JP2020148500A - Liquid amount detector - Google Patents

Liquid amount detector Download PDF

Info

Publication number
JP2020148500A
JP2020148500A JP2019044031A JP2019044031A JP2020148500A JP 2020148500 A JP2020148500 A JP 2020148500A JP 2019044031 A JP2019044031 A JP 2019044031A JP 2019044031 A JP2019044031 A JP 2019044031A JP 2020148500 A JP2020148500 A JP 2020148500A
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
ultrasonic
container
side wall
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019044031A
Other languages
Japanese (ja)
Other versions
JP7224974B2 (en
Inventor
正臣 吉川
Masaomi Yoshikawa
正臣 吉川
鮫田 芳富
Yoshitomi Sameda
芳富 鮫田
徹 高仲
Toru Takanaka
徹 高仲
光 窪田
Hikari Kubota
光 窪田
北野 竜児
Tatsuji Kitano
竜児 北野
誠治 下崎
Seiji Shimozaki
誠治 下崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2019044031A priority Critical patent/JP7224974B2/en
Publication of JP2020148500A publication Critical patent/JP2020148500A/en
Application granted granted Critical
Publication of JP7224974B2 publication Critical patent/JP7224974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

To provide a liquid amount detector which is reliable enough to detect an accurate amount of the liquid in a container.SOLUTION: An ultrasonic sensor is attached to a side wall of a container containing liquid, and the sensor detects the amount of the liquid in the container according to the level of a reception signal of the ultrasonic sensor when a transverse wave of the ultrasonic wave from the ultrasonic sensor reaches the sensor through the side wall.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、容器に収容されている液体の量を検出する液量検出装置に関する。 An embodiment of the present invention relates to a liquid amount detecting device that detects the amount of liquid contained in a container.

空気調和機や冷凍装置に搭載される冷凍サイクルは、圧縮機の吐出口から吐出される高温高圧の冷媒(ガス冷媒)を凝縮器に送り、その凝縮器から流出する冷媒(液冷媒)を膨張弁で減圧して蒸発器に送り、その蒸発器から流出する低温低圧の冷媒(ガス冷媒)をアキュームレータを介して圧縮機の吸込口に戻す。 The refrigeration cycle installed in an air conditioner or refrigerating device sends a high-temperature and high-pressure refrigerant (gas refrigerant) discharged from the discharge port of a compressor to a condenser, and expands the refrigerant (liquid refrigerant) flowing out of the condenser. The pressure is reduced by a valve and sent to the evaporator, and the low-temperature low-pressure refrigerant (gas refrigerant) flowing out of the evaporator is returned to the suction port of the compressor via the accumulator.

アキュームレータは、流入する冷媒の液状成分(液冷媒)を収容し残りのガス状成分(ガス冷媒)を圧縮機へと送出する。このアキュームレータを設けることで、液冷媒の吸込みによる圧縮機の損傷を防ぐようにしている。液冷媒を一時的に収容する受液器(リキッドレシーバともいう)を凝縮器と膨張弁との間の冷媒流路に設けることもある。 The accumulator accommodates the liquid component (liquid refrigerant) of the inflowing refrigerant and sends the remaining gaseous component (gas refrigerant) to the compressor. By providing this accumulator, damage to the compressor due to suction of the liquid refrigerant is prevented. A liquid receiver (also called a liquid receiver) that temporarily stores the liquid refrigerant may be provided in the refrigerant flow path between the condenser and the expansion valve.

アキュームレータや受液器の容器に収容される液冷媒の量を検出する手段として、超音波を用いる液面検出装置が知られている。この液面検出装置は、冷媒を収容する容器の外側面に超音波センサを取付け、その超音波センサから超音波を送信し、送信した超音波の反射波を同じ超音波センサで受信し、その受信信号の電圧レベルに応じて容器内の液冷媒の液面位置を検出する。 A liquid level detecting device using ultrasonic waves is known as a means for detecting the amount of liquid refrigerant contained in a container of an accumulator or a receiver. In this liquid level detection device, an ultrasonic sensor is attached to the outer surface of a container containing a refrigerant, ultrasonic waves are transmitted from the ultrasonic sensor, and the reflected wave of the transmitted ultrasonic waves is received by the same ultrasonic sensor. The liquid level position of the liquid refrigerant in the container is detected according to the voltage level of the received signal.

容器内の液冷媒の液面位置が規定位値である超音波センサの取付け位置より下方にある場合、超音波センサから送信される超音波は液冷媒に接することなく超音波センサに戻るので、超音波センサの受信信号レベルが高くなる。容器内の液冷媒の液面位置が上記規定位置と同じまたはそれより上方にある場合は、超音波センサから送信される超音波が液冷媒に接した状態で超音波センサに戻るので、超音波センサの受信信号レベルが低くなる。この超音波センサの受信信号レベルに応じて、容器内の液冷媒の液面位置が規定位置に達しているか否かを検出するようにしている。 When the liquid level position of the liquid refrigerant in the container is lower than the mounting position of the ultrasonic sensor, which is the specified value, the ultrasonic waves transmitted from the ultrasonic sensor return to the ultrasonic sensor without coming into contact with the liquid refrigerant. The received signal level of the ultrasonic sensor becomes high. When the liquid level position of the liquid refrigerant in the container is the same as or higher than the above specified position, the ultrasonic waves transmitted from the ultrasonic sensor return to the ultrasonic sensor in contact with the liquid refrigerant. The received signal level of the sensor becomes low. According to the received signal level of the ultrasonic sensor, it is detected whether or not the liquid level position of the liquid refrigerant in the container has reached the specified position.

特許第5774469号公報Japanese Patent No. 5774469 特許第4113700号公報Japanese Patent No. 4113700

冷凍サイクルの運転中は容器内の液面に泡立ちや波浪が生じる。このため、容器内の液冷媒の液面が規定位置より下方にあっても、液面の泡や波頭が規定位置に達するような状況では、その泡や波頭の部分を液面として誤って検出してしまう可能性がある。
本発明の実施形態の目的は、容器内の液量を的確に検出できる信頼性にすぐれた液量検出装置を提供することである。
During the operation of the refrigeration cycle, foaming and waves occur on the liquid level in the container. Therefore, even if the liquid level of the liquid refrigerant in the container is below the specified position, if the bubbles or wave crests on the liquid level reach the specified position, the bubbles or wave crests are erroneously detected as the liquid level. There is a possibility that it will be done.
An object of the embodiment of the present invention is to provide a highly reliable liquid amount detecting device capable of accurately detecting the amount of liquid in a container.

請求項1の液量検出装置は、液体を収容する容器の周壁に取付けられ、超音波を送信しかつ受信する超音波センサと;この超音波センサから送信した超音波の横波が前記周壁を伝わって前記超音波センサに達する時点の同超音波センサの受信信号レベルに応じて、前記容器内の液体の量を検出する検出手段と;を備える。 The liquid amount detecting device according to claim 1 is attached to the peripheral wall of a container containing a liquid and transmits and receives ultrasonic waves; a transverse wave of ultrasonic waves transmitted from the ultrasonic sensor is transmitted through the peripheral wall. The ultrasonic sensor is provided with a detecting means for detecting the amount of liquid in the container according to the received signal level of the ultrasonic sensor at the time of reaching the ultrasonic sensor.

各実施形態の構成および冷凍サイクルの構成を示すブロック図。The block diagram which shows the structure of each embodiment and the structure of a refrigeration cycle. 第1実施形態の超音波センサおよびその超音波センサが取付けられる容器を示す図。The figure which shows the ultrasonic wave sensor of 1st Embodiment and the container to which the ultrasonic wave sensor is attached. 図2における容器の側壁を上方から視るとともにその側壁に超音波の横波が伝わる様子を示す図。FIG. 2 is a diagram showing a state in which a transverse wave of ultrasonic waves is transmitted to the side wall of the container as viewed from above in FIG. 図2のように液冷媒の量が規定位置より下方にある場合の超音波センサの受信信号の電圧波形を示す図。FIG. 2 is a diagram showing a voltage waveform of a received signal of an ultrasonic sensor when the amount of liquid refrigerant is below a specified position as shown in FIG. 図2における容器内の液冷媒が増えた状態を示す図。FIG. 2 is a diagram showing a state in which the amount of liquid refrigerant in the container in FIG. 2 has increased. 図5における容器の側壁を上方から視るとともにその側壁に超音波の横波が伝わる様子を示す図。FIG. 5 is a diagram showing a state in which a transverse wave of ultrasonic waves is transmitted to the side wall of the container as viewed from above in FIG. 図5のように液冷媒の量が規定位置より上方にある場合の超音波センサの受信信号の電圧波形を示す図。FIG. 5 is a diagram showing a voltage waveform of a received signal of an ultrasonic sensor when the amount of liquid refrigerant is above a specified position as shown in FIG. 第1実施形態のコントローラの制御を示すフローチャート。The flowchart which shows the control of the controller of 1st Embodiment. 第2実施形態のコントローラの制御を示すフローチャート。The flowchart which shows the control of the controller of 2nd Embodiment. 第3実施形態の超音波センサおよびその超音波センサが取付けられる容器を示す図。The figure which shows the ultrasonic wave sensor of 3rd Embodiment and the container to which the ultrasonic wave sensor is attached. 第4実施形態の超音波センサおよびその超音波センサが取付けられる容器を示す図。The figure which shows the ultrasonic wave sensor of 4th Embodiment and the container to which the ultrasonic wave sensor is attached. 第5実施形態の超音波センサおよびその超音波センサが取付けられる容器を示す図。The figure which shows the ultrasonic wave sensor of 5th Embodiment and the container to which the ultrasonic wave sensor is attached. 第6実施形態の複数の超音波センサおよびこれら超音波センサが取付けられる容器を示す図。The figure which shows the plurality of ultrasonic sensors of 6th Embodiment and the container to which these ultrasonic sensors are attached. 図13における各超音波センサの受信信号の電圧波形を示す図。The figure which shows the voltage waveform of the received signal of each ultrasonic sensor in FIG. 第7実施形態の複数の超音波センサおよびその各超音波センサが取付けられる容器を示す図。The figure which shows the plurality of ultrasonic sensors of 7th Embodiment and the container to which each ultrasonic sensor is attached. 第7実施形態において液冷媒の量が第1規定位置と第2規定位置との間にある場合の第1超音波センサの受信信号の電圧波形を示す図。The figure which shows the voltage waveform of the received signal of the 1st ultrasonic sensor when the amount of liquid refrigerant is between the 1st specified position and the 2nd specified position in 7th Embodiment. 第7実施形態において液冷媒の量が第1および第2規定位置より下方にある場合の超音波センサの受信信号の電圧波形を示す図。The figure which shows the voltage waveform of the received signal of the ultrasonic sensor when the amount of liquid refrigerant is lower than the 1st and 2nd specified positions in 7th Embodiment. 第8実施形態の複数の超音波センサおよびその各超音波センサが取付けられる容器を示す図。The figure which shows the plurality of ultrasonic sensors of 8th Embodiment and the container to which each ultrasonic sensor is attached. 第8実施形態における各超音波センサの受信信号の電圧波形を示す図。The figure which shows the voltage waveform of the received signal of each ultrasonic sensor in 8th Embodiment. 第9実施形態の複数の超音波センサおよびその各超音波センサが取付けられる容器を示す図。The figure which shows the plurality of ultrasonic sensors of 9th Embodiment and the container to which each ultrasonic sensor is attached. 第9実施形態における各超音波センサの受信信号の電圧波形を示す図。The figure which shows the voltage waveform of the received signal of each ultrasonic sensor in 9th Embodiment. 第10実施形態の複数の超音波センサおよびその各超音波センサが取付けられる容器を示す図。The figure which shows the plurality of ultrasonic sensors of tenth embodiment and the container to which each ultrasonic sensor is attached.

