JP2010235819A - Polyvalent hydroxy resin, epoxy resin, methods for producing them, epoxy resin composition, and cured material thereof - Google Patents

Polyvalent hydroxy resin, epoxy resin, methods for producing them, epoxy resin composition, and cured material thereof Download PDF

Info

Publication number
JP2010235819A
JP2010235819A JP2009086384A JP2009086384A JP2010235819A JP 2010235819 A JP2010235819 A JP 2010235819A JP 2009086384 A JP2009086384 A JP 2009086384A JP 2009086384 A JP2009086384 A JP 2009086384A JP 2010235819 A JP2010235819 A JP 2010235819A
Authority
JP
Japan
Prior art keywords
epoxy resin
group
polyvalent hydroxy
resin
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009086384A
Other languages
Japanese (ja)
Other versions
JP5320130B2 (en
Inventor
Hisafumi Yamada
尚史 山田
Kazuhiko Nakahara
和彦 中原
Masashi Kaji
正史 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2009086384A priority Critical patent/JP5320130B2/en
Publication of JP2010235819A publication Critical patent/JP2010235819A/en
Application granted granted Critical
Publication of JP5320130B2 publication Critical patent/JP5320130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin which obtains a cured material excellent in flame retardancy, moisture resistance, low elasticity, or the like, is used for sealing an electronic components and is suitable for a circuit board material or the like, and to provide a polyvalent hydroxy resin and an epoxy resin composition. <P>SOLUTION: The styrene-modified polyvalent hydroxy resin is obtained by reacting 1 mole polyvalent hydroxy compound such as a phenol novolac resin with 0.1-4.0 moles styrenes in the presence of an acid catalyst and has 250-400 g/eq. hydroxyl equivalent. The epoxy resin is obtained by reacting the polyvalent hydroxy compound with epichlorohydrin and has 310-500 g/eq. epoxy equivalent. The epoxy resin composition contains the polyvalent hydroxy resin or the epoxy resin as an essential component. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、難燃性に優れるとともに、耐湿性、低弾性にも優れた硬化物を与えるエポキシ樹脂、その中間体として適する多価ヒドロキシ樹脂、それらの製造方法、これら用いたエポキシ樹脂組成物並びにその硬化物に関するものであり、半導体封止材、プリント配線板等の電気電子分野の絶縁材料等に好適に使用される。   The present invention provides an epoxy resin that is excellent in flame retardancy and also provides a cured product excellent in moisture resistance and low elasticity, a polyvalent hydroxy resin suitable as an intermediate thereof, a production method thereof, an epoxy resin composition used in these, and It relates to the cured product, and is suitably used for insulating materials in the electric and electronic fields such as semiconductor sealing materials and printed wiring boards.

エポキシ樹脂は工業的に幅広い用途で使用されてきているが、その要求性能は近年ますます高度化している。例えば、エポキシ樹脂を主剤とする樹脂組成物の代表的分野に半導体封止材料があるが、半導体素子の集積度の向上に伴い、パッケージサイズは大面積化、薄型化に向かうとともに、実装方式も表面実装化への移行が進展しており、半田耐熱性に優れた材料の開発が望まれている。従って、封止材料としては、低吸湿化に加え、リードフレーム、チップ等の異種材料界面での接着性・密着性の向上が強く求められている。回路基板材料においても同様に、半田耐熱性向上の観点から低吸湿性、高耐熱性、高密着性の向上に加え、誘電損失低減の観点から低誘電性に優れた材料の開発が望まれている。これらの要求に対応するため、様々な新規構造のエポキシ樹脂及び硬化剤が検討されている。更に最近では、環境負荷低減の観点から、ハロゲン系難燃剤排除の動きがあり、より難燃性に優れたエポキシ樹脂及び硬化剤が求められている。   Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years. For example, there is a semiconductor sealing material in a typical field of a resin composition mainly composed of an epoxy resin, but as the integration degree of semiconductor elements is improved, the package size is becoming larger and thinner, and the mounting method is also increased. The transition to surface mounting is progressing, and the development of materials with excellent solder heat resistance is desired. Therefore, as a sealing material, in addition to reducing moisture absorption, improvement in adhesion and adhesion at the interface between different materials such as lead frames and chips is strongly demanded. Similarly, for circuit board materials, in addition to improving low heat absorption, high heat resistance, and high adhesion from the viewpoint of improving solder heat resistance, it is desirable to develop materials with excellent low dielectric properties from the viewpoint of reducing dielectric loss. Yes. In order to meet these requirements, various new structures of epoxy resins and curing agents have been studied. Furthermore, recently, from the viewpoint of reducing environmental impact, there has been a movement to eliminate halogen-based flame retardants, and epoxy resins and curing agents with more excellent flame retardancy have been demanded.

従って、上記背景から種々のエポキシ樹脂及びエポキシ樹脂硬化剤が検討されている。エポキシ樹脂硬化剤の一例として、ナフタレン系樹脂が知られており、特許文献1にはナフトールアラルキル樹脂を半導体封止材への応用が示されており、難燃性、低吸湿性、低熱膨張性等に優れることが記載されている。また、特許文献2にはビフェニル構造を有する硬化剤が提案され、難燃性向上に有効であることが記載されている。しかし、ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂ともに、硬化性に劣る欠点があり、また、難燃性向上の効果についても十分ではない場合があった。   Therefore, various epoxy resins and epoxy resin curing agents have been studied from the above background. As an example of an epoxy resin curing agent, a naphthalene-based resin is known, and Patent Document 1 discloses an application of a naphthol aralkyl resin to a semiconductor sealing material. It is flame retardant, low moisture absorption, and low thermal expansion. It is described that it is excellent. Patent Document 2 proposes a curing agent having a biphenyl structure and describes that it is effective for improving flame retardancy. However, both naphthol aralkyl resins and biphenyl aralkyl resins have drawbacks that are inferior in curability, and there are cases where the effect of improving flame retardancy is not sufficient.

一方、エポキシ樹脂についても、これらの要求を満足するものは未だ知られていない。例えば、周知のビスフェノール型エポキシ樹脂は、常温で液状であり、作業性に優れていることや、硬化剤、添加剤等との混合が容易であることから広く使用されているが、耐熱性、耐湿性の点で問題がある。また、耐熱性を改良したものとして、o−クレゾールノボラック型エポキシ樹脂が知られているが、難燃性に関しては不十分である。   On the other hand, an epoxy resin that satisfies these requirements is not yet known. For example, the well-known bisphenol type epoxy resin is in a liquid state at room temperature and is widely used because it is excellent in workability and easy to mix with a curing agent, an additive, etc. There is a problem in terms of moisture resistance. In addition, an o-cresol novolac type epoxy resin is known as an improved heat resistance, but the flame retardancy is insufficient.

ハロゲン系難燃剤を用いることなく難燃性を向上させるための方策として、リン酸エステル系の難燃剤を添加する方法が開示されている。しかし、リン酸エステル系の難燃剤を用いる方法では、耐湿性が十分ではない。また、高温、多湿な環境下ではリン酸エステルが加水分解を起こし、絶縁材料としての信頼性を低下させる問題があった。   As a measure for improving flame retardancy without using a halogen flame retardant, a method of adding a phosphate ester flame retardant is disclosed. However, the method using a phosphate ester flame retardant does not have sufficient moisture resistance. In addition, the phosphoric acid ester is hydrolyzed under a high temperature and humidity environment, and there is a problem that the reliability as an insulating material is lowered.

リン原子やハロゲン原子を含むことなく、難燃性を向上させるものとして、特許文献2及び3ではビフェニル構造を有するアラルキル型エポキシ樹脂を半導体封止材へ応用した例が開示されている。特許文献4には、ナフタレン構造を有するアラルキル型エポキシ樹脂を使用する例が開示されている。しかしながら、これらのエポキシ樹脂は、難燃性、耐湿性又は耐熱性のいずれかにおいて性能が十分でない。なお、特許文献7及び8にはナフトール系アラルキル型エポキシ樹脂及びこれを含有する半導体封止材料が開示されているが、難燃性に着目したものはない。   Patent Documents 2 and 3 disclose an example in which an aralkyl epoxy resin having a biphenyl structure is applied to a semiconductor encapsulant as a material that improves flame retardancy without containing a phosphorus atom or a halogen atom. Patent Document 4 discloses an example in which an aralkyl type epoxy resin having a naphthalene structure is used. However, these epoxy resins have insufficient performance in any of flame retardancy, moisture resistance or heat resistance. Patent Documents 7 and 8 disclose a naphthol-based aralkyl epoxy resin and a semiconductor sealing material containing the naphthol-based aralkyl epoxy resin, but nothing focuses on flame retardancy.

一方、耐湿性、低応力性の向上に着目したエポキシ樹脂組成物の例として、特許文献5及び6にはモノスチレン化フェノールノボラック樹脂及びそのエポキシ樹脂を用いるエポキシ樹脂組成物が開示されているが、これらは難燃性に着目したものではない。また、これらはモノスチレン化フェノールを出発原料として用いられていることから、原料物質であるモノスチレン化フェノールを製造する工程を余分に含む問題があった。また、ノボラック化反応後、残存する高沸点のモノスチレン化フェノールモノマーを除去する必要があり、該樹脂が煩雑な工程によって製造される問題があった。更には、予めモノスチレン化されたフェノール類を出発原料としてノボラック樹脂とした場合、溶融粘度が高くなることから流動性において問題があった。   On the other hand, as an example of an epoxy resin composition focused on improving moisture resistance and low stress properties, Patent Documents 5 and 6 disclose a monostyrenated phenol novolak resin and an epoxy resin composition using the epoxy resin. These do not focus on flame retardancy. In addition, since these use a monostyrenated phenol as a starting material, there is a problem that an extra step of producing a monostyrenated phenol as a raw material is included. Further, after the novolak reaction, it is necessary to remove the remaining high-boiling monostyrenated phenol monomer, and there is a problem that the resin is produced by a complicated process. Furthermore, when a novolak resin is used as a starting material from phenols that have been monostyrenated in advance, there is a problem in fluidity because the melt viscosity becomes high.

また、特許文献7には、ベンジル化ポリフェノール及びそのエポキシ樹脂が開示されており、耐熱性、耐湿性、耐クラック性等に優れることが記載されているが、難燃性に着目したものではなく、官能基濃度と難燃性の関係に着目したものもなかった。   Patent Document 7 discloses benzylated polyphenol and its epoxy resin, and describes that it is excellent in heat resistance, moisture resistance, crack resistance, etc., but it does not focus on flame retardancy. None of them focused on the relationship between functional group concentration and flame retardancy.

更に、特許文献8には、インデン構造含有のエポキシ樹脂硬化剤が示されており、誘電特性、耐熱性等に優れることが記載されているが、難燃性に着目したものではなかった。更には、剛直性の高いインデン構造を含むため耐熱性に優れるが接着性の点では性能が十分でなかった。   Furthermore, Patent Document 8 discloses an epoxy resin curing agent containing an indene structure and describes that it is excellent in dielectric properties, heat resistance, etc., but was not focused on flame retardancy. Furthermore, since the indene structure with high rigidity is included, the heat resistance is excellent, but the performance is not sufficient in terms of adhesiveness.

