JP2010267663A - パワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置 - Google Patents

パワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置 Download PDF

Info

Publication number
JP2010267663A
JP2010267663A JP2009115659A JP2009115659A JP2010267663A JP 2010267663 A JP2010267663 A JP 2010267663A JP 2009115659 A JP2009115659 A JP 2009115659A JP 2009115659 A JP2009115659 A JP 2009115659A JP 2010267663 A JP2010267663 A JP 2010267663A
Authority
JP
Japan
Prior art keywords
cooler
power module
resin sheet
insulating resin
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009115659A
Other languages
English (en)
Inventor
Yuji Yoshida
裕次 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009115659A priority Critical patent/JP2010267663A/ja
Publication of JP2010267663A publication Critical patent/JP2010267663A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Abstract

【課題】特性の信頼性が高いパワーモジュールを安定的に製造することができるパワーモジュール製造方法等を提供する。
【解決手段】冷却器5、絶縁樹脂シート4、放熱ブロック3、半導体チップ2を積層してパワーモジュール1を製造するパワーモジュール製造方法であって、最初に、冷却器5と放熱ブロック3との間に絶縁樹脂シート4を介在させて冷却器5と放熱ブロック3とを互いに熱圧着する。次いで、放熱ブロック3の上に半導体チップ2をはんだ接合する。これにより、押圧による半導体チップ2の破損を防ぎつつ、冷却器5と絶縁樹脂シート4との接着界面4a、および絶縁樹脂シート4と放熱ブロック3との接着界面4bの接着不良を防止する。
【選択図】図1