[1]第1実施形態
以下、本発明の第1実施形態について図面を参照して説明する。
図1に示すように、圧縮機1の吐出口に四方弁2を介して室外熱交換器3が配管接続され、その室外熱交換器3に室外膨張弁4が配管接続され、その室外膨張弁4に複数の室内膨張弁11をそれぞれ介して複数の室内熱交換器12が配管接続され、これら室内熱交換器12に上記四方弁2およびアキュームレータ5を介して圧縮機1の吸込口が配管接続されている。これら配管接続により、空気調和機や冷凍装置に搭載されるヒートポンプ式冷凍サイクルが構成される。そして、室外熱交換器3の近傍に室外ファン4が配置され、各室内熱交換器12の近傍にそれぞれ室内ファン13が配置されている。
[1] First Embodiment
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, an outdoor heat exchanger 3 is connected to the discharge port of the compressor 1 via a four-way valve 2, an outdoor expansion valve 4 is connected to the outdoor heat exchanger 3 by a pipe, and the outdoor expansion valve is connected to the outdoor heat exchanger 3. A plurality of indoor heat exchangers 12 are connected to the indoor heat exchangers 12 via a plurality of indoor expansion valves 11, and a suction port of the compressor 1 is connected to the indoor heat exchangers 12 via a four-way valve 2 and an accumulator 5. Has been done. These pipe connections form a heat pump type refrigeration cycle mounted on an air conditioner or a refrigeration system. The outdoor fan 4 is arranged in the vicinity of the outdoor heat exchanger 3, and the indoor fan 13 is arranged in the vicinity of each indoor heat exchanger 12.

圧縮機1は、圧縮室および駆動モータを密閉ケースに収めた密閉型圧縮機であり、吸込口から冷媒を吸込んで圧縮し、圧縮後の高温高圧の冷媒を吐出口から吐出する。冷房時は、実線矢印で示すように、圧縮機1から吐出される冷媒が四方弁2、室外熱交換器3、室外膨張弁4、各室内膨張弁11を通って各室内熱交換器12に流入し、これら室内熱交換器12から流出する冷媒が四方弁2およびアキュームレータ5を通って圧縮機1に吸込まれる。この冷媒の流れにより、室外熱交換器3が凝縮器として機能し、各室内熱交換器12が蒸発器として機能する。暖房時は、四方弁2の流路が切換わることにより、圧縮機1から吐出された冷媒が四方弁2を通って各室内熱交換器12に流入し、その各室内熱交換器12から流出する冷媒が各室内膨張弁11、室外膨張弁4、室外熱交換器3、四方弁2、アキュームレータ5を通って圧縮機1に吸込まれる。この冷媒の流れにより、各室内熱交換器12が凝縮器として機能し、室外熱交換器3が蒸発器として機能する。 The compressor 1 is a sealed compressor in which a compression chamber and a drive motor are housed in a closed case. The compressor 1 sucks a refrigerant from a suction port to compress the compressor, and discharges the compressed high-temperature and high-pressure refrigerant from the discharge port. During cooling, as shown by the solid line arrow, the refrigerant discharged from the compressor 1 passes through the four-way valve 2, the outdoor heat exchanger 3, the outdoor expansion valve 4, and each indoor expansion valve 11 to each indoor heat exchanger 12. The refrigerant that flows in and flows out from the indoor heat exchanger 12 is sucked into the compressor 1 through the four-way valve 2 and the accumulator 5. Due to the flow of the refrigerant, the outdoor heat exchanger 3 functions as a condenser, and each indoor heat exchanger 12 functions as an evaporator. During heating, the flow path of the four-way valve 2 is switched so that the refrigerant discharged from the compressor 1 flows into each indoor heat exchanger 12 through the four-way valve 2 and flows out from each indoor heat exchanger 12. The refrigerant to be used is sucked into the compressor 1 through each indoor expansion valve 11, outdoor expansion valve 4, outdoor heat exchanger 3, four-way valve 2, and accumulator 5. Due to the flow of the refrigerant, each indoor heat exchanger 12 functions as a condenser, and the outdoor heat exchanger 3 functions as an evaporator.

アキュームレータ5は、図2に示す円柱型の容器10を含み、流入してくる冷媒の液状成分(液冷媒;図示点々)Rを容器10に収容し、残りのガス状成分(ガス冷媒)を圧縮機へと送出する。容器10の周壁は、鉄製の鋼板からなる円筒状の側壁(鋼板)10a、同じ鉄製の鋼板からなり側壁10aの軸方向一端(上端)を閉塞する円形の一端壁(上面壁)10b、および同じ鉄製の鋼板からなり側壁10aの軸方向他端(下端)を閉塞する円形の他端壁(下面壁)10cにより形成されている。 The accumulator 5 includes the cylindrical container 10 shown in FIG. 2, stores the liquid component (liquid refrigerant; dots in the figure) R of the inflowing refrigerant in the container 10, and compresses the remaining gaseous component (gas refrigerant). Send to the machine. The peripheral wall of the container 10 is a cylindrical side wall (steel plate) 10a made of an iron steel plate, a circular one end wall (upper surface wall) 10b made of the same iron steel plate and closing an axial end (upper end) of the side wall 10a, and the same. It is made of an iron steel plate and is formed by a circular other end wall (lower surface wall) 10c that closes the other end (lower end) in the axial direction of the side wall 10a.

この容器10の側壁10aの外周面に、超音波検出ユニット20が取付けられている。超音波検出ユニット20は、側壁10aの外周面の所定の高さ位置に隙間なく取付けられ側壁10a側に向けてほぼ水平方向に超音波を送信しかつその送信後の超音波(反射波)を受信する超音波センサ21、後述のコントローラ30から供給される駆動信号Daに応じて超音波センサ21を駆動する送信回路22、超音波センサ21の受信信号に増幅等の信号処理を施す受信回路23を含む。この受信回路23で処理された受信信号がコントローラ30に供給される。 An ultrasonic detection unit 20 is attached to the outer peripheral surface of the side wall 10a of the container 10. The ultrasonic detection unit 20 is mounted at a predetermined height position on the outer peripheral surface of the side wall 10a without a gap, transmits ultrasonic waves in a substantially horizontal direction toward the side wall 10a, and transmits the ultrasonic waves (reflected waves) after the transmission. The ultrasonic sensor 21 to receive, the transmission circuit 22 to drive the ultrasonic sensor 21 in response to the drive signal Da supplied from the controller 30 described later, and the reception circuit 23 to perform signal processing such as amplification on the reception signal of the ultrasonic sensor 21. including. The received signal processed by the receiving circuit 23 is supplied to the controller 30.

超音波センサ21から送信される超音波には、縦波と横波がある。縦波は、超音波センサ21が取付けられている部位の側壁10aを通り、さらに超音波センサ21が取付けられている側とは反対側の側壁10aに向かって容器10内をほぼ水平方向に進み、側壁10aの内周面と気体または液体との界面に達してそこで反射する。この反射波は往路と同じ経路を伝わって送信元の超音波センサ21に戻る。理科年表によると、縦波が鉄製の鋼板を伝わる速度は5,950m/s、縦波が液冷媒を伝わる速度は水を伝わる速度と同じ1,480m/sである。 The ultrasonic waves transmitted from the ultrasonic sensor 21 include longitudinal waves and transverse waves. The longitudinal wave passes through the side wall 10a of the portion where the ultrasonic sensor 21 is attached, and further travels in the container 10 in a substantially horizontal direction toward the side wall 10a on the side opposite to the side where the ultrasonic sensor 21 is attached. It reaches the interface between the inner peripheral surface of the side wall 10a and the gas or liquid and reflects there. This reflected wave travels along the same path as the outward path and returns to the ultrasonic sensor 21 of the transmission source. According to the science chronology, the speed at which longitudinal waves travel through iron steel plates is 5,950 m / s, and the speed at which longitudinal waves travel through liquid refrigerant is 1,480 m / s, which is the same as the speed at which longitudinal waves travel through water.

超音波センサ21から送信された超音波の縦波が上記経路を往復して送信元の超音波センサ21に戻るまでのt1時間は、側壁10aの厚さが数mmで容器10の外周面の直径が0.5mであると仮定した場合、側壁10aにおける伝搬については速度が速いので無視すると、液冷媒中の伝搬速度の影響が支配的となり、下式で表わされる。
t1時間=(0.5m×2)/(1,480m/s)=約680μs
The t1 time until the longitudinal wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 reciprocates in the above path and returns to the ultrasonic sensor 21 of the transmission source has a thickness of the side wall 10a of several mm and is on the outer peripheral surface of the container 10. Assuming that the diameter is 0.5 m, the propagation velocity on the side wall 10a is high, so if it is ignored, the influence of the propagation velocity in the liquid refrigerant becomes dominant and is expressed by the following equation.
t1 hour = (0.5m x 2) / (1,480m / s) = about 680μs

超音波センサ21から送信される超音波の横波は、図2および図3に示すように、側壁10aの内周面と気体または液体との界面で反射を繰り返しながら、さらに側壁10aの外周面と気体との界面でも反射を繰り返しながら、側壁10aを最短距離(円周の長さ)で周回する経路Lで伝わって送信元の超音波センサ21に戻る。理科年表によると、横波が鉄製の鋼板を伝わる速度は3,240m/sであり、これは縦波が鉄製の鋼板を伝わる速度(=5,950m/s)より遅く縦波が液冷媒を伝わる速度(=1,480m/s)より速い。 As shown in FIGS. 2 and 3, the transverse wave of ultrasonic waves transmitted from the ultrasonic sensor 21 repeatedly reflects at the interface between the inner peripheral surface of the side wall 10a and the gas or liquid, and further with the outer peripheral surface of the side wall 10a. While repeating reflection at the interface with the gas, it travels along the path L orbiting the side wall 10a at the shortest distance (circumferential length) and returns to the ultrasonic sensor 21 of the transmission source. According to the science chronology, the speed at which transverse waves travel through iron steel plates is 3,240 m / s, which is slower than the speed at which longitudinal waves travel through iron steel plates (= 5,950 m / s) and the speed at which longitudinal waves travel through liquid refrigerants. Faster than (= 1,480m / s).

超音波センサ21から送信された横波が側壁10aを伝わって送信元の超音波センサ21に戻るまでのt2時間は、容器10の直径が0.5mである場合、側壁10aの厚さを無視すれば、下式で表わされる。
t2時間=(0.5m×π)/(3,240 m/s)=約490μs
このt2時間については、実際には、側壁10aの厚さなど製造公差に基づく補正が必要となる。
When the diameter of the container 10 is 0.5 m, the t2 time until the transverse wave transmitted from the ultrasonic sensor 21 travels through the side wall 10a and returns to the source ultrasonic sensor 21 can be obtained by ignoring the thickness of the side wall 10a. , Expressed by the following formula.
t2 hours = (0.5 m x π) / (3,240 m / s) = about 490 μs
Actually, the t2 time needs to be corrected based on the manufacturing tolerance such as the thickness of the side wall 10a.