特開2005−344081号公報JP 2005-344081 A 特開平11−140166号公報JP-A-11-140166 特開2000−129092号公報JP 2000-129092 A 特開2004−59792号公報JP 2004-57992 A 特開平5−132544号公報JP-A-5-132544 特開平5−140265号公報Japanese Patent Laid-Open No. 5-140265 特開平8−120039号公報JP-A-8-120039 特開平9−208673号公報Japanese Patent Laid-Open No. 9-208673

本発明の目的は、積層、成形、注型、接着等の用途において、難燃性に優れるとともに、耐湿性、低弾性等にも優れた性能を有する多価ヒドロキシ樹脂及びエポキシ樹脂を提供すること、優れた難燃性を有するとともに、耐湿性、低弾性等にも優れた硬化物を与える電気・電子部品類の封止、回路基板材料等に有用なエポキシ樹脂組成物を提供すること、及びその硬化物を提供することにある。   An object of the present invention is to provide a polyvalent hydroxy resin and an epoxy resin that have excellent performance in flame retardancy, moisture resistance, low elasticity, etc. in applications such as lamination, molding, casting, and adhesion. Providing an epoxy resin composition useful for sealing electrical and electronic parts, circuit board materials, etc., which has excellent flame retardancy, and gives a cured product excellent in moisture resistance, low elasticity, etc., and It is to provide the cured product.

すなわち、本発明は、下記一般式(1)で表され、水酸基当量が250〜400g/eq.の範囲であることを特徴とする多価ヒドロキシ樹脂である。   That is, the present invention is represented by the following general formula (1) and has a hydroxyl group equivalent of 250 to 400 g / eq. It is the polyhydric hydroxy resin characterized by being in the range.

Figure 2010235819
(Aは炭素数1〜8のアルキル基若しくは水酸基が置換してもよいベンゼン環又はナフタレン環からなる基を示し、R1は下記式(a)で表される置換基を示し、R2は水素原子又は炭素数1〜6の炭化水素基を示し、p及びqは0〜2の数を示すが、p+qは1以上である。Xは下記式(b)又は式(c)で表される架橋基であり、R3、R4、R5及びR6は独立に、水素原子又は炭素数1〜6の炭化水素基を示し、nは1〜20の数を示す。)
Figure 2010235819
Figure 2010235819
Figure 2010235819
(A represents a group consisting of a benzene ring or a naphthalene ring which may be substituted by an alkyl group having 1 to 8 carbon atoms or a hydroxyl group, R 1 represents a substituent represented by the following formula (a), and R 2 represents A hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and p and q represent a number of 0 to 2, but p + q is 1 or more, X is represented by the following formula (b) or formula (c). R 3 , R 4 , R 5 and R 6 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and n represents a number of 1 to 20).
Figure 2010235819
Figure 2010235819

上記多価ヒドロキシ樹脂は、150℃における溶融粘度が0.01〜10.0Pa・sの範囲であることが好ましい。   The polyvalent hydroxy resin preferably has a melt viscosity at 150 ° C. in the range of 0.01 to 10.0 Pa · s.

また、本発明は、下記一般式(2)で表される多価ヒドロキシ化合物のヒドロキシ基1モルに対し、スチレン類0.1〜4.0モルを、酸触媒の存在下に反応させることを特徴とする上記式(a)で表される置換基が多価ヒドロキシ化合物のベンゼン環又はナフタレン環に置換した構造を有する多価ヒドロキシ樹脂の製造方法である。

Figure 2010235819
(式中、Aは炭素数1〜8のアルキル基若しくは水酸基が置換してもよいベンゼン環又はナフタレン環からなる基を示し、X及びnは、一般式(1)と同じ意味を有する。) Moreover, this invention makes it react with 0.1-4.0 mol of styrene with presence of an acid catalyst with respect to 1 mol of hydroxy groups of the polyvalent hydroxy compound represented by following General formula (2). This is a method for producing a polyvalent hydroxy resin having a structure in which the substituent represented by the above formula (a) is substituted with a benzene ring or a naphthalene ring of a polyvalent hydroxy compound.
Figure 2010235819
(In the formula, A represents an alkyl group having 1 to 8 carbon atoms or a group consisting of a benzene ring or a naphthalene ring which may be substituted by a hydroxyl group, and X and n have the same meaning as in the general formula (1).)

更に、本発明は、下記一般式(3)

Figure 2010235819
(Aは炭素数1〜8のアルキル基若しくはグリシジルオキシ基が置換してもよいベンゼン環又はナフタレン環からなる基を示し、Gはグリシジル基を示す。R1、p、q及びnは一般式(1)と同じ意味を有する。)で表され、エポキシ当量が310〜500g/eq.の範囲であることを特徴とするエポキシ樹脂である。 Furthermore, the present invention provides the following general formula (3)
Figure 2010235819
(A represents a group consisting of a benzene ring or a naphthalene ring which may be substituted by an alkyl group having 1 to 8 carbon atoms or a glycidyloxy group, and G represents a glycidyl group. R 1 , p, q and n represent general formulas. It has the same meaning as (1).) And has an epoxy equivalent of 310 to 500 g / eq. It is the epoxy resin characterized by being in the range.

上記エポキシ樹脂の150℃における溶融粘度が0.01〜10.0Pa・sの範囲にあることが好ましい。   The epoxy resin preferably has a melt viscosity at 150 ° C. in the range of 0.01 to 10.0 Pa · s.

また、本発明は、上記の多価ヒドロキシ樹脂とエピクロルヒドリンを反応させることを特徴とするエポキシ樹脂の製造方法である。   Moreover, this invention is a manufacturing method of the epoxy resin characterized by making said polyhydric hydroxy resin and epichlorohydrin react.

更に、本発明は、エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物において、上記の多価ヒドロキシ樹脂及び上記のエポキシ樹脂の一方又は両方を必須成分として配合してなるエポキシ樹脂組成物である。また、本発明は上記のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物である。   Furthermore, this invention is an epoxy resin composition which mix | blends one or both of said polyhydric hydroxy resin and said epoxy resin as an essential component in the epoxy resin composition which consists of an epoxy resin and a hardening | curing agent. Moreover, this invention is an epoxy resin hardened | cured material formed by hardening | curing said epoxy resin composition.

本発明のエポキシ樹脂及び多価ヒドロキシ樹脂は、エポキシ樹脂組成物に応用した場合、難燃性に優れるとともに、耐湿性及び低弾性にも優れた硬化物を与え、電気・電子部品類の封止、回路基板材料等の用途に好適に使用することが可能である。特に、難燃性に優れ、環境負荷のある難燃剤の使用を不要とさせ又は減少させる。   When applied to an epoxy resin composition, the epoxy resin and polyvalent hydroxy resin of the present invention give a cured product that is excellent in flame retardancy and also in moisture resistance and low elasticity, and seals electrical and electronic parts It can be suitably used for applications such as circuit board materials. In particular, the use of a flame retardant having excellent flame retardancy and environmental impact is made unnecessary or reduced.

多価ヒドロキシ樹脂の1H−NMRスペクトル 1 H-NMR spectrum of polyvalent hydroxy resin 多価ヒドロキシ樹脂の赤外吸収スペクトルInfrared absorption spectrum of polyvalent hydroxy resin. 多価ヒドロキシ樹脂のGPCチャートGPC chart of polyvalent hydroxy resin 多価ヒドロキシ樹脂のFD−MSチャートFD-MS chart of polyvalent hydroxy resin エポキシ樹脂の1H−NMRスペクトル 1 H-NMR spectrum of epoxy resin エポキシ樹脂の赤外吸収スペクトルInfrared absorption spectrum of epoxy resin. エポキシ樹脂のGPCチャートEpoxy resin GPC chart

まず、本発明の多価ヒドロキシ樹脂(以下、PSNと略す)について説明する。本発明のPSNは一般式(1)で表され、これは一般式(2)で表される多価ヒドロキシ化合物(PSNと区別する場合は、多価ヒドロキシ化合物(2)ともいう)とスチレン類を反応させることにより得ることができる。   First, the polyvalent hydroxy resin (hereinafter abbreviated as PSN) of the present invention will be described. The PSN of the present invention is represented by the general formula (1), which is a polyvalent hydroxy compound represented by the general formula (2) (also referred to as a polyvalent hydroxy compound (2) when distinguished from PSN) and styrenes. Can be obtained by reacting.

本発明のPSNでは、先ず、多価ヒドロキシ化合物(2)の基本構造に対し、スチレン類を付加させることによって、水酸基当量を任意に調整することができる。ここで、スチレン類を付加させるとは、多価ヒドロキシ化合物(2)のベンゼン環又はナフタレン環の水素と式(a)で表わされる置換基(スチレニル基ともいう)を置換させることをいう。つまり、エポキシ樹脂硬化物においては、エポキシ基と水酸基との反応により生成するヒドロキシプロピル基が燃え易いとされているが、水酸基当量を高くすることで、エポキシ基由来の易燃成分の脂肪族炭素率は低くなり、高度な難燃性を発現させることができる。また、芳香族性に富んだスチレンを付加させることにより、芳香族性はより一層向上し、難燃性に加え耐湿性の向上にも効果的である。   In the PSN of the present invention, first, the hydroxyl group equivalent can be arbitrarily adjusted by adding styrenes to the basic structure of the polyvalent hydroxy compound (2). Here, the addition of styrenes refers to the replacement of hydrogen on the benzene ring or naphthalene ring of the polyvalent hydroxy compound (2) with the substituent represented by the formula (a) (also referred to as a styryl group). In other words, in the epoxy resin cured product, the hydroxypropyl group generated by the reaction between the epoxy group and the hydroxyl group is said to burn easily, but by increasing the hydroxyl equivalent, aliphatic carbon of the flammable component derived from the epoxy group The rate is low and a high degree of flame retardancy can be expressed. Moreover, by adding styrene rich in aromaticity, the aromaticity is further improved, and it is effective in improving moisture resistance in addition to flame retardancy.

よって、これらを用いて高難燃性のエポキシ樹脂組成物、特に半導体封止用エポキシ樹脂組成物が得られる。すなわち、それらの組成物における高難燃性とともに、耐湿性や低弾性に優れた物性が発現され、この材料を用いて信頼性の高い半導体装置が得られる。   Therefore, a highly flame-retardant epoxy resin composition, especially an epoxy resin composition for semiconductor encapsulation is obtained using these. That is, in addition to high flame retardancy in these compositions, physical properties excellent in moisture resistance and low elasticity are expressed, and a highly reliable semiconductor device can be obtained using this material.

次に、本発明のPSNでは、スチレン類を付加することで、分子量は増加するが、半導体封止材等に適した溶融粘度範囲を維持できる。このことは半導体封止用材料として使用した場合、シリカ等の高充填化が可能であり、その結果、各種物性の向上、例えば、難燃性の向上や更なる低吸水化や熱膨張係数の減少等により信頼性に優れた材料が得られる。   Next, in the PSN of the present invention, the addition of styrenes increases the molecular weight, but can maintain a melt viscosity range suitable for a semiconductor encapsulant and the like. When this is used as a semiconductor sealing material, it is possible to increase the filling of silica or the like. As a result, various physical properties are improved, for example, improved flame retardancy, further lower water absorption and thermal expansion coefficient. A material having excellent reliability can be obtained due to reduction or the like.

本発明のPSNは、一般式(2)で表される多価ヒドロキシ化合物(2)とスチレン類とを付加反応させることにより得られる。この際、多価ヒドロキシ化合物(2)とスチレン類との割合としては、得られる硬化物の難燃性と硬化性のバランスを考慮すると、フェノール成分(一般式(2)中のAで表される基をいう)1モルに対するスチレン類の使用割合が0.1から4.0モルの範囲が好ましく、より好ましくは0.5〜3.0モルの範囲である。   The PSN of the present invention can be obtained by addition reaction of the polyvalent hydroxy compound (2) represented by the general formula (2) and styrenes. At this time, the proportion of the polyvalent hydroxy compound (2) and the styrenes is represented by a phenol component (A in the general formula (2), considering the balance between flame retardancy and curability of the obtained cured product. The ratio of the styrenes used per mole is preferably in the range of 0.1 to 4.0 moles, more preferably in the range of 0.5 to 3.0 moles.

