JP2013088421A - Nondestructive inspection method and device - Google Patents

Nondestructive inspection method and device Download PDF

Info

Publication number
JP2013088421A
JP2013088421A JP2011240639A JP2011240639A JP2013088421A JP 2013088421 A JP2013088421 A JP 2013088421A JP 2011240639 A JP2011240639 A JP 2011240639A JP 2011240639 A JP2011240639 A JP 2011240639A JP 2013088421 A JP2013088421 A JP 2013088421A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
air
measured
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011240639A
Other languages
Japanese (ja)
Inventor
Koichiro Kawashima
紘一郎 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHOONPA ZAIRYO SHINDAN KENKYUSHO KK
Original Assignee
CHOONPA ZAIRYO SHINDAN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHOONPA ZAIRYO SHINDAN KENKYUSHO KK filed Critical CHOONPA ZAIRYO SHINDAN KENKYUSHO KK
Priority to JP2011240639A priority Critical patent/JP2013088421A/en
Publication of JP2013088421A publication Critical patent/JP2013088421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nondestructive inspection device for exciting an object to be measured in a thin planar shape including a defect by low frequency vibrations while transmitting/receiving ultrasonic waves in a non-contact manner and identifying presence/absence of the defect on the basis of the spectrum of ultrasonic signals modulated by the vibrations.SOLUTION: While giving vibrations to an object 10 to be measured in a thin planar shape placed on a support part 13 by a low frequency vibration exciter 14, large amplitude burst waves of a fixed frequency are transmitted by an air ultrasonic transmission probe 11, and ultrasonic signals modulated by low frequency vibrations are received by an air ultrasonic reception probe 12. Fast Fourier transformation is executed on the ultrasonic signals in a selected time range by a high-pass filter of a waveform processing/display part 6, an alarm is issued when the intensity of the spectrum in a selected frequency range exceeds a preset value, and thus a minute defect or an unsound area inside the object to be measured is detected.

Description

本発明は、低周波加振と非接触超音波送受信を組合せ、薄肉板状部品内の微小欠陥あるいは不健全部を非破壊的に検出する方法及び装置に関するものである。  The present invention relates to a method and apparatus for nondestructively detecting minute defects or unhealthy portions in a thin plate component by combining low-frequency excitation and non-contact ultrasonic transmission / reception.

超音波を用いて金属材料、各種部品、構造物内部の欠陥を非破壊的に検出するため超音波法が広く用いられている。  An ultrasonic method is widely used for nondestructively detecting defects in metal materials, various parts, and structures using ultrasonic waves.

非特許文献1に記載されるように、通常のパルス反射法は、超音波探触子と被測定物の間に油あるいはゼリー状の音響結合剤を塗布する必要があるが、その塗布と音響結合剤の除去のための検査時間の増加が問題となり、製造ラインでの検査への適用は困難である。またプレス加工後溶接した曲面状部品に含まれる欠陥の検出への適用は極めて困難である。
JISハンドブック43 非破壊検査、日本規格協会、2005
As described in Non-Patent Document 1, in the normal pulse reflection method, it is necessary to apply an oil or jelly-like acoustic binder between the ultrasonic probe and the object to be measured. An increase in inspection time for removing the binder becomes a problem, and it is difficult to apply to inspection on a production line. In addition, it is extremely difficult to apply to detection of defects contained in curved parts welded after press working.
JIS Handbook 43 Nondestructive Inspection, Japanese Standards Association, 2005

非接触で超音波欠陥検査を行う方法として、電磁超音波法、レーザー超音波法あるいは空気超音波法が用いられている。  As a non-contact ultrasonic defect inspection method, an electromagnetic ultrasonic method, a laser ultrasonic method, or an air ultrasonic method is used.

しかし、電磁超音波探触子の面積を1cm以下にすることは困難であり、またレーザー超音波法はレーザー入射角によって各種モードの波が励起されること、空気超音波法は低周波であるため空間分機能が低いという問題を有する。However, it is difficult to reduce the area of the electromagnetic ultrasonic probe to 1 cm 2 or less. In the laser ultrasonic method, waves of various modes are excited by the laser incident angle. In the air ultrasonic method, the frequency is low. Therefore, there is a problem that the spatial function is low.

さらに、これらいずれの方法でも、欠陥位置が不明の場合には、欠陥検出用センサーを被測定物に対して走査して検査する必要があり、検査時間が増大するという問題点を有する。  Further, in any of these methods, when the defect position is unknown, it is necessary to inspect the object to be measured by scanning the defect detection sensor, and there is a problem that the inspection time increases.