圧縮機1、四方弁2、室外熱交換器3、室外膨張弁4、アキュームレータ5、室外ファン5、および超音波検出ユニット20が室外ユニットAに収容され、各室内膨張弁11、各室内熱交換器12、各室内ファン13が複数の室内ユニットB1,B2,…Bnに収容される。
室外ユニットAおよび室内ユニットB1〜Bnにコントローラ30が接続され、そのコントローラ30にリモートコントロール式の操作表示器31が接続される。操作表示器31は、空気調和機の運転条件を設定するための操作キーを有するとともに、空気調和機の運転に関わる種々の情報を文字や画像で表示する表示画面を有する。
The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the outdoor expansion valve 4, the accumulator 5, the outdoor fan 5, and the ultrasonic detection unit 20 are housed in the outdoor unit A, and each indoor expansion valve 11 and each indoor heat exchange. The vessel 12 and each indoor fan 13 are housed in a plurality of indoor units B1, B2, ... Bn.
A controller 30 is connected to the outdoor unit A and the indoor units B1 to Bn, and a remote control type operation display 31 is connected to the controller 30. The operation display 31 has an operation key for setting the operating conditions of the air conditioner, and also has a display screen for displaying various information related to the operation of the air conditioner in characters and images.

コントローラ30は、主要な機能として次の制御手段および検出手段を備える。
制御手段は、操作表示器31で設定される運転条件に応じて室外ユニットAおよび室内ユニットB1〜Bnの運転を制御する。
検出手段は、アキュームレータ5の容器10に収容されている液冷媒Rの量(液体の量)を超音波検出ユニット20を用いて検出する。具体的には、超音波センサ21から送信した超音波の横波が図2および図3に矢印で示すように側壁10aにおける最短距離の周回経路Lを伝わって超音波センサ21に戻る時点(送信からt2時間後)の超音波センサ21の受信信号レベルに応じて、容器10内の液冷媒Rの量を検出する。
The controller 30 includes the following control means and detection means as main functions.
The control means controls the operation of the outdoor unit A and the indoor units B1 to Bn according to the operating conditions set by the operation display 31.
The detection means uses the ultrasonic detection unit 20 to detect the amount of the liquid refrigerant R (the amount of liquid) contained in the container 10 of the accumulator 5. Specifically, when the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 is transmitted through the shortest orbital path L on the side wall 10a as shown by the arrows in FIGS. 2 and 3, and returns to the ultrasonic sensor 21 (from transmission). The amount of the liquid refrigerant R in the container 10 is detected according to the received signal level of the ultrasonic sensor 21 (after t2 hours).

例えば、図2のように容器10内の液冷媒Rの液面位置が基準位置である超音波センサ21の取付け位置より下方にある場合、駆動信号Daのオンに応じて超音波センサ21から送信される超音波の横波は、液冷媒Rに接することなく側壁10aを伝わり、送信からt2時間後に超音波センサ21に戻る。側壁10aを伝わる横波の強度が液冷媒Rによって減衰しないので、駆動信号Daのオン(送信開始)からt2時間後の超音波センサ21の受信信号の電圧レベルVaは、図4に示すように高くなる。 For example, when the liquid level position of the liquid refrigerant R in the container 10 is lower than the mounting position of the ultrasonic sensor 21 which is the reference position as shown in FIG. 2, the ultrasonic sensor 21 transmits in response to the on of the drive signal Da. The transverse wave of the ultrasonic wave is transmitted through the side wall 10a without coming into contact with the liquid refrigerant R, and returns to the ultrasonic sensor 21 t2 hours after transmission. Since the intensity of the transverse wave propagating on the side wall 10a is not attenuated by the liquid refrigerant R, the voltage level Va of the reception signal of the ultrasonic sensor 21 t2 hours after the drive signal Da is turned on (transmission start) is high as shown in FIG. Become.

図5のように容器10内の液冷媒Rの液面位置が基準位置と同じまたはそれより上方にある場合、駆動信号Daのオンに応じて超音波センサ21から送信される超音波の横波は、図6に示すように液冷媒Rに接するごとにその液冷媒Rに吸収されるため強度が減衰しながら側壁10aを伝わり、送信からt2時間後に超音波センサ21に戻る。側壁10aを伝わる横波の強度は、液冷媒Rとの接し量が多いほどそれに比例する大きさで減衰していく。よって、駆動信号Daのオン(送信開始)からt2時間後の超音波センサ21の受信信号の電圧レベルVaは、図7に示すように低くなる。 When the liquid level position of the liquid refrigerant R in the container 10 is the same as or higher than the reference position as shown in FIG. 5, the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 in response to the on of the drive signal Da is As shown in FIG. 6, each time the liquid refrigerant R comes into contact with the liquid refrigerant R, the liquid refrigerant R absorbs the liquid refrigerant R, so that the strength is attenuated and transmitted along the side wall 10a, and returns to the ultrasonic sensor 21 2 hours after transmission. The intensity of the transverse wave propagating on the side wall 10a is attenuated by a magnitude proportional to the amount of contact with the liquid refrigerant R. Therefore, the voltage level Va of the received signal of the ultrasonic sensor 21 t2 hours after the drive signal Da is turned on (transmission starts) becomes low as shown in FIG. 7.

つぎに、コントローラ30が実行する制御を図8のフローチャートを参照しながら説明する。フローチャート中のステップS1,S2…については、単にS1,S2…と略称する。
コントローラ30は、冷凍サイクルの運転時(S1のYES)、一定時間ごとの検出タイミングが巡ってきたとき(S2のYES)、超音波センサ21を駆動し(S3)、超音波センサ21から超音波を送信させる。そして、コントローラ30は、超音波センサ21の駆動開始からt2時間が経過したとき、つまり超音波センサ21から送信した超音波の横波が側壁10aにおける最短距離の周回経路Lを伝わって超音波センサ21に戻る時点において、超音波センサ21の受信信号の電圧レベルVaを検出する(S4)。
Next, the control executed by the controller 30 will be described with reference to the flowchart of FIG. Steps S1, S2 ... In the flowchart are simply abbreviated as S1, S2 ...
The controller 30 drives the ultrasonic sensor 21 (S3) during the operation of the refrigeration cycle (YES in S1) and when the detection timing at regular intervals comes around (YES in S2), and ultrasonic waves are transmitted from the ultrasonic sensor 21. To send. Then, when t2 hours have passed from the start of driving the ultrasonic sensor 21, that is, the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 is transmitted through the shortest orbital path L on the side wall 10a to the ultrasonic sensor 21. At the time of returning to, the voltage level Va of the received signal of the ultrasonic sensor 21 is detected (S4).

超音波センサ21の受信信号の電圧レベルVaが予め定めた設定値以上の場合、コントローラ30は、容器10内の液冷媒Rの量(液面位置)が規定位置である超音波センサ21の取付け位置に満たないと判定する(S5)。電圧レベルVaが上記設定値未満の場合、コントローラ30は、容器10内の液冷媒Rの量(液面位置)が規定位置に達していると判定する(S5)。そして、コントローラ30は、この判定結果を操作表示部31の表示によりユーザに報知する(S6)。
この報知後、コントローラ30は、冷凍サイクルの運転が停止でなければ(S7のNO)、上記S2に戻って次の検出タイミングを監視する(S2)。冷凍サイクルの運転が停止であれば(S7のYES)、処理を終了する。
When the voltage level Va of the received signal of the ultrasonic sensor 21 is equal to or higher than a predetermined set value, the controller 30 attaches the ultrasonic sensor 21 in which the amount (liquid level position) of the liquid refrigerant R in the container 10 is a specified position. It is determined that the position is not reached (S5). When the voltage level Va is less than the above set value, the controller 30 determines that the amount of the liquid refrigerant R (liquid level position) in the container 10 has reached the specified position (S5). Then, the controller 30 notifies the user of this determination result by the display of the operation display unit 31 (S6).
After this notification, if the refrigeration cycle operation is not stopped (NO in S7), the controller 30 returns to S2 and monitors the next detection timing (S2). If the refrigeration cycle operation is stopped (YES in S7), the process is terminated.

ところで、冷凍サイクルの運転中は容器10内の液冷媒Rの液面に泡立ちや波浪が生じる。このため、従来のように超音波の縦波で液面位置を検出する方法では、容器10内の液冷媒Rの液面に生じる泡や波頭を液面として誤検出する可能性がある。 By the way, during the operation of the refrigeration cycle, bubbling and waves occur on the liquid surface of the liquid refrigerant R in the container 10. Therefore, in the conventional method of detecting the liquid level position by the longitudinal wave of ultrasonic waves, there is a possibility that bubbles or wave crests generated on the liquid level of the liquid refrigerant R in the container 10 are erroneously detected as the liquid level.

これに対し、本実施形態では、側壁10aを伝わる横波の強度が液冷媒Rとの接し量が多いほどそれに比例する大きさで減衰していくので、その減衰の度合いを超音波センサ21の受信信号の電圧レベルVaとして連続的に捕らえることができる。この受信信号の電圧レベルVaに対する設定値を適切に設定することで、容器10内の液冷媒Rの液面に生じる泡立ちや波浪に影響を受けることなく、容器10内の液冷媒Rの量が規定位置に達しているか否かを的確に検出できる。液冷媒Rの液面に生じる泡や波頭を液面として誤検出する不具合は生じない。液量検出の信頼性が大幅に向上する。 On the other hand, in the present embodiment, the intensity of the transverse wave propagating on the side wall 10a is attenuated by a magnitude proportional to the amount of contact with the liquid refrigerant R, so that the degree of the attenuation is received by the ultrasonic sensor 21. It can be continuously captured as the voltage level Va of the signal. By appropriately setting the set value for the voltage level Va of the received signal, the amount of the liquid refrigerant R in the container 10 can be increased without being affected by the bubbling and waves generated on the liquid surface of the liquid refrigerant R in the container 10. It is possible to accurately detect whether or not the specified position has been reached. There is no problem of erroneously detecting bubbles or wave crests generated on the liquid surface of the liquid refrigerant R as the liquid level. The reliability of liquid volume detection is greatly improved.

[2]第2実施形態
第2実施形態について説明する。
コントローラ30は、主要な機能として、第1実施形態の上記制御手段のほかに、次の第1検出手段および第2検出手段を備える。
第1検出手段は、冷凍サイクルの運転時、第1実施形態と同じく、超音波センサ21から送信した超音波の横波が側壁10aにおける最短距離の周回経路Lを伝わって超音波センサ21に戻る時点(送信からt2時間後)の超音波センサ21の受信信号レベルに応じて、容器10内の液冷媒Rの量を検出する。
[2] Second Embodiment The second embodiment will be described.
As a main function, the controller 30 includes the following first detection means and second detection means in addition to the control means of the first embodiment.
The first detection means is the time when the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 is transmitted through the shortest orbital path L on the side wall 10a and returns to the ultrasonic sensor 21 during the operation of the refrigeration cycle, as in the first embodiment. The amount of liquid refrigerant R in the container 10 is detected according to the received signal level of the ultrasonic sensor 21 (t2 hours after transmission).