この反応では、スチレン類が多価ヒドロキシ化合物(2)中のOH基を有する芳香族環に付加して上記式(a)で表わされるスチレニル基が置換する。また、スチレン類の付加位置は、主として、多価ヒドロキシ化合物の空位のオルソ及び/又はパラ位である。   In this reaction, styrenes are added to the aromatic ring having an OH group in the polyvalent hydroxy compound (2) to substitute the styryl group represented by the above formula (a). Further, the addition position of styrenes is mainly the vacant ortho and / or para position of the polyvalent hydroxy compound.

また、本発明のPSNの製造方法では、フェノール成分に対してスチレン類の使用割合を過剰とすれば、スチレンの付加反応割合が上昇し、分子量を容易に増大させることができる。   Further, in the method for producing PSN of the present invention, if the proportion of styrene used is excessive with respect to the phenol component, the proportion of addition reaction of styrene increases and the molecular weight can be easily increased.

このようにして得られる本発明のPSNの水酸基当量は250〜400g/eq.の範囲にあり、より好ましくは270〜350g/eq.の範囲である。水酸基当量がこの範囲より低いと高度な難燃性は得られ難く、この範囲より高いと高度な難燃性は得られるが、硬化性に劣り、同用途での使用が困難になる傾向がある。   The hydroxyl equivalent of the PSN of the present invention obtained in this way is 250 to 400 g / eq. More preferably, it is 270-350 g / eq. Range. If the hydroxyl equivalent is lower than this range, it is difficult to obtain a high level of flame retardancy, and if it is higher than this range, a high level of flame retardancy is obtained, but the curability is inferior and it tends to be difficult to use in the same application. .

また、本発明のPSNの製造原料となる多価ヒドロキシ化合物(2)としては、汎用のフェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂等が挙げられる。より高度な難燃性、耐湿性、接着性を得るためには、アラルキル構造を有する多価ヒドロキシ化合物を用いることが好ましい。すなわち、一般式(2)において、Xが式(c)で表わされる構造を有する多価ヒドロキシ化合物が好ましい。   Moreover, general-purpose phenol resin, phenol aralkyl resin, naphthol aralkyl resin, etc. are mentioned as polyhydric hydroxy compound (2) used as the manufacturing raw material of PSN of this invention. In order to obtain higher flame retardancy, moisture resistance and adhesion, it is preferable to use a polyvalent hydroxy compound having an aralkyl structure. That is, in the general formula (2), a polyvalent hydroxy compound having a structure in which X is represented by the formula (c) is preferable.

また、本発明のPSNの150℃における溶融粘度は0.01〜10.0Pa・sの範囲のものが好ましい。作業性の面から、溶融粘度は上記範囲において低い程好ましい。   The PSN of the present invention preferably has a melt viscosity at 150 ° C. in the range of 0.01 to 10.0 Pa · s. From the viewpoint of workability, the melt viscosity is preferably as low as possible within the above range.

さらには、軟化点は40〜150℃であることがよく、好ましくは50〜100℃の範囲である。ここで、軟化点は、JIS−K−2207の環球法に基づき測定される軟化点を指す。これより低いと、これをエポキシ樹脂に配合したとき、硬化物の耐熱性が低下し、これより高いと成形時の流動性が低下する。   Furthermore, the softening point may be 40 to 150 ° C, preferably 50 to 100 ° C. Here, the softening point refers to a softening point measured based on the ring and ball method of JIS-K-2207. When lower than this, when this is mix | blended with an epoxy resin, the heat resistance of hardened | cured material will fall, and when higher than this, the fluidity | liquidity at the time of shaping | molding will fall.

一般式(1)、(2)及び(3)において、Aを除き、共通の記号は同じ意味を有すると理解される。これらの式において、独立に、Aは炭素数1〜8のアルキル基若しくは水酸基が置換してもよいベンゼン環又はナフタレン環からなる基を示す。ただし、一般式(3)においては、Aは水酸基が置換することはなく、グリシジルオキシ基が置換する点で相違する。また、一般式(2)においては、Aは式(a)で表わされる置換基を有しない点で相違する。なお、一般式(3)において、Gはグリシジル基を示す。一般式(1)、(2)及び(3)において、Aにアルキル基が置換する場合、アルキル基としては炭素数1〜8のアルキル基が好ましい。水酸基が置換する場合、その数は1が好ましい。すなわち、Aに置換する水酸基は合計して1又は2が好ましい。また、一般式(2)においては、Aは式(a)で表わされる置換基と置換可能な水素を1以上、好ましくは3以上有する。   In general formulas (1), (2) and (3), it is understood that common symbols have the same meaning except A. In these formulas, A independently represents a group comprising a benzene ring or a naphthalene ring which may be substituted by an alkyl group having 1 to 8 carbon atoms or a hydroxyl group. However, in the general formula (3), A is different in that a hydroxyl group is not substituted and a glycidyloxy group is substituted. In the general formula (2), A is different in that it does not have a substituent represented by the formula (a). In general formula (3), G represents a glycidyl group. In the general formulas (1), (2) and (3), when A is substituted with an alkyl group, the alkyl group is preferably an alkyl group having 1 to 8 carbon atoms. When the hydroxyl group is substituted, the number is preferably 1. That is, the total number of hydroxyl groups substituted by A is preferably 1 or 2. In the general formula (2), A has 1 or more, preferably 3 or more, hydrogens that can be substituted with the substituent represented by the formula (a).

1は上記式(a)で表されるスチレニル基を示す。p及びqは0〜2の数を示すが、p+qは1以上である。より好ましくは、p+qは2以上であり、更に好ましくは2.6〜4である。有利には1個のAに対し、平均として0.2〜2個のスチレニル基が置換することが好まく、1.3〜2個が特に好ましい。式(a)において、R2は水素又は炭素数1〜6の炭化水素基を示すが、好ましくは水素又は炭素数1〜3のアルキル基であり、より好ましくは水素である。このR2は反応原料として使用するスチレン類によって定まる。ここで、qはnが1以外の数である場合は、平均値である。また、pとqの平均は全部のpとqの平均値を意味する。 R 1 is a styrenyl group represented by the above formula (a). p and q represent a number of 0 to 2, but p + q is 1 or more. More preferably, p + q is 2 or more, and more preferably 2.6-4. It is preferred that an average of 0.2 to 2 styryl groups be substituted for one A, and 1.3 to 2 is particularly preferred. In the formula (a), R 2 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, preferably hydrogen or an alkyl group having 1 to 3 carbon atoms, more preferably hydrogen. This R 2 is determined by the styrenes used as reaction raw materials. Here, q is an average value when n is a number other than 1. The average of p and q means the average value of all p and q.

Xは式(b)又は式(c)で表される架橋基であり、好ましくは式(c)で表される架橋基である。R3、R4、R5及びR6は独立に、水素原子又は炭素数1〜6の炭化水素基を示すが、好ましくは、水素原子又は炭素数1〜3のアルキル基である。nは1〜20の数を示すが、好ましくは、平均として1.5〜3.0の範囲である。更にn=2以上である成分がゲルパーミエーションクロマトグラフィーチャートの面積百分率値において30%以上であるものが好ましい。なお、nが異なる混合物である場合は、nは数平均である。 X is a crosslinking group represented by the formula (b) or the formula (c), preferably a crosslinking group represented by the formula (c). R 3 , R 4 , R 5 and R 6 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Although n shows the number of 1-20, Preferably, it is the range of 1.5-3.0 as an average. Furthermore, it is preferable that the component in which n = 2 or more is 30% or more in the area percentage value of the gel permeation chromatography chart. In addition, when n is a different mixture, n is a number average.

次に、本発明のPSNの製造方法について説明する。本発明のPSNを製造する方法で用いる多価ヒドロキシ化合物(2)として、汎用のフェノール樹脂が挙げられる。具体的には一般式(2)における連結基Xがアルデヒド又はケトン類から誘導されたもの、例えば、一般式(5)で表されるものがある。   Next, the manufacturing method of PSN of this invention is demonstrated. As the polyvalent hydroxy compound (2) used in the method for producing PSN of the present invention, a general-purpose phenol resin can be mentioned. Specifically, there are those in which the linking group X in the general formula (2) is derived from aldehydes or ketones, for example, those represented by the general formula (5).

Figure 2010235819
ここで、R7は水素原子、炭素数1〜8の炭化水素基又は水酸基を示し、R3及びR4は独立に、水素原子又は炭素数1〜6の炭化水素基を示す。nは1〜20の数を示す。
Figure 2010235819
Here, R 7 represents a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms or a hydroxyl group, and R 3 and R 4 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. n shows the number of 1-20.

また、フェノールアラルキル樹脂も同様に挙げられる。具体的には一般式(2)における連結基Xがキシリレングリコール類、キシリレングリコールジメチルエーテル類、キシリレンジクロライド類、ジビニルベンゼン類、ジイソプロペニルベンゼン類等から誘導されたもの、例えば、一般式(6)で表されるものである。   Moreover, a phenol aralkyl resin is also mentioned similarly. Specifically, the linking group X in the general formula (2) is derived from xylylene glycols, xylylene glycol dimethyl ethers, xylylene dichlorides, divinylbenzenes, diisopropenylbenzenes, etc. It is represented by (6).

Figure 2010235819
ここで、R7は水素原子、炭素数1〜8の炭化水素基又は水酸基を示し、R5及びR6は独立に、水素原子又は炭素数1〜6の炭化水素基を示す。nは1〜20の数を示す。
Figure 2010235819
Here, R 7 represents a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms or a hydroxyl group, and R 5 and R 6 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. n shows the number of 1-20.

更には、ナフトールアラルキル樹脂も同様に挙げられる。具体的には一般式(2)におけるAがナフタレン環を示し、連結基Xがキシリレングリコール類、キシリレングリコールジメチルエーテル類、キシリレンジクロライド類等から誘導されたもの、例えば、一般式(7)で表されるものである。   Furthermore, a naphthol aralkyl resin is mentioned similarly. Specifically, A in the general formula (2) represents a naphthalene ring, and the linking group X is derived from xylylene glycols, xylylene glycol dimethyl ethers, xylylene dichlorides, etc., for example, the general formula (7) It is represented by

Figure 2010235819
ここで、一般式(7)において、R5、R6、R7及びnは一般式(6)と同じ意味を有する。
Figure 2010235819
Here, in the general formula (7), R 5 , R 6 , R 7 and n have the same meaning as in the general formula (6).

これらの多価ヒドロキシ化合物(2)を得るために用いられるフェノール類又はナフトール類としては、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、エチルフェノール類、イソプロピルフェノール類、ターシャリーブチルフェノール類、アリルフェノール類、フェニルフェノール類、2,6−キシレノール、2,6−ジエチルフェノール、ハイドロキノン、レゾルシン、カテコール、1−ナフトール、2−ナフトール、1,5−ナフタレンジオール、1,6−ナフタレンジオール、1,7−ナフタレンジオール、2,6−ナフタレンジオール、2,7−ナフタレンジオールなどが挙げられる。これらのフェノール類又はナフトール類は単独でもよいし、2種以上を併用してもよい。   Examples of phenols or naphthols used to obtain these polyvalent hydroxy compounds (2) include phenol, o-cresol, m-cresol, p-cresol, ethylphenols, isopropylphenols, and tertiary butylphenol. , Allylphenols, phenylphenols, 2,6-xylenol, 2,6-diethylphenol, hydroquinone, resorcin, catechol, 1-naphthol, 2-naphthol, 1,5-naphthalenediol, 1,6-naphthalenediol 1,7-naphthalenediol, 2,6-naphthalenediol, 2,7-naphthalenediol, and the like. These phenols or naphthols may be used alone or in combination of two or more.

