JP4595117B2 - Ultrasound propagation imaging method and apparatus - Google Patents

Ultrasound propagation imaging method and apparatus Download PDF

Info

Publication number
JP4595117B2
JP4595117B2 JP2005120830A JP2005120830A JP4595117B2 JP 4595117 B2 JP4595117 B2 JP 4595117B2 JP 2005120830 A JP2005120830 A JP 2005120830A JP 2005120830 A JP2005120830 A JP 2005120830A JP 4595117 B2 JP4595117 B2 JP 4595117B2
Authority
JP
Japan
Prior art keywords
subject
ultrasonic waves
measurement points
imaging
propagating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005120830A
Other languages
Japanese (ja)
Other versions
JP2006300634A (en
Inventor
純治 高坪
浩 津田
暢之 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005120830A priority Critical patent/JP4595117B2/en
Publication of JP2006300634A publication Critical patent/JP2006300634A/en
Application granted granted Critical
Publication of JP4595117B2 publication Critical patent/JP4595117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、構造物のヘルスモニタリング等の際に利用する超音波探傷による非破壊検査に関する技術であり、特に、超音波伝搬の映像化方法および装置に関する。   The present invention relates to a technique related to nondestructive inspection by ultrasonic flaw detection used for health monitoring of a structure, and more particularly to an ultrasonic propagation imaging method and apparatus.

超音波の伝搬の様子をイメージングする方法としては、シュリーレン法や光弾性法が広く知られているが、これらの方法は透明な物体にしか適用できない。   As methods for imaging the state of propagation of ultrasonic waves, the Schlieren method and the photoelastic method are widely known, but these methods can be applied only to transparent objects.

不透明な物体を伝搬する超音波の映像化方法としては、本発明者らが開発した受信レーザ走査法(非特許文献1参照)があるが、検出感度や作業性の点で実用的な方法ではなかった。   As a method for imaging an ultrasonic wave propagating through an opaque object, there is a reception laser scanning method (see Non-Patent Document 1) developed by the present inventors. However, in a practical method in terms of detection sensitivity and workability, There wasn't.

さらに、上記受信レーザ走査法を応用した方法として、受信用圧電センサを走査して弾性波の伝搬を可視化する方法及び装置がすでに特許出願(特許文献1参照))されている。しかしこの方法は受信センサを被検体に接触させた状態で走査させなければならないため、作業性が悪く、また、受信超音波がセンサ接着条件の影響を強く受けるので再現性のある高精度な画像を得ることは難しい。
日本機械学会論文集C編65巻639号p.4299−4304,1999年11月 特開2001−296282号公報
Furthermore, as a method of applying the reception laser scanning method, a method and an apparatus for visualizing the propagation of elastic waves by scanning a reception piezoelectric sensor have already been applied for a patent (see Patent Document 1). However, since this method requires scanning with the receiving sensor in contact with the subject, the workability is poor, and the received ultrasonic waves are strongly influenced by the sensor bonding conditions, so that the reproducible and highly accurate image is obtained. Hard to get.
Transactions of the Japan Society of Mechanical Engineers, volume C, 65, 639 4299-4304, November 1999 JP 2001-296282 A

上記従来の超音波伝搬映像化法は、上記のとおりであるが、その課題をまとめると次のとおりである。
(1)受信レーザ走査法
イ.検出感度が低い。
ロ.被検体表面が平坦で滑らかでなければならない。
ハ.レーザ光を被検体に垂直に当て、かつ一定の焦点距離を保たなければならない。
ニ.受信レーザはコストが高い。
The conventional ultrasonic wave propagation imaging method is as described above. The problems are summarized as follows.
(1) Reception laser scanning method a. Detection sensitivity is low.
B. The subject surface must be flat and smooth.
C. Laser light must be applied perpendicularly to the subject and a constant focal length must be maintained.
D. Receiving lasers are expensive.

(2)受信圧電センサ走査法
イ.被検体表面が平坦でなければならない。
ロ.接触走査のため、作業性が悪く、また、接着条件の影響を受けやすい。
ハ.レーザ光ビームに比べて圧電センサの直径が1桁以上大きいため、分解能の高い 画像を得ることができない。
(2) Receiving piezoelectric sensor scanning method a. The subject surface must be flat.
B. Because of contact scanning, workability is poor and it is easily affected by bonding conditions.
C. Since the diameter of the piezoelectric sensor is more than an order of magnitude larger than that of the laser light beam, an image with high resolution cannot be obtained.

