超音波法等を用いて、薄板状材料内の異質部及び不健全部を非破壊的に検出し画像化する方法及び装置に関するものである。   The present invention relates to a method and apparatus for nondestructively detecting and imaging a heterogeneous part and an unhealthy part in a thin plate material using water immersion or local water immersion ultrasonic method.

異種材料接合が用いられている多層積層基盤やクラッド鋼板などでは、接合部に不完全結合部がないことを非破壊的に評価・検査する必要がある。また、SiCあるいはGaNなどのパワーIC用基板中に含まれる高転位密度部分の非破壊的評価も求められている。さらに、原子力発電所圧力容器の照射脆化監視用小型衝撃試験片の劣化・損傷を非破壊的に評価することが望まれている。   For multi-layer laminated substrates and clad steel plates that use dissimilar material bonding, it is necessary to non-destructively evaluate and inspect that there is no incompletely bonded portion in the bonded portion. Further, non-destructive evaluation of a high dislocation density portion contained in a power IC substrate such as SiC or GaN is also required. Furthermore, it is desired to nondestructively evaluate the deterioration and damage of a small impact test piece for monitoring irradiation embrittlement of a nuclear power plant pressure vessel.

非特許文献1に記載されるように、通常のパルス反射法(超音波探傷試験)を用いるとき、異種材料接合界面の音響インピーダンス差により健全接合部でも反射波が発生するため、接合界面に存在する微細な不完全接合部(不健全部)を検出することができない。また、隙間を持たない金属中の転位集積部・析出物・偏析等の異常組織部(異質部)の検出は不可能である。   As described in Non-Patent Document 1, when a normal pulse reflection method (ultrasonic flaw detection test) is used, a reflected wave is generated even in a healthy joint due to an acoustic impedance difference between different material joint interfaces. It is impossible to detect a minute incompletely joined part (unhealthy part). Further, it is impossible to detect abnormally textured parts (heterogeneous parts) such as dislocation accumulation parts, precipitates, and segregation in a metal having no gap.

上記問題を解決するため、大振幅バースト超音波を材料に入射し、それにより励起される変動応力を用いて不完全接合部あるいは異常組織部を揺り動かしたときに励起される、入射周波数の整数倍周波数を持つ高調波を検出しその振幅を画像化する技術が存在する(特許文献1)。   In order to solve the above problem, an integer multiple of the incident frequency excited when a large amplitude burst ultrasonic wave is incident on the material and the imperfect junction or abnormal tissue is shaken using the fluctuating stress excited thereby. There is a technique for detecting a harmonic having a frequency and imaging its amplitude (Patent Document 1).

しかし、上記技術を用いて薄板状材料・部品の不完全接合部及び異常組織部を非破壊的に検出しようとするとき、高増幅では表面多重反射波により不感帯が生じ、その検出・画像化が困難になるという問題が発生する。   However, when trying to detect the incomplete joints and abnormal tissue parts of thin plate-like materials / parts nondestructively using the above technology, dead zones are generated by surface multiple reflected waves at high amplification, and detection / imaging is not possible. The problem becomes difficult.

この問題を解決するため、電磁超音波探触子を用いる共鳴法が提案されている(特許文献2)。しかし、この方法で使用される探触子寸法は最小でも1cm程度であるので、微細な不完全接合部の検出は不可能である。また、この方法は半導体基板のような非金属材料には適用できない。 In order to solve this problem, a resonance method using an electromagnetic ultrasonic probe has been proposed (Patent Document 2). However, since the probe size used in this method is about 1 cm 2 at a minimum, it is impossible to detect a minute incomplete joint. In addition, this method cannot be applied to non-metallic materials such as semiconductor substrates.

また、送信及び受信に別個の探触子を用い水浸透過法により2次共鳴周波数振幅を測定する微細欠陥検出法が提案されている(特許文献3)。しかし、この方法では、測定試験片の両側に送信及び受信超音波探触子を試験片表面に対し垂直に配置する必要があり、また、周波数を掃引して予め整数倍の比を持つ共振周波数の組を選択し入射周波数を決定する必要がある。さらに、検査において重要な不完全接合部を画像化する手段を欠いている。このため、産業上の応用が困難であると考えられる。   In addition, a fine defect detection method has been proposed in which separate probes are used for transmission and reception, and the secondary resonance frequency amplitude is measured by the water penetration method (Patent Document 3). However, in this method, it is necessary to arrange the transmitting and receiving ultrasonic probes on both sides of the measurement specimen perpendicularly to the specimen surface, and the resonance frequency having a ratio of an integer multiple by sweeping the frequency in advance. It is necessary to determine the incident frequency by selecting a pair. Furthermore, it lacks a means for imaging imperfect joints that are important in inspection. For this reason, it is thought that industrial application is difficult.

一個の探触子を用いて水浸共振法により2次共振振幅を測定し、塑性変形を受けた鋼板および配管の塑性ひずみを検出する方法が提案されている(特許文献4)。しかし、この方法では、入射共振周波数の2倍の周波数における振幅だけを用いている。   There has been proposed a method in which a secondary resonance amplitude is measured by a water immersion resonance method using a single probe, and a plastic strain of a steel plate and piping subjected to plastic deformation is detected (Patent Document 4). However, this method uses only the amplitude at a frequency twice the incident resonance frequency.

これに対し、非特許文献2に記載されるように、密着き裂や微細損傷あるいは介在物の法線が入射超音波ビームに対し斜めに交差する場合は、3次や5次のような奇数次の高次高調波が励起されることが知られている。   On the other hand, as described in Non-Patent Document 2, in the case where an adhesion crack, fine damage, or the normal line of an inclusion obliquely intersects the incident ultrasonic beam, an odd number such as the third or fifth order It is known that the next higher harmonic is excited.

特許4244334号Japanese Patent No. 4244334 特開平9−257760号公報Japanese Patent Laid-Open No. 9-257760 特開2005−114376号公報JP-A-2005-114376 特開2008−107101号公報JP 2008-107101 A

JISハンドブック43 非破壊検査、日本規格協会、2005JIS Handbook 43 Nondestructive Inspection, Japanese Standards Association, 2005 I. Solodov、 第11回新素材及びその製品の非破壊評価シンポジウム論文集、67、2009I. Solodov, 11th Non-destructive Evaluation Symposium on New Materials and Products, 67, 2009

水浸共振法についても、2次だけでなく3次以上の高次共振周波数を検出することで、薄板状材料内部の異常組織部・異質材料接合部の微細な不完全接合部を検出・画像化できると考えられる。しかし、高次共振周波数を利用してそれらを検出し画像化する技術は存在しない。   The water immersion resonance method also detects fine incomplete joints in abnormal tissue and foreign material joints within thin plate materials by detecting not only the second order but also the third and higher order resonance frequencies. It is thought that it can be made. However, there is no technique for detecting and imaging them using higher-order resonance frequencies.

また、繰返数の多いバースト波入射では共振状態に達するまでの時間が材料特性に依存して変化すると考えられるが、高次共振状態に至る時間を画像化する技術は存在しない。   In addition, in the case of burst wave incidence with a large number of repetitions, it is considered that the time to reach the resonance state changes depending on the material characteristics, but there is no technique for imaging the time to reach the higher-order resonance state.

本発明は、上記事情に鑑み、おもに水浸あるいは局部水浸超音波法等を用いて、薄板状測定物の片側から1個の焦点型超音波探触子により大振幅バースト波を送信しそれにより励起された高次共振波形を同一探触子により受信し、高次共振振幅及び高次共振受信時間差を画像化することにより、薄板状測定物内部に存在する異常部や介在物や異種材料接合界面に存在する微小欠陥などを非破壊的に検出する超音波診断方法と装置を提供することを目的とする。   In view of the above circumstances, the present invention transmits a large-amplitude burst wave from one side of a thin plate-like object to be measured by one focal ultrasonic probe mainly using water immersion or local water immersion ultrasonic method. By receiving the higher-order resonance waveform excited by the same probe with the same probe and imaging the difference between the higher-order resonance amplitude and the higher-order resonance reception time, abnormal parts, inclusions, and dissimilar materials present in the thin plate-like measurement object An object of the present invention is to provide an ultrasonic diagnostic method and apparatus for nondestructively detecting minute defects and the like present at a bonding interface.