反応に用いるスチレン類は、スチレン又は炭素数1〜6の炭化水素基若しくは水酸基が置換したスチレンである。このスチレン類は少量の他の反応成分を含んでもよい。他の反応成分として、α−メチルスチレン、ジビニルベンゼン、インデン、クマロン、ベンゾチオフェン、インドール、ビニルナフタレン等の不飽和結合含有成分を含む場合、得られる多価ヒドロキシ樹脂にはこれらから生ずる基が芳香環上に置換した化合物が含まれることになる。本発明の多価ヒドロキシ樹脂の製造方法で得られるフェノール樹脂は、このような置換基を有する多価ヒドロキシ樹脂を含み得る。同様に、本発明のエポキシ樹脂の製造方法で得られるエポキシ樹脂は、このような置換基を有するエポキシ樹脂を含み得る。   Styrenes used in the reaction are styrene or styrene substituted with a hydrocarbon group having 1 to 6 carbon atoms or a hydroxyl group. The styrenes may contain small amounts of other reaction components. When other reactive components include unsaturated bond-containing components such as α-methylstyrene, divinylbenzene, indene, coumarone, benzothiophene, indole, and vinylnaphthalene, the resulting polyvalent hydroxy resin has aromatic groups. A substituted compound on the ring will be included. The phenol resin obtained by the method for producing a polyvalent hydroxy resin of the present invention may contain a polyvalent hydroxy resin having such a substituent. Similarly, the epoxy resin obtained by the method for producing an epoxy resin of the present invention can include an epoxy resin having such a substituent.

スチレン類を多価ヒドロキシ化合物(2)に反応させる本発明の方法において、スチレン類の使用量は、多価ヒドロキシ化合物のフェノール成分1モルに対し、0.1〜4モルの範囲が好ましい。より好ましくは、1.3〜3モルの範囲である。そして、一般式(1)におけるpとqが平均1.3〜2の範囲となることが好ましい。この範囲より少ない場合は、原料の多価ヒドロキシ化合物の性質が改良されないままの状態であり、この範囲より多い場合は、官能基密度が低くなり過ぎて硬化性が低下する傾向がある。本発明では、これらスチレン類の使用量により、PSNの水酸基当量を250g/eq〜400g/eq.に調整することが可能である。この結果、エポキシ樹脂組成物の難燃性、耐湿性、低弾性等の優れた物性を発現し、半導体封止材料等の用途で難燃性及び信頼性等に優れた組成物を与える。それ故、スチレン類の使用割合は、原料の多価ヒドロキシ化合物自身の水酸基当量により、変更される。すなわち、フェノールノボラック樹脂のような水酸基当量の小さいものは、比較的スチレン類の使用割合が多くなり、アルキル置換フェノールノボラック類、フェノールアラルキル樹脂類、ナフトールアラルキル樹脂類等では相対的に使用割合が少なくてもよい。   In the method of the present invention in which styrenes are reacted with the polyvalent hydroxy compound (2), the amount of styrene used is preferably in the range of 0.1 to 4 mol with respect to 1 mol of the phenol component of the polyvalent hydroxy compound. More preferably, it is the range of 1.3-3 mol. And it is preferable that p and q in General formula (1) become the range of 1.3-3 on average. When the amount is less than this range, the properties of the starting polyvalent hydroxy compound are not improved. When the amount is more than this range, the functional group density tends to be too low and the curability tends to decrease. In the present invention, the hydroxyl group equivalent of PSN is 250 g / eq to 400 g / eq. It is possible to adjust to. As a result, the epoxy resin composition exhibits excellent physical properties such as flame retardancy, moisture resistance, and low elasticity, and gives a composition excellent in flame retardancy and reliability in applications such as semiconductor sealing materials. Therefore, the use ratio of styrenes is changed by the hydroxyl equivalent of the polyvalent hydroxy compound itself. That is, those having a small hydroxyl equivalent, such as phenol novolac resins, have a relatively large proportion of styrene, and those having a relatively small proportion of alkyl-substituted phenol novolacs, phenol aralkyl resins, naphthol aralkyl resins, etc. May be.

この反応は酸触媒の存在下に行うことができる。この酸触媒としては、周知の無機酸、有機酸より適宜選択することができる。例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p−トルエンスルホン酸、ジメチル硫酸、ジエチル硫酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸あるいはイオン交換樹脂、活性白土、シリカ−アルミナ、ゼオライト等の固体酸等が挙げられる。   This reaction can be carried out in the presence of an acid catalyst. The acid catalyst can be appropriately selected from known inorganic acids and organic acids. For example, mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, dimethyl sulfuric acid, diethyl sulfuric acid, zinc chloride, aluminum chloride, iron chloride, trifluoride. Examples thereof include Lewis acids such as boron fluoride or ion exchange resins, activated clays, silica-alumina, solid acids such as zeolite, and the like.

また、この反応は通常、10〜250℃で1〜20時間行われる。更に、反応の際には、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ等のアルコール類や、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物等を溶媒として使用することができる。   Moreover, this reaction is normally performed at 10-250 degreeC for 1 to 20 hours. Further, during the reaction, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl ether, diethyl ether, diisopropyl ether, Ethers such as tetrahydrofuran and dioxane, aromatic compounds such as benzene, toluene, chlorobenzene, and dichlorobenzene can be used as the solvent.

この反応を実施する具体的方法としては、全原料を一括装入し、そのまま所定の温度で反応させるか、又は、多価ヒドロキシ化合物と触媒を装入し、所定の温度に保ちつつ、スチレン類を滴下させながら反応させる方法が一般的である。この際、滴下時間は、5時間以下が好ましく、通常、1〜10時間である。反応後、溶媒を使用した場合は、必要により、触媒成分を取り除いた後、溶媒を留去させて本発明の樹脂を得ることができ、溶媒を使用しない場合は、直接熱時排出することによって目的物を得ることができる。   As a specific method for carrying out this reaction, all raw materials are charged in a lump and reacted at a predetermined temperature as it is, or a polyvalent hydroxy compound and a catalyst are charged and maintained at a predetermined temperature while maintaining styrenes. A method of reacting while dropping is generally used. At this time, the dropping time is preferably 5 hours or less, and usually 1 to 10 hours. If a solvent is used after the reaction, the catalyst component can be removed if necessary, and then the solvent can be distilled off to obtain the resin of the present invention. If the solvent is not used, it can be discharged directly when heated. The object can be obtained.

次に、本発明のエポキシ樹脂について述べる。
本発明のエポキシ樹脂(PSNEと略す)は一般式(3)で表される。また、多価ヒドロキシ樹脂(PSN)は一般式(1)で表される。PSNEは、PSNをエポキシ化することにより得ることができる。
Next, the epoxy resin of the present invention will be described.
The epoxy resin (abbreviated as PSNE) of the present invention is represented by the general formula (3). The polyvalent hydroxy resin (PSN) is represented by the general formula (1). PSNE can be obtained by epoxidizing PSN.

一般式(3)において、一般式(1)と共通な記号及び式は、特に断らない限り同じ意味を有する。Gはグリシジル基を表すが、一般式(1)の水酸基が反応して生じる。R1は式(a)で表わされる置換基である。 In the general formula (3), symbols and formulas common to the general formula (1) have the same meanings unless otherwise specified. G represents a glycidyl group, which is generated by the reaction of the hydroxyl group of the general formula (1). R 1 is a substituent represented by the formula (a).

Xは式(b)又は式(c)で表される架橋基であるが、R3、R4、R5及びR6は独立に、水素原子又は炭素数1〜6の炭化水素基を示す。XはAを架橋するが、Xの置換位置は、特に限定するものではない。
本発明のPSNEは、上記一般式(1)で表されるPSNと、エピクロルヒドリンを反応させることより製造することが有利であるが、この反応に限らない。
X is a bridging group represented by formula (b) or formula (c), but R 3 , R 4 , R 5 and R 6 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. . X crosslinks A, but the substitution position of X is not particularly limited.
The PSNE of the present invention is advantageously produced by reacting the PSN represented by the general formula (1) with epichlorohydrin, but is not limited to this reaction.

PSNをエピクロルヒドリンと反応させる反応の他、PSNとハロゲン化アリルを反応させ、アリルエーテル化合物とした後、過酸化物と反応させる方法をとることもできる。上記PSNをエピクロルヒドリンと反応させる反応は、通常のエポキシ化反応と同様に行うことができる。   In addition to the reaction of reacting PSN with epichlorohydrin, PSN and allyl halide can be reacted to form an allyl ether compound and then reacted with peroxide. The reaction of reacting the PSN with epichlorohydrin can be performed in the same manner as a normal epoxidation reaction.

例えば、上記PSNを過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、20〜150℃、好ましくは、30〜80℃の範囲で1〜10時間反応させる方法が挙げられる。この際のアルカリ金属水酸化物の使用量は、PSNの水酸基1モルに対して、0.8〜1.5モル、好ましくは、0.9〜1.2モルの範囲である。また、エピクロルヒドリンはPSN中の水酸基1モルに対して過剰に用いられるが、通常、PSN中の水酸基1モルに対して、1.5〜30モル、好ましくは、2〜15モルの範囲である。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより目的のエポキシ樹脂を得ることができる。   For example, after the PSN is dissolved in excess epichlorohydrin, in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, the temperature is 20 to 150 ° C., preferably 30 to 80 ° C. The method of making it react for time is mentioned. The amount of alkali metal hydroxide used in this case is in the range of 0.8 to 1.5 mol, preferably 0.9 to 1.2 mol, per mol of the PSN hydroxyl group. Epichlorohydrin is used in excess with respect to 1 mol of the hydroxyl group in PSN, but is usually in the range of 1.5 to 30 mol, preferably 2 to 15 mol, with respect to 1 mol of the hydroxyl group in PSN. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the target epoxy is removed by distilling off the solvent. A resin can be obtained.

本発明のエポキシ樹脂組成物は、少なくともエポキシ樹脂及び硬化剤を含むものであるが、次の3種類がある。
1)エポキシ樹脂の一部又は全部として前記PSNEを配合した組成物。
2)硬化剤の一部又は全部として前記PSNを配合した組成物。
3)エポキシ樹脂及び硬化剤の一部又は全部として前記PSNEとPSNを配合した組成物。
The epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and there are the following three types.
1) The composition which mix | blended the said PSNE as a part or all of an epoxy resin.
2) The composition which mix | blended the said PSN as a part or all of a hardening | curing agent.
3) The composition which mix | blended said PSNE and PSN as part or all of an epoxy resin and a hardening | curing agent.

上記2)及び3)の組成物の場合、PSNの配合量は、通常、エポキシ樹脂100重量部に対して2〜200重量部、好ましくは5〜80重量部の範囲である。これより少ないと難燃性及び耐湿性向上の効果が小さく、これより多いと成形性及び硬化物の強度が低下する問題がある。   In the case of the above compositions 2) and 3), the blending amount of PSN is usually 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. If it is less than this, the effect of improving flame retardancy and moisture resistance is small, and if it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.