本発明は上記課題を解決するために、被検体の表面を走査してパルスレーザ光の走査路の複数の計測点に照射し、熱励起超音波を発生させる発振レーザと、前記被検体に装着して固定され、前記複数の計測点で発生した前記熱励起超音波を前記レーザ光のパルスと同期して検出する受信用圧電センサとを備えた、被検体上を伝搬する超音波の映像化装置を提供する。 In order to solve the above-mentioned problems, the present invention scans the surface of the subject and irradiates a plurality of measurement points on the scanning path of the pulsed laser beam to generate thermally excited ultrasonic waves, and is attached to the subject and is fixed, the thermal excitation ultrasonic waves generated by the plurality of measuring points and a receiving piezoelectric sensor that detect in synchronism with the pulse of the laser beam, the ultrasonic waves propagating on the subject An imaging device is provided.

本発明は上記課題を解決するために、被検体の表面を走査してパルスレーザ光の走査路の複数の計測点に照射し、熱励起超音波を発生させる発振レーザと、前記被検体に装着して固定され、前記複数の計測点で発生した前記熱励起超音波を前記レーザ光のパルスと同期して検出する受信用圧電センサと、A/D変換器と、パソコンとを備えた、被検体上を伝搬する超音波の映像化装置であって、前記A/D変換器は、前記受信用圧電センサで検出した超音波に係る信号をA/D変換して波形列データを得て、前記パソコンは、前記波形列データを収録し、該波形列データの、各時刻における振幅値を輝度変調して画像化することを特徴とする、被検体上を伝搬する超音波の映像化装置を提供する。 In order to solve the above-mentioned problems, the present invention scans the surface of the subject and irradiates a plurality of measurement points on the scanning path of the pulsed laser beam to generate thermally excited ultrasonic waves, and is attached to the subject are to fixed, with the plurality of receiving piezoelectric sensor that detect in synchronism with the pulses of the thermal excitation ultrasonic waves generated at the measurement point the laser beam, and the a / D converter, and a computer An ultrasonic imaging apparatus for propagating on a subject , wherein the A / D converter performs A / D conversion on a signal related to the ultrasonic wave detected by the receiving piezoelectric sensor to obtain waveform string data. The personal computer records the waveform train data, and converts the amplitude value of the waveform train data into an image by luminance-modulating it, thereby imaging the ultrasonic wave propagating on the subject . Providing the device.

発振レーザによって、被検体の表面を走査してパルスレーザ光を走査路に沿って複数の計測点に照射し、前記複数の計測点に熱励起超音波を発生させ、該超音波を、前記被検体に装着して固定した受信用圧電センサで前記レーザ光のパルスと同期して検出し、該検出した信号を波形列データとして、該波形列データの各時刻における振幅値を輝度変調して画像化することを特徴とする、被検体上を伝搬する超音波の映像化方法を提供する。 An oscillation laser scans the surface of the subject and irradiates a plurality of measurement points with pulsed laser light along a scanning path, generates thermally excited ultrasonic waves at the plurality of measurement points, and applies the ultrasonic waves to the subject. Detection is performed in synchronization with the pulse of the laser beam by a receiving piezoelectric sensor attached to a specimen, and the detected signal is used as waveform string data, and the amplitude value at each time of the waveform string data is intensity-modulated to generate an image. An imaging method for ultrasonic waves propagating on a subject is provided.

本発明は上記課題を解決するために、発振レーザによって、被検体の表面を走査してパルスレーザ光を走査路に沿って複数の計測点に照射し、前記複数の計測点に熱励起超音波を発生させ、該超音波を、被検体に装着し固定した受信用圧電センサで前記レーザ光のパルスと同期して検出し、該検出した信号をA/D変換器により波形列データとしてパソコンに収録し、該パソコンにより、前記収録した波形列データを各時刻における振幅値を輝度変調して画像化することを特徴とする、被検体上を伝搬する超音波の映像化方法を提供する。
In order to solve the above problems, the present invention scans the surface of a subject with an oscillating laser, irradiates a plurality of measurement points with a pulse laser beam along a scanning path, and applies thermal excitation ultrasonic waves to the plurality of measurement points. The ultrasonic wave is detected in synchronization with the pulse of the laser beam by a receiving piezoelectric sensor mounted and fixed on the subject, and the detected signal is sent to a personal computer as waveform train data by an A / D converter. There is provided a method of imaging an ultrasonic wave propagating on a subject , characterized in that the recorded waveform train data is imaged by luminance modulation of amplitude values at each time by the personal computer.

