JP2000130897A - Method and equipment for determining quantity of encapsulated refrigerant - Google Patents

Method and equipment for determining quantity of encapsulated refrigerant

Info

Publication number
JP2000130897A
JP2000130897A JP10305681A JP30568198A JP2000130897A JP 2000130897 A JP2000130897 A JP 2000130897A JP 10305681 A JP10305681 A JP 10305681A JP 30568198 A JP30568198 A JP 30568198A JP 2000130897 A JP2000130897 A JP 2000130897A
Authority
JP
Japan
Prior art keywords
refrigerant
amount
air conditioner
heat exchanger
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10305681A
Other languages
Japanese (ja)
Inventor
Kazumiki Urata
和幹 浦田
Kensaku Kokuni
研作 小国
Shinichiro Yamada
眞一朗 山田
Kenichi Nakamura
憲一 中村
Hiroshi Takenaka
寛 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10305681A priority Critical patent/JP2000130897A/en
Publication of JP2000130897A publication Critical patent/JP2000130897A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the quantity of refrigerant required for optimal operation of an air conditioner correctly and easily. SOLUTION: An outdoor unit comprises a compressor 1, an outdoor heat exchanger 10, a liquid receiver 9, and an electronic expansion valve 8 the quantity of refrigerant encapsulated in an air conditioner constituted by coupling them through piping is determined. A refrigerant channel coupled with the outdoor heat exchanger 10 and a refrigerant channel coupled with an indoor heat exchanger 3 are coupled with the inlet channel of the liquid receiver 9 through check valves 5, 6 for switching inlet refrigerant channels. A refrigerant channel coupled sequentially with a cooler 20 coupled with the outlet channel of the liquid receiver 9, a sight glass 21 and the electronic expansion valve 8 is coupled with the indoor heat exchanger 3 and the outdoor heat exchanger 10 through check valves 4, 7 for switching outlet refrigerant channels. Quantity of encapsulated refrigerant can be determined while using the sight glass commonly for heating operation and cooling operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機内に封
入されている冷媒量が施工状態に対して適正か否かを検
知する冷媒封入量判定装置及びその判定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for judging the amount of refrigerant charged in an air conditioner, which detects whether or not the amount of refrigerant charged in the air conditioner is appropriate for the working condition.

【0002】[0002]

【従来の技術】従来、冷凍装置または空気調和機に封入
されている冷媒量が適性か否かを検出する冷媒封入量判
定装置としていくつかの技術が提案されている。
2. Description of the Related Art Conventionally, several techniques have been proposed as refrigerant charging amount judging devices for detecting whether or not a refrigerant amount charged in a refrigeration apparatus or an air conditioner is appropriate.

【0003】一般に、空気調和機等に採用される冷凍装
置は、圧縮機、凝縮器、受液器、減圧装置及び蒸発器等
を配管接続して冷媒回路を形成し、この冷媒回路内には
施工状態に適した所定量の冷媒が封入されている。そし
て、この冷凍装置が運転されると、圧縮機により冷媒は
圧縮され高温高圧ガス状態となり、凝縮器で放熱して凝
縮液化した後受液器内に流入する。そして、受液器から
流出する液冷媒は、減圧装置で減圧され低圧状態となり
蒸発器で蒸発し、そのときに周囲から吸熱することで冷
却作用を発揮する。ここで、冷媒回路から冷媒が漏洩
し、冷媒回路内の冷媒量が不足すると、受液器内の液冷
媒量が減少し、受液器から流出する冷媒にはフラッシュ
ガス(気泡)が発生するようになり、蒸発器に供給され
る冷媒量が不十分となり、冷却能力が著しく低下する。
[0003] Generally, a refrigerating device used in an air conditioner or the like forms a refrigerant circuit by connecting a compressor, a condenser, a liquid receiver, a pressure reducing device, an evaporator, and the like with a pipe. A predetermined amount of refrigerant suitable for the construction state is sealed. When the refrigerating apparatus is operated, the refrigerant is compressed by the compressor into a high-temperature and high-pressure gas state, radiates heat by the condenser, is condensed and liquefied, and then flows into the receiver. Then, the liquid refrigerant flowing out of the liquid receiver is decompressed by the decompression device to be in a low pressure state and is evaporated by the evaporator. At that time, the refrigerant absorbs heat from the surroundings to exhibit a cooling effect. Here, when the refrigerant leaks from the refrigerant circuit and the amount of refrigerant in the refrigerant circuit is insufficient, the amount of liquid refrigerant in the receiver decreases, and flash gas (bubbles) is generated in the refrigerant flowing out of the receiver. As a result, the amount of refrigerant supplied to the evaporator becomes insufficient, and the cooling capacity is significantly reduced.

【0004】このため、冷媒不足が発生していることを
確認するために、特公昭55−32991号公報や特公
昭56−1544号公報に記載されているように、受液
器と減圧装置を接続する配管部には、配管内部の冷媒の
流れを目視するためのサイトグラスが設けられている。
このサイトグラスは、一面にガラスを有し、また、内部
にはモイスチャーインジケータと称される化学物質付き
の水分管理用のインジケータが取り付けられているもの
もあり、サイトグラス内部を通過する冷媒の状態をガラ
スを通して目視することでフラッシュガスの発生を検知
できる構造と成っている。
Therefore, in order to confirm that a refrigerant shortage has occurred, as described in Japanese Patent Publication No. 55-32991 and Japanese Patent Publication No. 56-1544, a receiver and a pressure reducing device are used. The connecting pipe section is provided with a sight glass for observing the flow of the refrigerant inside the pipe.
This sight glass has glass on one side, and some have an indicator for moisture management with a chemical substance called a moisture indicator inside, and the state of the refrigerant passing through the inside of the sight glass The structure is such that the generation of flash gas can be detected by visually observing through the glass.

【0005】また、特開平5−296620号公報に記
載されている冷凍サイクルでは、受液器と減圧装置の間
に冷媒の泡立ちにより冷媒量の過不足を検出するサイト
グラスと、前記受液器から流出した冷媒を前記サイトグ
ラスの入口側で過冷却状態にする冷媒過冷却状態形成手
段とを備えることにより、前記受液器の出口側で発生す
る圧力損失や圧力ハンチングが多少ある場合でも冷媒の
状態を安定に保つことができ、サイトグラスで見える泡
が冷媒封入量の不足に起因するもののみとなるため、冷
媒封入量の過不足を的確に判断できるようになる。
In the refrigerating cycle described in Japanese Patent Application Laid-Open No. Hei 5-296620, a sight glass for detecting the excess or deficiency of the amount of refrigerant by bubbling of refrigerant between the liquid receiver and the pressure reducing device, And a refrigerant supercooling state forming means for making the refrigerant flowing out of the sight glass into a supercooling state at the inlet side of the sight glass, so that even if there is some pressure loss or pressure hunting occurring at the outlet side of the liquid receiver, the refrigerant Can be stably maintained, and only the bubbles visible in the sight glass are caused by the shortage of the amount of the charged refrigerant. Therefore, it is possible to accurately determine whether the amount of the charged refrigerant is excessive or insufficient.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記に示す
冷媒封入量判定装置では、冷凍サイクル構成として冷凍
装置を基準にしているため、冷媒の流れ方向として一方
向しか冷媒封入量の判定を行うことができず、冷媒の流
れ方向が双方向となるヒートポンプに対して適用するこ
とを考慮していないため、以下に示す問題がある。
However, in the refrigerant charging amount determination apparatus described above, since the refrigeration cycle is based on the refrigeration apparatus, the refrigerant charging amount is determined only in one direction as the flow direction of the refrigerant. However, since it is not considered to apply to a heat pump in which the flow direction of the refrigerant is bidirectional, there are the following problems.

【0007】すなわち、従来の技術に用いられている受
液器の配置の場合は、冷房運転時に受液器出口側に相当
する部位にサイトグラスもしくは冷却手段とサイトグラ
スを配設しているため、冷房運転時は正常な冷媒封入量
の判定を行うことができるが、四方弁等を設けてヒート
ポンプ装置とした場合、暖房運転時は、サイトグラスも
しくは冷却手段とサイトグラスの冷媒の流れ方向に対す
る位置が受液器の入口側となり、前記受液器では外気に
対して放熱しているため受液器の入口側の冷媒状態は常
に気液二相状態となり、サイトグラス内を目視した場合
は常に気泡が発生した状態となる。したがって、従来の
技術に用いられている冷媒封入量判定装置では、暖房運
転時に正常な判定を行うことができない問題がある。
That is, in the case of the arrangement of the receiver used in the prior art, the sight glass or the cooling means and the sight glass are arranged at a portion corresponding to the outlet side of the receiver during the cooling operation. During cooling operation, it is possible to determine the normal amount of refrigerant charged.However, when a four-way valve or the like is provided as a heat pump device, during heating operation, the sight glass or cooling means and the flow direction of the sight glass refrigerant flow. When the position is on the inlet side of the receiver, the refrigerant on the inlet side of the receiver is always in a gas-liquid two-phase state because the receiver radiates heat to the outside air, and when the inside of the sight glass is visually observed, It is always in a state where bubbles are generated. Therefore, there is a problem that the refrigerant charging amount determination device used in the conventional technology cannot perform a normal determination during the heating operation.

【0008】また、ヒートポンプ装置に対応した冷媒封
入量判定装置とするためには、受液器の入口側及び出口
側の双方に冷却手段及びサイトグラスを設置する必要が
あり、空気調和機としての原価が高くなるといった問題
がある。
[0008] Further, in order to provide a refrigerant charging amount determination device corresponding to a heat pump device, it is necessary to install a cooling means and a sight glass on both the inlet side and the outlet side of the liquid receiver. There is a problem that the cost is high.

【0009】本発明の目的は、係る従来の技術的課題を
解決するために成されたものであり、空気調和機の運転
が最適に行える冷媒量が必要最低限封入されていること
を、冷房運転時及び暖房運転時のどちらの場合でも正確
に且つ簡単に、低原価で検知できる冷媒封入量判定装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional technical problems, and it is required that a minimum amount of refrigerant for optimally operating an air conditioner is sealed. It is an object of the present invention to provide an apparatus for judging the amount of charged refrigerant which can be accurately and easily detected at low cost in both the operation and the heating operation.

