JP2005187607A - Phenolic resin, epoxy resin, epoxy resin composition and cured product of the composition - Google Patents
Phenolic resin, epoxy resin, epoxy resin composition and cured product of the composition Download PDFInfo
- Publication number
- JP2005187607A JP2005187607A JP2003429706A JP2003429706A JP2005187607A JP 2005187607 A JP2005187607 A JP 2005187607A JP 2003429706 A JP2003429706 A JP 2003429706A JP 2003429706 A JP2003429706 A JP 2003429706A JP 2005187607 A JP2005187607 A JP 2005187607A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- aromatic hydrocarbon
- resin composition
- equivalent
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *c1ccccc1 Chemical compound *c1ccccc1 0.000 description 1
- BUJFTKPQXSIZFX-UHFFFAOYSA-N CCC(C)(C)NC Chemical compound CCC(C)(C)NC BUJFTKPQXSIZFX-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Epoxy Resins (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、電気特性に優れるプリント基板用材料に好適なエポキシ樹脂組成物、これに含有するフェノール化合物、エポキシ樹脂を与える。 This invention provides the epoxy resin composition suitable for the material for printed circuit boards excellent in an electrical property, the phenolic compound contained in this, and an epoxy resin.
エポキシ系材料は、エポキシ樹脂硬化剤とエポキシ樹脂を熱硬化させることにより、優れた絶縁性、接着性、耐熱性および成形性が得られるため、電気電子材料に幅広く使用されている。近年、情報処理の大容量化や高速化に対応するため、電気電子材料に対し、誘電率や誘電正接の低減が強く求められている。しかしながら、従来のエポキシ系材料では、硬化反応によって発生する2級水酸基が、誘電率や誘電正接を高める性質があり、要求を満足できないレベルにあった。硬化物中の2級水酸基を低減するには、できるだけ水酸当量やエポキシ当量の高い樹脂を用いるのが好ましいと考えられる。さらに耐熱性の維持を考慮するとノボラック骨格の変性型樹脂が有効と考えられる(例えば、特許文献1参照)。しかしながら、それら既存の変性ノボラック型樹脂による2級水酸基低減にも限界があり、誘電率や誘電正接の低減に対しては、効果が不十分であった。 Epoxy-based materials are widely used in electrical and electronic materials because excellent insulation, adhesiveness, heat resistance, and moldability can be obtained by thermally curing an epoxy resin curing agent and an epoxy resin. In recent years, in order to cope with an increase in capacity and speed of information processing, there has been a strong demand for reduction of dielectric constant and dielectric loss tangent for electric and electronic materials. However, in the conventional epoxy-based material, the secondary hydroxyl group generated by the curing reaction has a property of increasing the dielectric constant and the dielectric loss tangent, so that the requirement cannot be satisfied. In order to reduce the secondary hydroxyl group in the cured product, it is considered preferable to use a resin having as high a hydroxyl equivalent or epoxy equivalent as possible. Further, considering the maintenance of heat resistance, a modified resin having a novolac skeleton is considered to be effective (see, for example, Patent Document 1). However, there is a limit to the reduction of secondary hydroxyl groups by these existing modified novolak resins, and the effect is insufficient for reducing the dielectric constant and dielectric loss tangent.
従って、本発明の課題は、電気電子用エポキシ系材料に求められる、誘電率や誘電正接の低減できるエポキシ樹脂組成物(エポキシ系材料)を提供することである。 Accordingly, an object of the present invention is to provide an epoxy resin composition (epoxy material) that can reduce the dielectric constant and dielectric loss tangent required for an epoxy material for electrical and electronic applications.
本発明者は、前記の課題を解決すべく鋭意検討した結果、以下の知見を得た。
(1)水酸基当量が高いフェノール類とエポキシ当量が高いエポキシ樹脂とを含有するエポキシ樹脂組成物を用いると、誘電率や誘電正接の低い硬化物が得られる。
(2)ビニル基を1個有する芳香族炭化水素とビニル基を2個有する芳香族炭化水素とをフェノール化合物に反応させると高水酸基当量のフェノール類を得ることができる。
(3)前記(2)の方法で得られたフェノール類とエピクロルヒドリンとから誘導されるエポキシ樹脂もエポキシ当量が高くなる。
(4)前記(2)のフェノール化合物と(3)のエポキシ樹脂は、新規の化合物である。
As a result of intensive studies to solve the above problems, the present inventor has obtained the following knowledge.