前記画像化して得た画像を時系列的に連続表示すれば、超音波伝搬の映像が得られる。   If the images obtained by imaging are continuously displayed in time series, an image of ultrasonic propagation can be obtained.

(1)検出感度が受信レーザ走査法に比べて100〜1000倍向上する。
(2)レーザ光の入射角や焦点距離を合わす必要がないので作業性が非常に良い。
(3)セクタスキャンを利用すれば、広い領域を伝わる超音波の映像を遠隔から計測でき る。
(4)曲面、段差を有する複雑形状物体の超音波を映像化できる。
(5)発振レーザは受信レーザよりも安いので低価格な計測システムを構成できる。
(1) The detection sensitivity is improved 100 to 1000 times compared to the receiving laser scanning method.
(2) Since it is not necessary to match the incident angle and focal length of the laser beam, workability is very good.
(3) By using sector scan, it is possible to remotely measure ultrasound images traveling over a wide area.
(4) Ultrasound of a complex object having curved surfaces and steps can be visualized.
(5) Since an oscillation laser is cheaper than a receiving laser, a low-cost measurement system can be configured.

本発明を実施するための超音波伝搬の映像化方法および装置の最良の形態を、実施例に基づいて図面を参照して以下に説明する。   The best mode of an ultrasonic propagation imaging method and apparatus for carrying out the present invention will be described below with reference to the drawings based on the embodiments.

(原理)
A点にレーザ光を照射して熱励起超音波を発生させ、この超音波をB点の圧電センサで検出した波は、逆に、B点にレーザ光を照射して熱励起超音波を発生させ、この超音波をA点で検出した波とほぼ同一になる。
(principle)
The point A is irradiated with laser light to generate thermally excited ultrasonic waves, and the wave detected by the piezoelectric sensor at point B is reversely irradiated with laser light to generate thermally excited ultrasonic waves. The ultrasonic wave is almost the same as the wave detected at point A.

この超音波伝搬の可逆性を利用すれば、発振レーザを走査させながら、その走査路に沿ってパルスレーザ光を複数の計測点で照射して熱励起超音波を発生させ、この超音波を固定圧電センサで検出した波形列(計測点の数に対応した波形の集合)は、逆に、圧電センサ位置にレーザ光を照射したときに発生する超音波を、圧電センサを走査させながら検出した波形列と同一だと見なすことができる。   By utilizing the reversibility of this ultrasonic wave propagation, while scanning the oscillation laser, irradiate pulsed laser light at multiple measurement points along the scanning path to generate thermally excited ultrasonic waves, and fix the ultrasonic waves On the other hand, the waveform sequence (a set of waveforms corresponding to the number of measurement points) detected by the piezoelectric sensor is a waveform detected by scanning the piezoelectric sensor with ultrasonic waves generated when the laser beam is irradiated to the piezoelectric sensor position. Can be considered identical to a column.

そして、発振レーザを走査させたときの検出波形列の各時刻における振幅値を輝度変調して画像化し(等高線図を作り)、この画像化した画像を時系列的に連続表示させると、その映像は、受信点で発信した超音波の伝搬映像となる。このように、本発明は、受信レーザや受信センサを走査させるのではなく、逆に、発振レーザを走査させて固定圧電素子で受信しているので、非接触で高感度な計測が可能となる。   Then, the amplitude value at each time of the detected waveform sequence when the oscillation laser is scanned is brightness-modulated and imaged (a contour map is created), and when this imaged image is continuously displayed in time series, the image Becomes a propagation image of the ultrasonic wave transmitted at the receiving point. As described above, the present invention does not scan the reception laser or the reception sensor, but conversely scans the oscillation laser and receives it by the fixed piezoelectric element, so that non-contact and high-sensitivity measurement is possible. .

よって、被検体が平坦であること、レーザ光を被検体に垂直に当てかつ一定の焦点距離を保たなければならないこと等、従来の受信レーザや受信センサを走査する場合に必要である事項が、本発明では厳格に要求されない。よって、本発明によれば、作業性が良く、精度においても従来技術に較べると改善される。   Therefore, there are matters necessary when scanning a conventional reception laser or reception sensor, such as that the subject is flat, that the laser beam should be applied perpendicularly to the subject and a certain focal length must be maintained. In the present invention, it is not strictly required. Therefore, according to the present invention, the workability is good, and the accuracy is improved as compared with the prior art.