硬化剤の全量としてPSNを用いる場合、通常、PSNの配合量は、PSNのOH基とエポキシ樹脂中のエポキシ基の当量バランスを考慮して配合する。エポキシ樹脂及び硬化剤の当量比は、通常、0.2〜5.0の範囲であり、好ましくは0.5〜2.0の範囲である。これより大きくても小さくても、エポキシ樹脂組成物の硬化性が低下するとともに、硬化物の耐熱性、力学強度等が低下する。   When PSN is used as the total amount of the curing agent, the blending amount of PSN is usually blended in consideration of the equivalent balance of the OH group of PSN and the epoxy group in the epoxy resin. The equivalent ratio of the epoxy resin and the curing agent is usually in the range of 0.2 to 5.0, preferably in the range of 0.5 to 2.0. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength and the like of the cured product are lowered.

硬化剤としてPSN以外の硬化剤を併用することができる。その他の硬化剤の配合量は、PSNの配合量が、通常、エポキシ樹脂100重量部に対して2〜200重量部、好ましくは5〜80重量部の範囲が保たれる範囲内で決定される。PSNの配合量がこれより少ないと低吸湿性、密着性及び難燃性向上の効果が小さく、これより多いと成形性及び硬化物の強度が低下する問題がある。   A curing agent other than PSN can be used in combination as the curing agent. The blending amount of the other curing agent is determined so that the blending amount of PSN is normally 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. . When the blending amount of PSN is less than this, the effect of improving the low hygroscopicity, adhesion and flame retardancy is small, and when it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.

PSN以外の硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用でき、ジシアンジアミド、酸無水物類、多価フェノール類、芳香族及び脂肪族アミン類等がある。これらの中でも、半導体封止材等の高い電気絶縁性が要求される分野においては、多価フェノール類を硬化剤として用いることが好ましい。以下に、硬化剤の具体例を示す。   As the curing agent other than PSN, all those generally known as curing agents for epoxy resins can be used, and examples thereof include dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines. Among these, polyhydric phenols are preferably used as a curing agent in a field where high electrical insulation properties such as a semiconductor sealing material are required. Below, the specific example of a hardening | curing agent is shown.

酸無水物硬化剤としては、例えば、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ドデシニルコハク酸、無水ナジック酸、無水トリメリット酸等がある。   Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, dodecynyl succinic anhydride, nadic anhydride, There are trimellitic anhydride and the like.

多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4'−ビフェノール、2,2'−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類がある。更には、フェノール類、ナフトール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4'−ビフェノール、2,2'−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレンジクロライド、ビスクロロメチルビフェニル、ビスクロロメチルナフタレン等の縮合剤により合成される多価フェノール性化合物等がある。   Examples of the polyhydric phenols include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, and naphthalenediol, or , Tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinylphenol, There are phenols. Furthermore, divalent phenols such as phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, naphthalenediol, Examples include polyhydric phenolic compounds synthesized by a condensing agent such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene dichloride, bischloromethylbiphenyl, and bischloromethylnaphthalene.

アミン類としては、4,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルスルホン、m−フェニレンジアミン、p−キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、リエチレンテトラミン等の脂肪族アミン類がある。
上記組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。
Examples of amines include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine, ethylenediamine, There are aliphatic amines such as hexamethylenediamine, diethylenetriamine, and reethylenetetramine.
One or more of these curing agents can be mixed and used in the composition.

上記組成物に使用されるエポキシ樹脂としては、1分子中にエポキシ基を2個以上有するもの中から選択される。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4'−ビフェノール、2,2'−ビフェノール、テトラブロモビスフェノールA、ハイドロキノン、レゾルシン等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタンや、フェノール、クレゾール、ナフトール等のノボラック樹脂、フェノール、クレゾール、ナフトール等のアラルキル樹脂等の3価以上のフェノール性化合物のグルシジルエーテル化物等がある。これらのエポキシ樹脂は1種又は2種以上を混合して用いることができる。   The epoxy resin used in the composition is selected from those having two or more epoxy groups in one molecule. For example, divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, tetrabromobisphenol A, hydroquinone, resorcin, or tris- (4 -Hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, novolak resins such as phenol, cresol and naphthol, and aralkyl resins such as phenol, cresol and naphthol There are glycidyl etherified compounds of the active compound. These epoxy resins can be used alone or in combination of two or more.

上記1)及び3)の組成物の場合、このエポキシ樹脂組成物中には、エポキシ樹脂成分として、PSNE以外に別種のエポキシ樹脂を配合してもよい。この場合のエポキシ樹脂としては、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂はすべて使用できる。例を挙げれば、ビスフェノールA、ビスフェノールS、フルオレンビスフェノール、4,4'−ビフェノール、2,2'−ビフェノール、ハイドロキノン、レゾルシン等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類、フェノール系アラルキル樹脂類、ビフェニルアラルキル樹脂類、ナフトール系アラルキル樹脂類又はテトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグルシジルエーテル化物等がある。これらのエポキシ樹脂は、1種又は2種以上を混合して用いることができる。そして、本発明のPSNEを必須成分とする組成物の場合、PSNEの配合量はエポキシ樹脂全体中、5〜100%、好ましくは60〜100%の範囲であることがよい。   In the case of the compositions 1) and 3), another epoxy resin may be blended in addition to PSNE as an epoxy resin component in the epoxy resin composition. As the epoxy resin in this case, all ordinary epoxy resins having two or more epoxy groups in the molecule can be used. Examples include divalent phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, or tris- (4-hydroxyphenyl) methane. , 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, o-cresol novolak and other trivalent or higher phenols, phenol-based aralkyl resins, biphenyl aralkyl resins, naphthol-based aralkyl resins Alternatively, there are glycidyl ethers derived from halogenated bisphenols such as tetrabromobisphenol A. These epoxy resins can be used alone or in combination of two or more. And in the case of the composition which has PSNE of this invention as an essential component, the compounding quantity of PSNE is 5-100% in the whole epoxy resin, Preferably it is good to be the range of 60-100%.

本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデン樹脂、インデン・クマロン樹脂、フェノキシ樹脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合してもよい。添加量は、通常、エポキシ樹脂100重量部に対して、2〜30重量部の範囲である。   In the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, phenoxy resin, etc. is used as another modifier. You may mix | blend suitably. The addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.

また、本発明のエポキシ樹脂組成物には、無機充填剤、顔料、難然剤、揺変性付与剤、カップリング剤、流動性向上剤等の添加剤を配合できる。無機充填剤としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、又はマイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ等が挙げられ、半導体封止材に用いる場合の好ましい配合量は70重量%以上であり、更に好ましくは80重量%以上である。   In addition, the epoxy resin composition of the present invention can contain additives such as inorganic fillers, pigments, refractory agents, thixotropic agents, coupling agents, fluidity improvers and the like. Examples of inorganic fillers include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, hydrated alumina, and the like. A preferable blending amount when used for a stopper is 70% by weight or more, and more preferably 80% by weight or more.

顔料としては、有機系又は、無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。   Examples of the pigment include organic or inorganic extender pigments and scaly pigments. Examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, polyethylene oxide wax, and organic bentonite.

更に、本発明のエポキシ樹脂組成物には必要に応じて硬化促進剤を用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2−メチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換
ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などがある。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2から5重量部の範囲である。
Furthermore, a curing accelerator can be used in the epoxy resin composition of the present invention as necessary. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2- Imidazoles such as heptadecylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenyl Tetraphenyl such as ruphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate, tetrasubstituted phosphonium / tetrasubstituted borate, 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmorpholine / tetraphenylborate, etc. There is boron salt. The addition amount is usually in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.

更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を使用できる。   Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black, and trioxide. Flame retardants such as antimony, low stress agents such as silicone oil, lubricants such as calcium stearate, etc. can be used.

本発明のエポキシ樹脂組成物は、有機溶剤を溶解させたワニス状態とした後に、ガラスクロス、アラミド不織布、液晶ポリマー等のポリエステル不織布、等の繊維状物に含浸させた後に溶剤除去を行い、プリプレグとすることができる。また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に塗布することにより積層物とすることができる。   The epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, and then impregnated into a fibrous material such as glass cloth, aramid nonwoven fabric, polyester nonwoven fabric such as liquid crystal polymer, and the like, and then the solvent is removed. It can be. Moreover, it can be set as a laminated body by apply | coating on sheet-like materials, such as copper foil, stainless steel foil, a polyimide film, and a polyester film depending on the case.

本発明のエポキシ樹脂組成物を加熱硬化させれば、エポキシ樹脂硬化物とすることができ、この硬化物は低吸湿性、高耐熱性、密着性、難燃性等の点で優れたものとなる。この硬化物は、エポキシ樹脂組成物を注型、圧縮成形、トランスファー成形等の方法により、成形加工して得ることができる。この際の温度は通常、120〜220℃の範囲である。   If the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained, and this cured product is excellent in terms of low hygroscopicity, high heat resistance, adhesion, flame retardancy, and the like. Become. This cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding or transfer molding. The temperature at this time is usually in the range of 120 to 220 ° C.

以下、実施例により本発明を更に具体的に説明する。
ここで、粘度はB型粘度計を用い、軟化点はJIS−K−2207に従い環球法で測定した。また、ゲルパーミエーションクロマトグラフィー(GPC)測定条件は、装置;MODEL151(ウォーターズ(株)製)、カラム;TSK−GEL2000×3本及びTSK−GEL400×1本(いずれも東ソー(株)製)、溶媒;テトラヒドロフラン、流量;1 ml/min、温度;38℃、検出器;RIであり、検量線にはポリスチレン標準液を使用した。
Hereinafter, the present invention will be described more specifically with reference to examples.
Here, the viscosity was measured using a B-type viscometer, and the softening point was measured by the ring and ball method according to JIS-K-2207. The gel permeation chromatography (GPC) measurement conditions were as follows: apparatus; MODEL 151 (manufactured by Waters), column; TSK-GEL 2000 × 3 and TSK-GEL 400 × 1 (both manufactured by Tosoh Corporation), Solvent; tetrahydrofuran; flow rate; 1 ml / min; temperature; 38 ° C; detector; RI; polystyrene standard solution was used for the calibration curve.

(多価ヒドロキシ樹脂の合成)
実施例1
1Lの4口フラスコに、多価ヒドロキシ化合物成分としてフェノールノボラック(昭和高分子製;BRG−555、水酸基当量105g/eq.、軟化点67℃、150℃での溶融粘度0.08Pa・s、GPC測定によるn=1の成分(38%)、n=2以上の成分(62%))を105g、酸触媒としてp−トルエンスルホン酸0.13gを仕込み150℃に昇温した。次に、150℃にて攪拌しながら、スチレン類としてスチレン156g(1.5モル)を3時間かけて滴下し反応させた。さらに150℃にて1時間反応後、MIBK500gに溶解させ、80℃にて5回水洗を行った。続いて、MIBKを減圧留去した後、多価ヒドロキシ樹脂255gを得た。その軟化点は75℃、150℃での溶融粘度は0.16Pa・s、水酸基当量は261g/eq.であり、p、qの平均は1.5であった。この化合物をPSN−Aという。PSN−Aの1H−NMRスペクトルを図1、赤外吸収スペクトルを図2、GPCチャートを図3、FD−MSチャートを図4に示す。
(Synthesis of polyvalent hydroxy resin)
Example 1
Into a 1 L 4-neck flask, phenol novolac (manufactured by Showa Polymer; BRG-555, hydroxyl group equivalent 105 g / eq., Softening point 67 ° C., melt viscosity 0.080 Pa · s at 150 ° C., GPC as a polyvalent hydroxy compound component 105 g of n = 1 component (38%) and n = 2 or more component (62%)) and 0.13 g of p-toluenesulfonic acid as an acid catalyst were charged and heated to 150 ° C. Next, with stirring at 150 ° C., 156 g (1.5 mol) of styrene as styrenes was dropped over 3 hours to be reacted. Furthermore, after reacting at 150 ° C. for 1 hour, it was dissolved in 500 g of MIBK and washed 5 times at 80 ° C. Subsequently, after MIBK was distilled off under reduced pressure, 255 g of a polyvalent hydroxy resin was obtained. Its softening point is 75 ° C., melt viscosity at 150 ° C. is 0.16 Pa · s, and hydroxyl equivalent is 261 g / eq. The average of p and q was 1.5. This compound is referred to as PSN-A. FIG. 1 shows the 1 H-NMR spectrum of PSN-A, FIG. 2 shows the infrared absorption spectrum, FIG. 3 shows the GPC chart, and FIG. 4 shows the FD-MS chart.