Description

本発明は、半導体チップと、放熱ブロックと、絶縁樹脂シートと、冷却器を有するパワーモジュールのパワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置に関する。
インバータ装置等のパワーモジュールを製造する方法として、まず、半導体チップを放熱板にはんだ接合し、その後に、放熱板と冷却器との間に絶縁樹脂シートを介在させて放熱板と冷却器とを熱圧着するパワーモジュール製造方法が知られている(例えば特許文献1を参照)。
図12は、従来のパワーモジュール製造方法を説明する模式図である。まず、図12(a)に示すように、半導体チップ101を放熱ブロック102にはんだ付けする(はんだ接合工程)。放熱ブロック102は、半導体チップ101よりも大きな板状の部材からなり、一方面の略中央位置に半導体チップ101がはんだ付けされる。はんだ付けは、例えばリフロー炉内で半導体チップ101および放熱ブロック102の全体をはんだの溶融温度まで均一に加熱(全体加熱)する、はんだリフローによって行われる。
次に、図12(b)に示すように、放熱ブロック102と冷却器104との間に絶縁樹脂シート103を介在させて、放熱ブロック102を冷却器104に熱圧着させる工程が行われる(熱圧着工程)。絶縁樹脂シート103は、放熱ブロック102よりも大きなシート状の部材からなり、絶縁樹脂シート103の略中央に放熱ブロック102が熱圧着される。熱圧着は、加熱状態の下で放熱ブロック102を冷却器104に押圧することによって行われる。
そして、図12(c)に示すように、半導体チップ101と端子との間をワイヤ105で接続し(ワイヤボンディング工程)、封止材106によってハウジング107内に半導体チップ101を埋める工程(モールド工程)が行われる。
特開2003−153554号公報
熱圧着工程において、放熱ブロック102とともに半導体チップ101を押圧すると、半導体チップ101が破損するおそれがある。従って、放熱ブロック102と冷却器104とを熱圧着させる際に、半導体チップ101を押圧することができず、従来は、図12(b)に矢印で示すように、半導体チップ101よりも側方に突出した放熱ブロック102の縁部のみを部分的に押圧していた。
従って、放熱ブロック102全体を均一の圧力で押圧することができず、放熱ブロック102と絶縁樹脂シート103との間の接着面や、絶縁樹脂シート103と冷却器104との間の接着面に、未着部や接着ムラが発生するおそれがあり、パワーモジュール100の絶縁耐性や熱抵抗等の特性の信頼性が低くなるという問題があった。また、半導体チップ101を避けながら放熱ブロック102の縁部のみを部分的に押圧する必要があることから、半導体チップ101と放熱ブロック102の形状に応じた専用の押圧治具が必要となり、治具製作の分だけコスト高を招いていた。
また、絶縁樹脂シート103の熱圧着およびキュアにより、はんだ101aの耐熱信頼性が低下するおそれがあった。例えば、絶縁樹脂シート103の熱圧着およびキュアの温度は150℃から200℃の間であって、現在主流のSi半導体(半導体チップ)の駆動上限温度(実使用時にはんだにかかる温度)である150℃よりも高温であることから、はんだ101aの劣化が加速的に進むおそれがある。
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、特性の信頼性が高いパワーモジュールを安定的に製造することができるパワーモジュール製造方法、およびその方法により製造されたパワーモジュール、およびパワーモジュール製造装置を提供することである。
上記課題を解決する本発明のパワーモジュール製造方法は、冷却器、絶縁樹脂シート、放熱ブロック、半導体チップを積層してパワーモジュールを製造するパワーモジュール製造方法において、冷却器と放熱ブロックとの間に絶縁樹脂シートを介在させて冷却器と放熱ブロックとを熱圧着する熱圧着工程と、放熱ブロックの上に半導体チップをはんだ接合するはんだ接合工程とを含むことを特徴としている。
本発明のパワーモジュール製造方法によれば、先に冷却器と放熱ブロックとを熱圧着するので、熱圧着する際に、放熱ブロックの全面を均一に押圧することができ、絶縁樹脂シートと放熱ブロックとの接着性を向上させることができる。従って、絶縁樹脂シートと放熱ブロックとの間の接着界面に、未接着部分や接着ムラが発生するのを防ぎ、特性の信頼性が高いパワーモジュールを製造することができる。
そして、本発明のパワーモジュール製造方法は、熱圧着工程において、冷却器に絶縁樹脂シートを熱圧着し、次いで、絶縁樹脂シートに放熱ブロックを熱圧着することが好ましい。本発明によれば、絶縁樹脂シートを冷却器に熱圧着する際に、絶縁樹脂シート全体を冷却器に均一に押圧することができる。従って、冷却器と絶縁シートとの間の接着界面に未接着部分や接着ムラが発生するのを防ぐことができる。そして、放熱ブロックを絶縁樹脂シートに熱圧着する際に、放熱ブロック全体を絶縁樹脂シートに均一に押圧することができる。従って、絶縁樹脂シートと放熱ブロックとの間の接着界面に、未接着部分や接着ムラが発生するのを防ぐことができる。
そして、冷却器と絶縁樹脂シートとの間を完全に密着させた状態で絶縁樹脂シートに放熱ブロックを押圧することができるので、放熱ブロックの押圧によって、絶縁樹脂シートの縁部が冷却器の上面から離間する浮き上がりや、絶縁樹脂シートの割れが発生するのを防ぐことができる。従って、特性の信頼性が高いパワーモジュールを製造することができる。
本発明のパワーモジュール製造方法は、はんだ接合工程において、積層方向半導体チップ側を冷却器側よりも高温化する温度差加熱処理により、半導体チップのはんだ接合を行うことが好ましい。本発明によれば、はんだ接合時に絶縁樹脂シートに加えられる熱応力を低減して、冷却器と絶縁樹脂シートとの間、および絶縁樹脂シートと放熱ブロックとの間における各接着界面の剥離を防ぐことができる。従って、特性の信頼性が高いパワーモジュールを製造することができる。