第2検出手段は、冷凍サイクルの非運転時、超音波センサ21から送信した超音波の縦波が超音波センサ21の取付け位置とは反対側にある側壁10aの内周面と気体または液体との界面で反射して超音波センサ21に戻る時点(送信からt1時間後)の同超音波センサの受信信号レベルに応じて、容器10内の液冷媒Rの量を検出する、 The second detection means is that when the refrigeration cycle is not in operation, the longitudinal wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 is a gas or liquid with the inner peripheral surface of the side wall 10a on the side opposite to the mounting position of the ultrasonic sensor 21. The amount of liquid refrigerant R in the container 10 is detected according to the received signal level of the ultrasonic sensor at the time when it is reflected at the interface of the ultrasonic sensor and returns to the ultrasonic sensor 21 (t1 hour after transmission).

コントローラ30が実行する制御を図9のフローチャートを参照しながら説明する。S1〜S7の処理は第1実施形態と同じである。よって、その説明は省略する。
コントローラ30は、冷凍サイクルの非運転時(S1のNO)、一定時間ごとの検出タイミングにおいて(S8のYES)、超音波センサ21を駆動し(S9)、超音波センサ21から超音波を送信させる。そして、コントローラ30は、超音波センサ21の駆動開始からt1時間が経過したとき、つまり超音波センサ21から送信した超音波の縦波が超音波センサ21が取付けられている部位の側壁10aを通り、さらに超音波センサ21が取付けられている側とは反対側の側壁10aに向かって容器10内をほぼ水平方向に進み、側壁10aの内周面と気体または液体との界面に達してそこで反射し、その反射波が往路と同じ経路を伝わって超音波センサ21に戻る時点において、超音波センサ21の受信信号の電圧レベルVaを検出する(S10)。
The control executed by the controller 30 will be described with reference to the flowchart of FIG. The processing of S1 to S7 is the same as that of the first embodiment. Therefore, the description thereof will be omitted.
The controller 30 drives the ultrasonic sensor 21 (S9) at the detection timing at regular time intervals (YES in S8) during non-operation of the refrigeration cycle (NO in S1), and transmits ultrasonic waves from the ultrasonic sensor 21. .. Then, when t1 time has passed from the start of driving the ultrasonic sensor 21, that is, the longitudinal wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 passes through the side wall 10a of the portion where the ultrasonic sensor 21 is attached. Further, it travels in the container 10 in a substantially horizontal direction toward the side wall 10a on the side opposite to the side on which the ultrasonic sensor 21 is attached, reaches the interface between the inner peripheral surface of the side wall 10a and the gas or liquid, and is reflected there. Then, at the time when the reflected wave travels along the same path as the outward path and returns to the ultrasonic sensor 21, the voltage level Va of the received signal of the ultrasonic sensor 21 is detected (S10).

受信信号の電圧レベルVaが閾値以上の場合、コントローラ30は、容器10内の液冷媒Rの量(液面位置)が規定位置に満たないと判定する(S11)。検出した電圧レベルVaが閾値未満の場合、コントローラ30は、容器10内の液冷媒Rの量(液面位置)が規定位置に達していると判定する(S11)。そして、コントローラ30は、判定結果を操作表示部31の表示によりユーザに報知する(S12)。この報知後、コントローラ30は、上記S1に戻って同様の処理を繰り返す。 When the voltage level Va of the received signal is equal to or higher than the threshold value, the controller 30 determines that the amount of the liquid refrigerant R (liquid level position) in the container 10 is less than the specified position (S11). When the detected voltage level Va is less than the threshold value, the controller 30 determines that the amount of the liquid refrigerant R (liquid level position) in the container 10 has reached the specified position (S11). Then, the controller 30 notifies the user of the determination result by the display of the operation display unit 31 (S12). After this notification, the controller 30 returns to S1 and repeats the same process.

すなわち、冷凍サイクルが運転しているときは容器10内の液冷媒Rの液面に泡立ちや波浪が生じるので、その泡立ちや波浪の影響を受け難い横波によって液冷媒Rの量を検出するようにしている。冷凍サイクルが運転していないときは容器10内の液冷媒Rの液面に泡立ちや波浪が生じないので、従来と同じく縦波によって液冷媒Rの量を検出するようにしている。他の構成は第1実施形態と同じである。 That is, when the refrigeration cycle is in operation, bubbling and waves occur on the liquid surface of the liquid refrigerant R in the container 10, so that the amount of the liquid refrigerant R is detected by transverse waves that are not easily affected by the bubbling and waves. ing. When the refrigeration cycle is not in operation, foaming and waves do not occur on the liquid level of the liquid refrigerant R in the container 10, so that the amount of the liquid refrigerant R is detected by longitudinal waves as in the conventional case. Other configurations are the same as in the first embodiment.

[3]第3実施形態
第3実施形態では、図10に示すように、アキュームレータ5の容器10が横向きに倒れた状態で配置される。他の構成は第1実施形態と同じである。
超音波センサ21から送信される超音波の横波は、図10に矢印で示すように側壁10aにおける最短距離の周回経路Lを伝わって超音波センサ21に戻る。側壁10aを伝わる横波の強度は、横波と液冷媒Rとの接し量が多いほどそれに比例する大きさで減衰していく。この減衰の度合いを超音波センサ21の受信信号の電圧レベルVaとして幅広く連続的に捕らえることができる。
[3] Third Embodiment In the third embodiment, as shown in FIG. 10, the container 10 of the accumulator 5 is arranged in a sideways tilted state. Other configurations are the same as in the first embodiment.
The transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 travels along the shortest orbital path L on the side wall 10a as shown by an arrow in FIG. 10 and returns to the ultrasonic sensor 21. The intensity of the transverse wave propagating on the side wall 10a is attenuated by a magnitude proportional to the larger the contact amount between the transverse wave and the liquid refrigerant R. The degree of this attenuation can be widely and continuously captured as the voltage level Va of the received signal of the ultrasonic sensor 21.

この受信信号の電圧レベルVaを検出することにより、液冷媒Rの液面に生じる泡立ちや波浪に影響を受けることなく、容器10内の液冷媒Rの量を的確に検出できる。とくに、横波の強度の減衰の度合いを超音波センサ21の受信信号の電圧レベルVaとして幅広く連続的に捕らえることができるので、容器10内の液冷媒Rの量をほぼ空の状態から満杯に近い状態まで連続的に検出することができる。 By detecting the voltage level Va of the received signal, the amount of the liquid refrigerant R in the container 10 can be accurately detected without being affected by the bubbling and waves generated on the liquid surface of the liquid refrigerant R. In particular, since the degree of attenuation of the transverse wave intensity can be widely and continuously captured as the voltage level Va of the received signal of the ultrasonic sensor 21, the amount of the liquid refrigerant R in the container 10 is almost full from an almost empty state. The state can be detected continuously.

[4]第4実施形態
第4実施形態では、図11に示すように、アキュームレータ5の容器10は、鉄製の鋼板を球体に成型してなる周壁10mにより形成されている。この周壁10mの外周面に超音波センサ21が取付けられている。球体である周壁10mを地球であると仮想し、その地球の南北の両極を通る地軸線X−X´を基準にして視た場合、この超音波センサ21の取付け位置は、超音波センサ21から送信された超音波の横波が周壁10mにおける最長距離の周回経路Lを伝わって超音波センサ21に戻る場合の周回経路Lが、地軸線X−X´に対し直行する状態となる位置である。別の言い方をすると、周回経路Lの位置は、南北の両極からそれぞれ緯度として90度離れた位置にある。
[4] Fourth Embodiment In the fourth embodiment, as shown in FIG. 11, the container 10 of the accumulator 5 is formed by a peripheral wall 10 m formed by molding an iron steel plate into a sphere. The ultrasonic sensor 21 is attached to the outer peripheral surface of the peripheral wall 10 m. When the spherical peripheral wall 10 m is assumed to be the earth and viewed with reference to the ground axis XX'passing through both north and south poles of the earth, the mounting position of the ultrasonic sensor 21 is from the ultrasonic sensor 21. This is a position where the orbital path L when the transverse wave of the transmitted ultrasonic wave travels through the orbital path L of the longest distance on the peripheral wall 10 m and returns to the ultrasonic sensor 21 is orthogonal to the ground axis XX'. In other words, the position of the circuit path L is 90 degrees away from both the north and south poles as latitude.

液冷媒Rの液面に生じる泡立ちや波浪に影響を受けることなく、容器10内の液冷媒Rの量が規定位置である超音波センサ21の取付け位置に達しているか否かを的確に検出できる。
他の構成および制御は、第1実施形態と同じである。よって、その説明は省略する。
It is possible to accurately detect whether or not the amount of the liquid refrigerant R in the container 10 has reached the mounting position of the ultrasonic sensor 21, which is the specified position, without being affected by the bubbling and waves generated on the liquid surface of the liquid refrigerant R. ..
Other configurations and controls are the same as in the first embodiment. Therefore, the description thereof will be omitted.

[5]第5実施形態
第5実施形態では、図12に示すように、アキュームレータ5の容器10は、第4実施形態と同じく、鉄製の鋼板を球体に成型してなる周壁10mで形成されている。この周壁10mの外周面に超音波センサ21が取付けられている。この超音波センサ21の取付け位置は、超音波センサ21から送信された超音波の横波が周壁10mにおける最長距離の周回経路Lを伝わって超音波センサ21に戻る場合の周回経路Lが、地軸線X−X´に対し所定の傾きをもって交差する状態となる位置である。
[5] Fifth Embodiment In the fifth embodiment, as shown in FIG. 12, the container 10 of the accumulator 5 is formed by a peripheral wall 10 m formed by molding an iron steel plate into a sphere, as in the fourth embodiment. There is. The ultrasonic sensor 21 is attached to the outer peripheral surface of the peripheral wall 10 m. The mounting position of the ultrasonic sensor 21 is such that the orbital path L when the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21 is transmitted through the orbital path L of the longest distance on the peripheral wall 10 m and returns to the ultrasonic sensor 21 is the ground axis. It is a position where it intersects XX'with a predetermined inclination.

この第5実施形態の場合、図10の第3実施形態と同じく、横波の強度の減衰の度合いを超音波センサ21の受信信号の電圧レベルVaとして幅広く連続的に捕らえることができるので、容器10内の液冷媒Rの量をほぼ空の状態から満杯に近い状態まで連続的に検出することができる。
他の構成および制御は、第1実施形態と同じである。よって、その説明は省略する。
In the case of the fifth embodiment, as in the third embodiment of FIG. 10, the degree of attenuation of the transverse wave intensity can be widely and continuously captured as the voltage level Va of the received signal of the ultrasonic sensor 21, so that the container 10 The amount of the liquid refrigerant R in the container R can be continuously detected from a nearly empty state to a nearly full state.
Other configurations and controls are the same as in the first embodiment. Therefore, the description thereof will be omitted.

[6]第6実施形態
第6実施形態では、図13に示すように、超音波検出ユニット20が2つの超音波センサ21a,21b(第1および第2超音波センサ)、送信回路22、および受信回路23を含む。超音波センサ21a,21bは、側壁10aの外周面の互いに異なる高さ位置に隙間なく取付けられ、側壁10a側に向けてほぼ水平方向に超音波を送信するとともに、その送信後の超音波(反射波)を受信する。送信回路22は、コントローラ30から供給される駆動信号Da,Dbに応じて超音波センサ21a,21bをそれぞれ駆動する。受信回路23は、超音波センサ21a,21bの受信信号にそれぞれ増幅等の信号処理を施す。この受信回路23で処理された受信信号がコントローラ30に供給される。
[6] Sixth Embodiment In the sixth embodiment, as shown in FIG. 13, the ultrasonic detection unit 20 has two ultrasonic sensors 21a and 21b (first and second ultrasonic sensors), a transmission circuit 22, and a transmission circuit 22. The receiving circuit 23 is included. The ultrasonic sensors 21a and 21b are mounted at different height positions on the outer peripheral surface of the side wall 10a without a gap, transmit ultrasonic waves in a substantially horizontal direction toward the side wall 10a, and transmit ultrasonic waves (reflection) after the transmission. Wave) is received. The transmission circuit 22 drives the ultrasonic sensors 21a and 21b according to the drive signals Da and Db supplied from the controller 30, respectively. The receiving circuit 23 performs signal processing such as amplification on the received signals of the ultrasonic sensors 21a and 21b, respectively. The received signal processed by the receiving circuit 23 is supplied to the controller 30.