図1は、本発明に係る超音波伝搬の映像化方法および装置を説明する図である。本発明に係る超音波伝搬の映像化装置は、2軸ステージ、発振レーザ、受信用圧電センサ、増幅器、A/D変換器、パソコンを備えている。A/D変換器としては、デジタルオシロスコープを利用する。   FIG. 1 is a diagram for explaining an ultrasonic propagation imaging method and apparatus according to the present invention. An ultrasonic wave propagation imaging apparatus according to the present invention includes a biaxial stage, an oscillation laser, a receiving piezoelectric sensor, an amplifier, an A / D converter, and a personal computer. A digital oscilloscope is used as the A / D converter.

発振レーザは、例えば、YAGレーザ等が使用され、2軸ステージ上に載置されており、被検体に向けて10Hz程度の周期でパルスレーザ光を照射する。計測点は、パソコンで2軸ステージを制御し格子状に走査させながら、走査路に沿って縦横100×100点、合計10,000点程度の計測点を照射する。パルスレーザ光が被検体に照射されると、被検体の計測点は急激な熱膨張が生じ、この結果、熱励起超音波が発生する。   For example, a YAG laser or the like is used as the oscillation laser, and is placed on a biaxial stage, and irradiates the subject with pulsed laser light at a cycle of about 10 Hz. The measurement points are irradiated with 100 × 100 vertical and horizontal measurement points in total along the scanning path while controlling the two-axis stage with a personal computer to scan in a grid pattern. When the subject is irradiated with the pulse laser beam, the measurement point of the subject undergoes rapid thermal expansion, and as a result, thermally excited ultrasonic waves are generated.

受信用圧電センサは、各計測点で発生した熱励起超音波を電気的に検出するものである。受信用圧電センサにより検出された検出電気信号は、増幅器で増幅して、さらにデジタルオシロスコープでデジタル信号に変換し波形列としてパソコンに送信して収録する。   The receiving piezoelectric sensor electrically detects thermally excited ultrasonic waves generated at each measurement point. The detected electrical signal detected by the receiving piezoelectric sensor is amplified by an amplifier, further converted into a digital signal by a digital oscilloscope, and sent to a personal computer as a waveform train for recording.

以上の構成によりパソコンに収録した波形列データを、各時刻(同一時刻)における振幅値を、レーザ光を照射した計測点における超音波変位と見なして輝度変調した画像を作成する。このようにして得た画像を、時系列的に連続表示(連続描画)すれば、あたかも、受信点で超音波が発進したかのような映像を取得することができる。   With the above-described configuration, an image obtained by modulating the luminance of the waveform sequence data recorded in the personal computer is considered by regarding the amplitude value at each time (same time) as the ultrasonic displacement at the measurement point irradiated with the laser beam. If the images obtained in this way are continuously displayed (continuous drawing) in time series, it is possible to obtain a video as if the ultrasonic wave started at the reception point.

この映像は、実際に伝わっている超音波を映像化したものではないが、実測データを基にしており、実際に存在し得る超音波の映像である。以下、本発明の超音波伝搬装置及び方法によって超音波を映像化する技術の具体的な実験例を示す。   This image is not an image of ultrasonic waves actually transmitted, but is based on actually measured data and is an ultrasonic image that may actually exist. Hereinafter, specific experimental examples of techniques for imaging an ultrasonic wave by the ultrasonic wave propagation apparatus and method of the present invention will be shown.

(実験例1)
図2は、実験例1を示す図である。この実験例1は、本発明に係る超音波伝搬の映像化方法および装置によって、炭素繊維複合材料を伝搬する超音波の映像化を実証する実験例である。
(Experimental example 1)
FIG. 2 is a diagram illustrating Experimental Example 1. This Experimental Example 1 is an experimental example demonstrating the imaging of ultrasonic waves propagating through a carbon fiber composite material by the ultrasonic propagation imaging method and apparatus according to the present invention.

この実験例1では、具体的には、図2に示すような装置を用い、被検体の裏側に、受信用圧電センサとして受信用AE(Acoustic Emission)センサを取り付け、表側をレーザ走査によりパルスレーザ光を照射して超音波の伝わる様子を映像化した。また、損傷によって超音波の伝わり方がどのように変化するかを見るためにハンマで衝撃損傷を与え、損傷部を伝わる超音波も映像化した。   In this experimental example 1, specifically, a device as shown in FIG. 2 is used, a receiving AE (Acoustic Emission) sensor is attached as a receiving piezoelectric sensor on the back side of the subject, and the front side is a pulse laser by laser scanning. The state of ultrasonic waves transmitted through light was visualized. Also, in order to see how the transmission of ultrasonic waves changes due to damage, impact damage was done with a hammer, and the ultrasonic waves transmitted through the damaged part were also visualized.