本発明のパワーモジュール製造方法によれば、先に冷却器と放熱ブロックとを熱圧着するので、熱圧着する際に、放熱ブロックの全面を均一に押圧することができ、絶縁樹脂シートと放熱ブロックとの接着性を向上させることができる。従って、絶縁樹脂シートと放熱ブロックとの間の接着界面に、未接着部分や接着ムラが発生するのを防ぎ、特性の信頼性が高いパワーモジュールを製造することができる。
本実施の形態におけるパワーモジュール製造方法を説明する図。 熱圧着工程における熱圧着方法の他の例を説明する図。 実施例1におけるはんだ接合装置の模式図。 実施例1におけるリフロー前とリフロー後における接着率の測定結果を示す表。 比較例1−1においてリフロー温度を変化させた場合の接着率の測定結果を示す表。 実施例1において上ヒータと下ヒータの温度を変化させた場合の接着率の測定結果を示す表。 実施例2におけるはんだ接合装置の模式図である。 実施例2におけるリフロー前とリフロー後における接着率の測定結果を示す表。 リフロー時のピーク温度を示す表。 熱圧着工程における2段階方式の熱圧着方法を説明する図。 第1段階目と第2段階目の押圧力と絶縁樹脂シートの状態との関係を示す表。 従来のパワーモジュール製造方法を説明する図。
次に、本発明の実施の形態について図1および図2を用いて説明する。
図1は、本実施の形態におけるパワーモジュール製造方法を説明する図である。
パワーモジュール1は、図1(c)に示すように、半導体チップ2、放熱ブロック3、絶縁樹脂シート4、冷却器5を積層することによって構成される。半導体チップ2は、平面視略矩形の薄板形状を有しており、下面には予めはんだ2aが盛られている。
放熱ブロック3は、半導体チップ2よりも大きな平板部材からなり、絶縁樹脂シート4は、放熱ブロック3よりも大きなシート状の部材からなる。そして、冷却器5は、絶縁樹脂シート4よりも大きな板状部材によって構成されている。
放熱ブロック3および冷却器5の材料は、特に限定されないが、コスト、重量、熱伝導性の点から、放熱ブロック3は銅、冷却器5はアルミニウム合金とすることが好ましい。放熱ブロック3は、半導体チップ2の熱を拡散して絶縁樹脂シート4に伝えるための十分な厚さとして1mm以上が好ましい。また、放熱ブロック3と冷却器5を同一材料によって構成して、線膨張係数を同一とし、はんだ接合時における熱応力を低減する構成としてもよい。
絶縁樹脂シート4は、放熱ブロック3よりも大きなシート状の部材からなり、熱可塑性樹脂もしくは熱硬化性樹脂(エポキシ樹脂、ポリイミド樹脂、シリコン樹脂等)を使用し、高熱伝導率の絶縁性無機フィラー(アルミナ、窒化ホウ素等)を充填材として入れたものからなる。そして、熱伝導率λが5W/mK以上であり、厚さは、電気絶縁性の信頼性と低熱抵抗の両立の点から、0.1〜0.3mmであることが好ましい。
本実施の形態におけるパワーモジュールの製造方法は、図1に示すように、まず、放熱ブロック3と冷却器5との間に絶縁樹脂シート4を介在させた状態で、放熱ブロック3と冷却器5とを互いに熱圧着する熱圧着工程(図1(a))が行われ、次いで、半導体チップ2を放熱ブロック3にはんだ接合するはんだ接合工程(図1(b))が行われる。
熱圧着工程(図1(a))では、冷却器5の上面略中央に絶縁樹脂シート4を載せ、さらにその絶縁樹脂シート4の上面略中央に放熱ブロック3を載せることによって、放熱ブロック3と冷却器5との間に絶縁樹脂シート4を介在させた状態とする。
そして、これら冷却器5、絶縁樹脂シート4、放熱ブロック3を所定温度まで加熱して、放熱ブロック3および絶縁樹脂シート4を冷却器5に押圧する。これにより、冷却器5と放熱ブロック3との熱圧着が行われ、冷却器5と絶縁樹脂シート4との間、および絶縁シート4と放熱ブロック3との間が接着される。上記した冷却器5と放熱ブロック3との熱圧着は、加熱手段と押圧手段を有するプレス機等の熱圧着装置(いずれも図示せず)によって行われる。
上記の熱圧着方法によれば、絶縁樹脂シート4全体を冷却器5に均一な押圧力で押圧することができ、かつ放熱ブロック3全体を絶縁樹脂シート4に均一な押圧力で押圧することができる。従って、冷却器5と絶縁樹脂シート4との間、および絶縁樹脂シート4と放熱ブロック3との間を、完全に密着させた状態で接着することができ、これらの間に、押圧力不足による未接着部分や接着ムラが発生するのを防ぐことができる。
上記の熱圧着方法の説明では、絶縁樹脂シート4全体を冷却器5に押圧し、かつ放熱ブロック3全体を絶縁樹脂シート4に押圧する場合、すなわち絶縁樹脂シート4と放熱ブロック3を冷却器5に対して同時に押圧する場合を例に説明したが、他の例として、図2に示すように、最初に絶縁樹脂シート4を冷却器5に熱圧着し、次いで、放熱ブロック3を絶縁樹脂シート4に熱圧着する2段階方式によって、冷却器5と放熱ブロック3とを熱圧着してもよい。上記した2段階方式の場合、第1段階目の押圧力と第2段階目の押圧力は、第1段階目の押圧力P1が第2段階目の押圧力P2以上となるように、設定される(P1≧P2)。
例えば、絶縁樹脂シート4は、絶縁性の無機フィラーを高充填して高熱伝導率としていることから、熱圧着温度においても硬く、可撓性が低い。従って、熱圧着時に放熱ブロック3の押圧によって、絶縁樹脂シート4の縁部が冷却器5の上面から離間する浮き上がりや、放熱ブロック3の外縁との境界部分に沿って絶縁樹脂シート4の割れが発生することが懸念される。
また、放熱ブロック3の上面と絶縁樹脂シート4の縁部の両方を同一の押圧力で押圧するには、プレス治具に形状の工夫が必要となる。そして、絶縁樹脂シート4の可撓性を高めるべく、無機フィラーの充填量を下げると、熱伝導率が小さくなり、冷却性能が下がり、パワーモジュール全体の性能も低下するおそれがある。