パーソナルコンピュータからのトリガ信号を受けて周波数可変のバースト波超音波励起用電気信号を発生させる超音波信号発生部、該超音波信号発生部で発生させた超音波信号を電気的に増幅して送信する超音波信号増幅部、該超音波信号増幅部から送信された超音波信号を超音波振動に変換すると共に水中に置かれた薄板状被測定物に超音波振動を入射し該薄板状被測定物を共振させたとき水中に漏洩した超音波信号を受信する超音波探触子、該超音波探触子で検出した信号から3次以上の高次高調波アナログ信号を抽出するアナログフィルタ、該アナログフィルタで抽出した高次高調波アナログ信号を増幅する受信信号増幅部、該受信信号増幅部で増幅された高次高調波アナログ信号を高速A/D変換しそのデジタル信号の波形をデジタル収録する波形記憶部、該波形記憶部に記憶された波形にデジタル波形処理を施し設定した表面反射波形に対する受信波到着時間差及び最大振幅などを算出する波形処理部、被測定物の任意の位置で前記波形処理部で算出された高次共振波形の受信波到着時間差及び共振波形振幅をコンピュータ画面上に白黒の濃淡あるいは色調に変換して表示する画像表示部、及び前記超音波探触子の前記薄板状被測定物に対する距離を可変とする機構を搭載し前記薄板状被測定物表面に沿って移動できる走査機構、を備えた超音波診断装置、又は該超音波診断装置を用いた超音波診断方法であって、前記パーソナルコンピュータからの指令に基づいて前記超音波信号発生部で発生させた前記薄板状被測定物の厚み共振周波数に対応するバースト波超音波励起用電気信号を、前記超音波信号増幅部により増幅し、前記超音波探触子から水を介して前記薄板状被測定物に超音波振動を入射し、被測定物を共振させ、そのとき水中に漏洩した超音波信号を前記超音波探触子により受信し、前記アナログフィルタを介して受信した前記超音波信号から高次共振受信信号を抽出して前記受信信号増幅部で増幅した後、その増幅したアナログ信号をデジタル信号の波形に高速A/D変換し、そのデジタル波形を前記波形記憶部に収録し、前記薄板状被測定物の任意の位置で、前記波形処理部によって高次共振波形の受信波到着時間差及び共振波形振幅を算出し、その算出された高次共振波形の受信波到着時間差及び共振波形振幅を前記画像表示部によってコンピュータ画面上に白黒の濃淡あるいは色調に変換して画像化することにより被測定物内部の微小欠陥あるいは異常部を画像化することを特徴とする。   An ultrasonic signal generator that receives a trigger signal from a personal computer and generates an electrical signal for burst wave ultrasonic excitation with variable frequency, and electrically amplifies and transmits the ultrasonic signal generated by the ultrasonic signal generator An ultrasonic signal amplifying unit for converting the ultrasonic signal transmitted from the ultrasonic signal amplifying unit into ultrasonic vibration, and applying ultrasonic vibration to a thin plate-like object to be measured placed in water An ultrasonic probe for receiving an ultrasonic signal leaked into water when an object is resonated, an analog filter for extracting a third-order or higher harmonic analog signal from a signal detected by the ultrasonic probe, Received signal amplification unit that amplifies high-order harmonic analog signal extracted by analog filter, high-order harmonic analog signal amplified by the received signal amplification unit, and digitally converts the waveform of the digital signal Waveform storage unit for recording, waveform processing unit for calculating received wave arrival time difference and maximum amplitude with respect to the surface reflection waveform set by applying digital waveform processing to the waveform stored in the waveform storage unit, at an arbitrary position of the object to be measured An image display unit that displays the received wave arrival time difference and the resonance waveform amplitude of the higher-order resonance waveform calculated by the waveform processing unit on a computer screen by converting them into black and white shades or colors, and the ultrasonic probe Ultrasonic diagnostic apparatus equipped with a scanning mechanism capable of moving along the surface of the thin plate-shaped object to be measured, equipped with a mechanism for changing the distance to the thin plate-shaped object to be measured, or ultrasonic diagnosis using the ultrasonic diagnostic apparatus A method for burst wave ultrasonic excitation corresponding to a thickness resonance frequency of the thin plate-like object to be measured generated by the ultrasonic signal generator based on a command from the personal computer The electrical signal is amplified by the ultrasonic signal amplifying unit, and ultrasonic vibrations are incident on the thin plate-like object to be measured through the water from the ultrasonic probe to resonate the object to be measured. A leaked ultrasonic signal is received by the ultrasonic probe, a high-order resonance reception signal is extracted from the ultrasonic signal received via the analog filter, amplified by the reception signal amplification unit, and then amplified. The analog signal thus obtained is converted into a digital signal waveform at a high speed A / D, and the digital waveform is recorded in the waveform storage unit. The waveform processing unit generates a high-order resonance waveform at an arbitrary position of the thin plate-like object to be measured. The received wave arrival time difference and resonance waveform amplitude are calculated, and the received wave arrival time difference and resonance waveform amplitude of the calculated higher-order resonance waveform are converted into black and white shading or color tone on the computer screen by the image display unit. Characterized by imaging the minute defect or abnormality of the internal DUT by imaging.

前記超音波診断装置において、送受信超音波探触子が焦点型でとすることにより、微細な異常部を検出・画像化できる。   In the ultrasonic diagnostic apparatus, when the transmission / reception ultrasonic probe is of a focus type, a fine abnormal portion can be detected and imaged.

前記超音波診断装置において、被測定物全体を水中に置くこと、あるいは被測定物の一部を局部水浸することあるいは水柱を介して超音波を送受信することにより微小な被測定物から大型プラントまで適用することができる。   In the ultrasonic diagnostic apparatus, the entire measured object is placed in water, or a part of the measured object is locally submerged, or ultrasonic waves are transmitted / received through a water column to convert a small measured object from a large plant. Can be applied up to.

本発明により、従来の非破壊検査法で検出できない薄板状被測定物内部に存在する微小欠陥あるいは異常部や塑性変形度などを検出する手段が確立された。   According to the present invention, means has been established for detecting minute defects or abnormal portions, plastic deformation degree, etc. existing inside a thin plate-like object to be measured that cannot be detected by a conventional nondestructive inspection method.

また、送信及び受信超音波探触子を被測定物表面に沿って走査しその位置における表面反射信号からの高次共振受信信号の時間差及び高次共振振幅を濃淡あるいは色調に変換して表示することにより、被測定物内部の欠陥あるいは異常部を非破壊的に画像化する手段が確立された。   In addition, the transmission and reception ultrasonic probes are scanned along the surface of the object to be measured, and the time difference of the higher-order resonance reception signal from the surface reflection signal at that position and the higher-order resonance amplitude are converted into light or shade and displayed. As a result, a means for nondestructively imaging defects or abnormal portions inside the object to be measured has been established.

従来の接触式共振超音波測定では、被測定物、超音波探触子及びその間のグリース状の触媒質が連成した共振しか励起できないが、本共振測定では水を介した測定であるので、被測定物厚さと縦波伝搬速度により計算される共振周波数に近い共振周波数を初期値として設定することができる。   In the conventional contact-type resonance ultrasonic measurement, only the resonance in which the object to be measured, the ultrasonic probe, and the grease-like catalyst material between them can be excited, but in this resonance measurement, measurement is performed through water. A resonance frequency close to the resonance frequency calculated from the measured object thickness and the longitudinal wave propagation velocity can be set as an initial value.