【0010】[0010]

【課題を解決するための手段】上記の目的は、少なくと
も1台の室外機と少なくとも1台の室内機で構成され、
前記室外機は少なくとも圧縮機、室外熱交換器、受液
器、減圧装置から構成され、前記室内機は少なくとも室
内熱交換器から構成され、これらを配管で接続して成る
空気調和機に、所定量の冷媒を封入したときの、前記空
気調和機内の冷媒封入量が適正か否かを判定する冷媒封
入量判定装置において、前記室外熱交換器に接続された
冷媒流路と前記室内熱交換器に接続された冷媒流路が、
流入冷媒流路切替手段を介して前記受液器の入口流路に
連結されると共に、前記受液器の出口流路に連結された
冷媒流路が、途中に少なくとも冷却手段、及び冷媒封入
量判定手段を挿入し、かつ流出冷媒流路切替手段を介し
て前記室外熱交換器に接続された冷媒流路と前記室内熱
交換器に接続された冷媒流路に接続された構成によって
達成される。
The above object is achieved by at least one outdoor unit and at least one indoor unit,
The outdoor unit is composed of at least a compressor, an outdoor heat exchanger, a liquid receiver, and a decompression device. The indoor unit is composed of at least an indoor heat exchanger, and is connected to an air conditioner that is connected by piping. When a fixed amount of refrigerant is charged, in a refrigerant charging amount determination device that determines whether a refrigerant charging amount in the air conditioner is appropriate, a refrigerant flow path connected to the outdoor heat exchanger and the indoor heat exchanger The refrigerant flow path connected to
The refrigerant flow path connected to the inlet flow path of the liquid receiver through the inflow refrigerant flow switching means and connected to the outlet flow path of the liquid receiver includes at least a cooling means and a refrigerant charging amount in the middle. This is achieved by a configuration in which the determination means is inserted and the refrigerant flow path connected to the outdoor heat exchanger and the refrigerant flow path connected to the indoor heat exchanger are connected via the outflow refrigerant flow switching means. .

【0011】また、上記の目的は、上記冷媒封入量判定
装置において、前記冷媒封入量判定手段による冷凍サイ
クル内に封入されている冷媒量を判定するタイミングを
制御するために、前記空気調和機の冷凍サイクルに冷凍
サイクルが安定か否かを判断する冷凍サイクル安定判定
手段を設けたことによって達成される。
The object of the present invention is to provide a method for determining the amount of refrigerant enclosed in a refrigeration cycle by the refrigerant amount determination means in the refrigerant amount determination device. This is achieved by providing the refrigeration cycle with refrigeration cycle stability determination means for determining whether the refrigeration cycle is stable.

【0012】さらに上記の目的は、少なくとも1台の室
外機と少なくとも1台の室内機とで構成され、これらを
配管で接続して成る空気調和機の冷凍サイクル中に設置
される受液器の出口流路に設けた冷媒量判定手段により
該空気調和機に封入されている冷媒量が適正か否かを判
定する冷媒封入量判定方法において、冷凍サイクル内に
必要とされる冷媒量が最も多くなる空気調和機の運転モ
ードを空気調和機が設置されている少なくとも前記配管
長さにより決定することによって達成される。
[0012] Further, the above object is to provide a liquid receiver installed in a refrigeration cycle of an air conditioner, comprising at least one outdoor unit and at least one indoor unit, and connecting these with piping. In the refrigerant charging amount determination method for determining whether the refrigerant amount sealed in the air conditioner is appropriate by the refrigerant amount determining means provided in the outlet flow path, the refrigerant amount required in the refrigeration cycle is the largest. The operation mode of the air conditioner is determined by at least the length of the pipe in which the air conditioner is installed.

【0013】上記の手段によれば、空気調和機の冷房運
転時及び暖房運転時共に前記受液器に対して一方向から
冷媒が流入し、一方向から冷媒が流出し、その受液器か
ら流出する一方向に冷媒が流れる冷媒流路に挿入した冷
媒封入量判定手段により、空気調和機内に封入されてい
る冷媒量が適正か否かを冷房運転時及び暖房運転時共に
共用して判定できる。
According to the above-described means, the refrigerant flows into the liquid receiver from one direction, flows out of the refrigerant from one direction, and flows out of the liquid receiver during both the cooling operation and the heating operation of the air conditioner. The refrigerant enclosing amount determining means inserted in the refrigerant flow path through which the refrigerant flows out in one direction can determine whether the amount of the refrigerant enclosed in the air conditioner is appropriate for both the cooling operation and the heating operation. .

【0014】また、前記冷媒封入量判定手段による冷凍
サイクル内に封入されている冷媒量を判定するタイミン
グが冷凍サイクル安定判定手段によって冷凍サイクルが
安定か否かを判断した信号を用いて制御され、冷媒量の
変化が少ない安定した範囲において冷媒封入量判定が行
なわれ、判定が的確に且つ正確に行なわれる。
The timing of determining the amount of refrigerant sealed in the refrigeration cycle by the refrigerant amount determination means is controlled using a signal indicating whether the refrigeration cycle is stable by the refrigeration cycle stability determination means, The refrigerant enclosing amount determination is performed in a stable range where the change in the refrigerant amount is small, and the determination is performed accurately and accurately.

【0015】また、必要冷媒量の判定が、必要冷媒量が
最も多くなる運転モードを少なくとも接続配管長さによ
り決定して行なわれる。接続配管長さが短い場合は、液
接続配管内の冷媒かわき度の違いによる冷媒量差よりも
室外熱交換器と室内熱交換器の配管容積比による冷媒量
差の方が大きいため冷房運転時の方が必要冷媒量が多く
なるが、接続配管が長い場合は、液接続配管内の冷媒か
わき度の違いによる冷媒量差が大きくなるため暖房運転
時の方が必要冷媒量が多くなる。したがって、冷媒封入
量判定手段による封入された冷媒量が適正か否かの判定
に、少なくとも接続配管長さを考慮し、最も多くの冷媒
量が必要な運転モードで運転し、冷媒を追加封入してい
く際、そのとき冷媒量を判定することによって正確な判
定、追加封入が可能となる。
Further, the determination of the required refrigerant amount is performed by determining the operation mode in which the required refrigerant amount is the largest at least by the length of the connection pipe. When the connection pipe length is short, the difference in refrigerant volume between the outdoor heat exchanger and the indoor heat exchanger is larger than that due to the difference in the degree of refrigerant in the liquid connection pipe. However, when the connection pipe is long, the difference in the amount of refrigerant in the liquid connection pipe due to the difference in the degree of refrigerant is large, so that the required refrigerant quantity is larger during the heating operation. Therefore, in determining whether or not the amount of the charged refrigerant by the refrigerant charged amount determination means is appropriate, at least the connection pipe length is taken into consideration, the operation is performed in the operation mode in which the largest amount of the refrigerant is required, and the refrigerant is additionally charged. At that time, by judging the amount of refrigerant at that time, accurate judgment and additional encapsulation become possible.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の一実施形態の冷媒封入量
判定装置を具備した空気調和機の冷凍サイクル構成図で
ある。この空気調和機は、1台の室外機と1台の室内機
を液側及びガス側接続配管により接続して構成される。
室外機は、圧縮機1、四方弁2、室外熱交換器10、受
液器9及びアキュムレータ11により構成され、図に示
すごとく配管により接続されている。室外熱交換器10
には、外気と熱交換できるように前記室外熱交換器10
に空気を送り込むための室外ファン14及び前記室外フ
ァン14を駆動するための室外ファンモータ15が設け
られている。一方、室内機は、室内熱交換器3により構
成され、外気と熱交換できるように前記室内熱交換器3
に空気を送り込むための室内ファン12及び前記室内フ
ァン12を駆動するための室内ファンモータ13が設け
られている。
FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner provided with a refrigerant charging amount determination device according to one embodiment of the present invention. This air conditioner is configured by connecting one outdoor unit and one indoor unit by liquid-side and gas-side connection pipes.
The outdoor unit includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 10, a liquid receiver 9, and an accumulator 11, and is connected by piping as shown in the figure. Outdoor heat exchanger 10
In order to exchange heat with the outside air,
An outdoor fan 14 for sending air to the air conditioner and an outdoor fan motor 15 for driving the outdoor fan 14 are provided. On the other hand, the indoor unit is constituted by the indoor heat exchanger 3, and the indoor heat exchanger 3 is configured to exchange heat with the outside air.
An indoor fan 12 for sending air into the vehicle and an indoor fan motor 13 for driving the indoor fan 12 are provided.

【0018】本実施形態では、前記受液器9の入口流路
に付設する流入冷媒流路切替手段として、前記室外熱交
換器10と前記受液器9の入口流路とを接続する冷媒流
路に第3逆止弁6を、前記室内熱交換器3と前記受液器
9の入口流路とを接続する冷媒流路に第2逆止弁5を設
けた構成としている。前記受液器9の出口流路には、前
記受液器9から流出する冷媒を過冷却させる冷却手段、
空気調和機内に封入されている冷媒が適正か否かを判定
する冷媒封入量判定手段、及び減圧装置が順次配管によ
り接続されている。冷却手段としては、前記四方弁2と
アキュムレータ11を接続する冷媒流路と前記受液器9
の出口流路を接触させた冷却器20を採用している。ま
た、冷媒封入量判定手段としては、低原価で且つ判定が
容易に行える一面もしくは相対する面が透明壁でできた
サイトグラス21を設けている。さらに、減圧装置とし
ては電子膨張弁8を採用している。
In the present embodiment, as an inflow refrigerant flow path switching means attached to the inlet flow path of the liquid receiver 9, a refrigerant flow connecting the outdoor heat exchanger 10 and the inlet flow path of the liquid receiver 9 is provided. A third check valve 6 is provided in the passage, and a second check valve 5 is provided in a refrigerant flow path connecting the indoor heat exchanger 3 and the inlet flow path of the liquid receiver 9. Cooling means for supercooling a refrigerant flowing out of the liquid receiver 9 in an outlet flow path of the liquid receiver 9;
A refrigerant charging amount determining means for determining whether the refrigerant sealed in the air conditioner is appropriate or not, and a pressure reducing device are sequentially connected by piping. The cooling means includes a refrigerant flow path connecting the four-way valve 2 and the accumulator 11 and the liquid receiver 9.
The cooler 20 is brought into contact with the outlet flow path. Further, as the refrigerant enclosing amount determination means, a sight glass 21 is provided which has a transparent wall on one surface or an opposing surface which can be easily determined at low cost. Further, an electronic expansion valve 8 is employed as a pressure reducing device.