実施例2
多価ヒドロキシ化合物成分として、ビスフェノールF(本州化学製、4,4’体(31%)、2,4’体(49%)、2,2’体(20%))を100g、酸触媒としてp−トルエンスルホン酸0.13gを仕込み150℃に昇温した。次に、150℃にて攪拌しながら、スチレン類としてスチレン156g(1.5モル)を3時間かけて滴下し反応させた。その後、実施例1と同様な処理を行った後、多価ヒドロキシ樹脂251gを得た。その軟化点は50℃、150℃での溶融粘度は0.020Pa・s、水酸基当量は256g/eq.であり、p、qの平均は1.5であった。この化合物をPSN−Bという。
Example 2
As a polyvalent hydroxy compound component, 100 g of bisphenol F (4,4 ′ form (31%), 2,4 ′ form (49%), 2,2 ′ form (20%)) manufactured by Honshu Chemical Co., Ltd. as an acid catalyst 0.13 g of p-toluenesulfonic acid was charged and heated to 150 ° C. Next, with stirring at 150 ° C., 156 g (1.5 mol) of styrene as styrenes was dropped over 3 hours to be reacted. Thereafter, the same treatment as in Example 1 was performed, and then 251 g of a polyvalent hydroxy resin was obtained. The softening point is 50 ° C., the melt viscosity at 150 ° C. is 0.020 Pa · s, and the hydroxyl equivalent is 256 g / eq. The average of p and q was 1.5. This compound is referred to as PSN-B.

実施例3
多価ヒドロキシ化合物成分として、フェノールアラルキル樹脂(明和化成株式会社製;MEH−7800SS、水酸基当量175g/eq.、軟化点66℃、150℃での溶融粘度0.07Pa・s)を175g、酸触媒としてp−トルエンスルホン酸0.16gを仕込み150℃に昇温した。次に、150℃にて攪拌しながら、スチレン類としてスチレン135g(1.3モル)を3時間かけて滴下し反応させた。その後、実施例1と同様な処理を行った後、多価ヒドロキシ樹脂305gを得た。その軟化点は82℃、150℃での溶融粘度は0.45Pa・s、水酸基当量は310g/eq.であり、p、qの平均は1.3であった。この化合物をPSN−Cという。
Example 3
As a polyvalent hydroxy compound component, 175 g of phenol aralkyl resin (Maywa Kasei Co., Ltd .; MEH-7800SS, hydroxyl equivalent 175 g / eq., Softening point 66 ° C., melt viscosity 0.050 Pa · s at 150 ° C.), acid catalyst P-toluenesulfonic acid 0.16g was prepared and heated to 150 ° C. Next, while stirring at 150 ° C., 135 g (1.3 mol) of styrene as styrenes was dropped over 3 hours to be reacted. Then, after processing similar to Example 1, 305 g of polyvalent hydroxy resin was obtained. Its softening point is 82 ° C., melt viscosity at 150 ° C. is 0.45 Pa · s, and hydroxyl equivalent is 310 g / eq. The average of p and q was 1.3. This compound is referred to as PSN-C.

実施例4
多価ヒドロキシ化合物成分として、1−ナフトールアラルキル樹脂(東都化成株式会社製;SN−475、水酸基当量210g/eq.、軟化点77℃、150℃での溶融粘度0.04Pa・s)を210g、酸触媒としてp−トルエンスルホン酸0.17gを仕込み150℃に昇温した。次に、150℃にて攪拌しながら、スチレン類としてスチレン135g(1.3モル)を3時間かけて滴下し反応させた。その後、実施例1と同様な処理を行った後、多価ヒドロキシ樹脂340gを得た。その軟化点は88℃、150℃での溶融粘度は0.41Pa・s、水酸基当量は345g/eq.であり、p、qの平均は1.3であった。この化合物をPSN−Dという。
Example 4
As a polyvalent hydroxy compound component, 210 g of 1-naphthol aralkyl resin (manufactured by Toto Kasei Co., Ltd .; SN-475, hydroxyl group equivalent 210 g / eq., Softening point 77 ° C., melt viscosity 0.050 Pa · s at 150 ° C.), As an acid catalyst, 0.17 g of p-toluenesulfonic acid was charged and heated to 150 ° C. Next, while stirring at 150 ° C., 135 g (1.3 mol) of styrene as styrenes was dropped over 3 hours to be reacted. Then, after processing similar to Example 1, 340 g of polyvalent hydroxy resin was obtained. Its softening point is 88 ° C., melt viscosity at 150 ° C. is 0.41 Pa · s, and hydroxyl equivalent is 345 g / eq. The average of p and q was 1.3. This compound is referred to as PSN-D.

ここで、p、qの平均は、pとqは実質的に等価であるので、1つのAに置換したR1の平均の数を意味する。なお、反応に使用したスチレンはほぼ全量が反応する。 Here, the average of p and q means the average number of R 1 substituted with one A because p and q are substantially equivalent. Note that almost all of the styrene used in the reaction reacts.

合成例1
多価ヒドロキシ化合物成分として、フェノールノボラック(昭和高分子製;BRG−555、水酸基当量105g/eq.、軟化点67℃、150℃での溶融粘度0.08Pa・s)を105g、酸触媒としてp−トルエンスルホン酸0.10gを仕込み150℃に昇温した。次に、150℃にて攪拌しながら、スチレン類としてスチレン73g(0.7モル)を2時間かけて滴下し反応させた。その後、実施例1と同様な処理を行った後、多価ヒドロキシ樹脂172gを得た。その軟化点は72℃、150℃での溶融粘度は0.11Pa・s、水酸基当量は178g/eq.であり、p、qの平均は0.7であった。
Synthesis example 1
105 g of phenol novolak (manufactured by Showa Polymer; BRG-555, hydroxyl group equivalent 105 g / eq., Softening point 67 ° C., melt viscosity 0.080 Pa · s at 150 ° C.) as the polyvalent hydroxy compound component, p as the acid catalyst -Toluenesulfonic acid 0.10g was prepared and it heated up at 150 degreeC. Next, while stirring at 150 ° C., 73 g (0.7 mol) of styrene as styrenes was dropped over 2 hours to be reacted. Thereafter, the same treatment as in Example 1 was performed, and then 172 g of a polyvalent hydroxy resin was obtained. Its softening point is 72 ° C., melt viscosity at 150 ° C. is 0.11 Pa · s, and hydroxyl equivalent is 178 g / eq. The average of p and q was 0.7.

合成例2
多価ヒドロキシ化合物成分として、ビスフェノールF(本州化学製、4,4’体(31%)、2,4’体(49%)、2,2’体(20%))を200gを仕込み175℃まで昇温させた。溶融後、撹拌しながらp−トルエンスルホン酸0.13gを仕込み、150℃においてインデン116g(1.0モル)を約3時間かけて滴下した。その後、実施例1と同様な処理を行った後、多価ヒドロキシ樹脂413gを得た。その軟化点は78℃、150℃での溶融粘度は0.06Pa・s、水酸基当量は216g/eq.であり、p、qの平均は1.0であった。
Synthesis example 2
200 g of bisphenol F (4,4 ′ form (31%), 2,4 ′ form (49%), 2,2 ′ form (20%)) manufactured by Honshu Chemical Co., Ltd. as a polyvalent hydroxy compound component was charged at 175 ° C. The temperature was raised to. After melting, 0.13 g of p-toluenesulfonic acid was charged with stirring, and 116 g (1.0 mol) of indene was added dropwise at 150 ° C. over about 3 hours. Then, after processing similar to Example 1, 413 g of polyvalent hydroxy resin was obtained. Its softening point is 78 ° C., melt viscosity at 150 ° C. is 0.06 Pa · s, and hydroxyl equivalent is 216 g / eq. The average of p and q was 1.0.

(エポキシ樹脂の合成)
実施例5
四つ口セパラブルフラスコに実施例1で得たPSN−A150g、エピクロルヒドリン306g、ジエチレングリコールジメチルエーテル46gを入れ撹拌溶解させた。均一に溶解後、130mmHgの減圧下65℃に保ち、48%水酸化ナトリウム水溶液47.9gを4時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離槽で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、エポキシ樹脂172gを得た(PSNE−A)。得られた樹脂のエポキシ当量は329g/eq.、軟化点は62℃、150℃における溶融粘度は0.18Pa・sであった。PSNE−Aの1H−NMRスペクトルを図5、赤外吸収スペクトルを図6、GPCチャートを図7に示す。
(Synthesis of epoxy resin)
Example 5
In a four-necked separable flask, 150 g of PSN-A obtained in Example 1, 306 g of epichlorohydrin and 46 g of diethylene glycol dimethyl ether were stirred and dissolved. After uniformly dissolving, maintaining at 65 ° C. under a reduced pressure of 130 mmHg, 47.9 g of 48% aqueous sodium hydroxide solution was dropped over 4 hours, and water and epichlorohydrin distilled under reflux were separated in the dropping tank in a separation tank, and epichlorohydrin was The mixture was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 172 g of an epoxy resin (PSNE-A). The epoxy equivalent of the obtained resin was 329 g / eq. The softening point was 62 ° C. and the melt viscosity at 150 ° C. was 0.18 Pa · s. 1 H-NMR spectrum of PSNE-A 5, shows an infrared absorption spectrum in Figure 7 to Figure 6, GPC chart.

実施例6
実施例2で得たPSN−B150gを用い、実施例5と同様に反応させエポキシ樹脂171gを得た(PSNE−B)。得られた樹脂のエポキシ当量は322g/eq.、150℃における溶融粘度は0.03Pa・sであった。
Example 6
Using 150 g of PSN-B obtained in Example 2, the reaction was carried out in the same manner as in Example 5 to obtain 171 g of an epoxy resin (PSNE-B). The epoxy equivalent of the obtained resin was 322 g / eq. The melt viscosity at 150 ° C. was 0.03 Pa · s.

実施例7
実施例3で得たPSN−C150gを用い、実施例5と同様に反応させエポキシ樹脂165gを得た(PSNE−C)。得られた樹脂のエポキシ当量は378g/eq.、軟化点は71℃、150℃における溶融粘度は0.57Pa・sであった。
Example 7
Using 150 g of PSN-C obtained in Example 3, the reaction was carried out in the same manner as in Example 5 to obtain 165 g of epoxy resin (PSNE-C). The epoxy equivalent of the obtained resin was 378 g / eq. The softening point was 71 ° C. and the melt viscosity at 150 ° C. was 0.57 Pa · s.

実施例8
実施例4で得たPSN−D150gを用い、実施例5と同様に反応させエポキシ樹脂162gを得た(PSNE−E)。得られた樹脂のエポキシ当量は411g/eq.、軟化点は84℃、150℃における溶融粘度は0.62Pa・sであった。
Example 8
Using 150 g of PSN-D obtained in Example 4, the reaction was carried out in the same manner as in Example 5 to obtain 162 g of an epoxy resin (PSNE-E). The epoxy equivalent of the obtained resin was 411 g / eq. The softening point was 84 ° C. and the melt viscosity at 150 ° C. was 0.62 Pa · s.