従来の多くの共振超音波測定では、入射共振周波数と同一周波数の超音波振幅を受信したので、空間分解能は入力周波数の波長で決められる。これに対し、本発明でアナログハイパスあるいはバンドパスフィルタを用いて抽出した高次共振周波数を検出するので、高次高調波波長を用いることで空間分解能が著しく向上する。   In many conventional resonance ultrasonic measurements, since the ultrasonic amplitude having the same frequency as the incident resonance frequency is received, the spatial resolution is determined by the wavelength of the input frequency. On the other hand, since the high-order resonance frequency extracted using the analog high-pass or band-pass filter is detected in the present invention, the spatial resolution is remarkably improved by using the high-order harmonic wavelength.

水浸高調波測定では超音波が水中経路を伝搬するときに高調波が励起されるが、水中伝搬距離が一定である測定形態を用いることにより、その高調波は測定位置に依存しない定常ノイズとみなすことができる。   In immersion harmonic measurement, harmonics are excited when ultrasonic waves propagate through an underwater path, but by using a measurement configuration with a constant underwater propagation distance, the harmonics are stationary noise that does not depend on the measurement position. Can be considered.

半導体に使用されるシリコン、SiC、
GaN などの単結晶成長過程、及びウエハーへの切断研磨過程において発生する転位などの欠陥部の非破壊検出に適用できる。
Silicon, SiC, used in semiconductors
The present invention can be applied to nondestructive detection of defects such as dislocations generated in the process of growing a single crystal such as GaN and cutting and polishing a wafer.

大地震時に薄板あるいは薄肉円筒状鋼構造物に生じた極低サイクル疲れにより生じた局部的塑性変形度を非破壊的に評価することにも利用できる。   It can also be used for nondestructive evaluation of local plastic deformation caused by extremely low cycle fatigue in thin plates or thin cylindrical steel structures during large earthquakes.

実施形態に係る水浸超音波共振診断装置の全体構成説明図である。1 is an overall configuration explanatory diagram of a water immersion ultrasonic resonance diagnostic apparatus according to an embodiment. 塑性変形した円孔付帯板の高次高調波振幅を画像化した図である。It is the figure which imaged the high-order harmonic amplitude of the band board with a plastic deformation. 塑性変形度の異なる位置の高次高調波受信波形を示す図である。It is a figure which shows the high order harmonic receiving waveform of the position from which a plastic deformation degree differs. 塑性変形した円孔付帯板の高次高調波振幅を画像化した図である。It is the figure which imaged the high-order harmonic amplitude of the band board with a plastic deformation. 塑性変形度の異なる位置の高次高調波受信波形を示す図である。It is a figure which shows the high order harmonic receiving waveform of the position from which a plastic deformation degree differs. 塑性変形度の異なる位置の高次高調波受信波形時間差画像である。It is a high-order harmonic reception waveform time difference image of the position where plastic deformation degree differs. V溝から成長した疲労き裂先端塑性域の高次高調波振幅を画像化した図である。It is the figure which imaged the higher order harmonic amplitude of the fatigue crack tip plastic region grown from the V-groove. 薄鋼板中の非金属介在物周辺塑性域の高次高調波振幅を画像化した図である。It is the figure which imaged the higher harmonic amplitude of the nonmetallic inclusion surrounding plastic zone in a thin steel plate.

本発明に係る超音波診断装置を用いて薄板状被測定物内に存在する微小欠陥や異常部や塑性変形度などを非破壊的に検出するための最良の形態を実施例に基づき、図面を参照して以下に説明する。   The best mode for nondestructively detecting minute defects, abnormal parts, plastic deformation, etc. existing in a thin plate-like object to be measured using the ultrasonic diagnostic apparatus according to the present invention based on the embodiment. This will be described below with reference.

図1は、本発明に係る水浸高次共振を利用する超音波診断装置を説明する図である。超音波診断装置1は、パーソナルコンピュータ15内に内蔵された同期走査制御部10と同期し且つパーソナルコンピュータ15からのトリガ信号を受けて周波数可変のバースト波電気信号(超音波信号)を発生させる超音波信号発生部2、該超音波信号発生部2で発生させた超音波信号を電気的に増幅して送信する超音波信号増幅部3、該超音波信号増幅部3から送信された超音波信号を超音波振動に変換すると共に水槽9の水中に置かれた薄板状被測定物8に超音波振動を入射し該薄板状被測定物8を共振させたとき水中に漏洩した超音波信号を受信する超音波探触子4、該超音波探触子4で受信した超音波信号から3次以上の高次高調波アナログ信号を抽出するアナログフィルタ5、該アナログフィルタ5で抽出した高次高調波アナログ信号を増幅する受信信号増幅部6、該受信信号増幅部6で増幅された高次高調波アナログ信号を高速A/D変換しそのデジタル信号の波形をデジタル収録する波形記憶部11、該波形記憶部11に記憶された波形にデジタル波形処理を施し設定した表面反射波形に対する受信波到着時間差及び最大振幅などを算出する波形処理部12、前記薄板状被測定物8の任意の位置で前記波形処理部12で算出された高次共振波形の受信波到着時間差及び共振波形振幅をコンピュータ画面上に白黒の濃淡あるいは色調に変換して表示する画像表示部13、及び前記超音波探触子4の前記薄板状被測定物8に対する距離を可変とする機構を搭載し前記薄板状被測定物8の表面に沿って移動できる走査機構7で構成されている。なお、超音波探触子4及び薄板状被測定物8は、水を張った水槽9中に浸漬されている。また、同期走査部10、波形記憶部11、波形処理部12、及び画像表示部13は、パーソナルコンピュータ15に内蔵され、超音波信号発生部2、受信信号増幅部6、及び走査機構7は、パーソナルコンピュータ15に接続されている。また、受信信号増幅部6で増幅された高次高調波アナログ信号を高速A/D変換するために、波形記憶部11には、高速A/D変換ボードが含まれている。   FIG. 1 is a diagram for explaining an ultrasonic diagnostic apparatus using water immersion higher-order resonance according to the present invention. The ultrasonic diagnostic apparatus 1 generates a burst wave electric signal (ultrasound signal) having a variable frequency in response to a trigger signal from the personal computer 15 in synchronization with a synchronous scanning control unit 10 built in the personal computer 15. An ultrasonic signal generator 2, an ultrasonic signal amplifier 3 for electrically amplifying and transmitting the ultrasonic signal generated by the ultrasonic signal generator 2, and an ultrasonic signal transmitted from the ultrasonic signal amplifier 3 Is converted into ultrasonic vibration, and ultrasonic vibration is incident on the thin plate-like object 8 placed in the water of the water tank 9 to resonate the thin plate-like object 8 and receive the ultrasonic signal leaked into the water. An ultrasonic probe 4, an analog filter 5 that extracts a higher-order higher-order harmonic analog signal from the ultrasonic signal received by the ultrasonic probe 4, and a higher-order harmonic extracted by the analog filter 5 analog Received signal amplification unit 6 for amplifying the signal, waveform storage unit 11 for high-speed A / D conversion of the higher-order harmonic analog signal amplified by the received signal amplification unit 6 and digitally recording the waveform of the digital signal, and the waveform storage A waveform processing unit 12 for calculating a received wave arrival time difference and a maximum amplitude with respect to a set surface reflection waveform by performing digital waveform processing on the waveform stored in the unit 11; and the waveform processing at an arbitrary position of the thin plate-like object 8 The image display unit 13 that converts the received wave arrival time difference and the resonance waveform amplitude of the higher-order resonance waveform calculated by the unit 12 into a black and white shade or color tone and displays them on the computer screen, and the ultrasonic probe 4 described above. A mechanism for changing the distance to the thin plate-like object to be measured 8 is mounted, and the scanning mechanism 7 is movable along the surface of the thin plate-like object to be measured 8. Note that the ultrasonic probe 4 and the thin plate-like object 8 are immersed in a water tank 9 filled with water. The synchronous scanning unit 10, the waveform storage unit 11, the waveform processing unit 12, and the image display unit 13 are built in the personal computer 15, and the ultrasonic signal generation unit 2, the reception signal amplification unit 6, and the scanning mechanism 7 are A personal computer 15 is connected. The waveform storage unit 11 includes a high-speed A / D conversion board in order to perform high-speed A / D conversion on the high-order harmonic analog signal amplified by the reception signal amplification unit 6.