【0019】また、前記受液器9の出口流路に付設する
流出冷媒流路切替手段として、前記受液器9の出口流路
に連結される冷却器20、サイトグラス21、電子膨張
弁8を順次接続してなる冷媒流路と前記室外熱交換器1
0とを接続する冷媒流路に第4逆止弁7を、前記受液器
9の出口流路に連結される冷却器20、サイトグラス2
1、電子膨張弁8を順次接続してなる冷媒流路と前記室
内熱交換器3とを接続する冷媒流路に第1逆止弁4を設
けた構成としている。
Further, as an outflow refrigerant flow path switching means attached to the outlet flow path of the liquid receiver 9, a cooler 20, a sight glass 21, an electronic expansion valve 8 connected to the outlet flow path of the liquid receiver 9 are provided. And the outdoor heat exchanger 1 formed by sequentially connecting
0, a fourth check valve 7 in the refrigerant flow path, and a cooler 20, a sight glass 2 connected to the outlet flow path of the liquid receiver 9.
1. The first check valve 4 is provided in a refrigerant flow path connecting the electronic heat expansion valve 8 and the indoor heat exchanger 3 in sequence.

【0020】さらに、圧縮機吐出側の配管には、圧縮機
1から吐出される冷媒の圧力を測定する吐出圧力検出器
18(例えば、圧力センサ)と、吐出されるガス冷媒の
温度を測定する吐出温度検出器17(例えば、サーミス
タ)が取り付けられている。各々の検出器の出力信号
は、マイクロコンピュータ16内に取込むように前記各
々の検出器と信号線により接続され、前記マイクロコン
ピュータ16からは冷凍サイクルの運転状態を制御する
ための圧縮機1、電子膨張弁8及び室外ファン14等の
各制御機器に制御信号を送るために各制御機器と信号線
により接続されている。
Further, a discharge pressure detector 18 (for example, a pressure sensor) for measuring the pressure of the refrigerant discharged from the compressor 1 and a temperature of the discharged gas refrigerant are provided in the pipe on the compressor discharge side. A discharge temperature detector 17 (for example, a thermistor) is attached. The output signal of each detector is connected to each of the detectors by a signal line so as to be taken into the microcomputer 16, and the microcomputer 1 controls the compressor 1 for controlling the operation state of the refrigeration cycle. In order to send a control signal to each control device such as the electronic expansion valve 8 and the outdoor fan 14, it is connected to each control device by a signal line.

【0021】このような空気調和機において、暖房運転
時には冷媒は破線矢印で示す方向に流れ、圧縮機1で圧
縮された高温高圧のガス冷媒は、四方弁2を経て室内熱
交換器3に送られ、室内熱交換器3で凝縮し液冷媒とな
る際に通過する空気に放熱して室内を暖房する。凝縮液
化した冷媒は、第1逆止弁4により電子膨張弁8側への
流れがせき止められているため第2逆止弁5を通り、第
3逆止弁6により室外熱交換器10側への流れがせき止
められているため前記受液器9内に流入する。前記受液
器9から流出した冷媒は、冷却器20、サイトグラス2
1を通り、電子膨張弁8で所定の圧力に減圧され、第1
逆止弁4では高圧の冷媒が出口側にあるため第4逆止弁
7側に冷媒が流れ室外熱交換器10に流入し、前記室外
熱交換器10を通過する空気から吸熱して蒸発する。蒸
発した冷媒は、四方弁2及びアキュムレータ11を通り
圧縮機1に戻る。
In such an air conditioner, during the heating operation, the refrigerant flows in the direction indicated by the dashed arrow, and the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is sent to the indoor heat exchanger 3 through the four-way valve 2. Then, heat is radiated to the air passing when condensed in the indoor heat exchanger 3 to become a liquid refrigerant, thereby heating the room. The condensed and liquefied refrigerant passes through the second check valve 5 because the flow toward the electronic expansion valve 8 is blocked by the first check valve 4, and moves toward the outdoor heat exchanger 10 by the third check valve 6. Flows into the liquid receiver 9 because the flow is blocked. The refrigerant flowing out of the receiver 9 is cooled by the cooler 20 and the sight glass 2.
1, the pressure is reduced to a predetermined pressure by the electronic expansion valve 8,
In the check valve 4, since the high-pressure refrigerant is on the outlet side, the refrigerant flows to the fourth check valve 7 side, flows into the outdoor heat exchanger 10, absorbs heat from the air passing through the outdoor heat exchanger 10, and evaporates. . The evaporated refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 11.

【0022】一方、冷房運転時には冷媒は実線矢印で示
す方向に流れ、圧縮機1で圧縮された高温高圧のガス冷
媒は、四方弁2を経て室外熱交換器10に送られ、前記
室外熱交換器10を通過する空気に放熱して凝縮し液冷
媒となり、第4逆止弁7により電子膨張弁8側への流れ
がせき止められているため第3逆止弁6を通り、第2逆
止弁5により室内熱交換器3側への流れがせき止められ
ているため前記受液器9内に流入する。前記受液器9か
ら流出した冷媒は、冷却器20、サイトグラス21を通
り、電子膨張弁8で所定の圧力に減圧され、第4逆止弁
7では高圧の冷媒が出口側にあるため第1逆止弁4側に
冷媒が流れ、液側接続配管を通り室内熱交換器3に流入
し、室内熱交換器3で蒸発する際に通過する空気から吸
熱して室内を冷房する。そして、蒸発した冷媒は、ガス
側接続配管を通り四方弁2及びアキュムレータ11を通
り圧縮機1に戻る。
On the other hand, during the cooling operation, the refrigerant flows in the direction indicated by the solid line arrow, and the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is sent to the outdoor heat exchanger 10 via the four-way valve 2 and the outdoor heat exchanger Heat is released to the air passing through the vessel 10 and is condensed to become a liquid refrigerant. Since the flow to the electronic expansion valve 8 side is blocked by the fourth check valve 7, it passes through the third check valve 6 and the second check. Since the flow toward the indoor heat exchanger 3 is blocked by the valve 5, it flows into the liquid receiver 9. The refrigerant flowing out of the liquid receiver 9 passes through the cooler 20 and the sight glass 21, and is reduced to a predetermined pressure by the electronic expansion valve 8, and the fourth check valve 7 has the high-pressure refrigerant on the outlet side. 1 The refrigerant flows to the check valve 4 side, flows into the indoor heat exchanger 3 through the liquid-side connection pipe, absorbs heat from the air that passes when the indoor heat exchanger 3 evaporates, and cools the room. Then, the evaporated refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 11 through the gas side connection pipe.

【0023】すなわち、本実施形態の空気調和機では、
冷房運転時及び暖房運転時共に前記受液器9に対して一
方向から冷媒が流入し、一方向から冷媒が流出し、前記
受液器9から流出する冷媒流路に冷媒封入量判定装置を
具備したサイクル構成となっている。
That is, in the air conditioner of the present embodiment,
In both the cooling operation and the heating operation, the refrigerant flows into the liquid receiver 9 from one direction, the refrigerant flows out from one direction, and the refrigerant charging amount determination device is provided in the refrigerant flow path flowing out of the liquid receiver 9. It has an equipped cycle configuration.

【0024】また、この空気調和機内には、所定量の冷
媒が封入されており、この冷媒の循環において余った冷
媒は、室外機内に付設する受液器9内に液冷媒として貯
留される。
A predetermined amount of refrigerant is sealed in the air conditioner, and the excess refrigerant in the circulation of the refrigerant is stored as a liquid refrigerant in a liquid receiver 9 provided in the outdoor unit.

【0025】次に、前記受液器9内の液冷媒量と冷媒封
入量判定手段として設けたサイトグラス21内の流動様
式の関係について説明する。
Next, the relationship between the amount of liquid refrigerant in the liquid receiver 9 and the flow pattern in the sight glass 21 provided as the refrigerant enclosing amount determination means will be described.

【0026】図2は、受液器9内の液面高さとサイトグ
ラス21内の流動状態及び空気調和機内の冷媒量との関
係を表した相関図である。受液器9は、冷媒を貯留する
ためのタンクと前記受液器9内に冷媒を導くための導入
配管25と前記受液器9から冷媒を導出するための導出
配管26から構成され、前記導入配管25及び導出配管
26は、液面変化に対する受液器9出口側の冷媒かわき
度の変化を連続的にするために配管先端部が斜めにカッ
トされている。
FIG. 2 is a correlation diagram showing the relationship between the liquid level in the receiver 9 and the flow state in the sight glass 21 and the amount of refrigerant in the air conditioner. The liquid receiver 9 includes a tank for storing the refrigerant, an introduction pipe 25 for guiding the refrigerant into the liquid receiver 9, and an outlet pipe 26 for discharging the refrigerant from the liquid receiver 9. The leading ends of the inlet pipe 25 and the outlet pipe 26 are obliquely cut in order to continuously change the refrigerant cleanliness on the outlet side of the receiver 9 with respect to the liquid level change.

【0027】前記受液器9内に貯留される液冷媒の液面
高さが前記受液器9内から冷媒を導出する導出配管26
の先端部の斜めにカットしてある部分にある場合は、先
端部から液冷媒とガス冷媒の両方を吸込むためかわき度
の大きい状態で流出し冷却器20で圧縮機吸入側の配管
と熱交換して放熱しても過冷却できないためサイトグラ
ス21内は気液二相状態となる。一方、導出配管26の
先端部の斜めにカットしてある部分以上に液面がある場
合は、先端部から液冷媒のみが吸込まれ冷却器20で圧
縮機吸入側の配管と熱交換して放熱し過冷却液となるた
めサイトグラス21内は液単相状態となる。
The liquid level of the liquid refrigerant stored in the liquid receiver 9 is determined by the outlet pipe 26 for discharging the refrigerant from the liquid receiver 9.
If it is in the portion cut obliquely at the tip of the compressor, it flows out in a state of high cuteness because both the liquid refrigerant and the gas refrigerant are sucked from the tip, and the heat is exchanged by the cooler 20 with the pipe on the compressor suction side. Even if heat is dissipated, the inside of the sight glass 21 is in a gas-liquid two-phase state because it cannot be supercooled. On the other hand, when there is a liquid surface above the diagonally cut portion of the leading end of the outlet pipe 26, only the liquid refrigerant is sucked from the leading end, and the cooler 20 exchanges heat with the pipe on the compressor suction side to release heat. Then, the inside of the sight glass 21 becomes a liquid single-phase state because it becomes a supercooled liquid.