一方、本実施の形態における2段階方式による熱圧着方法によれば、図2(a)に示す第1段階目で冷却器5と絶縁樹脂シート4との間を完全に密着させた状態で接着した後に、図2(b)に示す第2段階目で絶縁樹脂シート4に放熱ブロック3を押圧するので、放熱ブロック3の押圧により、絶縁樹脂シート4の縁部が冷却器5の上面から離間する浮き上がりや、放熱ブロック3の縁部との境界部分に沿って絶縁樹脂シート4の割れが発生するのを防ぐことができる。
次に、図1に戻り、図1(b)に示すはんだ接合工程では、はんだリフローによってはんだ接合がなされる。まず、放熱ブロック3の上面略中央に半導体チップ2を載せて、図示していないはんだ接合装置のリフロー炉内に入れる。そして、リフロー炉内で加熱し、半導体チップ2の下面に予め盛られているはんだ2aを溶融させて、放熱ブロック3の上面に半導体チップ2をはんだ接合する。
はんだ接合では、はんだ接合時に絶縁樹脂シート4に付与される熱応力を低減するために、冷却器5、絶縁樹脂シート4、放熱ブロック3、半導体チップ2からなるワークW全体を均一に加熱するのではなく冷却器5側よりも半導体チップ2側を高温化する温度差加熱処理が行われる。
温度差加熱処理では、例えば、リフロー炉内のヒータ側に半導体チップ2が位置するようにワークW全体を配置して、半導体チップ2側を加熱してもよい。また、高周波誘導加熱等により半導体チップ2を局所的に加熱してもよい。そして、冷却器5側の昇温を防ぐために、例えば上記したヒータよりも加熱温度の低い低温ヒータを設ける、あるいは、熱容量の大きな金属ブロック等の冷却手段を配置してもよい。
はんだ接合温度(200℃以上)は、絶縁樹脂シート4の熱圧着温度よりも高く、エポキシ系の樹脂の分解開始温度(250℃から300℃程度)とほぼ同等であり、ガラス転移点(ともに150℃から200℃程度)よりも高い温度となっている。従って、はんだ接合工程において、ワークW全体を加熱する全体加熱処理を行うと、放熱ブロック3および冷却器5との線膨張差による応力が急激に大きくなり、接着界面4a、4bに剥離が生じるおそれがある。
そこで、本実施の形態では、温度差加熱処理によってはんだ接合を行い、はんだ接合時に絶縁樹脂シート4に加えられる熱応力を低減して、絶縁樹脂シート4の接着界面4a、4bの信頼性を向上させている。
また、現在主流の信頼性の高いPbフリーはんだを使用する場合には、Pbフリーはんだは通常のはんだよりも溶融温度が高温であるので、従来のはんだリフローのように、ワークW全体をはんだ接合温度まで加熱して製造することはできないが、本実施の形態では、温度差加熱処理によって、絶縁樹脂シート4の高温化を防ぐことができ、半導体チップ2を適切にはんだ接合することができる。
また、ワークW全体を加熱して熱圧着を行うと、絶縁樹脂シート4の樹脂が揮発し、チップ表面に付着して、次工程であるワイヤボンディング工程(図1(c))において、接合不良等が起こる可能性があるが、本実施の形態では、温度差加熱処理によって、絶縁樹脂シート4の樹脂の揮発を抑制でき、ワイヤボンディング工程における接合不良等の発生を防ぐことができる。
そして、ワイヤボンディング工程とモールド工程(図1(c))が行われる。ワイヤボンディング工程では、半導体チップ2と端子との間がワイヤ6で接続され、モールド工程では、ハウジング8内で封止材7によって半導体チップ2、放熱ブロック3、絶縁樹脂シート4が埋められる。なお、ワイヤボンディング工程とモールド工程については、既知の技術と同様であるので、その詳細な説明を省略する。
上記したパワーモジュール製造方法によれば、放熱ブロック3と冷却器5との間に絶縁樹脂シート4を介在させて、放熱ブロック3と冷却器5とを互いに熱圧着させる熱圧着工程を行い、その後にはんだ接合工程を行うので、絶縁樹脂シート4全体を冷却器5に均一に押圧することができ、かつ放熱ブロック3全体を絶縁樹脂シート4に均一に押圧することができる。従って、冷却器5と絶縁樹脂シート4との間の接着性、および絶縁樹脂シート4と放熱ブロック3との間の接着性を向上させることができる。従って、これらの各接着界面4a、4bを完全に密着させた状態で接着することができ、接着界面4a、4bに、押圧力不足による未接着部分や接着ムラが発生するのを防ぐことができる。
そして、熱圧着工程において、最初に絶縁樹脂シート4を冷却器5に熱圧着し(図2(a)を参照)、次いで、放熱ブロック3を絶縁樹脂シート4に熱圧着(図2(b)を参照)する2段階方式を採用することによって、放熱ブロック3の押圧により、絶縁樹脂シート4の縁部が冷却器5の上面から離間する浮き上がりや、放熱ブロック3の外縁との境界部分に沿って絶縁樹脂シート4の割れが発生するのを防ぐことができる。
また、はんだ接合工程において、全体加熱処理ではなく、温度差加熱処理によってはんだ接合を行うことによって、はんだ接合時に絶縁樹脂シート4に加えられる熱応力を低減して、接着界面4a、4bの剥離を防ぐことができる。従って、特性の信頼性が高いパワーモジュール1を製造することができる。
上記したパワーモジュール製造方法によれば、熱圧着のプレス機、治具等として、従来から存在する既存の装置を使用することができ、実施化が容易である。
[実施例1]
次に、本発明の実施例1について図3から図6を用いて説明する。
図3は、はんだ接合装置の模式図である。はんだ接合装置11は、はんだリフローによって半導体チップ2を放熱ブロック3にはんだ接合するものであり、図示していないリフロー炉内に、図3に示すように、下ヒータ(低温ヒータ)12と、下ヒータ12の上方位置で上下に移動する上ヒータ(高温ヒータ)13を有している。
下ヒータ12の上面には、冷却器5、絶縁樹脂シート4、放熱ブロック3、半導体チップ2の順番で積層されたワークWが配置される。上ヒータ13の下面には、カーボン製の押圧治具14が取り付けられており、上ヒータ13の下方への移動によって、ワークWの放熱ブロック3を所定の押圧力(本実施例では1MPa)で下方に押圧するようになっている。
1.熱圧着工程