薄板状被測定物8の厚さ、その材料の縦波音速に基づき、厚み共振周波数を次式により計算する。
fn=2V/(h・n)・・[式1]
ここで、fn:n次共振周波数、V:縦波音速、h:被測定物厚さ、n;整数(1、2、…)である。
薄板状被測定物8に接触する水の存在により、実際の共振周波数は[式1]で計算される値よりいくらか変化する。
Based on the thickness of the thin plate-like object 8 and the longitudinal sound velocity of the material, the thickness resonance frequency is calculated by the following equation.
fn = 2V / (h.n) .. [Formula 1]
Here, fn: n-th resonance frequency, V: longitudinal wave sound velocity, h: thickness of object to be measured, n: integer (1, 2,...).
Due to the presence of water in contact with the thin plate-shaped object to be measured 8, the actual resonance frequency changes somewhat from the value calculated by [Equation 1].

式2で与えられる波長に比例する空間分解能を考慮して、入射する共振周波数の候補を選択する。
λn=V/fn・・[式2]
ここでλnは n次共振周波数に対応する縦波波長である。
In consideration of the spatial resolution proportional to the wavelength given by Equation 2, a candidate for an incident resonance frequency is selected.
λn = V / fn ·· [Formula 2]
Here, λn is a longitudinal wave wavelength corresponding to the n-th resonance frequency.

選択した入射共振周波数fnに近い中心周波数を持ち所望の焦点距離を持つ超音波探触子4を選択する。   An ultrasonic probe 4 having a center frequency close to the selected incident resonance frequency fn and having a desired focal length is selected.

選択した入射共振周波数fnの近辺で入射周波数を変動させ、受信振幅が最大となる周波数を選択する。   The incident frequency is varied in the vicinity of the selected incident resonance frequency fn, and the frequency that maximizes the reception amplitude is selected.

高調波振幅あるいは最大振幅に達するまでの時間差を画像化するためには、材料の欠陥あるいは異常部に最も敏感な受信波形の部分に画像化ゲートを設定する。多くの場合、画像化ゲート位置を図3の四角点線枠で示すように受信バースト波の最後部付近に設定し、超音波探触子4を走査しながら薄板状被測定物8にバースト波を送信し、アナログフィルタ5を介して薄板状被測定物8から水中に漏洩した超音波の高次高調波成分を抽出し、その振幅のマッピングを行い、異常部を画像化する。画像化には市販の超音波画像化ソフトウエアを使用する。この超音波画像化ソフトウエアにおいては、設定した画像化ゲート範囲内の最大振幅を検出し、その振幅値を白黒濃度あるいは擬似カラーに変換して超音波探触子の位置に対してプロットする。   In order to image the time difference until the harmonic amplitude or the maximum amplitude is reached, an imaging gate is set at a portion of the received waveform that is most sensitive to a material defect or abnormal portion. In many cases, the imaging gate position is set near the end of the received burst wave as shown by the rectangular dotted frame in FIG. 3, and the burst wave is applied to the thin plate-like object 8 while scanning the ultrasonic probe 4. The high-order harmonic component of the ultrasonic wave that is transmitted and leaked from the thin plate-like object 8 to the water via the analog filter 5 is extracted, the amplitude is mapped, and the abnormal part is imaged. Commercially available ultrasound imaging software is used for imaging. In this ultrasonic imaging software, the maximum amplitude within the set imaging gate range is detected, and the amplitude value is converted into black and white density or pseudo color and plotted against the position of the ultrasonic probe.

最大振幅に達するまでの時間差を画像化するためには、図3の矢印で示す受信バースト波立上がり部に時間測定の原点を設定し、画像化ゲートを図3の破線のように設定し、超音波探触子4を走査して薄板状被測定物8にバースト波を送信し、アナログフィルタ5を介して薄板状被測定物8から水中に漏洩した超音波の高次高調波成分を抽出し、バースト波立上り部からの画像化ゲートの閾値を超え最大振幅値に達するまでの時間差のマッピングを行い、異常部を画像化する。ここで、閾値は電気ノイズ信号より大きく、検出すべき高調波振幅よりできるだけ小さい値に設定する。画像化には市販の超音波画像化ソフトウエアを使用する。この超音波画像化ソフトウエアでは、受信バースト波の立上がり部から画像化ゲート範囲内の最大振幅までの時間を検出し、その時間を白黒濃度あるいは擬似カラーに変換して超音波探触子の位置に対してプロットする。   In order to image the time difference until the maximum amplitude is reached, the origin of time measurement is set at the rising portion of the received burst wave indicated by the arrow in FIG. 3, the imaging gate is set as indicated by the broken line in FIG. The acoustic probe 4 is scanned to transmit a burst wave to the thin plate-like object to be measured 8, and high-order harmonic components of the ultrasonic waves leaked from the thin plate-like object to be measured 8 into the water via the analog filter 5 are extracted. The time difference until the maximum amplitude value is reached after exceeding the threshold value of the imaging gate from the burst wave rising part is mapped, and the abnormal part is imaged. Here, the threshold value is set to a value larger than the electrical noise signal and as small as possible from the harmonic amplitude to be detected. Commercially available ultrasound imaging software is used for imaging. This ultrasound imaging software detects the time from the rising edge of the received burst wave to the maximum amplitude within the imaging gate range, and converts that time to black and white density or pseudo color to convert the position of the ultrasound probe. Plot against.

第一の実施形態として、塑性変形度の異なる円孔付ステンレス鋼帯板の高次高調波振幅画像を図2に示す。帯板中央に円孔を加工した後、長手方向に約30%の塑性ひずみを与えた後、板厚を5.05mmに加工した試験片を用いた。RITEC社RPR-4000 により周波数7.97MHz、80サイクルのバースト波を公称中心周波数10MHz、
直径12mm、水中焦点距離76mmの焦点超音波探触子に送信し、アナログフィルタとしてのハイパスフィルタ18MHz(-60dB)を用いて高次高調波を抽出しその振幅を画像化した。
As a first embodiment, a high-order harmonic amplitude image of a stainless steel strip with a hole having a different degree of plastic deformation is shown in FIG. After processing a circular hole in the center of the band plate, after giving a plastic strain of about 30% in the longitudinal direction, a test piece processed to a plate thickness of 5.05 mm was used. By RITEC RPR-4000, the frequency is 7.97 MHz, the burst wave of 80 cycles has a nominal center frequency of 10 MHz,
It was transmitted to a focal ultrasound probe having a diameter of 12 mm and an underwater focal length of 76 mm, a high-order harmonic was extracted using a high-pass filter 18 MHz (-60 dB) as an analog filter, and its amplitude was imaged.

図2において、最も塑性変形の著しい孔に隣接する上部及び下部の振幅が最大であり、ほとんど塑性変形していない孔の左右部分の振幅が最小である。孔の上下部から帯板の端に向かって振幅が低下しており、物理的には塑性変形をもたらした転位の密度を表す。   In FIG. 2, the amplitude of the upper part and the lower part adjacent to the hole with the most plastic deformation is the maximum, and the amplitudes of the left and right parts of the hole that are hardly plastically deformed are the minimum. The amplitude decreases from the upper and lower portions of the hole toward the end of the strip, and physically represents the density of dislocations that caused plastic deformation.