(1) When an epoxy resin composition containing a phenol having a high hydroxyl equivalent and an epoxy resin having a high epoxy equivalent is used, a cured product having a low dielectric constant and dielectric loss tangent can be obtained.
(2) When an aromatic hydrocarbon having one vinyl group and an aromatic hydrocarbon having two vinyl groups are reacted with a phenol compound, a phenol having a high hydroxyl equivalent can be obtained.
(3) The epoxy resin derived from phenols and epichlorohydrin obtained by the method (2) also has a high epoxy equivalent.
(4) The phenol compound (2) and the epoxy resin (3) are novel compounds.
本発明は、このような知見に基づくものである。即ち、本発明は、フェノール性水酸基を有する芳香族炭化水素(a)とビニル基を2個有する芳香族炭化水素(b)とビニル基を1個有する芳香族炭化水素(b)を反応して得られる水酸基当量190〜350g/当量(以下、g/当量をg/eqと記す。)のフェノール化合物(A1)及びエポキシ樹脂(A2)を含有することを特徴とするエポキシ樹脂組成物、これを硬化した硬化物を提供する。 The present invention is based on such knowledge. That is, the present invention reacts an aromatic hydrocarbon (a) having a phenolic hydroxyl group, an aromatic hydrocarbon (b) having two vinyl groups, and an aromatic hydrocarbon (b) having one vinyl group. An epoxy resin composition characterized by containing a phenol compound (A1) and an epoxy resin (A2) of a hydroxyl group equivalent of 190 to 350 g / equivalent (hereinafter, g / equivalent is referred to as g / eq), A cured product is provided.
また、本発明は、下記一般式(2)で表される水酸基当量190〜350g/eqのフェノール化合物をも提供する。 The present invention also provides a phenol compound having a hydroxyl group equivalent of 190 to 350 g / eq represented by the following general formula (2).
また、本発明は、一般式(4)で表されるエポキシ当量280〜550g/当量(以下、g/当量をg/eqと記す。)のエポキシ樹脂をも提供する。 The present invention also provides an epoxy resin having an epoxy equivalent of 280 to 550 g / equivalent (hereinafter, g / equivalent is referred to as g / eq) represented by the general formula (4).
本発明のエポキシ樹脂組成物によれば、プリント配線板の基本的要求特性である耐湿性、耐半田性が損なわれることなく、目的とする誘電率や誘電正接の低減されたエポキシ樹脂硬化物が得られる。 According to the epoxy resin composition of the present invention, a cured epoxy resin having a reduced dielectric constant and dielectric loss tangent can be obtained without impairing moisture resistance and solder resistance, which are basic required characteristics of a printed wiring board. can get.
本発明のエポキシ樹脂組成物に用いるフェノール化合物(A1)は、フェノール性水酸基を有する芳香族炭化水素(a)と、ビニル基を2個含む芳香族炭化水素(b2)と、ビニル基を1個含む芳香族炭化水素(b1)とを反応して得られ、水酸基当量は、190〜350g/eqである。 The phenol compound (A1) used in the epoxy resin composition of the present invention is composed of an aromatic hydrocarbon (a) having a phenolic hydroxyl group, an aromatic hydrocarbon (b2) containing two vinyl groups, and one vinyl group. It is obtained by reacting with the aromatic hydrocarbon (b1) contained, and the hydroxyl equivalent is 190 to 350 g / eq.