コントローラ30の検出手段は、駆動信号Da,Dbを一定時間t3の時間間隔で交互に送信回路22に供給し、これにより超音波センサ21a,21bを互いに異なるタイミングで駆動して超音波センサ21a,21bからそれぞれ超音波を送信し、超音波センサ21aから送信した超音波の横波が側壁10aにおける最短距離の周回経路Laを伝わって超音波センサ21aに戻る時点(送信からt2a時間後)の超音波センサ21aの受信信号レベルと、超音波センサ21bから送信した超音波の横波が側壁10aにおける最短距離の周回経路Lbを伝わって超音波センサ21bに戻る時点(送信からt2b時間後)の超音波センサ21bの受信信号レベルとに応じて、容器10内の液冷媒Rの量が第1基準位置である超音波センサ21aの取付け位置および第2基準位置である超音波センサ21bの取付け位置にそれぞれ達しているか否かを検出する。 The detection means of the controller 30 alternately supplies the drive signals Da and Db to the transmission circuit 22 at time intervals of t3 for a certain period of time, thereby driving the ultrasonic sensors 21a and 21b at different timings and driving the ultrasonic sensors 21a and 21b at different timings. Ultrasonic waves are transmitted from 21b, respectively, and the ultrasonic waves at the time when the lateral waves of the ultrasonic waves transmitted from the ultrasonic sensor 21a travel the shortest orbital path La on the side wall 10a and return to the ultrasonic sensor 21a (t2a hours after transmission). The ultrasonic sensor at the time when the received signal level of the sensor 21a and the lateral wave of the ultrasonic wave transmitted from the ultrasonic sensor 21b are transmitted back to the ultrasonic sensor 21b through the shortest orbital path Lb on the side wall 10a (t2b hours after the transmission). Depending on the received signal level of 21b, the amount of liquid refrigerant R in the container 10 reaches the mounting position of the ultrasonic sensor 21a, which is the first reference position, and the mounting position of the ultrasonic sensor 21b, which is the second reference position. Detects whether or not it is.

図13のように容器10内の液冷媒Rの液面位置が第1基準位置と第2基準位置との間にある場合、駆動信号Daのオンに応じて超音波センサ21aから送信される超音波の横波は、液冷媒Rに接することなく側壁10aにおける周回経路Laを伝わり、送信からt2a時間後に送信元の超音波センサ21aに戻る。側壁10aを伝わる横波の強度が液冷媒Rによって減衰しないので、駆動信号Daのオン(送信開始)からt2a時間後の超音波センサ21aの受信信号の電圧レベルVaは、図14に示すように高くなる。 When the liquid level position of the liquid refrigerant R in the container 10 is between the first reference position and the second reference position as shown in FIG. 13, the ultrasonic sensor 21a transmits in response to the drive signal Da being turned on. The transverse wave of the sound wave travels through the circumferential path La on the side wall 10a without coming into contact with the liquid refrigerant R, and returns to the ultrasonic sensor 21a of the transmission source t2a hours after the transmission. Since the intensity of the transverse wave propagating on the side wall 10a is not attenuated by the liquid refrigerant R, the voltage level Va of the reception signal of the ultrasonic sensor 21a t2a hours after the drive signal Da is turned on (transmission start) is high as shown in FIG. Become.

駆動信号Dbのオンに応じて超音波センサ21bから送信される超音波の横波は、液冷媒Rに接しながら側壁10aにおける周回経路Lbを伝わり、送信からt2b時間後に送信元の超音波センサ21bに戻る。側壁10aを伝わる横波の強度が液冷媒Rによって減衰するので、駆動信号Dbのオン(送信開始)からt2b時間後の超音波センサ21bの受信信号の電圧レベルVbは、図14に示すように低くなる。
したがって、液冷媒Rの液面に生じる泡立ちや波浪に影響を受けることなく、容器10内の液冷媒Rの量が第1および第2規定位置にそれぞれ達しているか否かを的確に検出できる。
他の構成および制御は、第1実施形態と同じである。よって、その説明は省略する。
The transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21b in response to the on of the drive signal Db is transmitted through the circuit path Lb on the side wall 10a while being in contact with the liquid refrigerant R, and reaches the transmitting ultrasonic sensor 21b t2b hours after the transmission. Return. Since the intensity of the transverse wave propagating on the side wall 10a is attenuated by the liquid refrigerant R, the voltage level Vb of the reception signal of the ultrasonic sensor 21b t2b hours after the drive signal Db is turned on (transmission start) is low as shown in FIG. Become.
Therefore, it is possible to accurately detect whether or not the amount of the liquid refrigerant R in the container 10 has reached the first and second specified positions, respectively, without being affected by the bubbling and waves generated on the liquid surface of the liquid refrigerant R.
Other configurations and controls are the same as in the first embodiment. Therefore, the description thereof will be omitted.

[7]第7実施形態
第7実施形態では、図15に示すように、超音波検出ユニット20が2つの超音波センサ21a,21b、送信回路22、および受信回路23を含む。超音波センサ21a,21bは、側壁10aの外周面の互いに異なる高さ位置にかつ互いに距離X離れた状態で取付けられ、側壁10a側に向けてほぼ水平方向に超音波を送信するとともに、その送信後の超音波(反射波)を受信する。送信回路22は、コントローラ30から供給される駆動信号Daに応じて超音波センサ21aを駆動する。受信回路23は、超音波センサ21bの受信信号に増幅等の信号処理を施す。
[7] Seventh Embodiment In the seventh embodiment, as shown in FIG. 15, the ultrasonic detection unit 20 includes two ultrasonic sensors 21a and 21b, a transmission circuit 22, and a reception circuit 23. The ultrasonic sensors 21a and 21b are attached to the outer peripheral surfaces of the side wall 10a at different heights and at a distance X from each other, and transmit ultrasonic waves in a substantially horizontal direction toward the side wall 10a and transmit the ultrasonic waves. Receive the later ultrasonic waves (reflected waves). The transmission circuit 22 drives the ultrasonic sensor 21a in response to the drive signal Da supplied from the controller 30. The receiving circuit 23 performs signal processing such as amplification on the received signal of the ultrasonic sensor 21b.

コントローラ30の検出手段は、駆動信号Daを送信回路22に供給することにより超音波センサ21aを駆動して超音波センサ21aから超音波を送信し、その超音波の横波が側壁10aを距離Xの直線経路で伝わって超音波センサ21bに達する時点(送信からtx時間後)の超音波センサ21bの受信信号レベルに応じて、容器10内の液冷媒Rの量が第1基準位置である超音波センサ21aの取付け位置および第2基準位置である超音波センサ21bの取付け位置に達しているか否かを検出する。 The detection means of the controller 30 drives the ultrasonic sensor 21a by supplying the drive signal Da to the transmission circuit 22 to transmit ultrasonic waves from the ultrasonic sensor 21a, and the lateral wave of the ultrasonic waves travels on the side wall 10a at a distance X. Ultrasonic waves in which the amount of liquid refrigerant R in the container 10 is the first reference position according to the received signal level of the ultrasonic sensor 21b at the time of reaching the ultrasonic sensor 21b through the linear path (tx hours after transmission). It detects whether or not the mounting position of the sensor 21a and the mounting position of the ultrasonic sensor 21b, which is the second reference position, have been reached.

図15のように容器10内の液冷媒Rの液面位置が第1基準位置と第2基準位置との間にある場合、駆動信号Daのオンに応じて超音波センサ21aから送信される超音波の横波は、初めは液冷媒Rに接することなく超音波センサ21bに向かい直線経路で側壁10aを伝わり、かつ途中で液冷媒Rに接しながら側壁10aを伝わり、送信からtx時間後に超音波センサ21bに達する。側壁10aを伝わる横波の強度が液冷媒Rにより減衰するので、駆動信号Daのオン(送信開始)からtx時間後の超音波センサ21bの受信信号の電圧レベルVbは、図16に示すように低くなる。 When the liquid level position of the liquid refrigerant R in the container 10 is between the first reference position and the second reference position as shown in FIG. 15, the ultrasonic sensor 21a transmits from the ultrasonic sensor 21a in response to the drive signal Da being turned on. The transverse wave of the sound wave initially travels through the side wall 10a in a straight path toward the ultrasonic sensor 21b without contacting the liquid refrigerant R, and then travels through the side wall 10a while contacting the liquid refrigerant R on the way, and the ultrasonic sensor is transmitted tx hours after transmission. It reaches 21b. Since the intensity of the transverse wave propagating on the side wall 10a is attenuated by the liquid refrigerant R, the voltage level Vb of the received signal of the ultrasonic sensor 21b twx hours after the drive signal Da is turned on (transmission starts) is low as shown in FIG. Become.

容器10内の液冷媒Rの液面位置が第1および第2基準位置より下方にある場合、Daのオンに応じて超音波センサ21aから送信される超音波の横波は、液冷媒Rに接することなく側壁10aを伝わり、送信からtx時間後に超音波センサ21bに達する。側壁10aを伝わる横波の強度が液冷媒Rによる減衰を生じないので、駆動信号Daのオン(送信開始)からtx時間後の超音波センサ21bの受信信号の電圧レベルVbは、図17に示すように高くなる。
したがって、液冷媒Rの液面に生じる泡立ちや波浪に影響を受けることなく、容器10内の液冷媒Rの量が第1および第2規定位置にそれぞれ達しているか否かを的確に検出できる。
他の構成および制御は、第1実施形態と同じである。よって、その説明は省略する。
When the liquid level position of the liquid refrigerant R in the container 10 is lower than the first and second reference positions, the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21a in response to the on of Da comes into contact with the liquid refrigerant R. It travels through the side wall 10a without any notice and reaches the ultrasonic sensor 21b txt hours after transmission. Since the intensity of the transverse wave propagating on the side wall 10a is not attenuated by the liquid refrigerant R, the voltage level Vb of the received signal of the ultrasonic sensor 21b twx hours after the drive signal Da is turned on (transmission starts) is as shown in FIG. Will be expensive.
Therefore, it is possible to accurately detect whether or not the amount of the liquid refrigerant R in the container 10 has reached the first and second specified positions, respectively, without being affected by the bubbling and waves generated on the liquid surface of the liquid refrigerant R.
Other configurations and controls are the same as in the first embodiment. Therefore, the description thereof will be omitted.