図2における塑性変形度の弱い領域aから最も変形度の強い領域dまでの受信波形を図3に示す。破線で示す画像化ゲート位置の振幅はaからdの順に増大している。   FIG. 3 shows received waveforms from the region a having a low degree of plastic deformation to the region d having the highest degree of deformation in FIG. The amplitude of the imaging gate position indicated by the broken line increases from a to d.

塑性変形の少ない領域での共振高次高調波振幅が最大となる、入射周波数を6.91MHzとしたときに得られた振幅画像を図4に示す。孔の左右の領域AとBの高次高調波振幅が最大で、領域CとDの振幅が最小である。ただし、図2の方が、最も塑性変形度の強い領域を的確に表現している。しかし、図2の画像化を行うためには、未知である最も塑性変形度の高い領域を試行錯誤により探して、各点で高次高調波振幅が最大となる共振周波数を求める必要がある。この前段階として、共振周波数がほぼ一定の塑性変形の少ない領域で高次高調波振幅を画像化し、図4に示す領域CとDに示す最小位置を求めれば、上記の試行錯誤の回数を大幅に削減できる。   FIG. 4 shows an amplitude image obtained when the incident frequency is 6.91 MHz, at which the resonance high-order harmonic amplitude is maximized in a region where the plastic deformation is small. The high-order harmonic amplitudes in the left and right regions A and B of the hole are maximum, and the amplitudes of the regions C and D are minimum. However, FIG. 2 accurately represents the region with the strongest plastic deformation. However, in order to perform the imaging of FIG. 2, it is necessary to search for an unknown region having the highest degree of plastic deformation by trial and error and obtain a resonance frequency at which the high-order harmonic amplitude is maximum at each point. As a previous step, if the high-order harmonic amplitude is imaged in a region where the resonance frequency is almost constant and plastic deformation is small, and the minimum position shown in regions C and D shown in FIG. Can be reduced.

図4の領域A〜Dにおける高次高調波受信波形を図5に示す。領域AとBでは共振開始から終了まで最大振幅状態が継続するが、領域CとDでは共振継続時間の途中で振幅が大幅に低下する。そこで、図4に対する画像化ゲート位置を図5の破線部に設定した。このゲート設定により、塑性変形域と非塑性変形域を明瞭に区別できる。なお、領域CとDにおいて、共振継続時間の途中で振幅が大幅に低下する原因として、物理的には、塑性変形域における転位による超音波減衰及び伝搬時間の遅れのため、超音波の干渉が生じたためと考えられる。   FIG. 5 shows high-order harmonic reception waveforms in regions A to D of FIG. In the regions A and B, the maximum amplitude state continues from the start to the end of the resonance, but in the regions C and D, the amplitude significantly decreases during the resonance continuation time. Therefore, the imaging gate position for FIG. 4 is set in the broken line portion of FIG. By this gate setting, the plastic deformation region and the non-plastic deformation region can be clearly distinguished. In regions C and D, the cause of the significant drop in amplitude during the resonance continuation time is that the ultrasonic interference is physically caused by ultrasonic attenuation and propagation time delay due to dislocation in the plastic deformation region. This is thought to have occurred.

図2に示した高調波振幅画像に対応する、共振波形立上部からゲート位置内での最大振幅に達するまでの時間差画像を図6に示す。材料内部に転位あるいはボイドなどの損傷が発生すると被測定物厚さ方向の超音波伝搬速度が健全材料に比べて遅くなるので、時間差画像を用いることにより、材料内減衰に対応する振幅画像とは異なる物理量を表示できる。このように、図2に示す高調波振幅画像と図6に示す時間差画像との両方を画像化して併用することにより、薄板状被測定物のわずかな材料特性の違いを画像化できると共に、塑性変形度を非破壊的に正確に評価することができる。   FIG. 6 shows a time difference image corresponding to the harmonic amplitude image shown in FIG. 2 until reaching the maximum amplitude in the gate position from the top of the resonance waveform. When damage such as dislocations or voids occurs inside the material, the ultrasonic wave propagation speed in the thickness direction of the object to be measured is slower than that of a sound material. By using a time difference image, what is the amplitude image corresponding to the attenuation in the material? Different physical quantities can be displayed. As described above, by imaging and using both the harmonic amplitude image shown in FIG. 2 and the time difference image shown in FIG. 6, a slight difference in material properties of the thin plate-like object to be measured can be imaged. The degree of deformation can be accurately evaluated nondestructively.

第二の実施形態として、厚さ10mm厚さのアルミニウム合金板のV溝切欠きから成長させた疲労き裂前方の塑性域の高次高調波振幅画像と高次共振時間差画像を図7に示す。最上段がV溝切欠きと疲労き裂のスケッチ、中段が高次高調波振幅画像、下段が高次高調波時間差画像である。振幅画像では、き裂先端塑性域のコントラストは低いが時間差画像では、き裂先端塑性域画像化が明瞭に表示される。このように時間差画像を振幅画像と併用することで、わずかな材料特性の違いを画像化できる。   As a second embodiment, FIG. 7 shows a high-order harmonic amplitude image and a high-order resonance time difference image of a plastic region in front of a fatigue crack grown from a V-groove notch of an aluminum alloy plate having a thickness of 10 mm. . The top row is a sketch of a V-groove notch and a fatigue crack, the middle row is a high-order harmonic amplitude image, and the bottom row is a high-order harmonic time difference image. In the amplitude image, the contrast of the crack tip plastic zone is low, but in the time difference image, the crack tip plastic zone imaging is clearly displayed. Thus, by using the time difference image together with the amplitude image, a slight difference in material characteristics can be imaged.

第三の実施形態として、厚さ5mmの薄鋼板中の介在物周辺塑性域の共振高次高調波振幅画像を図8に示す。振幅の大きな円環部が塑性変形域であり、それにより囲まれた低振幅の四角形状領域の内部にさらに低振幅の2本の黒線で介在物が表示されている。従来の特許文献1に記載の背面散乱波を用いる高調波測定では黒線分だけしか画像できない。共振高次高調波画像を用いることで、介在物周りの塑性変形域を識別できる。また、図面では示さないが、この第三の実施形態にかかる時間差画像を画像化したところ、第一の実施形態及び第二の実施形態と同様にわずかな材料特性の違いを画像化できることがわかった。   As a third embodiment, FIG. 8 shows a resonance high-order harmonic amplitude image of an inclusion surrounding plastic region in a 5 mm thick steel sheet. An annular portion having a large amplitude is a plastic deformation region, and inclusions are displayed with two black lines having a lower amplitude inside a rectangular region having a lower amplitude surrounded by the annular portion. In the conventional harmonic measurement using the backscattered wave described in Patent Document 1, only the black line can be imaged. By using the resonance high-order harmonic image, the plastic deformation region around the inclusion can be identified. Although not shown in the drawings, when the time difference image according to the third embodiment is imaged, it is understood that a slight difference in material properties can be imaged as in the first embodiment and the second embodiment. It was.

なお、図1に示した測定形態では焦点型探触子を用いたが、これに代えて平面探触子を使用することもできる。また、図1に示す非測定物全体を水没させる方式に代えて、被測定物の一部を水で覆う方式あるいは水柱方式により超音波を送受信することもできる。さらに、高次高調波を抽出するアナログフィルタとして、ハイパスフィルタあるいはバンドパスフィルタを選択することができる。   Although the focus type probe is used in the measurement form shown in FIG. 1, a planar probe can be used instead. Moreover, it can replace with the system which submerses the whole non-measurement object shown in FIG. 1, and can also transmit / receive an ultrasonic wave by the system which covers a part of to-be-measured object with water, or a water column system. Furthermore, a high-pass filter or a band-pass filter can be selected as an analog filter for extracting high-order harmonics.