【0028】ここで、空気調和機をある運転モードで運
転した場合、受液器9内に貯留される液冷媒は、冷凍サ
イクルを形成するのに必要のない冷媒であり、その運転
モードでは不必要な冷媒である。すなわち、空気調和機
内に封入されている冷媒が適正な状態とは、前記受液器
9内に貯留される液冷媒が最も少なくなる場合であり、
しかも、サイトグラス21内の流動様式として気液二相
状態から液単相状態に変化した場合である。
Here, when the air conditioner is operated in a certain operation mode, the liquid refrigerant stored in the receiver 9 is a refrigerant that is not necessary for forming a refrigeration cycle, and is not used in that operation mode. Necessary refrigerant. That is, the proper state of the refrigerant sealed in the air conditioner is a case where the liquid refrigerant stored in the liquid receiver 9 is the least,
Moreover, this is the case where the flow mode in the sight glass 21 changes from the gas-liquid two-phase state to the liquid single-phase state.

【0029】但し、運転モードとして冷房運転を採用し
た場合と暖房運転を採用した場合では、接続配管長さや
室内外機が設置されている空気温度条件等の違いによ
り、冷凍サイクルに必要な冷媒量が異なる。したがっ
て、空気調和機内に封入される冷媒量が適正か否かを判
定するためには、運転モード、接続配管長さ、空気温度
条件等を考慮し、最も多くの冷媒量が必要な運転状態で
空気調和機を運転し、冷媒を追加封入していく際にサイ
トグラス21内が気液二相状態から液単相状態に変化す
ることを目視判定する必要がある。
However, when the cooling mode and the heating mode are used as the operation modes, the amount of refrigerant required for the refrigeration cycle depends on the length of the connection pipe and the temperature of the air in which the indoor and outdoor units are installed. Are different. Therefore, in order to determine whether the amount of refrigerant enclosed in the air conditioner is appropriate, in consideration of the operation mode, connection pipe length, air temperature conditions, and the like, in the operation state where the largest amount of refrigerant is required. It is necessary to visually determine that the inside of the sight glass 21 changes from the gas-liquid two-phase state to the liquid single-phase state when the air conditioner is operated and the refrigerant is additionally charged.

【0030】例えば、図1に示す冷凍サイクル構成の空
気調和機の場合、図3に示す接続配管長さ及び運転モー
ドと必要冷媒量の関係を表した関係図のように、接続配
管長さが短い場合は、液接続配管内の冷媒かわき度の違
いによる冷媒量差よりも室外熱交換器10と室内熱交換
器3の配管容積比による冷媒量差の方が大きいため冷房
運転時の方が必要冷媒量が多くなるが、接続配管が長い
場合は、液接続配管内の冷媒かわき度の違いによる冷媒
量差が大きくなるため暖房運転時の方が必要冷媒量が多
くなる。
For example, in the case of an air conditioner having a refrigeration cycle configuration shown in FIG. 1, the connection pipe length is reduced as shown in the relationship diagram of FIG. In a short case, the difference in the refrigerant volume due to the pipe volume ratio between the outdoor heat exchanger 10 and the indoor heat exchanger 3 is larger than the difference in the refrigerant amount due to the difference in the degree of refrigerant in the liquid connection pipe. Although the required refrigerant amount increases, when the connection pipe is long, the refrigerant amount difference due to the difference in the degree of refrigerant in the liquid connection pipe increases, so that the required refrigerant amount is larger during the heating operation.

【0031】次に、本実施形態の冷媒封入量判定装置の
判定方法について図4ないし図5で説明する。図4は本
発明の冷媒封入量判定装置による判定方法の構成を示す
フローチャート図、図5は運転時間経過に対する吐出ガ
ス冷媒温度Tdの変化を表した特性図である。
Next, a description will be given of a determination method of the refrigerant charging amount determination device of the present embodiment with reference to FIGS. FIG. 4 is a flowchart showing the configuration of the determination method by the refrigerant enclosing amount determination device of the present invention, and FIG. 5 is a characteristic diagram showing a change in the discharge gas refrigerant temperature Td with the elapse of the operation time.

【0032】まず、空気調和機の施工終了後に、室外機
以外の接続配管内及び室内機内の空気を真空ポンプで引
き出して真空状態にする。室外機には予め最小接続配管
分及び室内機分の冷媒を室外機出荷前に封入するか、施
工現地にて前記冷媒量を封入する。次に、接続配管長
さ、空気調和機が施工されている空気温度等から空気調
和機の運転モードとして冷房運転か暖房運転かを決定
し、空気調和機を前記決定した運転モードで運転を開始
する。
First, after the construction of the air conditioner is completed, the air in the connection pipes other than the outdoor unit and the air in the indoor unit is drawn out by a vacuum pump to be in a vacuum state. In the outdoor unit, the refrigerant for the minimum connection pipe and the indoor unit is charged before shipment of the outdoor unit, or the amount of the refrigerant is charged at the construction site. Next, the cooling mode or the heating mode is determined as the operation mode of the air conditioner from the connection pipe length, the air temperature at which the air conditioner is installed, and the like, and the air conditioner starts operating in the determined operation mode. I do.

【0033】次に、冷凍サイクル安定判定手段として圧
縮機吐出側の温度検出器17を用い、運転開始後の圧縮
機吐出ガス冷媒温度Tdを吐出温度検出器17(例え
ば、サーミスタ)で検出し、マイクロコンピュータ16
に検出信号を送信する。前記マイクロコンピュータ16
に入力される吐出ガス冷媒温度の信号の一実施形態とし
ては、図5に示す運転時間経過に対する吐出ガス冷媒温
度Tdの変化がある。図5において、初期吐出ガス冷媒
温度T0から運転を開始した場合、時間経過とともに上
昇し、目標吐出温度範囲内(T1<Td<T2)に吐出
ガス冷媒温度が入るように電子膨張弁8が制御され、目
標吐出温度範囲の前後をハンチングしながら運転開始か
らある経過時間後(t1−t0)に目標吐出温度範囲内
(T1<Td<T2)に収束する。
Next, a compressor discharge side temperature detector 17 is used as a refrigerating cycle stability determination means, and the compressor discharge gas refrigerant temperature Td after the start of operation is detected by the discharge temperature detector 17 (for example, a thermistor). Microcomputer 16
To send the detection signal. The microcomputer 16
As an embodiment of the signal of the discharge gas refrigerant temperature input to the controller, there is a change in the discharge gas refrigerant temperature Td with respect to the elapse of the operation time shown in FIG. In FIG. 5, when the operation is started from the initial discharge gas refrigerant temperature T0, the electronic expansion valve 8 is controlled such that the temperature rises with time and the discharge gas refrigerant temperature falls within the target discharge temperature range (T1 <Td <T2). Then, while hunting around the target discharge temperature range, after a certain elapsed time from the start of the operation (t1-t0), the temperature converges to the target discharge temperature range (T1 <Td <T2).

【0034】ここで、マイクロコンピュータ16では、
検出された吐出ガス冷媒温度Tdが目標吐出温度範囲内
にあるか否かの判定を行う。吐出ガス冷媒温度Tdが目
標吐出温度範囲よりも低い場合は、低圧側の冷媒かわき
度が小さくなり冷凍サイクルの必要冷媒量が増大し、目
標吐出温度範囲よりも高い場合は、低圧側の冷媒かわき
度が大きくなり冷凍サイクルの必要冷媒量が減少する。
このため、目標吐出温度範囲外では、冷凍サイクル中の
必要冷媒量が極端に変化するため、的確な判定ができな
くなる。
Here, in the microcomputer 16,
It is determined whether or not the detected discharge gas refrigerant temperature Td is within the target discharge temperature range. When the discharge gas refrigerant temperature Td is lower than the target discharge temperature range, the low-pressure side refrigerant dryness decreases and the required amount of refrigerant in the refrigeration cycle increases. When the discharge gas refrigerant temperature Td is higher than the target discharge temperature range, the low-pressure side refrigerant dryness decreases. As the temperature increases, the required amount of refrigerant in the refrigeration cycle decreases.
For this reason, outside the target discharge temperature range, the required refrigerant amount in the refrigeration cycle changes extremely, so that accurate determination cannot be made.

【0035】吐出ガス冷媒温度が目標吐出温度範囲内に
あることが確認できた場合は、冷凍サイクル中の必要冷
媒量が正確に測定できることを意味しているため、冷媒
封入量判定作業者に対してサイトグラス21を目視する
ように冷媒封入量判定可能信号を出力する。この際、前
記判定可能信号は、光(例えば、LED発光素子)や音
(例えば、スピーカ)等の出力機器に出力したり、空気
調和機と通信可能な状態に設置されるパソコン等の端末
装置の表示部や空気調和機のリモコンの表示部等に出力
する。
If it can be confirmed that the discharge gas refrigerant temperature is within the target discharge temperature range, it means that the required refrigerant amount in the refrigeration cycle can be accurately measured. Thus, a refrigerant-filled-amount determination signal is output so that the sight glass 21 can be viewed. At this time, the determinable signal is output to an output device such as light (for example, an LED light emitting element) or a sound (for example, a speaker), or a terminal device such as a personal computer installed in a state capable of communicating with the air conditioner. Of the air conditioner or the display of the remote controller of the air conditioner.

【0036】また、冷凍サイクル安定判定手段として
は、圧縮機吐出側の温度検出器17と圧力検出器18を
用い、温度検出器17及び圧力検出器18から吐出ガス
過熱度をマイクロコンピュータ16で算出する。この吐
出ガス過熱度演算装置の値が目標吐出ガス過熱度範囲内
にある一定時間以上入っている場合に冷凍サイクルが安
定であると判定する。そしてこの判定結果を同様に冷媒
封入量判定のタイミングとして出力することができる。
The refrigerating cycle stability determination means uses a temperature detector 17 and a pressure detector 18 on the compressor discharge side, and the microcomputer 16 calculates the degree of superheat of the discharged gas from the temperature detector 17 and the pressure detector 18. I do. When the value of the discharge gas superheat degree calculation device is within the target discharge gas superheat degree range for a certain period or more, it is determined that the refrigeration cycle is stable. This determination result can be similarly output as the timing for determining the amount of charged refrigerant.