冷却器5、絶縁樹脂シート4、放熱ブロック3を180℃、5MPaで10分間、熱圧着し、その後、180℃で2時間キュアして接着した。
2.はんだ接合工程(はんだリフロー工程)
図3に示すはんだ接合装置11を用いてはんだリフローを実施した。実施例1では、上ヒータ13の温度を300℃、下ヒータ12の温度を100℃にセットして、温度差加熱処理を行った。最高温度の保持時間は、設定温度に到達した後、約5分間に設定した。
3.使用材料
・材料:放熱ブロック…銅、冷却器…アルミニウム合金
・厚さ:放熱ブロック…t3mm、冷却器…t3mm、絶縁樹脂シート…t0.2mm、
・絶縁樹脂シート:フィラー…BN、バインダー…エポキシ樹脂、熱伝導率…10W/mK、
・はんだ融点≒230℃(Pbフリーはんだ)
そして、比較例1−1、1−2として、全体を300℃に均一に加熱してはんだリフローを実施した。比較例1−1では、熱圧着工程の後に、はんだ接合工程を実施し、はんだ接合工程において、ワークW全体を均一に加熱する均一加熱処理によってはんだ接合を行った。そして、比較例1−2では、はんだ接合工程の後に、熱圧着工程を実施し、熱圧着時に半導体チップ2以外の部分、すなわち、放熱ブロック3の縁部のみを部分加圧して熱圧着した。
図4から図6の表に示す各接着率は、冷却器5と絶縁樹脂シート4との接着界面(冷却器側の接着界面)4b、および絶縁樹脂シート4と放熱ブロック3との接着界面(放熱ブロック側の接着界面)4aについて、それぞれ超音波探傷画像の画像解析を行い、算出した。
図4は、リフロー前とリフロー後における接着率の測定結果を示す表である。図4に示すように、実施例1における放熱ブロック3側の接着界面4aの接着率と冷却器5側の接着界面4bの接着率は、リフロー後においてもそれぞれ100%であり、接着界面4a、4bの接着性が良好であるという結果が得られた。
一方、比較例1−1では、リフロー前は、放熱ブロック3側の接着界面4aと冷却器5側の接着界面4bのいずれも接着率が100%であったが、リフロー後は、放熱ブロック3側の接着界面4aの接着率が2%、冷却器5側の接着界面4bの接着率が46%に低下した。これは、はんだ接合工程において、均一加熱処理を行ったことにより、放熱ブロック3と冷却器5との線膨張差による応力が作用し、各接着界面4a、4bに剥離が生じたものと把握できる。
また、比較例1−2では、はんだ接合工程後に熱圧着を行ったものであるので、リフロー前の接着率はデータがなく、リフロー後の接着率は、放熱ブロック3側の接着界面4aが53%、冷却器5側の接着界面4bが62%であった。これは、放熱ブロック3全体を均一の圧力で押圧することができず、放熱ブロック3側の接着界面4aや、冷却器5側の接着界面4bに、未着部や接着ムラが発生し、接着界面4a、4bの接着率が低い値になったものと考えられる。
図5は、比較例1−1においてリフロー温度を変化させた場合の接着率の測定結果を示す表である。図5に示すように、リフロー温度が300℃の場合は、放熱ブロック3側の接着界面4aの接着率が2%、冷却器5側の接着界面4bの接着率が46%であるのに対し、リフロー温度が230℃の場合は、放熱ブロック3側の接着界面4aの接着率が83%、冷却器5側の接着界面4bの接着率が96%であり、リフロー温度が高いほど接着率が低下している。これは、はんだ接合工程における均一加熱処理において、リフロー温度が高いほど、放熱ブロック3と冷却器5との線膨張差による応力が大きく作用して、各接着界面4a、4bの剥離が進行したものと考えられる。
図6は、実施例1において上ヒータと下ヒータの温度を変化させた場合の接着率の測定結果を示す表である。図6に示すように、上ヒータ13のリフロー温度を300℃とし、下ヒータ12のリフロー温度を100℃とした場合は、放熱ブロック3側の接着界面4aと冷却器5側の接着界面4bのいずれも100%であった。これに対して、上ヒータ13のリフロー温度を300℃とし、下ヒータ12のリフロー温度を150℃とした場合は、放熱ブロック3側の接着界面4aの接着率は93%、冷却器5側の接着界面4bの接着率は76%であった。
従って、はんだ接合工程における温度差加熱処理(温度差加熱処理)では、各接着界面4a、4bの良好な接着率を得るには、上ヒータ13と下ヒータ12との間に所定値以上の温度差が必要であることがわかる。
また、図6に示すように、上ヒータ13のリフロー温度を300℃とし、下ヒータ12のリフロー温度を150℃とした場合は、放熱ブロック3側の接着界面4aの接着率は93%、冷却器5側の接着界面4bの接着率は76%であった。これに対して、上ヒータ13のリフロー温度を270℃とし、下ヒータ12のリフロー温度を150℃とした場合は、放熱ブロック3側の接着界面4aの接着率は95%、冷却器5側の接着界面4bの接着率は87%であった。
従って、はんだ接合工程における温度差加熱処理(温度差加熱処理)では、上ヒータ13と下ヒータ12のリフロー温度の平均値が低い方が接着率がよいことがわかる。すなわち、はんだ接合装置11全体におけるリフロー温度が低いほど、放熱ブロック3と冷却器5との線膨張差による応力が小さく、各接着界面4a、4bの剥離が抑制されたものと考えられる。
但し、図6に示すように、上ヒータ13のリフロー温度を300℃とし、下ヒータ12のリフロー温度を50℃とした場合や、上ヒータ13のリフロー温度を270℃とし、下ヒータ12のリフロー温度を100℃とした場合等、リフロー温度の平均値が所定値よりも低いと、はんだ融点以下となり、はんだ接合ができないので、上ヒータ13と下ヒータ12のリフロー温度の平均値が所定値以上となるように設定する必要がある。
[実施例2]
次に、本発明の実施例2について図7から図9を用いて説明する。
図7は、はんだ接合装置の模式図である。はんだ接合装置21は、図示していないリフロー炉内に、図7に示すように、下ヒータ(加熱ヒータ)22を有している。下ヒータ22の上面には、カーボン製の位置決め治具23が取り付けられており、ワークWが半導体チップ2側を下とし冷却器5側を上とする上下逆さまの姿勢状態で配置された場合に、半導体チップ2と嵌合して、ワークW全体を位置決めするようになっている。