この反応は、フェノール性水酸基を含有する芳香族炭化水素(a)の芳香環上の水素原子が、前記化合物(b2)のビニル基のα位炭素に付加してメチル基を生成する過程及び前記化合物(b1)のビニル基のα位炭素に付加してメチル基を生成する過程と、前記化合物(b2)、(b1)の開裂したビニル基のβ位炭素が、前記化合物(A)の芳香環上の水素原子が抜け空位となった位置に付加することにより行われる。 This reaction includes a process in which a hydrogen atom on the aromatic ring of the aromatic hydrocarbon (a) containing a phenolic hydroxyl group is added to the α-position carbon of the vinyl group of the compound (b2) to form a methyl group, and The process of adding a methyl group by adding to the α-position carbon of the vinyl group of the compound (b1) and the β-position carbon of the cleaved vinyl group of the compounds (b2) and (b1) This is done by adding a hydrogen atom on the ring to a position where it has become vacant.
この付加反応は、酸触媒の存在下でおこなわれる。また必要に応じて有機溶媒を用いても構わない。上記酸触媒としては、通常、この種の反応に用いられる触媒であれば特に限定されるものではないが、例えば、塩酸、硫酸、無水硫酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、シユウ酸、ギ酸、リン酸、トリクロロ酢酸、トリフルオロ酢酸等が挙げられる。触媒の添加量としては、フェノール類に対して、0.01〜10重量%の範囲が好ましい。また上記有機溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族性有機溶媒や、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系有機溶媒、メタノール、エタノール、イソプロピルアルコール、ノルマルブタノールなどのアルコール系有機溶媒等をもちいることができ、用いる原料や生成物の溶解度などの性状、反応条件や経済性等を考慮して適宜選択すればよい。有機溶媒の量としては、フェノール類とビニル化合物の合計重量に対して、10〜500重量%の範囲が好ましい。反応条件としては、通常、室温から200℃、好ましくは、50〜150℃の温度で、0.5〜30時間程度加熱攪拌すればよい。反応終了後、必要に応じて、苛性ソーダ、重炭酸ソーダなどのアルカリやアンモニアやトリエチルアミンなどの有機塩基を用いて中和、或いは水洗などして酸触媒を失活させた後に、過剰の未反応分や溶剤を蒸留などによって除去する。触媒の失活は未反応分を除去した後におこなってもかまわない。その際は、トルエンなどの疎水性有機溶媒で希釈した後に、アルカリや有機塩基による中和、もしくは中性になるまで水洗を繰り返すなどすればよい。 This addition reaction is performed in the presence of an acid catalyst. Moreover, you may use an organic solvent as needed. The acid catalyst is not particularly limited as long as it is a catalyst usually used for this kind of reaction. For example, hydrochloric acid, sulfuric acid, sulfuric anhydride, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfone Examples include acid, oxalic acid, formic acid, phosphoric acid, trichloroacetic acid, trifluoroacetic acid and the like. The addition amount of the catalyst is preferably in the range of 0.01 to 10% by weight with respect to the phenols. The organic solvent includes aromatic organic solvents such as benzene, toluene and xylene, ketone organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, and alcohols such as methanol, ethanol, isopropyl alcohol and normal butanol. An organic solvent or the like can be used, and it may be selected as appropriate in consideration of properties such as solubility of raw materials and products used, reaction conditions, economy, and the like. The amount of the organic solvent is preferably in the range of 10 to 500% by weight with respect to the total weight of the phenol and the vinyl compound. The reaction conditions are usually from room temperature to 200 ° C., preferably from 50 to 150 ° C., and may be heated and stirred for about 0.5 to 30 hours. After completion of the reaction, neutralize with alkali such as caustic soda and sodium bicarbonate or organic base such as ammonia or triethylamine or deactivate the acid catalyst by washing with water, and then remove excess unreacted components and solvent. Is removed by distillation or the like. The catalyst may be deactivated after removing unreacted components. In that case, after diluting with a hydrophobic organic solvent such as toluene, washing with water may be repeated until neutralization with an alkali or organic base or neutrality.