上記以外に、被測定物を加振機により振動させて、超音波探触子、レーザー振動計などを用いて固有振動数の変化を検出し内部欠陥の有無を識別する装置が開発されている。
特許公開2006−105680 特許公開平9−159681 特許公開平5−87780
In addition to the above, a device has been developed in which the object to be measured is vibrated with a vibrator, the change in the natural frequency is detected using an ultrasonic probe, a laser vibrometer, etc., and the presence or absence of an internal defect is identified. .
Patent Publication 2006-105680 Patent Publication 9-159681 Patent Publication 5-87780

しかし、特許文献1の方法は、水中で使用される厚肉コンクリート構造物を対象とした超音波非破壊検査におけるノイズ低減を目的とする方法であり、厚さ数mm以下の薄肉部品には適用できない。一方、特許文献2は、被測定物を振動させた状態でカンチレーバーを測定対象物表面に沿って走査し、その際の微小な変位をレーザーにより測定し表面あるいは表面直下のごく微細な欠陥を検出、画像する方法であり、精密すぎて製造現場には利用できない。さらに、特許文献3は、電磁超音波探触子を用いる共振法によりパイプの厚みを測定する方法であり、薄肉部品の微小欠陥検査には適用が困難である。  However, the method of Patent Document 1 is a method for reducing noise in ultrasonic nondestructive inspection for thick-walled concrete structures used in water, and is applicable to thin-walled parts having a thickness of several millimeters or less. Can not. On the other hand, in Patent Document 2, the cantilever is scanned along the surface of the object to be measured while the object to be measured is vibrated, and the minute displacement at that time is measured by a laser to detect a very small defect on the surface or just below the surface. It is a method for detecting and imaging, and it is too precise to be used at the manufacturing site. Furthermore, Patent Document 3 is a method of measuring the thickness of a pipe by a resonance method using an electromagnetic ultrasonic probe, and is difficult to apply to inspection of minute defects of thin parts.

上記以外に、米国Quasar社で開発された共振検査装置RI3000が日本国内で市販されている。この装置は、少数の固有振動モードについて内部欠陥の有無による固有振動数の変化を検出するので、支配的固有振動モードが限定される円板、長方形板、円柱、直方体など比較的単純形状物体の検査には有効であるが、薄板状部品中の溶接部の微細欠陥の非破壊検査には適していない。  In addition to the above, a resonance inspection apparatus RI3000 developed by Quasar, USA is commercially available in Japan. This device detects changes in the natural frequency due to the presence or absence of internal defects for a small number of natural vibration modes, so that relatively simple objects such as discs, rectangular plates, cylinders, and cuboids with limited dominant natural vibration modes are detected. Although it is effective for inspection, it is not suitable for nondestructive inspection of minute defects in welds in thin plate parts.

これに対し、非特許文献2に記載されるように、欠陥を含む薄板状被測定物を数KHz程度の周波数(F)で加振しながらそれより高い周波数(f)の超音波を送受信すると、f±nF(n:整数)の周波数を持つサイドバンドと呼ばれる超音波振動が励起されることが知られている。
林他3名、非破壊検査、58−5(2009)、pp.196−201
On the other hand, as described in Non-Patent Document 2, when a thin plate-shaped object to be measured including a defect is vibrated at a frequency (F) of about several KHz, an ultrasonic wave having a higher frequency (f) is transmitted and received. It is known that ultrasonic vibration called a side band having a frequency of f ± nF (n: integer) is excited.
Hayashi et al., 3 non-destructive inspections, 58-5 (2009), pp. 196-201

しかし、非特許文献2では、測定対象物を支持部にボルトで固定し、接触式超音波送信子を用いているため、短時間での検査が要求される製造現場への適用は困難である。  However, in Non-Patent Document 2, the object to be measured is fixed to the support with a bolt and a contact ultrasonic transmitter is used, so that it is difficult to apply to a manufacturing site where inspection in a short time is required. .

本発明は、上記事情に鑑み、薄肉部品、特に自動車用薄板部品内部の微小な欠陥あるいは不健全部の有無を十秒程度の短時間内に非接触で検査することのできる非破壊検査装置を提供することを目的とする。  In view of the above circumstances, the present invention provides a nondestructive inspection apparatus capable of inspecting the presence of minute defects or unhealthy parts in thin-walled parts, particularly automobile thin plate parts, in a short time of about 10 seconds. The purpose is to provide.