そして、ワークWの上には、熱容量の大きい金属ブロック(実施例2では鉄ブロック)24が載せられる。従って、下ヒータ22の加熱時に、冷却器5の昇温を防ぎ、冷却器5側よりも半導体チップ2側が高温となるように、ワークWの積層方向に温度差を設けて加熱することができる。
1.熱圧着工程
冷却器5、絶縁樹脂シート4、放熱ブロック3を180℃、5MPaで10分間、熱圧着し、その後、180℃で2時間キュアして接着した。
2.はんだ接合工程(はんだリフロー工程)
図7に示すはんだ接合装置21を用いてはんだリフローを実施した。実施例2では、下ヒータ22の温度を300℃にセットして、温度差加熱処理を行った。
3.使用材料(実施例1と同一)
・材料:放熱ブロック…銅、冷却器…アルミニウム合金
・厚さ:放熱ブロック…t3mm、冷却器…t3mm、絶縁樹脂シート…t0.2mm、
・絶縁樹脂シート:フィラー…BN、バインダー…エポキシ樹脂、熱伝導率…10W/mK、
・はんだ融点≒230℃(Pbフリーはんだ)
そして、比較例2−1、2−2として、全体を300℃に均一に加熱してはんだリフローを実施した。比較例2−1では、熱圧着工程の後に、はんだ接合工程を実施し、はんだ接合工程において、ワークW全体を均一に加熱する均一加熱処理によってはんだ接合を行った。そして、比較例2−2では、はんだ接合工程の後に、熱圧着工程を実施し、熱圧着時に半導体チップ2以外の部分、すなわち、放熱ブロック3の縁部のみを部分加圧して熱圧着した。
図8の表に示す各接着率は、冷却器5と絶縁樹脂シート4との接着界面(冷却器側の接着界面)4b、および絶縁樹脂シート4と放熱ブロック3との接着界面(放熱ブロック側の接着界面)4aについて、それぞれ超音波探傷画像の画像解析を行い、算出した。
図8は、リフロー前とリフロー後における接着率の測定結果を示す表である。図8に示すように、実施例2における放熱ブロック側の接着界面4aの接着率と冷却器側の接着界面4bの接着率は、リフロー後においてもそれぞれ100%であり、絶縁樹脂シート4の接着界面4a、4bの接着性が良好であるという結果が得られた。
一方、比較例2−1では、リフロー前は、放熱ブロック3側の接着界面4aと冷却器5側の接着界面4bのいずれも接着率が100%であったが、リフロー後は、放熱ブロック3側の接着界面4aの接着率が2%、冷却器5側の接着界面4bの接着率が46%に低下した。これは、はんだ接合工程において、均一加熱処理を行ったことにより、放熱ブロック3と冷却器5との線膨張差による応力が作用し、各接着界面4a、4bに剥離が生じたものと把握できる。
また、比較例2−2では、はんだ接合工程後に熱圧着を行ったものであるので、リフロー前の接着率はデータがなく、リフロー後の接着率は、放熱ブロック3側の接着界面4aが53%、冷却器5側の接着界面4bが62%であった。これは、放熱ブロック3全体を均一の圧力で押圧することができず、放熱ブロック3側の接着界面4aや、冷却器5側の接着界面4bに、未着部や接着ムラが発生し、接着界面4a、4bの接着率が低い値になったものと考えられる。
図9は、リフロー時におけるピーク温度の測定結果を示す表である。図9に示すように、下ヒータ22の設定温度を300℃に設定した場合、下ヒータ22のピーク温度は303℃、放熱ブロック3のピーク温度は257℃、冷却器5のピーク温度は136℃、金属ブロック(鉄ブロック)24のピーク温度は113℃であった。
従って、はんだフロー装置21によって、ワークWの積層方向に所定値以上の温度差を設けることができ、半導体チップ2のはんだ2aを溶かして放熱ブロック3にはんだ接合するとともに、絶縁樹脂シート4の昇温を抑えて、各接着界面4a、4bの剥離を抑制することができる。
[実施例3]
次に、本発明の実施例3について図10および図11を用いて説明する。
図10は、熱圧着工程における2段階方式の熱圧着方法を説明する図である。
実施例3では、熱圧着工程における熱圧着を2段階方式の熱圧着方法により行った。具体的には、最初に、図10(a)に示すように絶縁樹脂シート4を冷却器5に熱圧着し(第1段階)、次いで、図10(b)に示すように放熱ブロック3を絶縁樹脂シート4に熱圧着(第2段階)した。
第1段階において、基材または離型材料(以下、基材等9)に取り付けられた状態の絶縁樹脂シート4を冷却器5に加圧(図10(a)の矢印を参照)して熱圧着し、熱圧着後に基材等9のみが取り外される。そして、第2段階において、放熱ブロック3のみを絶縁樹脂シート4に加圧(図10(b)の矢印を参照)して熱圧着した。
そして、第1段階目の押圧力と第2段階目の押圧力を種々変更して、冷却器5からの絶縁樹脂シート4の縁部が冷却器5から浮き上がる、いわゆる裏面の浮きの有無、および絶縁樹脂シート4の割れの有無を確認し、図11の表に示した。
なお、その他は、下記の条件とした。
第1段階目:雰囲気…大気圧、温度…120℃、時間…5分
第2段階目:雰囲気…大気圧、温度…180℃、時間…10分
そして、図11の表に示すように、例2、例3、例10において、裏面の浮きおよび絶縁樹脂シートの割れの両方が「なし」という結果を得た。この結果から、第1段階目の押圧力P1が第2段階目の押圧力P2以上(P1≧P2)でかつ、押圧力が5MPa〜7MPaの範囲内であることという条件を導き出すことができる。
1 パワーモジュール
2 半導体チップ
2a はんだ部分
3 放熱ブロック
4 絶縁樹脂シート
4a 接着界面(放熱ブロック側)
4b 接着界面(冷却器側)
5 冷却器
9 基材等
11 はんだ接合装置(実施例1)
12 下ヒータ(低温ヒータ)
13 上ヒータ(高温ヒータ)
14 押圧治具
21 はんだ接合装置(実施例2)
22 下ヒータ
24 金属ブロック(鉄ブロック)
W ワーク