1 超音波診断装置
2 超音波信号発生部
3 超音波信号増幅部
4 超音波探触子
5 アナログフィルタ
6 受信信号増幅部
7 走査機構
8 薄板状被測定物
9 水槽
10 同期走査部
11 波形記憶部
12 波形処理部
13 画像表示部
15 パーソナルコンピュータ
1 Ultrasonic diagnostic device 2 Ultrasonic signal generator
DESCRIPTION OF SYMBOLS 3 Ultrasonic signal amplification part 4 Ultrasonic probe 5 Analog filter 6 Reception signal amplification part 7 Scanning mechanism 8 Thin plate-shaped to-be-measured object 9 Water tank 10 Synchronous scanning part 11 Waveform memory | storage part 12 Waveform process part 13 Image display part 15 Personal computer

パーソナルコンピュータからのトリガ信号を受けて周波数可変の数十サイクルのバースト波超音波励起用電気信号を発生させる超音波信号発生部、該超音波信号発生部で発生させた超音波信号を電気的に増幅して送信する超音波信号増幅部、該超音波信号増幅部から送信された超音波信号を超音波振動に変換すると共に水中に置かれた薄板状被測定物に超音波振動を入射し該薄板状被測定物を共振させたとき水中に漏洩した超音波信号を受信する超音波探触子、該超音波探触子で検出した信号から3次以上の高次高調波アナログ信号を抽出するアナログフィルタ、該アナログフィルタで抽出した高次高調波アナログ信号を増幅する受信信号増幅部、該受信信号増幅部で増幅された高次高調波アナログ信号を高速A/D変換しそのデジタル信号の波形をデジタル収録する波形記憶部、該波形記憶部に記憶された波形にデジタル波形処理を施し設定した表面反射波形に対する受信波到着時間差及び最大振幅などを算出する波形処理部、被測定物の任意の位置で前記波形処理部で算出された高次共振波形の受信波到着時間差及び共振波形振幅をコンピュータ画面上に白黒の濃淡あるいは色調に変換して表示する画像表示部、及び前記超音波探触子の前記薄板状被測定物に対する距離を可変とする機構を搭載し前記薄板状被測定物表面に沿って移動できる走査機構、を備えた超音波診断装置、又は該超音波診断装置を用いた超音波診断方法であって、前記パーソナルコンピュータからの指令に基づいて前記超音波信号発生部で発生させた前記薄板状被測定物の厚み共振周波数に対応する数十サイクルのバースト波超音波励起用電気信号を、前記超音波信号増幅部により増幅し、前記超音波探触子から水を介して前記薄板状被測定物に超音波振動を入射し、被測定物を共振させ、そのとき水中に漏洩した超音波信号を前記超音波探触子により受信し、前記アナログフィルタを介して受信した前記超音波信号から高次共振受信信号を抽出して前記受信信号増幅部で増幅した後、その増幅したアナログ信号をデジタル信号の波形に高速A/D変換し、そのデジタル波形を前記波形記憶部に収録し、前記薄板状被測定物の任意の位置で、前記波形処理部によって高次共振波形の受信波到着時間差及び共振波形振幅を算出し、その算出された高次共振波形の受信波到着時間差及び共振波形振幅を前記画像表示部によってコンピュータ画面上に白黒の濃淡あるいは色調に変換して画像化することにより被測定物内部の微小欠陥あるいは異常部を画像化することを特徴とする。 Ultrasonic signal generator for generating a burst wave ultrasonic excitation electrical signal of several tens of cycles of the variable frequency receiving a trigger signal from the personal computer, the ultrasonic signal generated by ultrasonic signal generator electrically An ultrasonic signal amplifying unit that amplifies and transmits, converts an ultrasonic signal transmitted from the ultrasonic signal amplifying unit into ultrasonic vibration, and makes ultrasonic vibration enter a thin plate-like object to be measured placed in water An ultrasonic probe that receives an ultrasonic signal leaked into water when a thin plate-like object is resonated, and a third-order or higher harmonic analog signal is extracted from the signal detected by the ultrasonic probe. An analog filter, a reception signal amplification unit that amplifies the higher-order harmonic analog signal extracted by the analog filter, a high-order harmonic analog signal amplified by the reception signal amplification unit, and high-speed A / D-converts the digital signal Waveform storage unit for digital recording of waveforms, waveform processing unit for calculating received wave arrival time difference and maximum amplitude with respect to the surface reflection waveform set by applying digital waveform processing to the waveform stored in the waveform storage unit, arbitrary of measured object An image display unit for converting the received wave arrival time difference and the resonance waveform amplitude of the higher order resonance waveform calculated by the waveform processing unit at the position of the image into a black and white gradation or color tone on a computer screen, and the ultrasonic probe An ultrasonic diagnostic apparatus equipped with a scanning mechanism capable of moving along the surface of the thin plate-like object to be measured, equipped with a mechanism for changing the distance of the child to the thin-plate-like object to be measured, or using the ultrasonic diagnostic apparatus an ultrasound diagnostic method, dozens service corresponding to the thickness resonance frequency of the said thin plate measured object is generated by the ultrasonic signal generator based on a command from the personal computer The burst wave ultrasonic excitation electrical signal cycle, said amplified by ultrasonic signal amplifier, through said water from the ultrasound probe incident ultrasonic vibration to the thin plate measured object, the object to be measured The ultrasonic signal leaked into the water at that time is received by the ultrasonic probe, and a high-order resonance reception signal is extracted from the ultrasonic signal received through the analog filter to amplify the received signal. The amplified analog signal is converted into a digital signal waveform at high speed A / D, the digital waveform is recorded in the waveform storage unit, and the waveform is measured at an arbitrary position of the thin plate-like object to be measured. The processing unit calculates the received wave arrival time difference and the resonance waveform amplitude of the high-order resonance waveform, and the image display unit displays the received wave arrival time difference and the resonance waveform amplitude of the higher-order resonance waveform on the computer screen. Characterized by imaging the minute defect or abnormality of the internal DUT by imaging is converted into the gray or color tone.

Claims (5)