【0037】次に、冷媒封入量判定作業者は、サイトグ
ラス21内の流動様式を目視する。ここで、サイトグラ
ス21内の流動様式が液単相状態の場合は、初期封入冷
媒量が最少必要冷媒量であることから空気調和機内に封
入されている冷媒量は適正であると判定できる。
Next, the worker for judging the amount of charged refrigerant visually checks the flow pattern in the sight glass 21. Here, when the flow mode in the sight glass 21 is in a liquid single-phase state, the amount of the refrigerant sealed in the air conditioner can be determined to be appropriate because the initially charged refrigerant amount is the minimum necessary refrigerant amount.

【0038】一方、サイトグラス21内の流動様式が気
液二相状態もしくは気液二相状態と液単相状態が交互に
流れる間欠流の場合は、受液器9内に貯留される液冷媒
量が少なく正常な運転を行えるサイクル状態になってい
ないことを示している。すなわち、空気調和機内に封入
されている冷媒量は過少であると判定できる。ここで、
このままでは正常な運転を継続することはできないた
め、サイトグラス21内の流動様式が気液二相状態から
液単相状態に変化するまで冷媒を追加する。これによ
り、空気調和機の施工状態にあった最低必要冷媒量を封
入することができる。
On the other hand, when the flow mode in the sight glass 21 is a gas-liquid two-phase state or an intermittent flow in which the gas-liquid two-phase state and the liquid single-phase state alternately flow, the liquid refrigerant stored in the receiver 9 is used. This indicates that the cycle is not in a state where the amount is small and normal operation can be performed. That is, it can be determined that the amount of the refrigerant sealed in the air conditioner is too small. here,
Since normal operation cannot be continued in this state, the refrigerant is added until the flow mode in the sight glass 21 changes from the gas-liquid two-phase state to the liquid single-phase state. Thereby, it is possible to fill in the minimum necessary refrigerant amount suitable for the construction state of the air conditioner.

【0039】以上説明したように、本実施形態に示す冷
媒封入量判定装置では、空気調和機の接続配管長さ及び
運転時の空気温度条件等により冷凍サイクル中に必要な
冷媒量が最も多く必要とする運転モードで空気調和機を
運転し、空気調和機が正常に運転でき且つ受液器9内に
貯留される冷媒量が最少必要冷媒量であるか否かをサイ
トグラス21内を通過する冷媒の流動様式で判定するこ
とにより、空気調和機内に封入されている冷媒量が適正
か否かを的確に判定することができる。
As described above, in the refrigerant charging amount judging device according to the present embodiment, the refrigerant amount required during the refrigeration cycle is the largest depending on the length of the connection pipe of the air conditioner and the air temperature conditions during operation. The air conditioner is operated in the operation mode in which the air conditioner can be operated normally and the refrigerant amount stored in the liquid receiver 9 passes through the sight glass 21 to determine whether or not the refrigerant amount is the minimum necessary refrigerant amount. By determining based on the flow mode of the refrigerant, it is possible to accurately determine whether the amount of the refrigerant sealed in the air conditioner is appropriate.

【0040】また、暖房運転時及び冷房運転時共に受液
器9に流入或は流出する冷媒の経路が一方向となるよう
にしたことで、この冷媒流路に挿入された冷媒封入量判
定手段であるサイトグラス21を共用することができる
ため、空気調和機の原価を低減でき且つ小形化すること
ができる。
In addition, since the path of the refrigerant flowing into or out of the liquid receiver 9 in one direction during both the heating operation and the cooling operation is unidirectional, the refrigerant enclosing amount judging means inserted into the refrigerant flow path Can be shared, so that the cost of the air conditioner can be reduced and the size can be reduced.

【0041】さらに、受液器9に流入或は流出する冷媒
の経路を一方向となるようにする流入冷媒流路切替手段
及び流出冷媒流路切替手段として逆止弁を用いたことに
より、冷媒の経路を一方向にするための装置として安価
にでき、空気調和機の原価を低減することができる。
Furthermore, the use of check valves as the inflow refrigerant flow switching means and the outflow refrigerant flow switching means for making the flow of the refrigerant flowing into or out of the liquid receiver 9 in one direction makes it possible to reduce the refrigerant flow. Can be made inexpensively as a device for making the route of the air conditioner unidirectional, and the cost of the air conditioner can be reduced.

【0042】さらに、サイトグラス21の流動様式を目
視するタイミングとして、吐出ガス冷媒温度が冷媒量の
変化に小さい目標吐出温度範囲内にある場合に行うた
め、冷媒封入量判定を的確に且つ正確に行うことができ
る。
Further, the timing of visually checking the flow mode of the sight glass 21 is performed when the temperature of the discharged gas refrigerant is within the target discharge temperature range where the change in the refrigerant amount is small. It can be carried out.

【0043】さらに、サイトグラス21の手前に冷媒を
過冷却する装置を配したことにより、適正な冷媒が封入
されているにも関わらず圧力損失や圧力脈動、受液器9
の液面が不安定な場合に発生するサイトグラス21内の
流動様式の不安定さを解消でき、冷媒封入量判定を正確
に行うことができる。
Further, by disposing a device for supercooling the refrigerant in front of the sight glass 21, pressure loss, pressure pulsation, and the pressure in the liquid receiver 9 despite the proper refrigerant being enclosed.
Instability of the flow pattern in the sight glass 21 which occurs when the liquid level of the liquid is unstable can be eliminated, and the refrigerant charging amount can be accurately determined.

【0044】さらに、前記冷媒の過冷却装置として四方
弁2とアキュムレータ11を接続する吸入側配管を前記
受液器9とサイトグラス21を接続する配管に接触させ
た構造とすることにより、冷却手段として原価が高く設
置スペースを大きく必要とする二重管式熱交換器やカス
ケード熱交換器と比較して、空気調和機の原価を低減で
き、設置スペースもほとんど要らないためユニットを小
形化できる。
Further, as the supercooling device for the refrigerant, a suction side pipe connecting the four-way valve 2 and the accumulator 11 is structured to be in contact with a pipe connecting the liquid receiver 9 and the sight glass 21, thereby providing a cooling means. The cost of the air conditioner can be reduced compared to a double-pipe heat exchanger or a cascade heat exchanger which requires high installation cost and large installation space.

【0045】ここで、サイトグラス21の流動様式を目
視するタイミングとして、吐出ガス冷媒温度を用いて説
明したが、吸入ガス冷媒温度と吸入圧力から求まる飽和
ガス冷媒温度との差である吸入ガス過熱度を用いた場合
は、吸入側にある冷媒の状態を常に一定にできるため、
冷媒量の変化を抑制することができる。また、吐出ガス
冷媒温度と吐出圧力から求まる飽和ガス温度との差であ
る吐出ガス過熱度を用いた場合は、吸入側が湿り状態の
場合でも吸入側にある冷媒の状態を常に一定にできるた
め、冷媒量の変化を抑制することができ、吸入ガス過熱
度及び吐出ガス過熱度を用いた場合も本発明の域を脱す
るものではない。
Here, the timing of visually checking the flow mode of the sight glass 21 has been described using the discharge gas refrigerant temperature, but the suction gas superheat, which is the difference between the suction gas refrigerant temperature and the saturated gas refrigerant temperature obtained from the suction pressure, is described. When the degree is used, since the state of the refrigerant on the suction side can be always constant,
A change in the amount of refrigerant can be suppressed. In addition, when the discharge gas superheat degree, which is the difference between the discharge gas refrigerant temperature and the saturated gas temperature determined from the discharge pressure, is used, the state of the refrigerant on the suction side can be kept constant even when the suction side is wet, A change in the amount of refrigerant can be suppressed, and the use of the superheat degree of the suction gas and the superheat degree of the discharge gas does not depart from the scope of the present invention.

【0046】次に、本発明の他の実施形態として、暖房
運転時及び冷房運転時共に受液器9に流入或は流出する
冷媒の経路が一方向となるように設けた流入冷媒流路切
替手段及び流出冷媒流路切替手段の他の構成について説
明する。
Next, as another embodiment of the present invention, an inflow refrigerant flow path switch provided so that the flow path of the refrigerant flowing into or out of the liquid receiver 9 in one direction during both the heating operation and the cooling operation is one direction. Another configuration of the means and the outflow refrigerant flow path switching means will be described.

【0047】図6は、冷媒封入量判定装置に用いられる
受液器9に流入或は流出する冷媒の経路が一方向となる
ように設けた流入冷媒流路切替手段及び流出冷媒流路切
替手段の他の実施形態を示したサイクル構成図である。
図6において、図中図1と同符号のものは、同一のもの
を示す。
FIG. 6 shows an inflow refrigerant flow switching means and an outflow refrigerant flow switching means provided so that the flow path of the refrigerant flowing into or out of the liquid receiver 9 used in the refrigerant filling amount judging device is one-way. FIG. 10 is a cycle configuration diagram showing another embodiment.
6, the same components as those in FIG. 1 indicate the same components.

【0048】本実施形態の流入冷媒流路切替手段及び流
出冷媒流路切替手段は、室内熱交換器3に接続される冷
媒流路と、室外熱交換器10に接続される冷媒流路と、
受液器9の入口流路と、前記受液器9の出口流路に連結
される冷却器20、サイトグラス21、電子膨張弁8を
順次接続してなる冷媒流路を第2四方弁22を介して接
続した構成としている。これにより、冷凍サイクルが簡
素化され溶接箇所が低減できることから冷凍サイクルの
故障に対する信頼性が向上する。
The inflow refrigerant flow switching means and the outflow refrigerant flow switching means of the present embodiment include a refrigerant flow path connected to the indoor heat exchanger 3, a refrigerant flow path connected to the outdoor heat exchanger 10,
A second four-way valve 22 connects a refrigerant flow path formed by sequentially connecting a cooler 20, a sight glass 21, and an electronic expansion valve 8 connected to an inlet flow path of the liquid receiver 9 and an outlet flow path of the liquid receiver 9. It is configured to be connected via a. Thereby, the refrigeration cycle is simplified and the number of welding points can be reduced, so that the reliability of the refrigeration cycle against failure is improved.