前記フェノール性水酸基を有する芳香族炭化水素(a)としては、例えば、フェノールや、ビスフェノールF、ビスフェノールA等のビスフェノール類、クレゾール、ブチルフェノール等のアルキルフェノール類、ブロモフェノール等のハロゲノフェノール類、レゾルシン、カテコール、ハイドロキノン等のジヒドロキシ類、ノボラック等のフェノール性水酸基を3個以上有する芳香族炭化水素、ナフトール、ジヒドロキシナフタレン等のナフトール類などが挙げられる。またこれらのなかから2種類以上を併用しても構わない。これらのなかでも、ビスフェノールAは性能とコストのバランスに優れる点で特に好ましい。 Examples of the aromatic hydrocarbon (a) having a phenolic hydroxyl group include phenol, bisphenols such as bisphenol F and bisphenol A, alkylphenols such as cresol and butylphenol, halogenophenols such as bromophenol, resorcin, and catechol. And dihydroxys such as hydroquinone, aromatic hydrocarbons having 3 or more phenolic hydroxyl groups such as novolak, and naphthols such as naphthol and dihydroxynaphthalene. Two or more of these may be used in combination. Among these, bisphenol A is particularly preferable in that it has an excellent balance between performance and cost.
また、ビニル基を2個含む芳香族炭化水素(b2)としては、ビニル基を2個有する以外、特に限定されることはないが、例えばジビニルベンゼン、アルキルジビニルベンゼン、ジアリルフタレート等の芳香族ジビニル化合物が挙げられる。またこれらの内2種類以上を併用しても構わない。なかでも反応性や作業性に優れる点でジビニルベンゼンが特に好ましい。 The aromatic hydrocarbon (b2) containing two vinyl groups is not particularly limited except that it has two vinyl groups. For example, aromatic divinyl such as divinylbenzene, alkyldivinylbenzene, diallyl phthalate, etc. Compounds. Two or more of these may be used in combination. Of these, divinylbenzene is particularly preferable in terms of excellent reactivity and workability.
また、ビニル基を1個含む芳香族炭化水素(b1)としては、スチレン、エチルスチレン、モノブロモスチレン等の芳香族モノビニル化合物が挙げられるが、反応性や作業性に優れる点で、スチレンとエチルスチレンが特に好ましい。 In addition, examples of the aromatic hydrocarbon (b1) containing one vinyl group include aromatic monovinyl compounds such as styrene, ethylstyrene, and monobromostyrene, but styrene and ethyl are excellent in reactivity and workability. Styrene is particularly preferred.
また、前記反応の際のビニル基を2個含む芳香族炭化水素(b2)とビニル基を1個含む芳香族炭化水素(b1)との混合比率は、得られるフェノール化合物の水酸基当量が190〜350g/eqであれば、特に限定されず、所望の1分子当たりの官能基(水酸基)の数が得られるように、適宜調整すればよい。これらの中でも、重量比〔(b2)/(b1)〕は、1分子当たりの官能基(水酸基)の数が大きく、硬化物の耐熱性が向上することから0.1以上が好ましく、前記の反応の際にゲル化等が起こりにくいことから、1.5以下が好ましく、前記重量比が0.2〜1.3の範囲にあることが特に好ましい。 The mixing ratio of the aromatic hydrocarbon (b2) containing two vinyl groups and the aromatic hydrocarbon (b1) containing one vinyl group in the reaction is such that the hydroxyl equivalent of the resulting phenol compound is 190 to 190. If it is 350 g / eq, it will not specifically limit, What is necessary is just to adjust suitably so that the number of desired functional groups (hydroxyl group) per molecule may be obtained. Among these, the weight ratio [(b2) / (b1)] is preferably 0.1 or more because the number of functional groups (hydroxyl groups) per molecule is large and the heat resistance of the cured product is improved. Since gelation or the like hardly occurs during the reaction, 1.5 or less is preferable, and the weight ratio is particularly preferably in the range of 0.2 to 1.3.
前記フェノール化合物(A1)は、例えば、下記一般式(1)で表わすことができる構造を有する。 The phenol compound (A1) has, for example, a structure that can be represented by the following general formula (1).