パーソナルコンピュータからのトリガ信号を受けて周波数可変のバースト波超音波励起用電気信号を発生させる超音波信号発生部、該超音波信号発生部で発生させた超音波信号を電気的に増幅して送信する超音波信号増幅部、該超音波信号増幅部から送信された超音波信号を超音波振動に変換すると共に水中に置かれた薄板状被測定物に超音波振動を入射し該薄板状被測定物を共振させたとき水中に漏洩した超音波信号を受信する超音波探触子、該超音波探触子で検出した信号から3次以上の高次高調波アナログ信号を抽出するアナログフィルタ、該アナログフィルタで抽出した高次高調波アナログ信号を増幅する受信信号増幅部、該受信信号増幅部で増幅された高次高調波アナログ信号を高速A/D変換しそのデジタル信号の波形をデジタル収録する波形記憶部、該波形記憶部に記憶された波形にデジタル波形処理を施し設定した表面反射波形に対する受信波到着時間差及び最大振幅などを算出する波形処理部、被測定物の任意の位置で前記波形処理部で算出された高次共振波形の受信波到着時間差及び共振波形振幅をコンピュータ画面上に白黒の濃淡あるいは色調に変換して表示する画像表示部、及び前記超音波探触子の前記薄板状被測定物に対する距離を可変とする機構を搭載し前記薄板状被測定物表面に沿って移動できる走査機構、を備えた超音波診断装置を用いた超音波診断方法であって、
前記パーソナルコンピュータからの指令に基づいて前記超音波信号発生部で発生させた前記薄板状被測定物の厚み共振周波数に対応するバースト波超音波励起用電気信号を、前記超音波信号増幅部により増幅し、前記超音波探触子から水を介して前記薄板状被測定物に超音波振動を入射し、被測定物を共振させ、そのとき水中に漏洩した超音波信号を前記超音波探触子により受信し、前記アナログフィルタを介して受信した前記超音波信号から高次共振受信信号を抽出して前記受信信号増幅部で増幅した後、その増幅したアナログ信号をデジタル信号の波形に高速A/D変換し、そのデジタル波形を前記波形記憶部に収録し、前記薄板状被測定物の任意の位置で、前記波形処理部によって高次共振波形の受信波到着時間差及び共振波形振幅を算出し、その算出された高次共振波形の受信波到着時間差及び共振波形振幅を前記画像表示部によってコンピュータ画面上に白黒の濃淡あるいは色調に変換して画像化することにより被測定物内部の微小欠陥あるいは異常部を画像化することを特徴とする超音波診断方法。
An ultrasonic signal generator that receives a trigger signal from a personal computer and generates an electrical signal for burst wave ultrasonic excitation with variable frequency, and electrically amplifies and transmits the ultrasonic signal generated by the ultrasonic signal generator An ultrasonic signal amplifying unit for converting the ultrasonic signal transmitted from the ultrasonic signal amplifying unit into ultrasonic vibration, and applying ultrasonic vibration to a thin plate-like object to be measured placed in water An ultrasonic probe for receiving an ultrasonic signal leaked into water when an object is resonated, an analog filter for extracting a third-order or higher harmonic analog signal from a signal detected by the ultrasonic probe, Received signal amplification unit that amplifies high-order harmonic analog signal extracted by analog filter, high-order harmonic analog signal amplified by the received signal amplification unit, and digitally converts the waveform of the digital signal Waveform storage unit for recording, waveform processing unit for calculating received wave arrival time difference and maximum amplitude with respect to the surface reflection waveform set by applying digital waveform processing to the waveform stored in the waveform storage unit, at an arbitrary position of the object to be measured An image display unit that displays the received wave arrival time difference and the resonance waveform amplitude of the higher-order resonance waveform calculated by the waveform processing unit on a computer screen by converting them into black and white shades or colors, and the ultrasonic probe An ultrasonic diagnostic method using an ultrasonic diagnostic apparatus equipped with a scanning mechanism capable of moving along a surface of the thin plate-like object to be measured, which is equipped with a mechanism for changing the distance to the thin plate-like object to be measured,
The ultrasonic signal amplifying unit amplifies the burst wave ultrasonic excitation electric signal corresponding to the thickness resonance frequency of the thin plate-like object to be measured generated by the ultrasonic signal generating unit based on a command from the personal computer. Then, an ultrasonic vibration is incident on the thin plate-like object to be measured through water from the ultrasonic probe, the object to be measured is resonated, and an ultrasonic signal leaked into water at that time is sent to the ultrasonic probe. The high-order resonance reception signal is extracted from the ultrasonic signal received through the analog filter and amplified by the reception signal amplification unit, and then the amplified analog signal is converted into a digital signal waveform at a high-speed A / D-converted, the digital waveform is recorded in the waveform storage unit, and the received wave arrival time difference and the resonance waveform amplitude of the higher-order resonance waveform are measured by the waveform processing unit at an arbitrary position of the thin plate-like object to be measured. The calculated high-order resonance waveform reception wave arrival time difference and resonance waveform amplitude are converted into black and white shading or color tone on the computer screen by the image display unit, and imaged to form a micro defect inside the object to be measured. Alternatively, an ultrasonic diagnostic method comprising imaging an abnormal part.
パーソナルコンピュータからのトリガ信号を受けて周波数可変のバースト波超音波励起用電気信号を発生させる超音波信号発生部、該超音波信号発生部で発生させた超音波信号を電気的に増幅して送信する超音波信号増幅部、該超音波信号増幅部から送信された超音波信号を超音波振動に変換すると共に水中に置かれた薄板状被測定物に超音波振動を入射し該薄板状被測定物を共振させたとき水中に漏洩した超音波信号を受信する超音波探触子、該超音波探触子で検出した信号から3次以上の高次高調波アナログ信号を抽出するアナログフィルタ、該アナログフィルタで抽出した高次高調波アナログ信号を増幅する受信信号増幅部、該受信信号増幅部で増幅された高次高調波アナログ信号を高速A/D変換しそのデジタル信号の波形をデジタル収録する波形記憶部、該波形記憶部に記憶された波形にデジタル波形処理を施し設定した表面反射波形に対する受信波到着時間差及び最大振幅などを算出する波形処理部、被測定物の任意の位置で前記波形処理部で算出された高次共振波形の受信波到着時間差及び共振波形振幅をコンピュータ画面上に白黒の濃淡あるいは色調に変換して表示する画像表示部、及び前記超音波探触子の前記薄板状被測定物に対する距離を可変とする機構を搭載し前記薄板状被測定物表面に沿って移動できる走査機構、を備え、
前記パーソナルコンピュータからの指令に基づいて前記超音波信号発生部で発生させた前記薄板状被測定物の厚み共振周波数に対応するバースト波超音波励起用電気信号を、前記超音波信号増幅部により増幅し、前記超音波探触子から水を介して前記薄板状被測定物に超音波振動を入射し、被測定物を共振させ、そのとき水中に漏洩した超音波信号を前記超音波探触子により受信し、前記アナログフィルタを介して受信した前記超音波信号から高次共振受信信号を抽出して前記受信信号増幅部で増幅した後、その増幅したアナログ信号をデジタル信号の波形に高速A/D変換し、そのデジタル波形を前記波形記憶部に収録し、前記薄板状被測定物の任意の位置で、前記波形処理部によって高次共振波形の受信波到着時間差及び共振波形振幅を算出し、その算出された高次共振波形の受信波到着時間差及び共振波形振幅を前記画像表示部によってコンピュータ画面上に白黒の濃淡あるいは色調に変換して画像化することにより被測定物内部の微小欠陥あるいは異常部を画像化することを特徴とする超音波診断装置。
An ultrasonic signal generator that receives a trigger signal from a personal computer and generates an electrical signal for burst wave ultrasonic excitation with variable frequency, and electrically amplifies and transmits the ultrasonic signal generated by the ultrasonic signal generator An ultrasonic signal amplifying unit for converting the ultrasonic signal transmitted from the ultrasonic signal amplifying unit into ultrasonic vibration, and applying ultrasonic vibration to a thin plate-like object to be measured placed in water An ultrasonic probe for receiving an ultrasonic signal leaked into water when an object is resonated, an analog filter for extracting a third-order or higher harmonic analog signal from a signal detected by the ultrasonic probe, Received signal amplification unit that amplifies high-order harmonic analog signal extracted by analog filter, high-order harmonic analog signal amplified by the received signal amplification unit, and digitally converts the waveform of the digital signal Waveform storage unit for recording, waveform processing unit for calculating received wave arrival time difference and maximum amplitude with respect to the surface reflection waveform set by applying digital waveform processing to the waveform stored in the waveform storage unit, at an arbitrary position of the object to be measured An image display unit that displays the received wave arrival time difference and the resonance waveform amplitude of the higher-order resonance waveform calculated by the waveform processing unit on a computer screen by converting them into black and white shades or colors, and the ultrasonic probe Equipped with a mechanism for changing the distance to the thin plate-like object to be measured and capable of moving along the surface of the thin plate-like object to be measured,
The ultrasonic signal amplifying unit amplifies the burst wave ultrasonic excitation electric signal corresponding to the thickness resonance frequency of the thin plate-like object to be measured generated by the ultrasonic signal generating unit based on a command from the personal computer. Then, an ultrasonic vibration is incident on the thin plate-like object to be measured through water from the ultrasonic probe, the object to be measured is resonated, and an ultrasonic signal leaked into water at that time is sent to the ultrasonic probe. The high-order resonance reception signal is extracted from the ultrasonic signal received through the analog filter and amplified by the reception signal amplification unit, and then the amplified analog signal is converted into a digital signal waveform at a high-speed A / D-converted, the digital waveform is recorded in the waveform storage unit, and the received wave arrival time difference and the resonance waveform amplitude of the higher-order resonance waveform are measured by the waveform processing unit at an arbitrary position of the thin plate-like object to be measured. The calculated high-order resonance waveform reception wave arrival time difference and resonance waveform amplitude are converted into black and white shading or color tone on the computer screen by the image display unit, and imaged to form a micro defect inside the object to be measured. Alternatively, an ultrasonic diagnostic apparatus characterized by imaging an abnormal part.
前記超音波探触子が焦点型又は平面型のいずれかであることを特徴とする請求項2記載の超音波診断装置。   The ultrasonic diagnostic apparatus according to claim 2, wherein the ultrasonic probe is either a focal type or a planar type. 前記被測定物の全体又は一部を、水を張った水槽に水浸させた状態又は水柱を介した状態で前記超音波探触子によって超音波を送受信することを特徴とする請求項2又は請求項3記載の超音波診断装置。   An ultrasonic wave is transmitted and received by the ultrasonic probe in a state where the whole or a part of the object to be measured is immersed in a water tank filled with water or through a water column. The ultrasonic diagnostic apparatus according to claim 3. 前記アナログフィルタは、ハイパスフィルタ又はバンドパスフィルタであることを特徴とする請求項2乃至請求項4のいずれかに記載の超音波診断装置。   The ultrasonic diagnostic apparatus according to claim 2, wherein the analog filter is a high-pass filter or a band-pass filter.
JP2010215474A 2010-09-27 2010-09-27 Material diagnostic method and apparatus using ultrasonic wave Pending JP2012068209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215474A JP2012068209A (en) 2010-09-27 2010-09-27 Material diagnostic method and apparatus using ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215474A JP2012068209A (en) 2010-09-27 2010-09-27 Material diagnostic method and apparatus using ultrasonic wave