Claims (8)

  1. 冷却器、絶縁樹脂シート、放熱ブロック、半導体チップを積層してパワーモジュールを製造するパワーモジュール製造方法であって、
    前記冷却器と前記放熱ブロックとの間に前記絶縁樹脂シートを介在させて前記冷却器と前記放熱ブロックとを熱圧着する熱圧着工程と、
    該放熱ブロックの上に前記半導体チップをはんだ接合するはんだ接合工程と、
    を含むことを特徴とするパワーモジュール製造方法。
  2. 前記熱圧着工程において、前記冷却器に前記絶縁樹脂シートを熱圧着し、次いで、前記絶縁樹脂シートに前記放熱ブロックを熱圧着することを特徴とする請求項1に記載のパワーモジュール製造方法。
  3. 前記はんだ接合工程において、積層方向半導体チップ側を冷却器側よりも高温化する温度差加熱処理により、前記半導体チップのはんだ接合を行うことを特徴とする請求項1または2に記載のパワーモジュール製造方法。
  4. 前記請求項1から請求項3のいずれか一項に記載したパワーモジュール製造方法により製造されたパワーモジュール。
  5. 冷却器、絶縁樹脂シート、放熱ブロック、半導体チップを積層してパワーモジュールを製造するパワーモジュール製造装置であって、
    前記冷却器と前記放熱ブロックとの間に前記絶縁樹脂シートを介在させて前記冷却器と前記放熱ブロックとを熱圧着する熱圧着手段と、
    該熱圧着手段により熱圧着された前記放熱ブロックの上に前記半導体チップをはんだ接合するはんだ接合手段と、
    を有することを特徴とするパワーモジュール製造装置。
  6. 前記はんだ接合手段は、積層方向半導体チップ側を冷却器側よりも高温化する温度差加熱処理を行うことを特徴とする請求項5に記載のパワーモジュール製造装置。
  7. 前記はんだ接合手段は、前記積層方向半導体チップ側に配置される高温ヒータと、前記積層方向冷却器側に配置される低温ヒータを有することを特徴とする請求項6に記載のパワーモジュール製造装置。
  8. 前記はんだ接合手段は、前記積層方向半導体チップ側を加熱する加熱ヒータと、前記積層方向冷却器側を冷却する冷却手段を有することを特徴とする請求項6に記載のパワーモジュール製造装置。
JP2009115659A 2009-05-12 2009-05-12 パワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置 Pending JP2010267663A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115659A JP2010267663A (ja) 2009-05-12 2009-05-12 パワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115659A JP2010267663A (ja) 2009-05-12 2009-05-12 パワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置