[8]第8実施形態
第8実施形態では、図18に示すように、超音波検出ユニット20が2つの超音波センサ21a,21b、送信回路22、および受信回路23を含む。超音波センサ21a,21bは、側壁10aの外周面の互いに異なる高さ位置にかつ互いに距離X離れた状態で取付けられ、側壁10a側に向けてほぼ水平方向に超音波を送信するとともに、その送信後の超音波(反射波)を受信する。送信回路22は、コントローラ30から供給される駆動信号Daに応じて超音波センサ21aを駆動する。受信回路23は、超音波センサ21a,21bの受信信号にそれぞれ増幅等の信号処理を施す。この受信回路23で処理された受信信号がコントローラ30に供給される。
[8] Eighth Embodiment In the eighth embodiment, as shown in FIG. 18, the ultrasonic detection unit 20 includes two ultrasonic sensors 21a and 21b, a transmission circuit 22, and a reception circuit 23. The ultrasonic sensors 21a and 21b are attached to the outer peripheral surfaces of the side wall 10a at different heights and at a distance X from each other, and transmit ultrasonic waves in a substantially horizontal direction toward the side wall 10a and transmit the ultrasonic waves. Receive the later ultrasonic waves (reflected waves). The transmission circuit 22 drives the ultrasonic sensor 21a in response to the drive signal Da supplied from the controller 30. The receiving circuit 23 performs signal processing such as amplification on the received signals of the ultrasonic sensors 21a and 21b, respectively. The received signal processed by the receiving circuit 23 is supplied to the controller 30.

コントローラ30の検出手段は、駆動信号Daを送信回路22に供給することにより超音波センサ21aを駆動して超音波センサ21aから超音波を送信し、その超音波の横波が側壁10aにおける最短距離の周回経路Laを伝わって超音波センサ21aに戻る時点(送信からt2時間後)の超音波センサ21aの受信信号レベルと、超音波センサ21aから送信した超音波の横波が側壁10aにおける距離Xの直線経路を伝わって超音波センサ21bに達する時点(送信からtx時間後)の超音波センサ21bの受信信号レベルとに応じて、容器10内の液冷媒Rの量が第1基準位置である超音波センサ21aの取付け位置に達しているか否かおよび第2基準位置である超音波センサ21bの取付け位置に達しているか否かを検出する。 The detection means of the controller 30 drives the ultrasonic sensor 21a by supplying the drive signal Da to the transmission circuit 22 to transmit ultrasonic waves from the ultrasonic sensor 21a, and the lateral wave of the ultrasonic waves is the shortest distance on the side wall 10a. The received signal level of the ultrasonic sensor 21a at the time of returning to the ultrasonic sensor 21a through the orbital path La (t2 hours after transmission) and the lateral wave of the ultrasonic wave transmitted from the ultrasonic sensor 21a are straight lines of the distance X on the side wall 10a. The amount of liquid refrigerant R in the container 10 is the first reference position, depending on the received signal level of the ultrasonic sensor 21b at the time of reaching the ultrasonic sensor 21b along the path (tx hours after transmission). It detects whether or not the mounting position of the sensor 21a has been reached and whether or not the mounting position of the ultrasonic sensor 21b, which is the second reference position, has been reached.

図18のように容器10内の液冷媒Rの液面位置が第1基準位置と第2基準位置との間にある場合、駆動信号Daのオンに応じて超音波センサ21aから送信される超音波の横波は、側壁10aにおける最短距離の周回経路Laを液冷媒Rに接することなく伝わり、送信からt2時間後に送信元の超音波センサ21aに戻る。側壁10aを伝わる横波の強度が液冷媒Rによって減衰しないので、駆動信号Daのオン(送信開始)からt2時間後の超音波センサ21aの受信信号の電圧レベルVaは、図19に示すように高くなる。 When the liquid level position of the liquid refrigerant R in the container 10 is between the first reference position and the second reference position as shown in FIG. 18, the ultrasonic sensor 21a transmits from the ultrasonic sensor 21a in response to the drive signal Da being turned on. The transverse wave of the sound wave is transmitted along the shortest orbital path La on the side wall 10a without coming into contact with the liquid refrigerant R, and returns to the ultrasonic sensor 21a of the transmission source t2 hours after the transmission. Since the intensity of the transverse wave propagating on the side wall 10a is not attenuated by the liquid refrigerant R, the voltage level Va of the received signal of the ultrasonic sensor 21a t2 hours after the drive signal Da is turned on (transmission start) is high as shown in FIG. Become.

また、超音波センサ21aから送信された超音波の横波は、初めは液冷媒Rに接することなく超音波センサ21bに向かって直線経路で側壁10aを伝わり、途中から液冷媒Rに接しながら側壁10aを伝わり、送信からtx時間後に超音波センサ21bに達する。側壁10aを伝わる横波の強度が液冷媒Rによって減衰するので、駆動信号Daのオン(送信開始)からtx時間後の超音波センサ21bの受信信号の電圧レベルVbは、図19に示すように低くなる。 Further, the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21a is transmitted along the side wall 10a in a straight path toward the ultrasonic sensor 21b without first contacting the liquid refrigerant R, and is in contact with the liquid refrigerant R from the middle of the side wall 10a. The ultrasonic sensor 21b is reached after tx hours from the transmission. Since the intensity of the transverse wave propagating on the side wall 10a is attenuated by the liquid refrigerant R, the voltage level Vb of the reception signal of the ultrasonic sensor 21b twx hours after the drive signal Da is turned on (transmission start) is low as shown in FIG. Become.

したがって、液冷媒Rの液面に生じる泡立ちや波浪に影響を受けることなく、容器10内の液冷媒Rの量が第1および第2規定位置にそれぞれ達しているか否かを的確に検出できる。
送信した超音波の横波が側壁10aにおける最短距離の周回経路Laを伝わって超音波センサ21aに戻る時点(送信からt2時間後)と、同送信した超音波の横波が側壁10aにおける距離Xの直線経路を伝わって超音波センサ21bに達する時点と時間差が存在するので、超音波センサ21a,21bの受信信号に対する信号処理を1つの受信回路23で行うことができる。
他の構成および制御は、第1実施形態と同じである。よって、その説明は省略する。
Therefore, it is possible to accurately detect whether or not the amount of the liquid refrigerant R in the container 10 has reached the first and second specified positions, respectively, without being affected by the bubbling and waves generated on the liquid surface of the liquid refrigerant R.
The transverse wave of the transmitted ultrasonic wave travels the shortest orbital path La on the side wall 10a and returns to the ultrasonic sensor 21a (t2 hours after transmission), and the transverse wave of the transmitted ultrasonic wave is a straight line of the distance X on the side wall 10a. Since there is a time lag from the time when the ultrasonic sensor 21b is reached along the path, signal processing for the received signals of the ultrasonic sensors 21a and 21b can be performed by one receiving circuit 23.
Other configurations and controls are the same as in the first embodiment. Therefore, the description thereof will be omitted.

[9]第9実施形態
第9実施形態では、図20に示すように、超音波検出ユニット20が2つの超音波センサ21a,21b、送信回路22、および受信回路23a,23bを含む。超音波センサ21a,21bは、側壁10aの外周面の互いに異なる高さ位置にかつ互いに距離Xaの間隔で取付けられ、側壁10a側に向けてほぼ水平方向に超音波を送信するとともに、その送信後の超音波(反射波)を受信する。送信回路23は、コントローラ30から供給される駆動信号Daに応じて超音波センサ21aを駆動する。受信回路23aは、超音波センサ21aの受信信号に増幅等の信号処理を施す。受信回路23bは、超音波センサ21bの受信信号に増幅等の信号処理を施す。この受信回路23で処理された受信信号がコントローラ30に供給される。
[9] Ninth Embodiment In the ninth embodiment, as shown in FIG. 20, the ultrasonic detection unit 20 includes two ultrasonic sensors 21a and 21b, a transmission circuit 22, and a reception circuit 23a and 23b. The ultrasonic sensors 21a and 21b are attached to the outer peripheral surfaces of the side wall 10a at different height positions and at intervals of a distance Xa from each other, transmit ultrasonic waves in a substantially horizontal direction toward the side wall 10a, and after the transmission. Receives ultrasonic waves (reflected waves). The transmission circuit 23 drives the ultrasonic sensor 21a in response to the drive signal Da supplied from the controller 30. The receiving circuit 23a performs signal processing such as amplification on the received signal of the ultrasonic sensor 21a. The receiving circuit 23b performs signal processing such as amplification on the received signal of the ultrasonic sensor 21b. The received signal processed by the receiving circuit 23 is supplied to the controller 30.

超音波センサ21aから送信した超音波の横波が側壁10aにおける距離Xaの直線経路を伝わって超音波センサ21bに達するまでの横波の伝搬距離は、同じ超音波センサ21aから送信した超音波の横波が側壁10aにおける最短距離の周回経路Lを伝わって超音波センサ21aに戻るまでの横波の伝搬距離と同じである、 The propagation distance of the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21a through the linear path of the distance Xa on the side wall 10a to reach the ultrasonic sensor 21b is determined by the transverse wave of the ultrasonic wave transmitted from the same ultrasonic sensor 21a. It is the same as the propagation distance of the transverse wave from the shortest orbital path L on the side wall 10a to the return to the ultrasonic sensor 21a.

コントローラ30の検出手段は、駆動信号Daを送信回路22に供給することにより超音波センサ21aを駆動して超音波センサ21aから超音波を送信し、その超音波の横波が側壁10aにおける最短距離の周回経路Laを伝わって超音波センサ21aに戻る時点(送信からt2時間後)の超音波センサ21aの受信信号レベルと、超音波センサ21aから送信した超音波の横波が側壁10aにおける距離Xの直線経路を伝わって超音波センサ21bに達する時点(送信からtxa時間後)の超音波センサ21bの受信信号レベルとに応じて、容器10内の液冷媒Rの量が第1基準位置である超音波センサ21aの取付け位置および第2基準位置である超音波センサ21bの取付け位置に達しているか否かを検出する。 The detection means of the controller 30 drives the ultrasonic sensor 21a by supplying the drive signal Da to the transmission circuit 22 to transmit ultrasonic waves from the ultrasonic sensor 21a, and the lateral wave of the ultrasonic waves is the shortest distance on the side wall 10a. The received signal level of the ultrasonic sensor 21a at the time of returning to the ultrasonic sensor 21a through the orbital path La (t2 hours after transmission) and the lateral wave of the ultrasonic wave transmitted from the ultrasonic sensor 21a are straight lines of the distance X on the side wall 10a. The amount of liquid refrigerant R in the container 10 is the first reference position, depending on the received signal level of the ultrasonic sensor 21b at the time of reaching the ultrasonic sensor 21b along the path (after txa time from transmission). It detects whether or not the mounting position of the sensor 21a and the mounting position of the ultrasonic sensor 21b, which is the second reference position, have been reached.

図20のように容器10内の液冷媒Rの液面位置が第1基準位置と第2基準位置との間にある場合、駆動信号Daのオンに応じて超音波センサ21aから送信される超音波の横波は、側壁10aにおける最短距離の周回経路Laを液冷媒Rに接することなく伝わり、送信からt2時間後に超音波センサ21aに戻る。側壁10aを伝わる横波の強度が液冷媒Rによって減衰しないので、駆動信号Daのオン(送信開始)からt2時間後の超音波センサ21aの受信信号の電圧レベルVaは、図21に示すように高くなる。 When the liquid level position of the liquid refrigerant R in the container 10 is between the first reference position and the second reference position as shown in FIG. 20, the ultrasonic sensor 21a transmits in response to the on of the drive signal Da. The transverse wave of the sound wave is transmitted along the shortest orbital path La on the side wall 10a without coming into contact with the liquid refrigerant R, and returns to the ultrasonic sensor 21a 2 hours after transmission. Since the intensity of the transverse wave propagating on the side wall 10a is not attenuated by the liquid refrigerant R, the voltage level Va of the reception signal of the ultrasonic sensor 21a t2 hours after the drive signal Da is turned on (transmission start) is high as shown in FIG. Become.