合成例3
合成例1で得た樹脂を用い、実施例5と同様に反応させエポキシ樹脂171gを得た。得られた樹脂のエポキシ当量は246g/eq.、軟化点は57℃、150℃における溶融粘度は0.14Pa・sであった。
Synthesis example 3
The resin obtained in Synthesis Example 1 was reacted in the same manner as in Example 5 to obtain 171 g of an epoxy resin. The epoxy equivalent of the obtained resin was 246 g / eq. The softening point was 57 ° C. and the melt viscosity at 150 ° C. was 0.14 Pa · s.

合成例4
合成例2で得た樹脂を用い、実施例5と同様に反応させエポキシ樹脂169gを得た。得られた樹脂のエポキシ当量は278g/eq.、軟化点は58℃、150℃における溶融粘度は0.05Pa・sであった。
Synthesis example 4
The resin obtained in Synthesis Example 2 was used in the same manner as in Example 5 to obtain 169 g of epoxy resin. The epoxy equivalent of the obtained resin was 278 g / eq. The softening point was 58 ° C. and the melt viscosity at 150 ° C. was 0.05 Pa · s.

実施例9〜13及び比較例1〜4
エポキシ樹脂成分としてo-クレゾールノボラック型エポキシ樹脂(OCNE;エポキシ当量200、軟化点65℃)を使用し、硬化剤として実施例1、2、3、4で得たPSN−A、PSN−B、PSN−C,PSN−D、合成例1、2で得た樹脂の他、フェノールノボラック(硬化剤A:群栄化学製、PSM−4261;OH当量103、軟化点 82℃)又はフェノールアラルキル樹脂(硬化剤B;明和化成製、MEH−7800SS、OH当量175、軟化点67℃)を使用した。充填剤としてシリカ(平均粒径18μm)、硬化促進剤としてトリフェニルホスフィンを表1及び表3に示す配合で混練しエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて175℃にて成形し、175℃にて12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。
Examples 9-13 and Comparative Examples 1-4
An o-cresol novolac type epoxy resin (OCNE; epoxy equivalent 200, softening point 65 ° C.) was used as an epoxy resin component, and PSN-A and PSN-B obtained in Examples 1, 2, 3, and 4 were used as curing agents. In addition to the resins obtained in PSN-C, PSN-D and Synthesis Examples 1 and 2, phenol novolak (curing agent A: manufactured by Gunei Chemical Co., PSM-4261; OH equivalent 103, softening point 82 ° C.) or phenol aralkyl resin ( Curing agent B: Meiwa Kasei Co., Ltd., MEH-7800SS, OH equivalent 175, softening point 67 ° C.) was used. Silica (average particle diameter of 18 μm) as a filler and triphenylphosphine as a curing accelerator were kneaded with the formulations shown in Tables 1 and 3 to obtain an epoxy resin composition. This epoxy resin composition was molded at 175 ° C. and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements.

ガラス転移点(Tg)及び線膨張係数(CTE)の測定は、熱機械測定装置を用いて10℃/分の昇温速度で求めた。また吸水率は、直径50mm、厚さ3mmの円形の試験片を用いて、85℃、85%RHの条件で100時間吸湿させた後の重量変化率とした。接着強度は、銅板2枚の間に25mm×12.5mm×0.5mmの成形物を圧縮成形機により175℃で成形し、180℃にて12時間ポストキュアを行った後、引張剪断強度を求めることにより評価した。難燃性は、厚さ1/16インチの試験片を成形し、UL94V-0規格によって評価し、5本の試験片での合計の燃焼時間で表した。結果を表2に示す。   The glass transition point (Tg) and linear expansion coefficient (CTE) were measured at a rate of temperature increase of 10 ° C./min using a thermomechanical measurement device. The water absorption rate was defined as the rate of change in weight after absorbing moisture for 100 hours at 85 ° C. and 85% RH using a circular test piece having a diameter of 50 mm and a thickness of 3 mm. The adhesive strength was obtained by forming a molded product of 25 mm × 12.5 mm × 0.5 mm between two copper plates at 175 ° C. with a compression molding machine, post-curing at 180 ° C. for 12 hours, and then adjusting the tensile shear strength. Evaluated by seeking. Flame retardance was measured by molding a 1/16 inch thick test piece, evaluated according to the UL94V-0 standard, and expressed as the total burning time of 5 test pieces. The results are shown in Table 2.

Figure 2010235819
Figure 2010235819

Figure 2010235819
Figure 2010235819

実施例14〜19及び比較例5〜6
エポキシ樹脂成分として、実施例5、6、7、8で得たPSNE−A、PSNE−B、PSNE−C,PSNE−D、合成例3、4で得た樹脂の他、o-クレゾールノボラック型エポキシ樹脂(OCNE;エポキシ当量200、軟化点65℃)を用い、硬化剤成分として、実施例1で合成したPSN−A、フェノールノボラック(硬化剤A:群栄化学製、PSM−4261;OH当量103、軟化点 82℃)又はフェノールアラルキル樹脂(硬化剤B;明和化成製、MEH−7800SS、OH当量175、軟化点67℃)を用いた。更に、充填剤として球状シリカ(平均粒径 18μm)、硬化促進剤としてトリフェニルホスフィンを用い、表3に示す配合でエポキシ樹脂組成物を得た。表中の数値は配合における重量部を示す。
Examples 14-19 and Comparative Examples 5-6
As an epoxy resin component, PSNE-A, PSNE-B, PSNE-C, PSNE-D obtained in Examples 5, 6, 7 and 8; resins obtained in Synthesis Examples 3 and 4; and o-cresol novolak type Using an epoxy resin (OCNE; epoxy equivalent 200, softening point 65 ° C.), PSN-A synthesized in Example 1 as a curing agent component, phenol novolak (curing agent A: manufactured by Gunei Chemical Co., PSM-4261; OH equivalent) 103, softening point 82 ° C.) or phenol aralkyl resin (curing agent B; manufactured by Meiwa Kasei Co., Ltd., MEH-7800SS, OH equivalent 175, softening point 67 ° C.). Furthermore, spherical silica (average particle size 18 μm) was used as a filler, triphenylphosphine was used as a curing accelerator, and an epoxy resin composition was obtained with the formulation shown in Table 3. The numerical value in a table | surface shows the weight part in a mixing | blending.

このエポキシ樹脂組成物を用いて175℃で成形し、更に175℃にて12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。結果を表4に示す。   This epoxy resin composition was molded at 175 ° C., and further post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements. The results are shown in Table 4.

Figure 2010235819
Figure 2010235819

Figure 2010235819
Figure 2010235819

Claims (10)

下記一般式(1)
Figure 2010235819
(ここで、Aは炭素数1〜8のアルキル基若しくは水酸基が置換してもよいベンゼン環又はナフタレン環からなる基を示し、R1は下記式(a)で表される置換基を示し、R2は水素原子又は炭素数1〜6の炭化水素基を示し、p及びqは0〜2の数を示すが、p+qは1以上である。Xは下記式(b)又は式(c)で表される架橋基であり、R3、R4、R5及びR6は独立に、水素原子又は炭素数1〜6の炭化水素基を示し、nは1〜20の数を示す。)
Figure 2010235819
Figure 2010235819
で表され、水酸基当量が250〜400g/eq.の範囲であることを特徴とする多価ヒドロキシ樹脂。
The following general formula (1)
Figure 2010235819
(Here, A represents an alkyl group having 1 to 8 carbon atoms or a group consisting of a benzene ring or a naphthalene ring which may be substituted by a hydroxyl group, R 1 represents a substituent represented by the following formula (a), R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, p and q are the number of 0 to 2, is p + q is 1 or more .X the following formula (b) or formula (c) And R 3 , R 4 , R 5 and R 6 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and n represents a number from 1 to 20.)
Figure 2010235819
Figure 2010235819
The hydroxyl group equivalent is 250 to 400 g / eq. A polyvalent hydroxy resin characterized by being in the range.
150℃における溶融粘度が0.01〜10.0Pa・sの範囲である請求項1に記載の多価ヒドロキシ樹脂。   The polyvalent hydroxy resin according to claim 1, wherein the melt viscosity at 150 ° C. is in the range of 0.01 to 10.0 Pa · s. 下記一般式(2)で表される多価ヒドロキシ化合物のヒドロキシ基1モルに対し、スチレン類0.1〜4.0モルを、酸触媒の存在下に反応させて、式(a)で表される置換基を多価ヒドロキシ化合物のベンゼン環又はナフタレン環に置換させることを特徴とする多価ヒドロキシ樹脂の製造方法。
Figure 2010235819
Figure 2010235819
Figure 2010235819
(ここで、Aは炭素数1〜8のアルキル基若しくは水酸基が置換してもよいベンゼン環又はナフタレン環からなる基を示し、Xは式(b)又は式(c)で表される架橋基であり、R2、R3、R4、R5及びR6は独立に、水素原子又は炭素数1〜6の炭化水素基を示し、nは1〜20の数を示す。)
Represented by the formula (a) by reacting 0.1 to 4.0 moles of styrene in the presence of an acid catalyst with respect to 1 mole of the hydroxy group of the polyvalent hydroxy compound represented by the following general formula (2). A method for producing a polyvalent hydroxy resin, comprising substituting a benzene ring or a naphthalene ring of a polyvalent hydroxy compound with a substituted group.
Figure 2010235819
Figure 2010235819
Figure 2010235819
(Here, A represents an alkyl group having 1 to 8 carbon atoms or a group consisting of a benzene ring or a naphthalene ring which may be substituted by a hydroxyl group, and X represents a bridging group represented by formula (b) or formula (c)). R 2 , R 3 , R 4 , R 5 and R 6 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and n represents a number from 1 to 20.)
エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物において、硬化剤の一部又は全部として、請求項1又は2に記載の多価ヒドロキシ樹脂を必須成分としてなることを特徴とするエポキシ樹脂組成物。   The epoxy resin composition which consists of an epoxy resin and a hardening | curing agent, The polyhydric hydroxy resin of Claim 1 or 2 becomes an essential component as a part or all of a hardening | curing agent. 請求項4に記載のエポキシ樹脂組成物を硬化してなることを特徴とするエポキシ樹脂硬化物。   A cured epoxy resin obtained by curing the epoxy resin composition according to claim 4. 下記一般式(3)
Figure 2010235819
(ここで、Aは炭素数1〜8のアルキル基若しくはグリシジルオキシ基が置換してもよいベンゼン環又はナフタレン環からなる基を示し、Gはグリシジル基を示し、R1は下記式(a)で表される置換基を示し、R2は炭素数1〜6の炭化水素基を示し、p及びqは0〜2の数を示すが、p+qは1以上である。Xは下記式(b)又は式(c)で表される架橋基であり、R3、R4、R5及びR6は独立に、水素原子又は炭素数1〜6の炭化水素基を示し、nは1〜20の数を示す。)
Figure 2010235819
Figure 2010235819
で表され、エポキシ当量が310〜500g/eq.の範囲であることを特徴とするエポキシ樹脂。
The following general formula (3)
Figure 2010235819
(Here, A represents a group consisting of a benzene ring or a naphthalene ring which may be substituted by an alkyl group having 1 to 8 carbon atoms or a glycidyloxy group, G represents a glycidyl group, and R 1 represents the following formula (a): R 2 represents a hydrocarbon group having 1 to 6 carbon atoms, p and q represent a number of 0 to 2, and p + q is 1 or more, X represents the following formula (b Or R 3 , R 4 , R 5 and R 6 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and n represents 1 to 20 Indicates the number of
Figure 2010235819
Figure 2010235819
The epoxy equivalent is 310-500 g / eq. Epoxy resin characterized by being in the range.
150℃における溶融粘度が0.01〜10.0Pa・sの範囲である請求項6に記載のエポキシ樹脂。   The epoxy resin according to claim 6, wherein the melt viscosity at 150 ° C. is in the range of 0.01 to 10.0 Pa · s. 請求項1に記載の多価ヒドロキシ樹脂とエピクロルヒドリンを反応させて、多価ヒドロキシ樹脂のヒドロキシ基をグリシジルエーテル基とすることを特徴とするエポキシ樹脂の製造方法。   A method for producing an epoxy resin, comprising reacting the polyvalent hydroxy resin according to claim 1 with epichlorohydrin to convert the hydroxy group of the polyvalent hydroxy resin into a glycidyl ether group. エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物において、請求項6又は7に記載のエポキシ樹脂を必須成分として配合してなるエポキシ樹脂組成物。   In the epoxy resin composition which consists of an epoxy resin and a hardening | curing agent, the epoxy resin composition formed by mix | blending the epoxy resin of Claim 6 or 7 as an essential component. 請求項9に記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。   An epoxy resin cured product obtained by curing the epoxy resin composition according to claim 9.
JP2009086384A 2009-03-31 2009-03-31 Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof Active JP5320130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086384A JP5320130B2 (en) 2009-03-31 2009-03-31 Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086384A JP5320130B2 (en) 2009-03-31 2009-03-31 Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013034557A Division JP5548792B2 (en) 2013-02-25 2013-02-25 Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2010235819A true JP2010235819A (en) 2010-10-21
JP5320130B2 JP5320130B2 (en) 2013-10-23