【0049】次に、本発明の他の実施形態として、最も
多く必要とされる運転モードが常に同じ運転モードとな
るサイクル構成について説明する。
Next, as another embodiment of the present invention, a cycle configuration in which the most required operation mode is always the same operation mode will be described.

【0050】図7は、冷媒封入量判定を行う場合に常に
同じ運転モードで行えるようにした冷媒封入量判定装置
を具備した空気調和機の一実施形態を示したサイクル構
成図である。図7において、図中図1と同符号のもの
は、同一のものを示す。
FIG. 7 is a cycle configuration diagram showing an embodiment of an air conditioner equipped with a refrigerant enclosing amount determining device which can always perform the same operation mode when judging the refrigerant enclosing amount. 7, the same components as those in FIG. 1 indicate the same components.

【0051】本実施形態では、高圧の冷媒を低圧の冷媒
に膨張させる膨張弁として、室内熱交換器3と受液器9
の間に第1膨張弁23を、室外熱交換器10と受液器9
の間に第2膨張弁24を配した構成となっている。第1
膨張弁23及び第2膨張弁24の開度制御方法は、以下
の方法で行う。
In this embodiment, the indoor heat exchanger 3 and the liquid receiver 9 serve as expansion valves for expanding a high-pressure refrigerant into a low-pressure refrigerant.
The first expansion valve 23 is connected between the outdoor heat exchanger 10 and the liquid receiver 9.
The second expansion valve 24 is disposed between them. First
The opening degree of the expansion valve 23 and the second expansion valve 24 is controlled by the following method.

【0052】暖房運転時の場合は、第1膨張弁23を全
開に近い状態とし第2膨張弁24で吐出ガス冷媒温度を
目標吐出温度範囲内にするために必要な開度まで絞る。
一方、冷房運転の場合は、第2膨張弁24を全開もしく
は全開に近い状態とし第1膨張弁23で吐出ガス冷媒温
度を目標吐出温度範囲内にするために必要な開度まで絞
る。
In the heating operation, the first expansion valve 23 is almost fully opened, and the second expansion valve 24 reduces the discharge gas refrigerant temperature to an opening required for keeping the discharge gas refrigerant temperature within the target discharge temperature range.
On the other hand, in the case of the cooling operation, the second expansion valve 24 is fully opened or almost fully opened, and the first expansion valve 23 reduces the discharge gas refrigerant temperature to an opening degree necessary for keeping the discharge gas refrigerant temperature within the target discharge temperature range.

【0053】すなわち、冷媒の流れ方向に対して受液器
9より前の膨張弁を全開もしくは全開に近い状態とし、
受液器9より後の膨張弁で吐出ガス冷媒温度を目標吐出
温度範囲内にするために必要な開度まで絞る方法であ
る。これにより、液接続配管内の冷媒状態としては、暖
房運転の場合は受液器9で多少放熱することから気液二
相状態となり、冷房運転時の場合は受液器9から流出し
た冷媒が冷却器20で過冷却されるため液単相状態とな
る。したがって、空気調和機を運転した場合は、液接続
配管内が液単相状態となり且つ凝縮器として作用する熱
交換器の配管容積が大きい冷房運転の方が必要冷媒量が
多くなる。
That is, the expansion valve in front of the liquid receiver 9 with respect to the flow direction of the refrigerant is fully opened or almost fully opened,
This is a method in which the expansion valve after the liquid receiver 9 reduces the discharge gas refrigerant temperature to an opening required to keep the discharge gas refrigerant temperature within the target discharge temperature range. As a result, the refrigerant in the liquid connection pipe is in a gas-liquid two-phase state because a small amount of heat is radiated in the receiver 9 in the heating operation, and the refrigerant flowing out of the receiver 9 is in the cooling operation. Since it is supercooled by the cooler 20, it becomes a liquid single phase state. Therefore, when the air conditioner is operated, the required amount of refrigerant increases in the cooling operation in which the inside of the liquid connection pipe is in a liquid single phase state and the pipe volume of the heat exchanger acting as a condenser is large.

【0054】以上により、受液器9の前後に膨張弁を配
し、冷媒の流れ方向に対して受液器9より前の膨張弁を
全開もしくは全開に近い状態とし、受液器9より後の膨
張弁を絞ることにより、最も多く必要とされる運転モー
ドを常に冷房運転とすることができ、冷媒封入量判定時
に運転モードを間違えて発生する判定精度の低下を抑制
することができる。
As described above, the expansion valves are arranged before and after the liquid receiver 9, and the expansion valve before the liquid receiver 9 is fully opened or almost fully opened with respect to the flow direction of the refrigerant. By restricting the expansion valve, the cooling mode can always be the operation mode that is required most often, and it is possible to suppress a decrease in the accuracy of the determination that occurs when the operation mode is erroneously determined when determining the amount of the charged refrigerant.

【0055】ここで、本実施形態では、1台の室外機に
1台の室内機を接続したサイクル構成に対して説明した
が、図8に示す第2膨張弁24を配した1台の室外機に
室内熱交換器3a,3b,3cと第1膨張弁23a,2
3b,23cで構成される複数台の室内機を分岐装置1
9を介して接続した多室形空気調和機に対しても、接続
されている全室内機を冷房運転した場合は本実施形態と
同様であり、本発明の域を脱するものではない。
Here, in the present embodiment, a cycle configuration in which one indoor unit is connected to one outdoor unit has been described. However, one outdoor unit provided with the second expansion valve 24 shown in FIG. The indoor heat exchangers 3a, 3b, 3c and the first expansion valves 23a, 2
3b, 23c and a plurality of indoor units
The same applies to the multi-room type air conditioner connected via 9 when the cooling operation of all the connected indoor units is the same as in the present embodiment, and does not depart from the scope of the present invention.

【0056】また、図8に示す多室形空気調和機の場合
は、全室内機を冷房運転した場合に必要な冷媒量よりも
多く必要とする運転モード(例えば、最小容量の室内機
1台が暖房運転で、その他の室内機は送風運転)が存在
する。このような場合でも、受液器9に流入及び流出す
る冷媒の流れ方向を一方向としているため、運転モード
の違いにより余分な冷却手段や冷媒封入量判定手段を設
ける必要が無く冷媒封入量を判定できるため、空気調和
機を小形化することができ、原価を低減できる。
In the case of the multi-room air conditioner shown in FIG. 8, an operation mode that requires a larger amount of refrigerant than that required when all the indoor units are cooled (for example, one indoor unit having the minimum capacity). Is a heating operation, and the other indoor units have a blowing operation. Even in such a case, since the flow direction of the refrigerant flowing into and out of the liquid receiver 9 is set to one direction, it is not necessary to provide an extra cooling unit or a refrigerant charging amount determining unit depending on the operation mode, and the refrigerant charging amount is reduced. Since the determination can be made, the size of the air conditioner can be reduced, and the cost can be reduced.

【0057】次に、本発明の他の実施形態として、冷媒
封入量判定手段の他の構造について説明する。
Next, as another embodiment of the present invention, another structure of the refrigerant charging amount determining means will be described.

【0058】図9は、冷媒封入量判定装置に用いられる
冷媒封入量判定手段の他の実施形態を示した構成図であ
る。本実施形態の冷媒封入量判定手段は、冷却器20と
電子膨張弁8を接続する配管の外側に超音波発信素子2
7と超音波受信素子28を設け、前記超音波発信素子2
7の制御及び超音波受信素子28の信号処理及び前記発
信及び受信信号から配管内が液単相か気液二相かを判定
する制御回路29を、信号入出力線30a,30bによ
り接続した構成としている。
FIG. 9 is a block diagram showing another embodiment of the refrigerant charging amount judging means used in the refrigerant charging amount judging device. The refrigerant enclosing amount determination means of the present embodiment includes an ultrasonic transmission element 2 outside the pipe connecting the cooler 20 and the electronic expansion valve 8.
7 and an ultrasonic receiving element 28, and the ultrasonic transmitting element 2
7, a control circuit 29 for judging whether the inside of the pipe is a liquid single phase or a gas-liquid two phase from the signal processing of the ultrasonic receiving element 28 and the transmission and reception signals is connected by signal input / output lines 30a and 30b. And

【0059】本実施形態では、前記冷却器20と電子膨
張弁8を接続する配管を通過する冷媒の流動様式が液単
相状態の場合は、超音波発信素子27と超音波受信素子
28の間の密度変化が配管壁面と液冷媒の間しかないた
め、超音波発信素子27から出力される音波はあまり減
衰せずに超音波受信素子28に到達する。
In this embodiment, when the flow mode of the refrigerant passing through the pipe connecting the cooler 20 and the electronic expansion valve 8 is in a liquid single-phase state, the refrigerant is transmitted between the ultrasonic transmitting element 27 and the ultrasonic receiving element 28. Is changed only between the pipe wall surface and the liquid refrigerant, the sound wave output from the ultrasonic transmitting element 27 reaches the ultrasonic receiving element 28 without being attenuated much.

【0060】一方、前記冷却器20と電子膨張弁8を接
続する配管を通過する冷媒の流動様式が気液二相状態も
しくは気液二相状態と液単相状態が交互に流れる間欠流
の場合は、超音波発信素子27と超音波受信素子28の
間の密度変化が配管壁面と液冷媒の間と液冷媒と気泡の
間に発生するため、超音波発信素子27から出力される
音波は気泡の量に反比例して超音波受信素子28に到達
する。
On the other hand, when the flow of the refrigerant passing through the pipe connecting the cooler 20 and the electronic expansion valve 8 is a gas-liquid two-phase state or an intermittent flow in which a gas-liquid two-phase state and a liquid single-phase state alternately flow. Since the density change between the ultrasonic transmitting element 27 and the ultrasonic receiving element 28 occurs between the pipe wall surface and the liquid refrigerant and between the liquid refrigerant and the bubbles, the sound wave output from the ultrasonic transmitting element 27 Arrives at the ultrasonic receiving element 28 in inverse proportion to the amount.