前記一般式(1)中のAの構造としては、例えば、フェノールや、ビスフェノールF、ビスフェノールA等のビスフェノール類、クレゾール、ブチルフェノール等のアルキルフェノール類、ブロモフェノール等のハロゲノフェノール類、レゾルシン、カテコール、ハイドロキノン等のジヒドロキシ類、ノボラック等のフェノール性水酸基を3個以上有する芳香族炭化水素、ナフトール、ジヒドロキシナフタレン等のナフトール類から、ビニル基を有する芳香族炭化水素〔前記化合物(b1)、(b2)〕と反応した分水素原子を除いた残基が挙げられる。またこれらのなかから2種類以上を併用しても構わない。これらのなかでも、ビスフェノールA骨格を有するものが性能とコストのバランスに優れる点で特に好ましい。 Examples of the structure of A in the general formula (1) include phenols, bisphenols such as bisphenol F and bisphenol A, alkylphenols such as cresol and butylphenol, halogenophenols such as bromophenol, resorcin, catechol, and hydroquinone. Aromatic hydrocarbons having a vinyl group from aromatic hydrocarbons having 3 or more phenolic hydroxyl groups such as dihydroxys such as novolac, naphthols such as naphthol and dihydroxynaphthalene [the compounds (b1) and (b2)] And a residue from which a hydrogen atom has been removed. Two or more of these may be used in combination. Among these, those having a bisphenol A skeleton are particularly preferable in terms of excellent balance between performance and cost.
本発明に用いられるエポキシ樹脂(A2)としては、特に限定されないが、例えば、前記フェノール化合物(A1)とエピハロヒドリンから誘導されるエポキシ樹脂、或いはそれ以外の種々のエポキシ樹脂が使用でき、特に限定されるものではない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂などが挙げられる。またこれらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。 The epoxy resin (A2) used in the present invention is not particularly limited. For example, the epoxy resin derived from the phenol compound (A1) and epihalohydrin, or other various epoxy resins can be used, and is not particularly limited. It is not something. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy Resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin , Aromatic hydrocarbon formaldehyde resin modified phenolic resin type epoxy resin, biphenyl modified novolak type epoxy resin, tetrabromo Scan phenol A type epoxy resins, such as brominated phenol novolak type epoxy resins. Moreover, these epoxy resins may be used independently and may mix 2 or more types.
これらの中でも、得られる硬化物の誘電率や誘電正接が低くなることから前記フェノール化合物(A1)とエピハロヒドリンから誘導されるエポキシ樹脂が、好ましく、特にエポキシ当量が280〜550g/eqの範囲にあるものが好ましい。 Among these, the epoxy resin derived from the phenol compound (A1) and epihalohydrin is preferable because the dielectric constant and dielectric loss tangent of the resulting cured product is low, and the epoxy equivalent is particularly in the range of 280 to 550 g / eq. Those are preferred.
本発明のエポキシ樹脂組成物では、更に必要に応じて、硬化促進剤を用いてもよい。硬化促進剤としては、種々のものが用いられるが、例えば、ベンジルジメチルアミン等の第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられ、これらは単独のみならず2種以上の併用も可能である。 In the epoxy resin composition of this invention, you may use a hardening accelerator further as needed. Various curing accelerators are used, and examples thereof include tertiary amines such as benzyldimethylamine, imidazole, organic acid metal salts, Lewis acids, amine complex salts, and the like. Combinations of more than one species are possible.
また、更に、必要に応じて、後述するエポキシ樹脂用硬化剤も併用できる。この場合、フェノール化合物(A1)は、前記フェノール化合物(A1)と必要に応じて併用する前記エポキシ樹脂用硬化剤の合計100重量部当たり、30重量部以上、特に40重量部以上含有することが好ましい。前記エポキシ樹脂用硬化剤としては、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などの種々の硬化剤を用いることができるが、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂等を始めとする多価フェノール化合物、及びこれらの変性物、イミダゾ−ル、BF3−アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されるものではない。 Furthermore, the epoxy resin hardening | curing agent mentioned later can also be used together as needed. In this case, the phenol compound (A1) may be contained in an amount of 30 parts by weight or more, particularly 40 parts by weight or more per 100 parts by weight in total of the epoxy resin curing agent used in combination with the phenol compound (A1) as necessary. preferable. As the curing agent for epoxy resin, various curing agents such as amine compounds, acid anhydride compounds, amide compounds and phenol compounds can be used. For example, diaminodiphenylmethane, diethylenetriamine, triethylene Polyamide resin synthesized from tetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, linolenic acid dimer and ethylenediamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, Methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol Fatty, dicyclopentadiene phenol addition resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl Examples include, but are not limited to, polyphenol compounds such as modified phenol resins and aminotriazine-modified phenol resins, and modified products thereof, imidazoles, BF 3 -amine complexes, guanidine derivatives, and the like. .