上記目的を達成するため、本発明が採用した解決手段は、制御用PCからのトリガ信号を受けて超音波励起用電気信号を発生させる超音波信号発生部、該超音波信号発生部で発生させた超音波信号を電気的に増幅する送信信号増幅部、該超音波信号増幅部から送信された送信信号を超音波に変換し空気を介して非接触で薄板状被測定物に超音波を入射する空気超音波送信探触子、該薄板状被測定物からの超音波信号を空気を介して受信する空気超音波受信探触子、該超音波探触子で検出した信号を増幅する受信信号増幅部、該受信信号増幅部で増幅されたアナログ信号を高速A/D変換ボードによりデジタル信号に変換しそのデジタル信号波形をデジタル収録する波形記憶部、該波形記憶部に記憶された波形の選択した時間範囲に対して高速フーリエ変換処理を施し選択した周波数範囲内のスペクトルを表示する波形処理・表示部、及び上記薄板状被測定物を支持する支持部、前記制御用PCからの指令に基づいて上記薄板状被測定物に一定時間低周波振動を与える低周波加振機を備え、前記制御用PCからの指令に基づいて前記超音波信号発生部で発生させた超音波励起用電気信号を、前記超音波信号増幅部により増幅し、前記空気超音波送信探触子から空気を介して被測定物に超音波を入射すると同時に、前期低周波加振機を用いて被測定物を振動させ、その低周波振動により変調された超音波信号を前記空気超音波受信探触子により受信し、該超音波受信信号を前記受信信号増幅部で増幅した後、前記高速A/D変換ボードでデジタル変換した波形を前記波形記憶部に収録し、該波形記憶部に記憶された波形について選択した時間範囲に対してデジタルバンドパスフィルタ処理を施した後高速フーリエ変換処理を施し、選択した周波数範囲内のスペクトルを表示し、該スペクトルの強度が予め設定した値を超えたときにアラームを発することにより、被測定物内部の微小欠陥あるいは不健全部を検出することを特徴とする検査方法と検査装置である。  In order to achieve the above object, the solution adopted by the present invention is an ultrasonic signal generator that generates an electrical signal for ultrasonic excitation in response to a trigger signal from a control PC, and the ultrasonic signal generator generates the ultrasonic signal. A transmission signal amplifier that electrically amplifies the ultrasonic signal that has been transmitted, converts the transmission signal transmitted from the ultrasonic signal amplifier into an ultrasonic wave, and enters the thin plate-like object to be measured in a non-contact manner via air. An air ultrasonic transmission probe, an air ultrasonic reception probe that receives an ultrasonic signal from the thin plate-like object to be measured via the air, and a reception signal that amplifies the signal detected by the ultrasonic probe Amplification unit, waveform storage unit for converting analog signal amplified by reception signal amplification unit into digital signal by high-speed A / D conversion board and digital recording of the digital signal waveform, selection of waveform stored in waveform storage unit Fast over a given time range A waveform processing / display unit that displays a spectrum within a selected frequency range by performing a Fourier transform process, a support unit that supports the thin plate-like object to be measured, and the thin plate-like object to be measured based on a command from the control PC Including a low-frequency vibrator that applies low-frequency vibration for a certain period of time to the ultrasonic signal amplifying unit that generates an ultrasonic excitation electrical signal generated by the ultrasonic signal generating unit based on a command from the control PC. At the same time, the ultrasonic wave is incident on the object to be measured through the air from the air ultrasonic transmission probe, and at the same time, the object to be measured is vibrated using a low-frequency vibrator in the previous period and modulated by the low-frequency vibration. The received ultrasonic signal is received by the air ultrasonic reception probe, the ultrasonic reception signal is amplified by the reception signal amplifying unit, and then the waveform digitally converted by the high-speed A / D conversion board is stored in the waveform memory. Recorded in the department A digital bandpass filter process is performed on the selected time range for the waveform stored in the waveform storage unit, and then a fast Fourier transform process is performed to display a spectrum within the selected frequency range. An inspection method and an inspection apparatus characterized by detecting a minute defect or an unhealthy part inside an object to be measured by issuing an alarm when a set value is exceeded.

前記空気超音波送信探触子及び空気超音波送信探触子を焦点型あるいは平面型のいずれかを選択することのより、超音波照射域の面積を調整できる。  The area of the ultrasonic irradiation area can be adjusted by selecting either the focal type or the planar type for the air ultrasonic transmission probe and the air ultrasonic transmission probe.

前記空気超音波受信探触子に換え、レーザードップラー振動計により前記低周波振動により変調された超音波を受信することにより、空気超音波探触子を使用する場合より微細な欠陥の検出ができる。  In place of the air ultrasonic probe, the ultrasonic wave modulated by the low-frequency vibration is received by a laser Doppler vibrometer, so that finer defects can be detected than when the air ultrasonic probe is used. .

本発明により、従来の非破壊検査法で検出すことが困難であった薄板状被測定物内部に存在する微小欠陥あるいは不健全部を短時間に検出する手段が確立された。  According to the present invention, a means for detecting in a short time a minute defect or an unhealthy part existing inside a thin plate-like object to be measured, which has been difficult to detect by a conventional nondestructive inspection method, has been established.

被測定物に含まれる予想欠陥位置に対して、低周波振動を与える加振機の位置、並びに送信及び受信空気超音波探触子の位置及び被測定物に対する方位を最適化することにより、被測定物内部の欠陥あるいは不健全部を非破壊的に検出する感度を向上させることができる。  By optimizing the position of the vibrator that gives low-frequency vibration, the position of the transmitting and receiving air ultrasonic probe, and the orientation with respect to the object to be measured with respect to the expected defect position included in the object to be measured, Sensitivity for nondestructively detecting defects or unhealthy parts inside the measurement object can be improved.

また、送信及び受信空気超音波探触子の公称周波数及び低周波加振機の周波数及び加振出力を非測定物の厚さに対して適切に設定することにより、欠陥あるいは不健全部を非破壊的に検出する感度を向上させることができる。  In addition, by setting the nominal frequency of the transmitting and receiving air ultrasonic probe and the frequency and excitation output of the low frequency exciter appropriately with respect to the thickness of the non-measured object, defects or unhealthy parts can be eliminated. Sensitivity for destructive detection can be improved.

さらに、上記の送信及び受信空気超音波探触子の公称周波数に対応してデジタルバンドパスフィルタの上限及び下限遮断周波数を適切に設定することにより、欠陥あるいは不健全部を非破壊的に検出する感度を向上させることができる。  Furthermore, the defect or unhealthy part is detected nondestructively by appropriately setting the upper and lower cutoff frequencies of the digital bandpass filter corresponding to the nominal frequency of the transmission and reception air ultrasonic probes described above. Sensitivity can be improved.

本発明では、支持台に置いた被測定物が低周波振動により支持台から分離しない程度の弱い力、例えば適当な質量の重しを置くことで検査が可能であり、検査時間を短縮できる。  In the present invention, inspection can be performed by placing a weak force such that the object to be measured placed on the support base is not separated from the support base by low-frequency vibration, for example, an appropriate weight, and the inspection time can be shortened.