Family

ID=43090452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086384A Active JP5320130B2 (en) 2009-03-31 2009-03-31 Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP5320130B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057079A (en) * 2010-09-10 2012-03-22 Nippon Steel Chem Co Ltd Polyvalent hydroxy resin, epoxy resin, method for producing them, epoxy resin composition and its cured product
JP2012082250A (en) * 2010-10-07 2012-04-26 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
CN102617987A (en) * 2011-01-31 2012-08-01 新日铁化学株式会社 Epoxy resin composition and condensate
CN102634164A (en) * 2011-02-10 2012-08-15 新日铁化学株式会社 Epoxide resin composition and condensate thereof
JP2012167141A (en) * 2011-02-10 2012-09-06 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
JP2013087174A (en) * 2011-10-17 2013-05-13 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product
JP2013166878A (en) * 2012-02-16 2013-08-29 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product
WO2013125620A1 (en) * 2012-02-23 2013-08-29 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
WO2013157061A1 (en) * 2012-04-16 2013-10-24 新日鉄住金化学株式会社 Epoxy resin composition and cured product
WO2013187185A1 (en) * 2012-06-12 2013-12-19 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JP2014181326A (en) * 2013-03-21 2014-09-29 Nippon Steel & Sumikin Chemical Co Ltd Epoxy acrylate resin, epoxy acrylate acid anhydride adduct, curable resin composition, alkali development type photosensitive resin composition, and cured product of the same
WO2014162974A1 (en) * 2013-04-04 2014-10-09 日東電工株式会社 Underfill adhesive film, underfill adhesive film with integrated backgrinding tape, underfill adhesive film with integrated dicing tape, and semiconductor device
JP2015083704A (en) * 2010-09-27 2015-04-30 新日鉄住金化学株式会社 Production method of epoxy resin composition
KR20150111850A (en) 2014-03-26 2015-10-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
KR20170131267A (en) 2016-05-20 2017-11-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Epoxy resin composition and cured product thereof
KR20170131262A (en) 2016-05-19 2017-11-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Epoxy resin curing agent composition, epoxy resin composition and cured product thereof
TWI631173B (en) * 2012-10-11 2018-08-01 新日鐵住金化學股份有限公司 Epoxy resin composition and hardened material
JP2019104887A (en) * 2017-12-14 2019-06-27 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, cured product, and semiconductor device
EP4067404A1 (en) * 2021-03-29 2022-10-05 Chang Chun Plastics Co., Ltd. Polyhydric phenol resin, glycidyl ether of polyhydric phenol resin, and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656964A (en) * 1991-09-30 1994-03-01 Dainippon Ink & Chem Inc Epoxy resin composition for electronic component, epoxy resin, and production of epoxy resin
JPH08120039A (en) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc Benzylated polyphenol, its epoxy resin, and their production and use thereof
JPH08301980A (en) * 1995-05-01 1996-11-19 Nippon Steel Chem Co Ltd Novel epoxy resin, its intermediate and production, and epoxy resin composition and cured item prepared using the same
JP2001302763A (en) * 2000-04-26 2001-10-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2005187607A (en) * 2003-12-25 2005-07-14 Dainippon Ink & Chem Inc Phenolic resin, epoxy resin, epoxy resin composition and cured product of the composition
JP2006117762A (en) * 2004-10-20 2006-05-11 Dainippon Ink & Chem Inc Epoxy resin composition, its cured product, novel dihydric phenol compound and its production method
JP2009242658A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Polyhydroxy compound, epoxy resin, manufacturing method thereof, epoxy resin composition, and hardened product thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656964A (en) * 1991-09-30 1994-03-01 Dainippon Ink & Chem Inc Epoxy resin composition for electronic component, epoxy resin, and production of epoxy resin
JPH08120039A (en) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc Benzylated polyphenol, its epoxy resin, and their production and use thereof
JPH08301980A (en) * 1995-05-01 1996-11-19 Nippon Steel Chem Co Ltd Novel epoxy resin, its intermediate and production, and epoxy resin composition and cured item prepared using the same
JP2001302763A (en) * 2000-04-26 2001-10-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2005187607A (en) * 2003-12-25 2005-07-14 Dainippon Ink & Chem Inc Phenolic resin, epoxy resin, epoxy resin composition and cured product of the composition
JP2006117762A (en) * 2004-10-20 2006-05-11 Dainippon Ink & Chem Inc Epoxy resin composition, its cured product, novel dihydric phenol compound and its production method
JP2009242658A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Polyhydroxy compound, epoxy resin, manufacturing method thereof, epoxy resin composition, and hardened product thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057079A (en) * 2010-09-10 2012-03-22 Nippon Steel Chem Co Ltd Polyvalent hydroxy resin, epoxy resin, method for producing them, epoxy resin composition and its cured product
JP2015083704A (en) * 2010-09-27 2015-04-30 新日鉄住金化学株式会社 Production method of epoxy resin composition
JP2012082250A (en) * 2010-10-07 2012-04-26 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
CN102617987A (en) * 2011-01-31 2012-08-01 新日铁化学株式会社 Epoxy resin composition and condensate
JP2012158651A (en) * 2011-01-31 2012-08-23 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
CN102617987B (en) * 2011-01-31 2016-01-20 新日铁住金化学株式会社 Composition epoxy resin and cured article
CN102634164A (en) * 2011-02-10 2012-08-15 新日铁化学株式会社 Epoxide resin composition and condensate thereof
JP2012167141A (en) * 2011-02-10 2012-09-06 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
JP2012167142A (en) * 2011-02-10 2012-09-06 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
JP2013087174A (en) * 2011-10-17 2013-05-13 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product
JP2013166878A (en) * 2012-02-16 2013-08-29 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product
KR101987946B1 (en) 2012-02-23 2019-06-11 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
TWI548681B (en) * 2012-02-23 2016-09-11 Nippon Steel & Sumikin Chem Co A polyvalent hydroxyl resin, an epoxy resin, a manufacturing method thereof, an epoxy resin composition and a hardened product thereof
KR20140129227A (en) 2012-02-23 2014-11-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
CN104334597A (en) * 2012-02-23 2015-02-04 新日铁住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
JPWO2013125620A1 (en) * 2012-02-23 2015-07-30 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
WO2013125620A1 (en) * 2012-02-23 2013-08-29 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
WO2013157061A1 (en) * 2012-04-16 2013-10-24 新日鉄住金化学株式会社 Epoxy resin composition and cured product
WO2013187185A1 (en) * 2012-06-12 2013-12-19 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JPWO2013187185A1 (en) * 2012-06-12 2016-02-04 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
TWI631173B (en) * 2012-10-11 2018-08-01 新日鐵住金化學股份有限公司 Epoxy resin composition and hardened material
JP2014181326A (en) * 2013-03-21 2014-09-29 Nippon Steel & Sumikin Chemical Co Ltd Epoxy acrylate resin, epoxy acrylate acid anhydride adduct, curable resin composition, alkali development type photosensitive resin composition, and cured product of the same
WO2014162974A1 (en) * 2013-04-04 2014-10-09 日東電工株式会社 Underfill adhesive film, underfill adhesive film with integrated backgrinding tape, underfill adhesive film with integrated dicing tape, and semiconductor device
KR20150111850A (en) 2014-03-26 2015-10-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
CN107417890A (en) * 2016-05-19 2017-12-01 新日铁住金化学株式会社 Composition, hardening thing, prepreg and laminated plates
KR20170131262A (en) 2016-05-19 2017-11-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Epoxy resin curing agent composition, epoxy resin composition and cured product thereof
TWI728112B (en) * 2016-05-19 2021-05-21 日商日鐵化學材料股份有限公司 Composition, hardened product, prepreg and laminated board
CN107417890B (en) * 2016-05-19 2021-07-20 日铁化学材料株式会社 Composition, cured product, prepreg, and laminate
KR20170131267A (en) 2016-05-20 2017-11-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Epoxy resin composition and cured product thereof
JP2019104887A (en) * 2017-12-14 2019-06-27 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, cured product, and semiconductor device
JP7142233B2 (en) 2017-12-14 2022-09-27 パナソニックIpマネジメント株式会社 EPOXY RESIN COMPOSITION FOR ENCAPSULATION, CURED PRODUCT AND SEMICONDUCTOR DEVICE
US11629216B2 (en) 2021-03-29 2023-04-18 Chang Chun Plastics Co., Ltd. Polyhydric phenol resin, glycidyl ether of polyhydric phenol resin, and uses thereof
EP4067404A1 (en) * 2021-03-29 2022-10-05 Chang Chun Plastics Co., Ltd. Polyhydric phenol resin, glycidyl ether of polyhydric phenol resin, and uses thereof

Also Published As

Publication number Publication date
JP5320130B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5931234B2 (en) Method for producing epoxy resin composition
JP6406847B2 (en) Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP6462295B2 (en) Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP5000191B2 (en) Carbazole skeleton-containing resin, carbazole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP6799370B2 (en) Multivalent hydroxy resin, epoxy resin, their manufacturing method, epoxy resin composition and cured product thereof
JP6124865B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP5166096B2 (en) Polyvalent hydroxy compound, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5570449B2 (en) Epoxy resin composition and cured product
JP2015003972A (en) Epoxy resin, epoxy resin composition and hardened product of the composition
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JPWO2003068837A1 (en) Indole resins, epoxy resins and resin compositions containing these resins
JP2007297538A (en) Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product thereof
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JP7193337B2 (en) Polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP2006117790A (en) Indole skeleton-containing resin, epoxy resin composition and its cured product
JP4813201B2 (en) Indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2008222838A (en) Epoxy resin and epoxy resin composition and its cured product
JP2008239853A (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2008222837A (en) New polyhydric hydroxy compound, method for producing the hydroxy compound, and thermosetting resin composition containing the hydroxy compound and its cured product
WO2008117839A1 (en) Novel polyvalent hydroxy compound, method for producing the same, epoxy resin using the compound, and epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Ref document number: 5320130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250