本発明のエポキシ樹脂組成物において硬化剤成分(前記フェノール化合物(A1)と必要に応じて併用する前記エポキシ樹脂用硬化剤)の使用量は、良好な硬化物性が得られることからエポキシ樹脂のエポキシ基1当量に対して、硬化剤成分中の活性水素基が0.7〜1.5当量になる量が好ましい。 In the epoxy resin composition of the present invention, the amount of the curing agent component (the epoxy resin curing agent used in combination with the phenol compound (A1) as necessary) is an epoxy resin epoxy resin because good cured properties can be obtained. The amount of active hydrogen groups in the curing agent component is preferably 0.7 to 1.5 equivalents relative to 1 equivalent of the group.
本発明のエポキシ樹脂組成物には必要に応じて無機質充填材を使用することができる。例えば、炭酸カルシウム、硫酸バリウム、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。その充填率は難燃性の点から高い方が好ましい。また、必要に応じて、シランカップリング剤、離型剤、顔料等の種々の配合剤を添加することができる。 An inorganic filler can be used in the epoxy resin composition of the present invention as necessary. Examples thereof include calcium carbonate, barium sulfate, fused silica, crystalline silica, alumina, silicon nitride, and aluminum nitride. The filling rate is preferably higher from the viewpoint of flame retardancy. Moreover, various compounding agents, such as a silane coupling agent, a mold release agent, and a pigment, can be added as needed.
また、必要に応じて難燃付与剤を添加できる。難燃付与剤としては種々のものが使用できるが、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物などが挙げられる。それらの具体例を挙げるならばテトラブロモビスフェノールA型エポキシ樹脂などのハロゲン化合物、赤燐、燐酸エステル化合物などの燐原子含有化合物、メラミンなどの窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、硼酸カルシウム、ホウ酸などの無機系難燃化合物が例示できる。 Moreover, a flame retardant imparting agent can be added as necessary. Various flame retardants can be used, and examples thereof include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, and inorganic flame retardant compounds. Specific examples thereof include halogen compounds such as tetrabromobisphenol A type epoxy resin, phosphorus atom-containing compounds such as red phosphorus and phosphate compounds, nitrogen atom-containing compounds such as melamine, aluminum hydroxide, magnesium hydroxide, boric acid Examples thereof include inorganic flame retardant compounds such as zinc, calcium borate, and boric acid.
本発明のエポキシ樹脂組成物は、種々の方法と同様の方法で容易に硬化物とすることができる。例えば、エポキシ樹脂と硬化剤、充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得、そのエポキシ樹脂組成物を溶融後注型あるいはトランスファ−成形機などを用いて成形し、さらに80〜200℃で2〜10時間に加熱することにより硬化物を得ることができる。また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させてワニス化して塗料として用いることができる。さらにはそのワニスをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して硬化物を得ることなどもできる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜65重量%を占める量を用いる。 The epoxy resin composition of the present invention can be easily made into a cured product by the same methods as various methods. For example, an epoxy resin composition is obtained by thoroughly mixing an epoxy resin and a compounding agent such as a curing agent and a filler as necessary using an extruder, a kneader, a roll and the like until uniform. The epoxy resin composition is melted and then molded using a casting or transfer molding machine, and further heated at 80 to 200 ° C. for 2 to 10 hours to obtain a cured product. Further, the epoxy resin composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. to be varnished and used as a coating material. Furthermore, a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper and the like with heat and drying the varnish can be subjected to hot press molding to obtain a cured product. The solvent used here is usually 10 to 70% by weight, preferably 15 to 65% by weight in the mixture of the epoxy resin composition of the present invention and the solvent.