内部欠陥を含む薄板状被測定物の低周波加振と超音波送受信による超音波信号の変調を説明する図である。It is a figure explaining the modulation | alteration of the ultrasonic signal by the low frequency excitation of a thin plate-shaped to-be-measured object containing an internal defect, and ultrasonic transmission / reception. 低周波加振と超音波送受信を組合せた検査装置の全体構成説明図である。It is a whole block explanatory view of the inspection device which combined low frequency excitation and ultrasonic transmission and reception. 周波数15kHzの低周波加振機を用いたステンレス薄板被測定物に対する受信波形及びスペクトルを示す図である。It is a figure which shows the received waveform and spectrum with respect to the stainless steel thin plate to-be-measured object using the low frequency vibrator of frequency 15kHz. 周波数15kHzの低周波加振機を用いた無欠陥及び欠陥を含むステンレス薄板被測定物に対するスペクトルを示す図である。It is a figure which shows the spectrum with respect to the stainless steel thin plate to-be-measured object containing a defect-free and a defect using the low frequency shaker of frequency 15kHz. 周波数60kHzの低周波加振機を用いた無欠陥及び欠陥を含むステンレス薄板被測定物のサイドバンドスペクトルを示す図である。It is a figure which shows the sideband spectrum of the stainless steel thin plate to-be-measured object containing a defect-free and a defect using the low frequency shaker of frequency 60kHz. 周波数15kHzの低周波加振機を用いた無欠陥及び欠陥を含むアルミニウム薄板被測定物に対するスペクトルを示す図である。It is a figure which shows the spectrum with respect to the aluminum thin plate to-be-measured object containing a defect-free and a defect using the low frequency shaker of frequency 15kHz.

以下本発明の測定原理を説明した後、本発明に関わる装置の構成、作用、検査結果等について説明する。  Hereinafter, after describing the measurement principle of the present invention, the configuration, operation, test results, and the like of the apparatus according to the present invention will be described.

[測定原理]
図1に示すように、内部にき裂状欠陥を含む板状被測定物に低周波加振により曲げ応力を付与しながら超音波を送受信すると、き裂面が開いたときには剛性が低下し、上段のように受信超音波振幅が低下する。一方、き裂面が閉じたとき剛性が高まり中段のように受信超音波振幅が増大する。このように受信超音波振幅は低周波振動により振幅変調を受ける。
[Measurement principle]
As shown in FIG. 1, when an ultrasonic wave is transmitted and received while applying bending stress to a plate-like object including a crack-like defect inside by low-frequency vibration, the rigidity decreases when the crack surface opens, As shown in the upper part, the received ultrasonic amplitude decreases. On the other hand, when the crack surface is closed, the rigidity increases and the received ultrasonic amplitude increases as in the middle stage. Thus, the received ultrasonic amplitude is subjected to amplitude modulation by the low frequency vibration.

これにより、き裂状欠陥を含む板状被測定物について、低周波周波数(F)による振動と周波数fの超音波信号の重畳により、図1下段に示すように、f±nF(n:整数)の周波数を持つサイドバンドと呼ばれる超音波振動が励起される。  Thus, with respect to the plate-like object to be measured including a crack-like defect, f ± nF (n: integer) as shown in the lower part of FIG. 1 by superimposing the vibration by the low frequency (F) and the ultrasonic signal of the frequency f. ) Is excited by an ultrasonic vibration called a sideband.

また、バンドパスあるいはハイパスフィルタを用いて、き裂状欠陥を含む板状被測定物について、周波数fの整数倍周波数を持つ高調波を抽出すると mf±nF(m、n:整数)のサイドバンドが観察されることも知られている。  Further, when a harmonic having an integral multiple of the frequency f is extracted from a plate-shaped object including a crack-like defect using a bandpass or high-pass filter, a sideband of mf ± nF (m, n: integer) Is also known to be observed.

一方、欠陥を含まない板状被測定物についてはサイドバンドが発生しない、あるいはごく低強度のサイドバンドピークしか観察されないことが知られている。  On the other hand, it is known that a side band does not occur or only a very low intensity side band peak is observed for a plate-like object to be measured that does not contain defects.

次に、上記測定原理を応用した非破壊検査装置について説明する。  Next, a nondestructive inspection apparatus applying the above measurement principle will be described.

図2は、超音波送信及び受信に空気超音波探触子を用いた板状被測定物内の欠陥検査装置の構成を示す。板状被測定物10は支持部13の上に置かれ、低周波加振機13のヘッド部と接するように被測定物高さが調整される。適当な重量の重しにより、加振により被測定物が支持部から離れないよう保持する。超音波信号発生部2からの電気信号を送信信号増幅部3により増幅後、空気超音波送信探触子11を励起し被測定物に空気を介して超音波を入射する。この状態で低周波加振機14により一定時間被測定物を振動させ、その低周波振動で変調された超音波を空気超音波受信探触子12により受信し、受信信号増幅部4にて増幅後、A/D変換して波形記憶部5に記憶する。  FIG. 2 shows a configuration of a defect inspection apparatus in a plate-like object to be measured using an air ultrasonic probe for ultrasonic transmission and reception. The plate-like object to be measured 10 is placed on the support part 13 and the height of the object to be measured is adjusted so as to be in contact with the head part of the low-frequency vibrator 13. With an appropriate weight, the object to be measured is held away from the support portion by vibration. After the electrical signal from the ultrasonic signal generating unit 2 is amplified by the transmission signal amplifying unit 3, the air ultrasonic transmission probe 11 is excited and ultrasonic waves are incident on the object to be measured through the air. In this state, the object to be measured is vibrated for a certain period of time by the low frequency exciter 14, the ultrasonic wave modulated by the low frequency vibration is received by the air ultrasonic reception probe 12, and amplified by the reception signal amplifying unit 4. Thereafter, A / D conversion is performed and the waveform storage unit 5 stores the result.