それらの結果を、図3に無傷材(上段の図)と損傷材(下段の図)とを比較して経時的(2μs、6μs、10μs、14μs、18μs)に示す。損傷材については、超音波が損傷部を通過した後で波形に乱れが生じている様子が映像化されている(図3下段の18μsの図参照)。   The results are shown in FIG. 3 over time (2 μs, 6 μs, 10 μs, 14 μs, 18 μs) comparing the intact material (upper diagram) with the damaged material (lower diagram). As for the damaged material, the state in which the waveform is disturbed after the ultrasonic wave passes through the damaged portion is visualized (see the 18 μs diagram in the lower part of FIG. 3).

また、被検体とした炭素繊維複合材料に特有の音速異方性(S波)もはっきりと観察されている。この炭素繊維複合材料では波の減衰が大きいために、従来の手段では、超音波の映像化は困難であったが、本発明により高感度な映像化が実現可能となった。 In addition, the sound velocity anisotropy ( So wave) peculiar to the carbon fiber composite material used as the specimen has been clearly observed. Since this carbon fiber composite material has a large wave attenuation, it has been difficult to visualize ultrasonic waves by conventional means, but the present invention makes it possible to realize highly sensitive imaging.

(実験例2)
図4は、本発明に係る超音波伝搬の映像化方法および装置の実験例2を示す図である。この実験例2では、実験例1と同様に、本発明に係る超音波伝搬の映像化方法および装置(図2参照)によって、ステンレス鋼の溶接部に発生した疲労き裂の周りを伝搬する超音波を映像化した例を示す。
(Experimental example 2)
FIG. 4 is a diagram showing Experimental Example 2 of the ultrasonic wave propagation imaging method and apparatus according to the present invention. In Experimental Example 2, as in Experimental Example 1, the ultrasonic wave propagation imaging method and apparatus (see FIG. 2) according to the present invention (see FIG. 2) is used to propagate around a fatigue crack generated in a stainless steel weld. An example in which sound waves are visualized is shown.

この実験例2で試験対象とした試験片を図4の下段の図に示す。この試験片は、2枚のステンレス鋼平板(板厚8mm)を溶接して作成したものである。この試験片に疲労き裂を作成しない試験片(無傷材)と、この試験片に疲労き裂を作成した試験片(き裂材)の2種類の試験片を用意する。   The test piece used as the test object in Experimental Example 2 is shown in the lower diagram of FIG. This test piece was prepared by welding two stainless steel flat plates (plate thickness 8 mm). Two types of test pieces are prepared: a test piece that does not create a fatigue crack in this test piece (an intact material), and a test piece that produces a fatigue crack in this test piece (a crack material).

き裂材は、無傷の試験片に繰り返し荷重をかけて疲労き裂を作成したものである。疲労き裂は、溶接部界面の内部から発生し、試験片側面に向かって表面長さ20mmで生成されている。   The cracked material is one in which a fatigue crack is created by repeatedly applying a load to an intact specimen. The fatigue crack is generated from the inside of the weld interface and is generated with a surface length of 20 mm toward the side surface of the test piece.

これらの2種類の試験片(無傷材とき裂材)を、本発明に係る超音波伝搬の映像化方法および装置を利用して走査して得られた映像化画像を、図4の上段の2枚の図に比較して示す。   An imaging image obtained by scanning these two types of test pieces (an intact material and a cracking material) using the ultrasonic wave propagation imaging method and apparatus according to the present invention is shown in the upper part of FIG. Shown in comparison with a single figure.

き裂材(図4の上段の左図)については、超音波は特に支障なく進行している状態を示している。しかし、き裂材(図4の上段の右図)については、超音波がき裂を回り込むようにして進んで行く様子が観察されている。この結果、溶接して作成し試験片について、溶接部のき裂の有無を検出することができ、溶接部の健全性をチェックすることができる。   As for the cracked material (the left figure in the upper part of FIG. 4), the ultrasonic wave is in a state of proceeding without any problem. However, with regard to the crack material (the upper right diagram in FIG. 4), it has been observed that the ultrasonic wave advances as it wraps around the crack. As a result, it is possible to detect the presence or absence of a crack in the welded portion of the test piece prepared by welding, and check the soundness of the welded portion.