Publications (1)

Publication Number Publication Date
JP2012068209A true JP2012068209A (en) 2012-04-05

Family

ID=46165647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215474A Pending JP2012068209A (en) 2010-09-27 2010-09-27 Material diagnostic method and apparatus using ultrasonic wave

Country Status (1)

Country Link
JP (1) JP2012068209A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018470A (en) * 2012-07-19 2014-02-03 Hitachi Power Solutions Co Ltd Ultrasonic imaging apparatus with variable measurement frequency
JP2018205055A (en) * 2017-06-01 2018-12-27 株式会社神戸製鋼所 Defect evaluation method
KR20200027167A (en) * 2018-09-04 2020-03-12 주식회사 디이엔티 Transducer performance degradation compensation apparatus applied to OLED panel non-destructive tester
CN111239246A (en) * 2020-03-11 2020-06-05 大连理工大学 Curved surface structure defect full-focusing imaging method for screening effective signals step by step
CN118129667A (en) * 2024-05-06 2024-06-04 艾肯(江苏)工业技术有限公司 Valve leakage detection system and method based on ultrasonic detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064574A (en) * 2004-08-27 2006-03-09 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic material evaluation method and device
JP2006201008A (en) * 2005-01-20 2006-08-03 Choonpa Zairyo Shindan Kenkyusho:Kk Method and device for detecting quality of contact surface
WO2010061726A1 (en) * 2008-11-25 2010-06-03 コニカミノルタエムジー株式会社 Organic piezoelectric material, ultrasonic transducer and ultrasonic probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064574A (en) * 2004-08-27 2006-03-09 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic material evaluation method and device
JP2006201008A (en) * 2005-01-20 2006-08-03 Choonpa Zairyo Shindan Kenkyusho:Kk Method and device for detecting quality of contact surface
WO2010061726A1 (en) * 2008-11-25 2010-06-03 コニカミノルタエムジー株式会社 Organic piezoelectric material, ultrasonic transducer and ultrasonic probe

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6011049599; 村越明彦,外: '水浸法による非線形超音波可視化画像における水の影響の除去法' 超音波による非破壊評価シンポジウム講演論文集 , 20100128, P.51-52 *
JPN6011049601; 川嶋紘一郎,外: '高調波によるニッケル基合金溶接部IGSCCの画像化とサイジング' 日本機械学会年次大会講演論文集 , 20100904, P.61-62 *
JPN6011049603; 川嶋紘一郎,外: '高調波によるNi基合金溶接部粒界SCCの画像化' 日本非破壊検査協会大会講演概要集 , 20090519, P.65-68 *
JPN6011049605; 川嶋紘一郎,外: '応力腐食割れの高次高調波画像化' 超音波による非破壊評価シンポジウム講演論文集 , 20060124, P.31-34 *
JPN6011049607; 川嶋紘一郎,外: '非線形超音波による工業材料内微細損傷と密着き裂の画像化' 検査技術 第12巻,第5号, 20070501, P.12-18 *
JPN6012034969; 村瀬守正,外: '高調波を用いた微細損傷の画像化' 超音波エレクトロニクスの基礎と応用に関するシンポジウム講演予稿集 , 20061115, P。419-420 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018470A (en) * 2012-07-19 2014-02-03 Hitachi Power Solutions Co Ltd Ultrasonic imaging apparatus with variable measurement frequency
US9326752B2 (en) 2012-07-19 2016-05-03 Hitachi Power Solutions Co., Ltd. Measurement frequency variable ultrasonic imaging device
JP2018205055A (en) * 2017-06-01 2018-12-27 株式会社神戸製鋼所 Defect evaluation method
KR20200027167A (en) * 2018-09-04 2020-03-12 주식회사 디이엔티 Transducer performance degradation compensation apparatus applied to OLED panel non-destructive tester
KR102106089B1 (en) 2018-09-04 2020-04-29 주식회사 디이엔티 Transducer performance degradation compensation apparatus applied to OLED panel non-destructive tester
CN111239246A (en) * 2020-03-11 2020-06-05 大连理工大学 Curved surface structure defect full-focusing imaging method for screening effective signals step by step
CN111239246B (en) * 2020-03-11 2021-05-04 大连理工大学 Curved surface structure defect full-focusing imaging method for screening effective signals step by step
CN118129667A (en) * 2024-05-06 2024-06-04 艾肯(江苏)工业技术有限公司 Valve leakage detection system and method based on ultrasonic detection

Similar Documents

Publication Publication Date Title
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2013140112A (en) Ultrasonic damage detecting apparatus and ultrasonic damage detection method
RU2521720C1 (en) Method and device for welding zone imaging
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
RU2019104572A (en) LASER ULTRASONIC SCANNING FOR VISUALIZATION OF DAMAGE OR IMPACT
Michaels et al. Application of acoustic wavefield imaging to non‐contact ultrasonic inspection of bonded components
JP2012068209A (en) Material diagnostic method and apparatus using ultrasonic wave
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
US20090249879A1 (en) Inspection systems and methods for detection of material property anomalies
JP4595117B2 (en) Ultrasound propagation imaging method and apparatus
JP5804497B2 (en) Lamb wave damage imaging system
JP2013088421A (en) Nondestructive inspection method and device
JP2010266416A (en) Method of processing phased array aperture synthesis and method of evaluating application effect thereof
JP2007003197A (en) Ultrasonic material diagnosis method and apparatus
JP2017161230A (en) Ultrasonic inspection method and ultrasonic inspection device
JP6460136B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5863591B2 (en) Ultrasonic inspection equipment
JP6618374B2 (en) Compact nonlinear ultrasonic nondestructive inspection system
JP2009014345A (en) Non-destructive diagnosing method of structure
JP2012122729A (en) Method and apparatus for material deterioration detection using ultrasonic
Vinogradov et al. New magnetostrictive transducers and applications for SHM of pipes and vessels
JP4294374B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP3036387B2 (en) Ultrasonic flaw detection method and device
JP4014979B2 (en) Ultrasonic inspection equipment
JP2008203185A (en) Device for detecting surface deterioration, and method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106