記憶した波形を図3上段の波形表示ウインドウに表示する。空気超音波探触子間伝搬時間及び被測定物内伝搬時間を考慮して、高速フーリエ変換(FFT)の対象とする時間範囲を設定する。さらに波形処理部に含まれるバンドパスフィルタの上限及び下限遮断周波数を設定することにより、図3左下の周波数スペクトルが表示される。図4の太い白横線で示すように、監視すべき周波数範囲を設定する。被測定物に欠陥あるいは不健全部が含まれると図4右に示すように、監視周波数域のスペクトル強度が大きく表示される。ちなみに、図4左は無欠陥の被測定物に対するスペクトルである。図4右の細い水平線で示すようにスペクトル強度の監視レベルを予め設定しておくと、そのレベルを超える強度が現れたとき、図3下段右上のFFTアラームがONとなりランプが点灯する。これによって欠陥あるいは不健全部の有無を検査できる。  The stored waveform is displayed in the waveform display window in the upper part of FIG. In consideration of the propagation time between the air ultrasonic probes and the propagation time within the object to be measured, a time range to be subjected to fast Fourier transform (FFT) is set. Furthermore, by setting the upper and lower cutoff frequencies of the bandpass filter included in the waveform processing unit, the frequency spectrum at the lower left of FIG. 3 is displayed. A frequency range to be monitored is set as indicated by a thick white horizontal line in FIG. When the object to be measured includes a defect or an unhealthy part, as shown in the right of FIG. 4, the spectrum intensity in the monitoring frequency region is displayed large. Incidentally, the left of FIG. 4 is a spectrum for a defect-free measured object. If the monitoring level of the spectrum intensity is set in advance as shown by the thin horizontal line on the right side of FIG. 4, when an intensity exceeding that level appears, the FFT alarm on the upper right of the lower part of FIG. As a result, the presence or absence of defects or unhealthy parts can be inspected.

図2に示した非破壊検査装置を用いて、厚さ3mmのステンレス板溶接部に溝状欠陥を導入した被測定物及び欠陥を持たない被測定物に対する周波数スペクトルを図4右と左に示す。用いた加振機の設定できる振動周波数範囲は2kHzから20kHzであり、この測定では加振周波数を15kHzに設定した。公称周波数200kHzの空気超音波探触子を用い、バンドパスフィルタの下限周波数を500kHz、上限を900kHzに設定した。
無欠陥の被測定物における上記周波数範囲のスペクトルの正規化振幅(強度)は0.1程度であるが欠陥を含む被測定物の正規化振幅は0.6に達する。このように、欠陥の有無により正規化スペクトルには有意な差が現れることが確認できた。
Using the nondestructive inspection apparatus shown in FIG. 2, frequency spectra for the object to be measured in which a groove-like defect is introduced into a 3 mm-thick stainless steel plate welded part and the object to be measured without a defect are shown on the right and left in FIG. . The vibration frequency range that can be set by the used vibrator is 2 kHz to 20 kHz. In this measurement, the vibration frequency was set to 15 kHz. An air ultrasonic probe with a nominal frequency of 200 kHz was used, and the lower limit frequency of the bandpass filter was set to 500 kHz and the upper limit was set to 900 kHz.
The normalized amplitude (intensity) of the spectrum in the frequency range in the defect-free measured object is about 0.1, but the normalized amplitude of the measured object including the defect reaches 0.6. Thus, it was confirmed that a significant difference appears in the normalized spectrum depending on the presence or absence of defects.

共振周波数が60kHzである低周波加振機を用い、空気超音波探触子の送信周波数を220kHzに設定したときの上記と同一の無欠陥及び欠陥を含む被測定物のスペクトルを図5の左と右に示す。欠陥を含むスペクトルには80kHz及び360kHz,すなわち220±2×70kHzのサイドパンドが明瞭に観察される。  The spectrum of the object to be measured including the same defect and defect as described above when the transmission frequency of the air ultrasonic probe is set to 220 kHz using a low-frequency vibrator having a resonance frequency of 60 kHz is shown in the left of FIG. And shown on the right. In the spectrum including the defects, sidebands of 80 kHz and 360 kHz, that is, 220 ± 2 × 70 kHz are clearly observed.

図2に示した非破壊検査装置を用いて、厚さ1.5mmのアルミニウム合金板溶接部に溝状欠陥を導入した被測定物及び欠陥を持たない被測定物に対する周波数スペクトルを図6右と左に示す。無欠陥の被測定物の評価周波数範囲の正規化スペクトル振幅は0.2以下であるが、欠陥を含む被測定物のその振幅は0.6を超える。これにより欠陥の有無を識別できる。  Using the nondestructive inspection apparatus shown in FIG. 2, the frequency spectrum for the object to be measured in which a groove-like defect is introduced into a 1.5 mm-thick aluminum alloy plate welded part and the object to be measured without a defect is shown on the right side of FIG. Shown on the left. The normalized spectrum amplitude in the evaluation frequency range of the defect-free measurement object is 0.2 or less, but the amplitude of the measurement object including the defect exceeds 0.6. Thereby, the presence or absence of a defect can be identified.