(実験例3)
図5は、本発明に係る超音波伝搬の映像化方法および装置を曲面形状物体に適用した実験例3を示す図である。この実験例3では、実験例1と同様に、本発明に係る超音波伝搬の映像化方法および装置(図2参照)によって、茶碗を伝わる超音波を映像化した例を示す。
(Experimental example 3)
FIG. 5 is a diagram showing Experimental Example 3 in which the ultrasonic wave propagation imaging method and apparatus according to the present invention are applied to a curved object. In Experimental Example 3, as in Experimental Example 1, an example of imaging ultrasonic waves transmitted through a teacup by the ultrasonic propagation imaging method and apparatus according to the present invention (see FIG. 2) is shown.

この実験例3では、図5の下段の図に示すように、曲面形状物体である茶碗の内側に受信用AEセンサを取り付け、その裏面をレーザ走査によりパルスレーザ光を照射して得た画像を図5の上段の図に、経時的(4μs、8μs、12μs、16μs)に示す。このように、従来、映像化が難しかった曲面形状物体の超音波伝搬の映像化も可能であることが実証された。   In Experimental Example 3, as shown in the lower diagram of FIG. 5, an image obtained by attaching a receiving AE sensor to the inside of a teacup that is a curved object and irradiating the back surface with a pulsed laser beam by laser scanning is obtained. The upper diagram of FIG. 5 shows the results over time (4 μs, 8 μs, 12 μs, 16 μs). As described above, it has been proved that it is possible to visualize ultrasonic propagation of a curved object, which has been difficult to visualize.

従来、超音波伝搬の映像化技術は測定に高度な機器調整が必要だったため、大学の実験室等における超音波研究の手段としてしか使用されてこなかったが、本発明に係る超音波伝搬の映像化方法および装置は、機器調整が容易で作業性もよく、また、非接触での高感度な測定が可能なので、製造や検査等の現場での超音波の映像化を容易に実現するものである。   Conventionally, the imaging technology of ultrasonic propagation has been used only as a means of ultrasonic research in university laboratories and the like because measurement requires advanced equipment adjustment, but the image of ultrasonic propagation according to the present invention has been used. The method and equipment are easy to adjust the equipment, have good workability, and can perform high-sensitivity measurement without contact, so that it is easy to visualize ultrasonic images in the field such as manufacturing and inspection. is there.

本発明は、構造物や製品の非破壊検査や、超音波機器開発における補助ツールとしての利用が考えられる。特に本発明は、レーザをセクタスキャンすることにより、非接触で遠隔から広範囲な領域を検査することも可能であり、橋梁等の高所の検査や原子力施設等における放射能環境下や高温環境下での検査など、人の近づけない特殊環境下での遠隔検査に威力を発揮する。   The present invention can be used as an auxiliary tool in nondestructive inspection of structures and products and development of ultrasonic equipment. In particular, the present invention is capable of inspecting a wide range of areas remotely without contact by sector scanning with a laser, and inspecting high places such as bridges or in radioactive or high temperature environments such as nuclear facilities. Powerful for remote inspections in special environments where people cannot approach, such as inspections in the field.

最近の超音波診断技術は、人間の耳に相当する信号解析技術から、目に相当する画像診断技術へと移行しつつある。従来の画像診断技術は、Bモード断層像、Cモード断層像に代表される静止画を対象にしたものであったが、本発明は、動画を対象とした新しい超音波画像診断技術への応用も可能である。   Recent ultrasonic diagnostic techniques are shifting from signal analysis techniques corresponding to human ears to image diagnosis techniques corresponding to eyes. Conventional image diagnostic techniques are intended for still images typified by B-mode tomographic images and C-mode tomographic images, but the present invention is applied to new ultrasonic diagnostic imaging techniques for moving images. Is also possible.

本発明の実施例を説明する図である。It is a figure explaining the Example of this invention. 本発明の実験例1を説明する図である。It is a figure explaining Experimental example 1 of this invention. 本発明の実験例1を説明する図である。It is a figure explaining Experimental example 1 of this invention. 本発明の実験例2を説明する図である。It is a figure explaining Experimental example 2 of this invention. 本発明の実験例3を説明する図である。It is a figure explaining Experimental example 3 of this invention.