【0061】また、気泡の量は、冷凍サイクル内に封入
されている冷媒の不足量に対して比例するため、前記超
音波受信素子28で受信される音波の量を測定すること
により、冷凍サイクル内に封入されている冷媒量がどの
程度不足しているかを判定できるようになる。また、超
音波受信素子28の受信音波量を制御回路29内で電気
的信号に変換することにより、サイトグラス21では作
業者が目視して確認している流動様式を自動で確認する
ことができ、冷媒封入量の判定を自動化することができ
る。
Since the amount of air bubbles is proportional to the shortage of the refrigerant sealed in the refrigeration cycle, by measuring the amount of sound waves received by the ultrasonic receiving element 28, It is possible to determine how much the amount of refrigerant enclosed in the inside is insufficient. In addition, by converting the amount of sound waves received by the ultrasonic wave receiving element 28 into an electric signal in the control circuit 29, the sight glass 21 can automatically confirm the flow pattern visually checked by the operator. In addition, the determination of the amount of charged refrigerant can be automated.

【0062】また、図10は、冷媒封入量判定装置に用
いられる冷媒封入量判定手段のさらに他の実施形態を示
した構成図である。本実施形態の冷媒封入量判定手段
は、冷却器20と電子膨張弁8を接続する配管内に二つ
の電極を配した静電容量センサ31と前記静電容量セン
サ31の信号を処理して配管内が液単相か気液二相かを
判定する判定回路32を信号出力線33a,33bによ
り接続した構成となっている。
FIG. 10 is a block diagram showing still another embodiment of the refrigerant charging amount judging means used in the refrigerant charging amount judging device. The refrigerant charging amount determination means of the present embodiment includes a capacitance sensor 31 having two electrodes disposed in a pipe connecting the cooler 20 and the electronic expansion valve 8, and a signal processing means for processing the signal of the capacitance sensor 31. A determination circuit 32 for determining whether the inside is a liquid single phase or a gas-liquid two phase is connected by signal output lines 33a and 33b.

【0063】本実施形態では、前記冷却器20と電子膨
張弁8を接続する配管を通過する冷媒の流動様式が液単
相の場合は、静電容量センサ31の電極が全て液冷媒で
満たされているため、液冷媒の誘電率に相当する静電容
量値が出力される。
In this embodiment, when the flow mode of the refrigerant passing through the pipe connecting the cooler 20 and the electronic expansion valve 8 is a single-phase liquid, all the electrodes of the capacitance sensor 31 are filled with the liquid refrigerant. Therefore, a capacitance value corresponding to the dielectric constant of the liquid refrigerant is output.

【0064】一方、前記冷却器20と電子膨張弁8を接
続する配管を通過する冷媒の流動様式が気液二相状態も
しくは気液二相状態と液単相状態が交互に流れる間欠流
の場合は、静電容量センサ31の電極の全面積に対して
液冷媒とガス冷媒の占める割合が気泡量に応じて変化す
るため静電容量センサ31からの出力信号としては液冷
媒の誘電率に相当する静電容量値とガス冷媒の誘電率に
相当する静電容量値の間で変化した値が出力される。
On the other hand, when the flow mode of the refrigerant passing through the pipe connecting the cooler 20 and the electronic expansion valve 8 is a gas-liquid two-phase state or an intermittent flow in which the gas-liquid two-phase state and the liquid single-phase state alternately flow. Since the ratio of the liquid refrigerant and the gas refrigerant to the total area of the electrodes of the capacitance sensor 31 changes according to the amount of bubbles, the output signal from the capacitance sensor 31 corresponds to the dielectric constant of the liquid refrigerant. The output value changes between the capacitance value of the gas refrigerant and the capacitance value corresponding to the dielectric constant of the gas refrigerant.

【0065】したがって、前記静電容量センサ31から
の出力信号が安定している場合は液単相状態、出力信号
が不安定な場合は気液二相状態であると判定でき、冷媒
封入量が適正か否かを判定することができる。ここで、
静電容量センサ31の出力信号を判定回路32内で電気
的信号に変換し、マイクロコンピュータ16に送信し信
号処理を行うことにより、サイトグラス21では冷媒封
入量判定作業者が目視して確認している流動様式を自動
で確認することができ、冷媒封入量の判定を自動化する
ことができる。
Therefore, when the output signal from the capacitance sensor 31 is stable, it can be determined that the liquid is in a single-phase state, and when the output signal is unstable, it is determined that the liquid-gas is in a two-phase state. Whether it is appropriate or not can be determined. here,
The output signal of the capacitance sensor 31 is converted into an electrical signal in the determination circuit 32 and transmitted to the microcomputer 16 to perform signal processing. It is possible to automatically check the flowing flow mode, and to automatically determine the amount of the charged refrigerant.

【0066】さらに、超音波発信素子27及び超音波受
信素子28や静電容量センサ31の代わりに、前記冷却
手段の冷媒流出側の配管を透明壁とするか、冷媒封入量
判定手段を相対向する一対の透明壁を備えたサイトグラ
ス21として、前記透明壁の片側に発光素子を設け、相
対向するもう一方の透明壁に受光素子を設けた場合も、
液単相状態と気液二相状態での光の透過率が違うため同
様の効果がある。
Further, instead of the ultrasonic wave transmitting element 27 and the ultrasonic wave receiving element 28 and the capacitance sensor 31, the pipe on the refrigerant outflow side of the cooling means may be made a transparent wall, or the refrigerant charged amount judging means may be opposed to the cooling means. As a sight glass 21 having a pair of transparent walls, a light emitting element is provided on one side of the transparent wall, and a light receiving element is provided on the other opposing transparent wall.
The same effect is obtained because the light transmittance is different between the liquid single-phase state and the gas-liquid two-phase state.

【0067】[0067]

【発明の効果】以上説明したように、本発明では、暖房
運転時及び冷房運転時共に受液器に流入或は流出する冷
媒の経路が一方向となるため、1つの冷媒封入量判定手
段を共用することができ、冷房運転の場合でも暖房運転
の場合でも共用して冷媒封入量を判定することができ、
空気調和機の原価を低減でき且つ小形化することができ
る。
As described above, according to the present invention, since the path of the refrigerant flowing into or out of the receiver in one direction during both the heating operation and the cooling operation is one-way, one refrigerant charging amount judging means is provided. It can be shared, and it is possible to determine the amount of refrigerant charged in common even in cooling operation and heating operation,
The cost of the air conditioner can be reduced and the size can be reduced.

【0068】また、本発明では、冷媒量を判定するタイ
ミングを前記冷凍サイクル安定判定手段により冷凍サイ
クルが安定したかを判断してきめたことにより、常に安
定し且つ確実な判定を行うことができる。
Further, in the present invention, the timing for judging the refrigerant amount is determined by the refrigeration cycle stability judgment means to judge whether the refrigeration cycle is stabilized, so that a stable and reliable judgment can always be made.

【0069】また、本発明では、冷凍サイクル内に必要
とされる冷媒量が最も多くなる運転モードを少なくとも
空気調和機が設置された配管長さにより決定して判定す
るため、冷媒量の適正な判定ができ、どのような運転モ
ードで運転されても空気調和機内の冷媒量が不足するこ
とがなく、運転が正常で且つ確実及び信頼性の高い空気
調和機を提供できる。
Further, in the present invention, since the operation mode in which the amount of refrigerant required in the refrigeration cycle is the largest is determined by determining at least the length of the pipe in which the air conditioner is installed, an appropriate refrigerant amount is determined. It is possible to make a determination, and it is possible to provide an air conditioner that operates normally, reliably, and reliably without running out of the refrigerant amount in the air conditioner regardless of the operation mode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の冷凍サイクル構成図であ
る。
FIG. 1 is a configuration diagram of a refrigeration cycle according to an embodiment of the present invention.

【図2】受液器の液面高さとサイトグラス内の流動様式
及び冷媒量の判定の関係を示した相関図である。
FIG. 2 is a correlation diagram showing a relationship between a liquid level of a liquid receiver, a flow mode in a sight glass, and determination of a refrigerant amount.

【図3】接続配管長さ及び運転モードと必要冷媒量の関
係を表わした関係図である。
FIG. 3 is a relationship diagram showing a relationship between a connection pipe length, an operation mode, and a required refrigerant amount.

【図4】本発明の判定方法を説明するフローチャートー
である。
FIG. 4 is a flowchart illustrating a determination method according to the present invention.

【図5】吐出ガス冷媒温度変化特性図である。FIG. 5 is a graph showing a temperature change characteristic of a discharge gas refrigerant.

【図6】本発明の他の実施形態の冷凍サイクル構成図で
ある。
FIG. 6 is a configuration diagram of a refrigeration cycle according to another embodiment of the present invention.

【図7】本発明の他の実施形態の冷凍サイクル構成図で
ある。
FIG. 7 is a configuration diagram of a refrigeration cycle according to another embodiment of the present invention.

【図8】本発明の他の実施形態の冷凍サイクル構成図で
ある。
FIG. 8 is a configuration diagram of a refrigeration cycle according to another embodiment of the present invention.

【図9】本発明の冷媒封入量判定手段の他の実施形態の
構成図である。
FIG. 9 is a configuration diagram of another embodiment of the refrigerant enclosing amount determination means of the present invention.

【図10】本発明の冷媒封入量判定手段の他の実施形態
の構成図である。
FIG. 10 is a configuration diagram of another embodiment of the refrigerant charging amount determination means of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室内熱交換器、4…第1
逆止弁、5…第2逆止弁、6…第3逆止弁、7…第4逆
止弁、8…電子膨張弁、9…受液器、10…室外熱交換
器、11…アキュムレータ、12…室内ファン、13…
室内ファンモータ、14…室外ファン、15…室外ファ
ンモータ、16…マイクロコンピュータ、17…吐出温
度検出器、18…吐出圧力検出器、19…分岐装置、2
0…冷却器、21…サイトグラス、22…第2四方弁、
23,23a,23b,23c…第1膨張弁、24…第
2膨張弁、25…導入配管、26…導出配管、27…超
音波発信素子、28…超音波受信素子、29…制御回
路、30a,30b…信号入出力線、31…静電容量セ
ンサ、32…判定回路、33a,33b…信号出力線。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 4-way valve, 3 ... Indoor heat exchanger, 4 ... First
Check valve, 5: second check valve, 6: third check valve, 7: fourth check valve, 8: electronic expansion valve, 9: liquid receiver, 10: outdoor heat exchanger, 11: accumulator , 12 ... indoor fan, 13 ...
Indoor fan motor, 14 outdoor fan, 15 outdoor fan motor, 16 microcomputer, 17 discharge temperature detector, 18 discharge pressure detector, 19 branching device, 2
0: cooler, 21: sight glass, 22: second four-way valve,
23, 23a, 23b, 23c ... first expansion valve, 24 ... second expansion valve, 25 ... introduction pipe, 26 ... outlet pipe, 27 ... ultrasonic transmission element, 28 ... ultrasonic reception element, 29 ... control circuit, 30a , 30b: signal input / output line, 31: capacitance sensor, 32: determination circuit, 33a, 33b: signal output line.