図2に示した非破壊検査装置の空気超音波受信探触子に換えて、レーザードップラー振動計を用いれば、より微細な欠陥を検出できる。  If a laser Doppler vibrometer is used instead of the air ultrasonic reception probe of the nondestructive inspection apparatus shown in FIG. 2, finer defects can be detected.

図2に示した非破壊検査装置の空気超音波送信及び受信探触子は、想定欠陥位置を挟むように配置されているが、これ以外の位置にそれらを配置しても欠陥を検出できる。  The air ultrasonic transmission and reception probe of the nondestructive inspection apparatus shown in FIG. 2 is arranged so as to sandwich the assumed defect position, but the defect can be detected even if they are arranged at other positions.

図2に示した非破壊検査装置の空気超音波送信及び受信探触子を、被測定物の片側に配置して、曲げモードの板波を送受信することにより欠陥を検出することができる。  The air ultrasonic transmission / reception probe of the nondestructive inspection apparatus shown in FIG. 2 is arranged on one side of the object to be measured, and a defect can be detected by transmitting / receiving a bending mode plate wave.

図2に示す薄平板状被測定物に対する非破壊検査装置の構成に換えて、曲面薄板状被測定物に対しては3点支持の支持部を用いることにより欠陥を検出することができる。  Instead of the configuration of the non-destructive inspection apparatus for the thin flat plate-like object shown in FIG. 2, it is possible to detect defects by using a three-point support for the curved thin plate-like object.

1 制御用PC
2 超音波信号発生部
3 送信信号増幅部
4 受信信号増幅部
5 波形記憶部
6 波形処理・表示部
10 被測定物
11 空気超音波送信探触子
12 空気超音波受信探触子
13 支持部
14 低周波加振機
1 Control PC
DESCRIPTION OF SYMBOLS 2 Ultrasonic signal generation part 3 Transmission signal amplification part 4 Reception signal amplification part 5 Waveform memory | storage part 6 Waveform processing / display part 10 Measured object 11 Air ultrasonic transmission probe 12 Air ultrasonic reception probe 13 Support part 14 Low frequency exciter

Claims (5)