Claims (6)

被検体の表面を走査してパルスレーザ光の走査路の複数の計測点に照射し、熱励起超音波を発生させる発振レーザと、前記被検体に装着して固定され、前記複数の計測点で発生した前記熱励起超音波を前記レーザ光のパルスと同期して検出する受信用圧電センサとを備えた、被検体上を伝搬する超音波の映像化装置。 An oscillation laser that scans the surface of the subject and irradiates a plurality of measurement points on the scanning path of the pulsed laser light to generate thermally excited ultrasonic waves, and is attached to the subject and fixed, and the plurality of measurement points in the heat pumping ultrasonic waves generated and a receiving piezoelectric sensor that detect in synchronism with the pulse of the laser light, ultrasound imaging apparatus propagating on the subject. 被検体の表面を走査してパルスレーザ光の走査路の複数の計測点に照射し、熱励起超音波を発生させる発振レーザと、前記被検体に装着して固定され、前記複数の計測点で発生した前記熱励起超音波を前記レーザ光のパルスと同期して検出する受信用圧電センサと、A/D変換器と、パソコンとを備えた、被検体上を伝搬する超音波の映像化装置であって、
前記A/D変換器は、前記受信用圧電センサで検出した超音波に係る信号をA/D変換して波形列データを得て、
前記パソコンは、前記波形列データを収録し、該波形列データの、各時刻における振幅値を輝度変調して画像化することを特徴とする、被検体上を伝搬する超音波の映像化装置。
An oscillation laser that scans the surface of the subject and irradiates a plurality of measurement points on the scanning path of the pulsed laser light to generate thermally excited ultrasonic waves, and is attached to the subject and fixed, and the plurality of measurement points in the said heat excitation ultrasonic waves generated received piezoelectric sensor that detect in synchronism with the pulse of the laser beam, and the a / D converter, and a computer, an ultrasound image propagating on the subject Device.
The A / D converter performs A / D conversion on a signal related to the ultrasonic wave detected by the reception piezoelectric sensor to obtain waveform string data,
An imaging apparatus for ultrasonic waves propagating on a subject , wherein the personal computer records the waveform string data and images the waveform string data by luminance-modulating the amplitude value at each time.
前記画像化して得た画像を時系列的に連続表示することを特徴とする請求項2記載の被検体上を伝搬する超音波の映像化装置。 3. The ultrasonic imaging apparatus for propagating ultrasonic waves on a subject according to claim 2 , wherein the images obtained by imaging are continuously displayed in time series. 発振レーザによって、被検体の表面を走査してパルスレーザ光を走査路に沿って複数の計測点に照射し、前記複数の計測点に熱励起超音波を発生させ、該超音波を、前記被検体に装着して固定した受信用圧電センサで前記レーザ光のパルスと同期して検出し、該検出した信号を波形列データとして、該波形列データの各時刻における振幅値を輝度変調して画像化することを特徴とする、被検体上を伝搬する超音波の映像化方法。 An oscillation laser scans the surface of the subject and irradiates a plurality of measurement points with pulsed laser light along a scanning path, generates thermally excited ultrasonic waves at the plurality of measurement points, and applies the ultrasonic waves to the subject. Detection is performed in synchronization with the pulse of the laser beam by a receiving piezoelectric sensor attached to a specimen, and the detected signal is used as waveform string data, and the amplitude value at each time of the waveform string data is intensity-modulated to generate an image. An imaging method for ultrasonic waves propagating on a subject , characterized in that 発振レーザによって、被検体の表面を走査してパルスレーザ光を走査路に沿って複数の計測点に照射し、前記複数の計測点に熱励起超音波を発生させ、該超音波を、被検体に装着し固定した受信用圧電センサで前記レーザ光のパルスと同期して検出し、該検出した信号をA/D変換器により波形列データとしてパソコンに収録し、該パソコンにより、前記収録した波形列データを各時刻における振幅値を輝度変調して画像化することを特徴とする、被検体上を伝搬する超音波の映像化方法。 The oscillation laser scans the surface of the subject, irradiates a plurality of measurement points with pulsed laser light along the scanning path, generates thermally excited ultrasonic waves at the plurality of measurement points, and applies the ultrasonic waves to the subject. Detected in synchronization with the pulse of the laser beam by a receiving piezoelectric sensor mounted on and fixed to the signal, and the detected signal is recorded on a personal computer as waveform string data by an A / D converter, and the recorded waveform is recorded by the personal computer. An imaging method of ultrasonic waves propagating on a subject , wherein the column data is imaged by intensity-modulating the amplitude value at each time. 前記画像化して得た画像を時系列的に連続表示することを特徴とする、請求項4又は5記載の被検体上を伝搬する超音波の映像化方法。 6. The method for imaging an ultrasonic wave propagating on a subject according to claim 4, wherein the images obtained by imaging are continuously displayed in time series.
JP2005120830A 2005-04-19 2005-04-19 Ultrasound propagation imaging method and apparatus Active JP4595117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120830A JP4595117B2 (en) 2005-04-19 2005-04-19 Ultrasound propagation imaging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120830A JP4595117B2 (en) 2005-04-19 2005-04-19 Ultrasound propagation imaging method and apparatus