フロントページの続き (72)発明者 山田 眞一朗 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 中村 憲一 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 竹中 寛 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内Continuing on the front page (72) Inventor Shinichiro Yamada 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Air Conditioning Systems Division, Hitachi, Ltd. (72) Inventor Kenichi Nakamura 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Air Conditioning Systems Division, Hitachi, Ltd. 72) Inventor Hiroshi Takenaka 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Air Conditioning Systems Division, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、室外熱交換器、受液
器、減圧装置から構成される室外機と、少なくとも室内
熱交換器から構成される室内機と、これらを配管で接続
して成る空気調和機に、所定の冷媒を封入したときの、
前記空気調和機内の冷媒封入量が適正か否かを判定する
冷媒封入量判定装置において、前記室外熱交換器に接続
された冷媒流路と前記室内熱交換器に接続された冷媒流
路が、流入冷媒流路切替手段を介して前記受液器の入口
流路に連結されると共に、前記受液器の出口流路に連結
された冷媒流路が、途中に少なくとも冷却手段、及び冷
媒封入量判定手段を挿入し、かつ、流出冷媒流路切替手
段を介して前記室外熱交換器に接続された冷媒流路と前
記室内熱交換器に接続された冷媒流路に接続されてなる
ことを特徴とする冷媒封入量判定装置。
1. An outdoor unit including at least a compressor, an outdoor heat exchanger, a liquid receiver, and a decompression device, an indoor unit including at least an indoor heat exchanger, and air connected by piping. When the specified refrigerant is sealed in the harmony machine,
In the refrigerant charging amount determination device that determines whether the refrigerant charging amount in the air conditioner is appropriate, the refrigerant flow path connected to the outdoor heat exchanger and the refrigerant flow path connected to the indoor heat exchanger, The refrigerant flow path connected to the inlet flow path of the liquid receiver through the inflow refrigerant flow switching means and connected to the outlet flow path of the liquid receiver includes at least a cooling means and a refrigerant charging amount in the middle. A determination means is inserted, and the refrigerant flow path is connected to the refrigerant flow path connected to the outdoor heat exchanger and the refrigerant flow path connected to the indoor heat exchanger via the outflow refrigerant flow switching means. A refrigerant charging amount determination device.
【請求項2】 請求項1記載の冷媒封入量判定装置にお
いて、前記冷媒封入量判定手段による冷凍サイクル内に
封入されている冷媒量を判定するタイミングを制御する
ために、前記空気調和機の冷凍サイクル中に該冷凍サイ
クルが安定か否かを判断する冷凍サイクル安定判定手段
を設けたことを特徴とする冷媒封入量判定装置。
2. The refrigeration of the air conditioner according to claim 1, wherein the refrigeration of the air conditioner is controlled in order to control a timing of determining the amount of the refrigerant sealed in the refrigeration cycle by the refrigerant enclosing amount determining means. A refrigeration cycle stability determining device for determining whether the refrigeration cycle is stable during a cycle is provided.
【請求項3】 少なくとも1台の室外機と少なくとも1
台の室内機とで構成され、これらを配管で接続して成る
空気調和機の冷凍サイクル中に設置される受液器の出口
流路に設けた冷媒封入量判定手段により該空気調和機に
封入されている冷媒量が適正か否かを判定する冷媒封入
量判定方法において、冷凍サイクル内に必要とされる冷
媒量が最も多くなる空気調和機の運転モードを空気調和
機が設置されている少なくとも前記配管長さにより決定
することを特徴とする冷媒封入量判定方法。
3. At least one outdoor unit and at least one outdoor unit
And an indoor unit, which is connected to the air conditioner by piping, and sealed in the air conditioner by refrigerant charging amount determining means provided in an outlet flow path of a receiver installed in a refrigeration cycle of the air conditioner. In the method for judging the amount of charged refrigerant, which determines whether the amount of refrigerant is appropriate or not, the operation mode of the air conditioner in which the amount of refrigerant required in the refrigeration cycle is the largest is at least when the air conditioner is installed. A method of determining the amount of charged refrigerant, wherein the method is determined based on the length of the pipe.
JP10305681A 1998-10-27 1998-10-27 Method and equipment for determining quantity of encapsulated refrigerant Withdrawn JP2000130897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10305681A JP2000130897A (en) 1998-10-27 1998-10-27 Method and equipment for determining quantity of encapsulated refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10305681A JP2000130897A (en) 1998-10-27 1998-10-27 Method and equipment for determining quantity of encapsulated refrigerant

Publications (1)

Publication Number Publication Date
JP2000130897A true JP2000130897A (en) 2000-05-12

Family

ID=17948086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10305681A Withdrawn JP2000130897A (en) 1998-10-27 1998-10-27 Method and equipment for determining quantity of encapsulated refrigerant

Country Status (1)

Country Link
JP (1) JP2000130897A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267287A (en) * 2001-03-08 2002-09-18 Mitsubishi Electric Corp Method for manufacturing product, and compressor technology information device
JP2006058007A (en) * 2004-06-11 2006-03-02 Daikin Ind Ltd Air conditioner
JP2008164250A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Air conditioner
EP1998125A1 (en) * 2006-03-20 2008-12-03 Daikin Industries, Ltd. Air conditioner
US7752855B2 (en) 2004-06-11 2010-07-13 Daikin Industries, Ltd. Air conditioner with refrigerant quantity judging mode
JP2010210153A (en) * 2009-03-11 2010-09-24 Hitachi Appliances Inc Refrigerating cycle device
WO2017081872A1 (en) * 2015-11-11 2017-05-18 株式会社ナンバ Device for detecting refrigerant leakage in refrigeration cycle
JP2020165545A (en) * 2019-03-28 2020-10-08 株式会社富士通ゼネラル Air conditioner
WO2022085691A1 (en) * 2020-10-23 2022-04-28 株式会社富士通ゼネラル Air conditioner

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267287A (en) * 2001-03-08 2002-09-18 Mitsubishi Electric Corp Method for manufacturing product, and compressor technology information device
JP2006058007A (en) * 2004-06-11 2006-03-02 Daikin Ind Ltd Air conditioner
US7752855B2 (en) 2004-06-11 2010-07-13 Daikin Industries, Ltd. Air conditioner with refrigerant quantity judging mode
EP1998125A1 (en) * 2006-03-20 2008-12-03 Daikin Industries, Ltd. Air conditioner
EP1998125A4 (en) * 2006-03-20 2014-07-23 Daikin Ind Ltd Air conditioner
JP2008164250A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Air conditioner
JP2010210153A (en) * 2009-03-11 2010-09-24 Hitachi Appliances Inc Refrigerating cycle device
JP2017089983A (en) * 2015-11-11 2017-05-25 株式会社 ナンバ Refrigerant leakage detection device in refrigeration cycle
WO2017081872A1 (en) * 2015-11-11 2017-05-18 株式会社ナンバ Device for detecting refrigerant leakage in refrigeration cycle
CN107923683A (en) * 2015-11-11 2018-04-17 株式会社难波 Refrigerant leakage detecting device in kind of refrigeration cycle
EP3376139A4 (en) * 2015-11-11 2019-05-22 Nanba Co., Ltd. Device for detecting refrigerant leakage in refrigeration cycle
TWI680286B (en) * 2015-11-11 2019-12-21 日商難波股份有限公司 Refrigerant leakage sensing system in refrigerating cycle
CN107923683B (en) * 2015-11-11 2020-06-16 株式会社难波 Refrigerant leakage detection device in refrigeration cycle
US11150156B2 (en) 2015-11-11 2021-10-19 Nanba Co., Ltd. Device for detecting refrigerant leak in refrigeration cycle
JP2020165545A (en) * 2019-03-28 2020-10-08 株式会社富士通ゼネラル Air conditioner
JP7275754B2 (en) 2019-03-28 2023-05-18 株式会社富士通ゼネラル air conditioner
WO2022085691A1 (en) * 2020-10-23 2022-04-28 株式会社富士通ゼネラル Air conditioner
JP2022069305A (en) * 2020-10-23 2022-05-11 株式会社富士通ゼネラル Air conditioner

Similar Documents

Publication Publication Date Title
US9677799B2 (en) Refrigeration and air-conditioning apparatus, refrigerant leakage detection device, and refrigerant leakage detection method
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
JP3852472B2 (en) Air conditioner
JP4270197B2 (en) Air conditioner
US9239180B2 (en) Refrigeration and air-conditioning apparatus
WO2002103265A1 (en) Refrigerator
JP4474455B2 (en) Refrigerant filling apparatus for refrigeration air conditioner and refrigerant filling method for refrigeration air conditioner
KR20080022593A (en) Air conditioner
KR20090013187A (en) Air conditioner
JPH10122711A (en) Refrigerating cycle control device
JP2009079842A (en) Refrigerating cycle device and its control method
JP4809076B2 (en) Refrigeration system and method of operating refrigeration system
US12013139B2 (en) Air conditioning apparatus, management device, and connection pipe
JP2000130897A (en) Method and equipment for determining quantity of encapsulated refrigerant
JP5473957B2 (en) Refrigerant leak detection device and refrigeration air conditioner
JP2002147904A (en) Method for detecting frost formation on heat exchanger
JP3531440B2 (en) Air conditioner with refrigerant charge determination device and refrigerant charge determination method
JPH06201234A (en) Air-conditioner
JP3584274B2 (en) Refrigerant amount adjustment method and refrigerant amount determination device
CN117321362B (en) Refrigeration cycle device
US11493248B2 (en) Liquid level detection device and refrigeration cycle apparatus
JP3490908B2 (en) Refrigerant refrigerant leak detection system
JP5463660B2 (en) Refrigeration equipment
US11994326B2 (en) Refrigerant leakage detection system
JP2009210142A (en) Air conditioner and refrigerant amount determining method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040730