制御用PCからのトリガ信号を受けて超音波励起用電気信号を発生させる超音波信号発生部、該超音波信号発生部で発生させた超音波信号を電気的に増幅する送信信号増幅部、該送信信号増幅部から送信された送信信号を超音波に変換し空気を介して非接触で薄板状被測定物に超音波を入射する空気超音波送信探触子、該薄板状被測定物からの超音波信号を空気を介して受信する空気超音波受信探触子、該超音波受信探触子で検出した信号を増幅する受信信号増幅部、該受信信号増幅部で増幅されたアナログ信号を高速A/D変換しそのデジタル信号の波形をデジタル収録する波形記憶部、該波形記憶部に記憶された波形の指定した時間範囲に対して高速フーリエ変換処理を施し指定した周波数範囲内のスペクトルを表示する波形処理・表示部、及び上記薄板状被測定物を支持する支持部、前記制御用PCからの指令に基づいて上記薄板状被測定物に一定時間低周波振動を与える低周波加振機を備え、
前記制御用PCからの指令に基づいて前記超音波信号発生部で発生させた超音波励起用電気信号を、前記送信信号増幅部により増幅し、前記空気超音波送信探触子から空気を介して被測定物に超音波を入射すると同時に、前期低周波加振機を用いて被測定物を振動させ、その低周波振動により変調された超音波信号を前記空気超音波受信探触子により受信し、該受信超音波信号を前記受信信号増幅部で増幅した後、前記高速A/D変換ボードでデジタル変換した波形を前記波形記憶部に収録し、該波形記憶部に記憶された波形の選択した時間範囲に対して高速フーリエ変換処理を施し、デジタルバンドパスフィルタ処理を施した後選択した周波数範囲内のスペクトルを表示し、該スペクトルの強度が予め設定した値を超えたときにアラームを発することにより、被測定物内部の微小欠陥あるいは不健全部を検出することを特徴とする検査方法。
An ultrasonic signal generator for generating an electrical signal for ultrasonic excitation in response to a trigger signal from the control PC, a transmission signal amplifier for electrically amplifying the ultrasonic signal generated by the ultrasonic signal generator, An air ultrasonic transmission probe that converts the transmission signal transmitted from the transmission signal amplification unit into ultrasonic waves and enters the thin plate-like object to be measured in a non-contact manner via air, from the thin plate-like object to be measured An air ultrasonic receiving probe that receives ultrasonic signals via the air, a received signal amplifying unit that amplifies signals detected by the ultrasonic receiving probe, and an analog signal amplified by the received signal amplifying unit at high speed A waveform storage unit that performs A / D conversion and digitally records the waveform of the digital signal, and displays a spectrum within the specified frequency range by applying fast Fourier transform to the specified time range of the waveform stored in the waveform storage unit Waveform processing / display , And a supporting portion, a low-frequency vibrator that provides a constant time low-frequency vibration to the thin plate-like measuring object based on a command from the controlling PC which supports the thin plate-like object to be measured,
The ultrasonic excitation electrical signal generated by the ultrasonic signal generation unit based on the command from the control PC is amplified by the transmission signal amplification unit, and the air is transmitted from the air ultrasonic transmission probe via the air. At the same time as the ultrasonic wave is incident on the object to be measured, the object to be measured is vibrated using a low frequency vibrator in the previous period, and the ultrasonic signal modulated by the low frequency vibration is received by the air ultrasonic receiving probe. After the reception ultrasonic signal is amplified by the reception signal amplification unit, the waveform digitally converted by the high-speed A / D conversion board is recorded in the waveform storage unit, and the waveform stored in the waveform storage unit is selected. Perform fast Fourier transform on the time range, display the spectrum within the selected frequency range after applying digital bandpass filter processing, and alarm when the intensity of the spectrum exceeds a preset value It allows testing method characterized by detecting a minute defect or the unsound part inside the measured object to.
制御用PCからのトリガ信号を受けて超音波励起用電気信号を発生させる超音波信号発生部、該超音波信号発生部で発生させた超音波信号を電気的に増幅する送信信号増幅部、該送信信号増幅部から送信された送信信号を超音波に変換し空気を介して非接触で薄板状被測定物に超音波を入射する空気超音波送信探触子、該薄板状被測定物からの超音波信号を空気を介して受信する空気超音波受信探触子、該超音波受信探触子で検出した信号を増幅する受信信号増幅部、該受信信号増幅部で増幅されたアナログ信号を高速A/D変換しそのデジタル信号の波形をデジタル収録する波形記憶部、該波形記憶部に記憶された波形の指定した時間範囲に対して高速フーリエ変換処理を施し指定した周波数範囲内のスペクトルを表示する波形処理・表示部、及び上記薄板状被測定物を支持する支持部、前記制御用PCからの指令に基づいて上記薄板状被測定物に一定時間低周波振動を与える低周波加振機を備え、
前記制御用PCからの指令に基づいて前記超音波信号発生部で発生させた超音波励起用電気信号を、前記送信信号増幅部により増幅し、前記空気超音波送信探触子から空気を介して被測定物に超音波を入射すると同時に、前記低周波加振機を用いて被測定物を振動させ、その低周波振動により変調された超音波信号を前記空気超音波受信探触子により受信し、該超音波受信信号を前記受信信号増幅部で増幅した後、前記高速A/D変換ボードでデジタル変換した波形を前記波形記憶部に収録し、該波形記憶部に記憶された波形の指定した時間範囲に対して高速フーリエ変換処理を施し、デジタルバンドパスフィルタ処理を施した後指定した周波数範囲内のスペクトルを表示し、該スペクトルの強度が予め設定した値を超えたときにアラームを発することにより、被測定物内部の微小欠陥あるいは不健全部を検出することを特徴とする非破壊検査装置。
An ultrasonic signal generator for generating an electrical signal for ultrasonic excitation in response to a trigger signal from the control PC, a transmission signal amplifier for electrically amplifying the ultrasonic signal generated by the ultrasonic signal generator, An air ultrasonic transmission probe that converts the transmission signal transmitted from the transmission signal amplification unit into ultrasonic waves and enters the thin plate-like object to be measured in a non-contact manner via air, from the thin plate-like object to be measured An air ultrasonic receiving probe that receives ultrasonic signals via the air, a received signal amplifying unit that amplifies signals detected by the ultrasonic receiving probe, and an analog signal amplified by the received signal amplifying unit at high speed A waveform storage unit that performs A / D conversion and digitally records the waveform of the digital signal, and displays a spectrum within the specified frequency range by applying fast Fourier transform to the specified time range of the waveform stored in the waveform storage unit Waveform processing / display , And a supporting portion, a low-frequency vibrator that provides a constant time low-frequency vibration to the thin plate-like measuring object based on a command from the controlling PC which supports the thin plate-like object to be measured,
The ultrasonic excitation electrical signal generated by the ultrasonic signal generation unit based on the command from the control PC is amplified by the transmission signal amplification unit, and the air is transmitted from the air ultrasonic transmission probe via the air. At the same time as the ultrasonic wave is incident on the object to be measured, the object to be measured is vibrated using the low frequency vibrator, and the ultrasonic signal modulated by the low frequency vibration is received by the air ultrasonic receiving probe. After the ultrasonic reception signal is amplified by the reception signal amplification unit, the waveform digitally converted by the high-speed A / D conversion board is recorded in the waveform storage unit, and the waveform stored in the waveform storage unit is designated. After applying fast Fourier transform processing to the time range, applying digital bandpass filter processing, the spectrum within the specified frequency range is displayed, and an alarm is issued when the intensity of the spectrum exceeds a preset value. By non-destructive inspection apparatus characterized by detecting a minute defect or the unsound part inside the measured object.
前記空気超音波送信探触子及び空気超音波送信探触子が焦点型あるいは平面型であることを特徴とする請求項2記載の非破壊検査装置。  The nondestructive inspection apparatus according to claim 2, wherein the air ultrasonic transmission probe and the air ultrasonic transmission probe are of a focal type or a planar type. 前記空気超音波受信探触子に換えレーザードップラー振動計により超音波を受信することを特徴とする請求項2記載の非破壊検査装置。  3. The nondestructive inspection apparatus according to claim 2, wherein an ultrasonic wave is received by a laser Doppler vibrometer instead of the air ultrasonic wave receiving probe. 前記超音波信号発生部で発生させた超音波励起用電気信号がバースト波であることを特徴とする請求項2記載の非破壊検査装置。  The nondestructive inspection apparatus according to claim 2, wherein the ultrasonic excitation electrical signal generated by the ultrasonic signal generator is a burst wave.
JP2011240639A 2011-10-16 2011-10-16 Nondestructive inspection method and device Pending JP2013088421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240639A JP2013088421A (en) 2011-10-16 2011-10-16 Nondestructive inspection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240639A JP2013088421A (en) 2011-10-16 2011-10-16 Nondestructive inspection method and device