Publications (1)

Publication Number Publication Date
JP2010267663A true JP2010267663A (ja) 2010-11-25

Family

ID=43364421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115659A Pending JP2010267663A (ja) 2009-05-12 2009-05-12 パワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置

Country Status (1)

Country Link
JP (1) JP2010267663A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084751A1 (ja) * 2014-11-28 2016-06-02 株式会社コンテック 放熱構造体、及びその製造方法
WO2018056205A1 (ja) * 2016-09-20 2018-03-29 住友ベークライト株式会社 放熱構造体の製造方法
JP7322626B2 (ja) 2019-09-19 2023-08-08 株式会社レゾナック 冷却装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168769A (ja) * 2001-11-30 2003-06-13 Mitsubishi Electric Corp 電力用半導体装置
JP2005005400A (ja) * 2003-06-10 2005-01-06 Honda Motor Co Ltd 半導体装置
JP2005294792A (ja) * 2004-03-08 2005-10-20 Fuji Electric Holdings Co Ltd 半導体装置の製造方法
JP2007227598A (ja) * 2006-02-23 2007-09-06 Toyota Industries Corp 回路基板及び半導体装置
JP2008243877A (ja) * 2007-03-26 2008-10-09 Sumitomo Electric Ind Ltd パワーモジュールおよびその製造方法
JP2009021530A (ja) * 2007-07-13 2009-01-29 Sumitomo Electric Ind Ltd 絶縁性樹脂膜およびパワーモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168769A (ja) * 2001-11-30 2003-06-13 Mitsubishi Electric Corp 電力用半導体装置
JP2005005400A (ja) * 2003-06-10 2005-01-06 Honda Motor Co Ltd 半導体装置
JP2005294792A (ja) * 2004-03-08 2005-10-20 Fuji Electric Holdings Co Ltd 半導体装置の製造方法
JP2007227598A (ja) * 2006-02-23 2007-09-06 Toyota Industries Corp 回路基板及び半導体装置
JP2008243877A (ja) * 2007-03-26 2008-10-09 Sumitomo Electric Ind Ltd パワーモジュールおよびその製造方法
JP2009021530A (ja) * 2007-07-13 2009-01-29 Sumitomo Electric Ind Ltd 絶縁性樹脂膜およびパワーモジュール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084751A1 (ja) * 2014-11-28 2016-06-02 株式会社コンテック 放熱構造体、及びその製造方法
JP2016103549A (ja) * 2014-11-28 2016-06-02 株式会社コンテック 放熱構造体、及びその製造方法
US10020241B2 (en) 2014-11-28 2018-07-10 Contec Co., Ltd. Heat-dissipating structure and method for manufacturing same
WO2018056205A1 (ja) * 2016-09-20 2018-03-29 住友ベークライト株式会社 放熱構造体の製造方法
JP7322626B2 (ja) 2019-09-19 2023-08-08 株式会社レゾナック 冷却装置の製造方法

Similar Documents

Publication Publication Date Title
JP5403129B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
JP6435945B2 (ja) ヒートシンク付きパワーモジュール用基板
JP6127540B2 (ja) パワーモジュール用基板の製造方法
JP5407881B2 (ja) パワーモジュール製造方法およびその方法により製造したパワーモジュール
JP4978221B2 (ja) 回路基板の製造装置及び製造方法、その製造方法に用いられるクッションシート
JP6455056B2 (ja) ヒートシンク付パワーモジュール用基板の製造方法及び加圧装置
JP5151080B2 (ja) 絶縁基板および絶縁基板の製造方法並びにパワーモジュール用基板およびパワーモジュール
KR102359146B1 (ko) 저항기 및 저항기의 제조 방법
JP6361532B2 (ja) 放熱板付パワーモジュール用基板の製造方法
JP5987418B2 (ja) ヒートシンク付パワーモジュール用基板の製造方法
JP7342371B2 (ja) 絶縁回路基板、及び、絶縁回路基板の製造方法
WO2019189329A1 (ja) ヒートシンク付き絶縁回路基板
WO2006019099A1 (ja) 絶縁基板、パワーモジュール用基板並びにそれらの製造方法およびそれらを用いたパワーモジュール
JP2010267663A (ja) パワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置
JPWO2019188885A1 (ja) 絶縁回路基板用接合体の製造方法および絶縁回路基板用接合体
JP2016152385A (ja) パワーモジュール用基板及びパワーモジュール
JP2014039062A (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
JP6717245B2 (ja) 接合体の製造方法、絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
JP2018157115A (ja) 絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
TW202142061A (zh) 絕緣電路基板之製造方法
JP7039933B2 (ja) 接合体、絶縁回路基板、ヒートシンク付絶縁回路基板、ヒートシンク、及び、接合体の製造方法、絶縁回路基板の製造方法、ヒートシンク付絶縁回路基板の製造方法、ヒートシンクの製造方法
JP2016152383A (ja) パワーモジュール用基板及びパワーモジュール
JP2010165719A (ja) パワーモジュール用基板の製造方法
JP6790915B2 (ja) 絶縁回路基板の製造方法
JP2021158144A (ja) 絶縁回路基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625