Publications (2)

Publication Number Publication Date
JP2006300634A JP2006300634A (en) 2006-11-02
JP4595117B2 true JP4595117B2 (en) 2010-12-08

Family

ID=37469108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120830A Active JP4595117B2 (en) 2005-04-19 2005-04-19 Ultrasound propagation imaging method and apparatus

Country Status (1)

Country Link
JP (1) JP4595117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10942152B2 (en) 2016-06-21 2021-03-09 Shimadzu Corporation Defect inspection device and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688977B2 (en) 2009-06-08 2011-05-25 パナソニック株式会社 SOUND GENERATOR, ITS MANUFACTURING METHOD, AND SOUND GENERATION METHOD USING SOUND GENERATOR
CN101852774B (en) * 2010-05-14 2012-10-24 西安金波检测仪器有限责任公司 Flaw detection system and flaw detection method
JP5804497B2 (en) * 2011-07-15 2015-11-04 国立大学法人 千葉大学 Lamb wave damage imaging system
JP6030013B2 (en) 2013-03-22 2016-11-24 株式会社東芝 Ultrasonic inspection apparatus and ultrasonic inspection method
JP7059503B2 (en) * 2018-03-29 2022-04-26 つくばテクノロジー株式会社 Image processing method for ultrasonic propagation video

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167468A (en) * 1985-12-13 1987-07-23 Shimadzu Corp Metal fatigue detecting microscope
JP2000292416A (en) * 1999-04-06 2000-10-20 Japan Science & Technology Corp Photoacoustic microscope apparatus and its imaging method
JP2001296282A (en) * 2000-04-12 2001-10-26 Hatsuden Setsubi Gijutsu Kensa Kyokai Visualizing method and device of in-solid elastic wave propagation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167468A (en) * 1985-12-13 1987-07-23 Shimadzu Corp Metal fatigue detecting microscope
JP2000292416A (en) * 1999-04-06 2000-10-20 Japan Science & Technology Corp Photoacoustic microscope apparatus and its imaging method
JP2001296282A (en) * 2000-04-12 2001-10-26 Hatsuden Setsubi Gijutsu Kensa Kyokai Visualizing method and device of in-solid elastic wave propagation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10942152B2 (en) 2016-06-21 2021-03-09 Shimadzu Corporation Defect inspection device and method

Also Published As

Publication number Publication date
JP2006300634A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP6189227B2 (en) Ultrasonic flaw detector and its evaluation method
Dionysopoulos et al. Imaging of barely visible impact damage on a composite panel using nonlinear wave modulation thermography
Kumar et al. Recent trends in industrial and other engineering applications of non destructive testing: a review
EP2316018B1 (en) Nondestructive testing apparatus and method
RU2521720C1 (en) Method and device for welding zone imaging
RU2019104572A (en) LASER ULTRASONIC SCANNING FOR VISUALIZATION OF DAMAGE OR IMPACT
Dyrwal et al. Nonlinear air-coupled thermosonics for fatigue micro-damage detection and localisation
JP4595117B2 (en) Ultrasound propagation imaging method and apparatus
JP4244334B2 (en) Ultrasonic material evaluation system
JP5996415B2 (en) Ultrasonic flaw detection apparatus and method
WO2012008144A1 (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
CN103713048A (en) Ultrasonic field non-contact visualization method for nondestructive inspection and device thereof
Hayashi Non-contact imaging of pipe thinning using elastic guided waves generated and detected by lasers
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
Hosoya et al. Measurements of S0 mode Lamb waves using a high-speed polarization camera to detect damage in transparent materials during non-contact excitation based on a laser-induced plasma shock wave
Hayashi High-speed non-contact defect imaging for a plate-like structure
JP2002296244A (en) Method and device for diagnosing concrete structure
JP5804497B2 (en) Lamb wave damage imaging system
JP2007003197A (en) Ultrasonic material diagnosis method and apparatus
RU2337353C1 (en) Method for contact-free ultrasonic diagnostics of welded junctions
Sohn et al. Non-contact laser ultrasonics for SHM in aerospace structures
JP2002214204A (en) Ultrasonic flaw detector and method using the same
Remillieux et al. Estimating the penetration depth and orientation of stress corrosion cracks using time-reversal acoustics
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4595117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250