Publications (1)

Publication Number Publication Date
JP2013088421A true JP2013088421A (en) 2013-05-13

Family

ID=48532443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240639A Pending JP2013088421A (en) 2011-10-16 2011-10-16 Nondestructive inspection method and device

Country Status (1)

Country Link
JP (1) JP2013088421A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078929A (en) * 2013-10-17 2015-04-23 三菱電機株式会社 Thin plate support member, and thin plate excitation device
CN106442734A (en) * 2016-09-29 2017-02-22 中国人民解放军91872部队 Sound spectrum based nondestructive testing device and method for small irregular castings
CN108802195A (en) * 2018-06-07 2018-11-13 河北中核岩土工程有限责任公司 Measure the experimental rig and method of core sample shear wave velocity
WO2019021538A1 (en) 2017-07-27 2019-01-31 株式会社Subaru Ultrasonic-inspection-system manufacturing method
KR20200003969A (en) * 2018-07-03 2020-01-13 한국과학기술원 Method of inspecting structure and inspection system
JP2021032639A (en) * 2019-08-21 2021-03-01 佐藤工業株式会社 Device and method for acoustic inspection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078929A (en) * 2013-10-17 2015-04-23 三菱電機株式会社 Thin plate support member, and thin plate excitation device
CN106442734A (en) * 2016-09-29 2017-02-22 中国人民解放军91872部队 Sound spectrum based nondestructive testing device and method for small irregular castings
WO2019021538A1 (en) 2017-07-27 2019-01-31 株式会社Subaru Ultrasonic-inspection-system manufacturing method
US11460445B2 (en) 2017-07-27 2022-10-04 Subaru Corporation Method of producing ultrasonic inspection system
CN108802195A (en) * 2018-06-07 2018-11-13 河北中核岩土工程有限责任公司 Measure the experimental rig and method of core sample shear wave velocity
KR20200003969A (en) * 2018-07-03 2020-01-13 한국과학기술원 Method of inspecting structure and inspection system
KR102112032B1 (en) * 2018-07-03 2020-05-19 한국과학기술원 Method of inspecting structure and inspection system
US11131651B2 (en) 2018-07-03 2021-09-28 Korea Advanced Institute Of Science And Technology Method of inspecting structure and inspection system
JP2021032639A (en) * 2019-08-21 2021-03-01 佐藤工業株式会社 Device and method for acoustic inspection
JP7357341B2 (en) 2019-08-21 2023-10-06 佐藤工業株式会社 Acoustic inspection device and method

Similar Documents

Publication Publication Date Title
Liu et al. Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS)
CN101806778B (en) Method for non-linear ultrasonic online detection of early fatigue damage of metal material
JP2013088421A (en) Nondestructive inspection method and device
EP2703806B1 (en) Non-destructive evaluation methods for aerospace components
CN104865317B (en) A kind of transmission-type Air Coupling ultrasonic scanning image method
CN111044613A (en) Metal plate micro-defect detection method based on nonlinear Lamb wave
US11092573B2 (en) Apparatus, systems, and methods for determining nonlinear properties of a material to detect early fatigue or damage
RU2019104572A (en) LASER ULTRASONIC SCANNING FOR VISUALIZATION OF DAMAGE OR IMPACT
CN108225632A (en) A kind of residual stress non-linear ultrasonic detection method
JP2011257384A (en) Method for imaging structure shape in welded part and device therefor
CN104407054A (en) Ultrasonic micro-damage location detection method and device based on collinear aliasing of Lamb waves
Hayashi et al. Non-contact imaging of subsurface defects using a scanning laser source
CN107064296B (en) Multi-mode electromagnetic ultrasonic detection system and electromagnetic ultrasonic sensor
KR20100121818A (en) System for monitoring wall thinned pipe, and method thereof
JP2004069301A (en) Acoustic inspection method and acoustic inspection device
Adebahr et al. Local defect resonance for sensitive non-destructive testing
JP6618374B2 (en) Compact nonlinear ultrasonic nondestructive inspection system
US20050172720A1 (en) Method and device for detecting changes or damages to pressure vessels while or after undergoing a hydraulic pressure test
JP2007003197A (en) Ultrasonic material diagnosis method and apparatus
JP2012068209A (en) Material diagnostic method and apparatus using ultrasonic wave
Masserey et al. IN‐SITU MONITORING OF FATIGUE CRACK GROWTH AT FASTENER HOLES USING RAYLEIGH‐LIKE WAVES
CN106442734B (en) Acoustic spectrum nondestructive detection device and detection method for small irregular castings
Bunget et al. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation
Deng et al. Assessment of fatigue damage in solid plates through the ultrasonic Lamb wave approach