また、超音波センサ21aから送信された超音波の横波は、初めは液冷媒Rに接することなく超音波センサ21bに向かい直線経路で側壁10aを伝わり、途中から液冷媒Rに接しながら側壁10aを伝わり、送信からtxa時間後に超音波センサ21bに達する。側壁10aを伝わる横波の強度が液冷媒Rによって減衰するので、駆動信号Daのオン(送信開始)からtxa時間後の超音波センサ21bの受信信号の電圧レベルVbは、図21に示すように低くなる。 Further, the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor 21a travels along the side wall 10a in a straight path toward the ultrasonic sensor 21b without first contacting the liquid refrigerant R, and then touches the side wall 10a while contacting the liquid refrigerant R from the middle. It is transmitted and reaches the ultrasonic sensor 21b after txa time from the transmission. Since the intensity of the transverse wave propagating on the side wall 10a is attenuated by the liquid refrigerant R, the voltage level Vb of the received signal of the ultrasonic sensor 21b after txa time from the on (transmission start) of the drive signal Da is low as shown in FIG. Become.

送信した超音波の横波が側壁10aにおける最短距離の周回経路Laを伝わって超音波センサ21aに戻る時点(送信からt2時間後)と、同送信した超音波の横波が側壁10aにおける距離Xの直線経路を伝わって超音波センサ21bに達する時点とが同じなので、超音波センサ21a,21bの受信信号を2つの受信回路23a,23bで個別に処理するようにしている。
液冷媒Rの液面に生じる泡立ちや波浪に影響を受けることなく、容器10内の液冷媒Rの量が第1および第2規定位置にそれぞれ達しているか否かを的確に検出できる。
他の構成および制御は、第1実施形態と同じである。よって、その説明は省略する。
The transverse wave of the transmitted ultrasonic wave travels the shortest orbital path La on the side wall 10a and returns to the ultrasonic sensor 21a (t2 hours after transmission), and the transverse wave of the transmitted ultrasonic wave is a straight line of the distance X on the side wall 10a. Since the time point of reaching the ultrasonic sensor 21b along the path is the same, the received signals of the ultrasonic sensors 21a and 21b are individually processed by the two receiving circuits 23a and 23b.
It is possible to accurately detect whether or not the amount of the liquid refrigerant R in the container 10 has reached the first and second specified positions, respectively, without being affected by the bubbling and waves generated on the liquid surface of the liquid refrigerant R.
Other configurations and controls are the same as in the first embodiment. Therefore, the description thereof will be omitted.

[10]第10実施形態
第10実施形態では、図22に示すように、円筒状の容器10の一端壁(上面壁)10bの外周面のほぼ中心位置に超音波センサ21aが取付けられ、他端壁(下面壁)10cのほぼ中心位置に超音波センサ21bが取付けられている。
コントローラ30の検出手段は、超音波センサ21aを駆動して超音波センサ21aから超音波を送信し、その超音波の横波が一端壁10b,側壁10a,他端壁10cを最短距離の直線経路Lcで伝わって超音波センサ21bに達する時点の超音波センサ21bの受信信号レベルに応じて、容器10内の液冷媒Rの量を検出する。
[10] Tenth Embodiment In the tenth embodiment, as shown in FIG. 22, the ultrasonic sensor 21a is attached at a substantially central position on the outer peripheral surface of one end wall (upper surface wall) 10b of the cylindrical container 10, and the like. The ultrasonic sensor 21b is attached at a substantially central position of the end wall (lower surface wall) 10c.
The detection means of the controller 30 drives the ultrasonic sensor 21a to transmit ultrasonic waves from the ultrasonic sensor 21a, and the transverse wave of the ultrasonic waves travels the one end wall 10b, the side wall 10a, and the other end wall 10c in the shortest straight path Lc. The amount of the liquid refrigerant R in the container 10 is detected according to the received signal level of the ultrasonic sensor 21b at the time when the ultrasonic sensor 21b is transmitted and reaches the ultrasonic sensor 21b.

一端壁10b,側壁10a,他端壁10cを伝わる横波の強度は、横波と液冷媒Rの接し量が多いほどそれに比例する大きさで減衰していく。この減衰の度合いを超音波センサ21bの受信信号の電圧レベルVbとして幅広く連続的に捕らえることができる。
この受信信号の電圧レベルVbを検出することにより、液冷媒Rの液面に生じる泡立ちや波浪に影響を受けることなく、容器10内の液冷媒Rの量を的確に検出できる。とくに、横波の強度の減衰の度合いを超音波センサ21bの受信信号の電圧レベルVaとして幅広く連続的に捕らえることができるので、容器10内の液冷媒Rの量をほぼ空の状態から満杯に近い状態まで連続的に検出することができる。
他の構成および制御は図15の第7実施形態と同じなので、その説明は省略する。
The intensity of the transverse wave propagating through the one end wall 10b, the side wall 10a, and the other end wall 10c is attenuated by a magnitude proportional to the larger the contact amount between the transverse wave and the liquid refrigerant R. The degree of this attenuation can be widely and continuously captured as the voltage level Vb of the received signal of the ultrasonic sensor 21b.
By detecting the voltage level Vb of the received signal, the amount of the liquid refrigerant R in the container 10 can be accurately detected without being affected by the bubbling and waves generated on the liquid surface of the liquid refrigerant R. In particular, since the degree of attenuation of the transverse wave intensity can be widely and continuously captured as the voltage level Va of the received signal of the ultrasonic sensor 21b, the amount of the liquid refrigerant R in the container 10 is almost full from an almost empty state. The state can be detected continuously.
Since other configurations and controls are the same as those of the seventh embodiment of FIG. 15, the description thereof will be omitted.

[6]変形例
上記各実施形態では、アキュームレータの容器に収容される液冷媒の量を検出する場合を例に説明したが、液体を収容する容器であれば、アキュームレータに限らず同様の検出が可能である。
その他、上記各実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[6] Modification example
In each of the above embodiments, the case of detecting the amount of the liquid refrigerant contained in the container of the accumulator has been described as an example, but the same detection is possible not only in the accumulator but also in the container containing the liquid.
In addition, each of the above embodiments and modifications is presented as an example, and is not intended to limit the scope of the invention. This novel embodiment and modification can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the gist of the invention. These embodiments and modifications are included in the gist of the invention as well as in the scope of the invention described in the claims and the equivalent scope thereof.

A…室外ユニット、B1,B2…Bn……室内ユニット、1…圧縮機、3…室外熱交換器、5…アキュームレータ、12…室内熱交換器、10…容器、10a…側壁(周壁)、20…超音波検出ユニット、21…超音波センサ、22…送信回路、23…受信回路、R…液冷媒、L…周回経路、30…コントローラ A ... outdoor unit, B1, B2 ... Bn ... indoor unit, 1 ... compressor, 3 ... outdoor heat exchanger, 5 ... accumulator, 12 ... indoor heat exchanger, 10 ... container, 10a ... side wall (peripheral wall), 20 ... Ultrasonic detection unit, 21 ... Ultrasonic sensor, 22 ... Transmission circuit, 23 ... Reception circuit, R ... Liquid refrigerant, L ... Circular path, 30 ... Controller

Claims (10)

液体を収容する容器の周壁に取付けられ、超音波を送信しかつ受信する超音波センサと、
前記超音波センサから送信した超音波の横波が前記周壁を伝わって前記超音波センサに達する時点の同超音波センサの受信信号レベルに応じて、前記容器内の液体の量を検出する検出手段と、
を備えることを特徴とする液量検出装置。
An ultrasonic sensor that is attached to the peripheral wall of a container that contains liquid and transmits and receives ultrasonic waves.
A detection means for detecting the amount of liquid in the container according to the received signal level of the ultrasonic sensor at the time when the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor travels through the peripheral wall and reaches the ultrasonic sensor. ,
A liquid amount detecting device comprising.
前記容器の周壁は、円筒状の側壁、この側壁の軸方向一端を塞ぐ円形の一端壁、および前記側壁の軸方向他端を塞ぐ円形の他端壁により形成され、
前記超音波センサは、前記側壁の外周面における所定の高さ位置に取付けられ、
前記検出手段は、前記超音波センサから送信した超音波の横波が前記側壁を周回して伝わって前記超音波センサに戻る時点の同超音波センサの受信信号レベルに応じて、前記容器内の液体の量を検出する、
ことを特徴とする請求項1に記載の液量検出装置。
The peripheral wall of the container is formed by a cylindrical side wall, a circular one end wall that closes one axial end of the side wall, and a circular other end wall that closes the axial other end of the side wall.
The ultrasonic sensor is mounted at a predetermined height position on the outer peripheral surface of the side wall.
The detecting means is the liquid in the container according to the received signal level of the ultrasonic sensor at the time when the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor is transmitted around the side wall and returns to the ultrasonic sensor. Detect the amount of
The liquid amount detecting device according to claim 1.
前記容器は、圧縮機、凝縮器、減圧器、および蒸発器を順に配管接続して冷媒を循環させる冷凍サイクルに設けられ、前記蒸発器から前記圧縮機へ流れる冷媒の液状成分を収容するアキュームレータの容器であり、
前記検出手段は、
前記冷凍サイクルの運転時、前記超音波センサから送信した超音波の横波が前記容器前記側壁を周回して伝わって前記超音波センサに戻る時点の同超音波センサの受信信号レベルに応じて、前記容器内の液体の量を検出し、
前記冷凍サイクルの非運転時、前記超音波センサから送信した超音波の縦波が前記超音波センサの取付け位置とは反対側にある前記側壁の内周面と気体または液体との界面で反射して前記超音波センサに戻る時点の同超音波センサの受信信号レベルに応じて、前記容器内の液体の量を検出する、
ことを特徴とする請求項2に記載の液量検出装置。
The container is provided in a refrigeration cycle in which a compressor, a condenser, a decompressor, and an evaporator are connected in order to circulate the refrigerant, and an accumulator accommodating a liquid component of the refrigerant flowing from the evaporator to the compressor. It is a container
The detection means
During the operation of the refrigeration cycle, the transverse wave of the ultrasonic wave transmitted from the ultrasonic sensor is transmitted around the side wall of the container and returns to the ultrasonic sensor, depending on the received signal level of the ultrasonic sensor. Detects the amount of liquid in the container and
When the refrigeration cycle is not in operation, longitudinal waves of ultrasonic waves transmitted from the ultrasonic sensor are reflected at the interface between the inner peripheral surface of the side wall and the gas or liquid on the side opposite to the mounting position of the ultrasonic sensor. The amount of liquid in the container is detected according to the received signal level of the ultrasonic sensor at the time of returning to the ultrasonic sensor.
The liquid amount detecting device according to claim 2.
前記容器の周壁は、球体に形成されていることを特徴とする請求項1に記載の液体検出装置。 The liquid detection device according to claim 1, wherein the peripheral wall of the container is formed in a sphere. 前記超音波センサは、前記側壁の外周面における互いに異なる高さ位置に取付けられた第1超音波センサおよび第2超音波センサであり、
前記検出手段は、
前記第1超音波センサから送信した超音波の横波が前記側壁を周回して伝わって同第1超音波センサに戻る時点の同第1超音波センサの受信信号レベルと、前記第2超音波センサから送信した超音波の横波が前記側壁を周回して伝わって同第2超音波センサに戻る時点の同第2超音波センサの受信信号レベルとに応じて、前記容器内の液体の量を検出する、
ことを特徴とする請求項1に記載の液量検出装置。
The ultrasonic sensor is a first ultrasonic sensor and a second ultrasonic sensor mounted at different height positions on the outer peripheral surface of the side wall.
The detection means
The reception signal level of the first ultrasonic sensor at the time when the transverse wave of the ultrasonic wave transmitted from the first ultrasonic sensor travels around the side wall and returns to the first ultrasonic sensor, and the second ultrasonic sensor. The amount of liquid in the container is detected according to the received signal level of the second ultrasonic sensor at the time when the transverse wave of the ultrasonic wave transmitted from the above is transmitted around the side wall and returns to the second ultrasonic sensor. To do,
The liquid amount detecting device according to claim 1.
前記検出手段は、前記第1および第2超音波センサから互いに異なるタイミングで超音波を送信する、
ことを特徴とする請求項5に記載の液量検出装置。
The detection means transmits ultrasonic waves from the first and second ultrasonic sensors at different timings.
The liquid amount detecting device according to claim 5.
前記超音波センサは、前記側壁の外周面における互いに異なる高さ位置に取付けられた第1超音波センサおよび第2超音波センサであり、
前記検出手段は、
前記第1超音波センサから送信した超音波の横波が前記側壁を伝わって前記第2超音波センサに達する時点の同第2超音波センサの受信信号レベルに応じて、前記容器内の液体の量を検出する、
ことを特徴とする請求項1に記載の液量検出装置。
The ultrasonic sensor is a first ultrasonic sensor and a second ultrasonic sensor mounted at different height positions on the outer peripheral surface of the side wall.
The detection means
The amount of liquid in the container according to the received signal level of the second ultrasonic sensor at the time when the transverse wave of the ultrasonic wave transmitted from the first ultrasonic sensor travels along the side wall and reaches the second ultrasonic sensor. To detect,
The liquid amount detecting device according to claim 1.
前記超音波センサは、前記容器の側壁の外周面における互いに異なる高さ位置に取付けられた第1超音波センサおよび第2超音波センサであり、
前記検出手段は、
前記第1超音波センサから送信した超音波の横波が前記容器の側壁を伝わって同第1超音波センサに戻る時点の同第1超音波センサの受信信号レベルと、前記第1超音波センサから送信した超音波の横波が前記容器の側壁を伝わって前記第2超音波センサに達する時点の同第2超音波センサの受信信号レベルとに応じて、前記容器内の液体の量を検出する、
ことを特徴とする請求項1に記載の液量検出装置。
The ultrasonic sensors are a first ultrasonic sensor and a second ultrasonic sensor mounted at different height positions on the outer peripheral surface of the side wall of the container.
The detection means
The reception signal level of the first ultrasonic sensor at the time when the transverse wave of the ultrasonic wave transmitted from the first ultrasonic sensor travels along the side wall of the container and returns to the first ultrasonic sensor, and from the first ultrasonic sensor. The amount of liquid in the container is detected according to the received signal level of the second ultrasonic sensor at the time when the transmitted transverse wave of the ultrasonic wave travels along the side wall of the container and reaches the second ultrasonic sensor.
The liquid amount detecting device according to claim 1.
前記第1超音波センサから送信した超音波の横波が前記容器の側壁を伝わって前記第2超音波センサに達するまでの横波の伝搬距離は、前記第1超音波センサから送信した超音波の横波が前記容器の側壁を周回して同第1超音波センサに戻るまでの横波の伝搬距離と同じである、
ことを特徴とする請求項8に記載の液量検出装置。
The propagation distance of the transverse wave until the transverse wave of the ultrasonic wave transmitted from the first ultrasonic sensor travels along the side wall of the container and reaches the second ultrasonic sensor is the transverse wave of the ultrasonic wave transmitted from the first ultrasonic sensor. Is the same as the propagation distance of the transverse wave until it goes around the side wall of the container and returns to the first ultrasonic sensor.
The liquid amount detecting device according to claim 8.
前記容器は、円筒状の側壁、この側壁の軸方向一端を塞ぐ一端壁、および前記側壁の軸方向他端を塞ぐ他端壁を前記周壁として有し、
前記超音波センサは、前記一端壁の外周面に取付けられた第1超音波センサ、および前記他端壁の外周面に取付けられた第2超音波センサであり、
前記検出手段は、前記第1超音波センサから送信した超音波の横波が前記一端壁、前記側壁、および前記他端壁を伝わって前記第2超音波センサに達する時点の同第2超音波センサの受信信号レベルに応じて、前記容器内の液体の量を検出する、
ことを特徴とする請求項1に記載の液量検出装置。
The container has a cylindrical side wall, one end wall that closes one axial end of the side wall, and another end wall that closes the axial other end of the side wall as the peripheral wall.
The ultrasonic sensor is a first ultrasonic sensor attached to the outer peripheral surface of the one end wall and a second ultrasonic sensor attached to the outer peripheral surface of the other end wall.
The detection means is a second ultrasonic sensor at a time when a transverse wave of ultrasonic waves transmitted from the first ultrasonic sensor travels through the one end wall, the side wall, and the other end wall and reaches the second ultrasonic sensor. The amount of liquid in the container is detected according to the received signal level of
The liquid amount detecting device according to claim 1.
JP2019044031A 2019-03-11 2019-03-11 Liquid level detector Active JP7224974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044031A JP7224974B2 (en) 2019-03-11 2019-03-11 Liquid level detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044031A JP7224974B2 (en) 2019-03-11 2019-03-11 Liquid level detector

Publications (2)

Publication Number Publication Date
JP2020148500A true JP2020148500A (en) 2020-09-17
JP7224974B2 JP7224974B2 (en) 2023-02-20

Family

ID=72429456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044031A Active JP7224974B2 (en) 2019-03-11 2019-03-11 Liquid level detector

Country Status (1)

Country Link
JP (1) JP7224974B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316183A (en) * 1980-10-24 1982-02-16 Bestobell Mobrey Limited Liquid level sensor
JPS613022A (en) * 1984-06-16 1986-01-09 Kanagawaken Measuring method of leakage from liquefied gas container
JPH02212795A (en) * 1988-12-03 1990-08-23 Stresswave Technol Ltd Fluid level monitor
JPH06323636A (en) * 1993-05-18 1994-11-25 Daikin Ind Ltd Refrigerator
JPH1114431A (en) * 1997-06-23 1999-01-22 Kubota Corp Liquid level detector for accumulator
JP2001194210A (en) * 2000-01-14 2001-07-19 Tokyo Electric Power Co Inc:The Ultrasonic level measuring apparatus
DE20309744U1 (en) * 2003-06-25 2003-12-04 Jäger, Frank-Michael Liquid level measurement unit has ultrasonic transducer mounted in air with gating of received echo
JP2005009874A (en) * 2003-06-16 2005-01-13 Daikin Ind Ltd Liquid level detector
JP2007517219A (en) * 2003-12-29 2007-06-28 アシュクラフト、インク Fluid level measurement by ultrasonic wave introduced into the container wall
JP2008523365A (en) * 2004-12-13 2008-07-03 トルマ ゲラーテテクニッヒ ゲーエムベーハー ウント ツェーオー カーゲー Ultrasonic measuring device for containers
JP2010276593A (en) * 2009-04-27 2010-12-09 Toshiba Corp Level measuring device
DE102015113311A1 (en) * 2015-08-12 2017-02-16 Inoson GmbH Method and device for determining the position of a piston in a cylinder filled with liquid

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316183A (en) * 1980-10-24 1982-02-16 Bestobell Mobrey Limited Liquid level sensor
JPS613022A (en) * 1984-06-16 1986-01-09 Kanagawaken Measuring method of leakage from liquefied gas container
JPH02212795A (en) * 1988-12-03 1990-08-23 Stresswave Technol Ltd Fluid level monitor
JPH06323636A (en) * 1993-05-18 1994-11-25 Daikin Ind Ltd Refrigerator
JPH1114431A (en) * 1997-06-23 1999-01-22 Kubota Corp Liquid level detector for accumulator
JP2001194210A (en) * 2000-01-14 2001-07-19 Tokyo Electric Power Co Inc:The Ultrasonic level measuring apparatus
JP2005009874A (en) * 2003-06-16 2005-01-13 Daikin Ind Ltd Liquid level detector
DE20309744U1 (en) * 2003-06-25 2003-12-04 Jäger, Frank-Michael Liquid level measurement unit has ultrasonic transducer mounted in air with gating of received echo
JP2007517219A (en) * 2003-12-29 2007-06-28 アシュクラフト、インク Fluid level measurement by ultrasonic wave introduced into the container wall
JP2008523365A (en) * 2004-12-13 2008-07-03 トルマ ゲラーテテクニッヒ ゲーエムベーハー ウント ツェーオー カーゲー Ultrasonic measuring device for containers
JP2010276593A (en) * 2009-04-27 2010-12-09 Toshiba Corp Level measuring device
DE102015113311A1 (en) * 2015-08-12 2017-02-16 Inoson GmbH Method and device for determining the position of a piston in a cylinder filled with liquid

Also Published As

Publication number Publication date
JP7224974B2 (en) 2023-02-20

Similar Documents

Publication Publication Date Title
US11268718B2 (en) Refrigeration apparatus
JP4412385B2 (en) Refrigerant leak detection method for refrigeration cycle equipment
JP4123764B2 (en) Refrigeration cycle equipment
US9920969B2 (en) Oil level detection device, and refrigerating and air-conditioning apparatus having mounted thereon the oil level detection device
JP6212529B2 (en) Refrigerant leak detection device in refrigeration cycle
CN105115111A (en) Air conditioner indoor unit and detection method for temperature sensing bulb of air conditioner indoor unit
EP1736721A3 (en) Refrigeration apparatus
JP4113700B2 (en) Liquid level detection device, liquid reservoir, refrigeration cycle device, and refrigerant leakage detection system
JP2017089983A5 (en)
JP2001032772A (en) Compressor, and freezing device
US11971183B2 (en) Systems and methods for refrigerant leak detection in a climate control system
CN114144622B (en) Refrigerant leakage notification device and refrigeration cycle system including same
JP2010133601A (en) Refrigerant leakage detecting device and refrigerating unit having the same
JP2020148500A (en) Liquid amount detector
CN109891172A (en) Refrigerating appliance with noise transducer
CN114151992A (en) Compressor oil return control method and device and air conditioner
JP2000249435A (en) Freezing apparatus and refrigerant leak detection method therefor
CN114585868A (en) Refrigerating device
JP2000130897A (en) Method and equipment for determining quantity of encapsulated refrigerant
US11493248B2 (en) Liquid level detection device and refrigeration cycle apparatus
JPH10176877A (en) System for judging enclosing amount of refrigerant
KR101257088B1 (en) Air conditioning system and detecting method for the length of refregerant pipes thereof
JP2008249288A (en) Air conditioner
CN216769852U (en) Control device for controlling oil return of compressor, heat pump system and air conditioner
JP2020148405A (en) Refrigeration cycle device and abnormality determination method for four-way changeover valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R150 Certificate of patent or registration of utility model

Ref document number: 7224974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150