本発明のフェノール化合物は、前記一般式(2)で表される水酸基当量190〜350g/eqのフェノール化合物である。これらの中でも、nが1〜4であり、R2がエチル基であるものが好ましい。本発明のフェノール化合物は、例えば、前記フェノール化合物(A1)と同様の方法で得られる。 The phenol compound of the present invention is a phenol compound having a hydroxyl group equivalent of 190 to 350 g / eq represented by the general formula (2). Among these, those in which n is 1 to 4 and R 2 is an ethyl group are preferable. The phenol compound of this invention is obtained by the method similar to the said phenol compound (A1), for example.
本発明のエポキシ樹脂は、前記一般式(3)で表されるエポキシ当量280〜550g/eqのもので、例えば前述の一般式(2)で表されるフェノール樹脂とエピハロヒドリンからの反応によって得ることができる。 The epoxy resin of the present invention has an epoxy equivalent of 280 to 550 g / eq represented by the general formula (3), and is obtained, for example, by a reaction from a phenol resin represented by the general formula (2) and an epihalohydrin. Can do.
前記エポキシ樹脂を得る反応方法としては種々の方法が採用できる。例えば、一般式(2)で表されるフェノール樹脂とエピクロルヒドリン、エピブロムヒドリン等のエピハロヒドリンの溶解混合物に水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を添加し、または添加しながら20〜120℃で1〜10時間反応させることにより本発明のエポキシ樹脂を得る。エピハロヒドリンの添加量は、原料の該フェノール樹脂中の水酸基1当量に対して、通常0.3〜20当量の範囲が用いられる。エピハロヒドリンが2.5当量よりも少ない場合、エポキシ基と未反応水酸基が反応しやすくなるため、エポキシ基と未反応水酸基が付加反応して生成する基(−CH2CR(OH)CH2−、R:水素原子又は有機炭素基)を含んだ高分子量物が得られる。一方、2.5当量よりも多い場合、理論構造物の含有量が高くなる。所望の特性によってエピハロヒドリンの量を適宜調節すればよい。 Various methods can be adopted as a reaction method for obtaining the epoxy resin. For example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to a dissolved mixture of a phenol resin represented by the general formula (2) and an epihalohydrin such as epichlorohydrin or epibromohydrin, or while adding 20 The epoxy resin of this invention is obtained by making it react at -120 degreeC for 1 to 10 hours. The addition amount of epihalohydrin is usually in the range of 0.3 to 20 equivalents relative to 1 equivalent of hydroxyl group in the phenol resin as a raw material. When the epihalohydrin is less than 2.5 equivalents, an epoxy group and an unreacted hydroxyl group are likely to react with each other. Therefore, a group formed by an addition reaction between an epoxy group and an unreacted hydroxyl group (—CH 2 CR (OH) CH 2 —, A high molecular weight product containing R: a hydrogen atom or an organic carbon group is obtained. On the other hand, when it is more than 2.5 equivalents, the content of the theoretical structure becomes high. The amount of epihalohydrin may be appropriately adjusted according to desired characteristics.
本発明のエポキシ樹脂を得る反応において、アルカリ金属水酸化物はその水溶液を使用してもよく、その場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液し水は除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。また、該フェノール樹脂とエピハロヒドリンの溶解混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加し50〜150℃で1〜5時間反応させて得られる該フェノール樹脂のハロヒドリンエーテル化物にアルカリ金属水酸化物の固体または水溶液を加え、再び20〜120℃で1〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。 In the reaction for obtaining the epoxy resin of the present invention, an aqueous solution of the alkali metal hydroxide may be used. In that case, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system and under reduced pressure. Alternatively, water and epihalohydrin may be continuously distilled off under normal pressure, followed by liquid separation, removal of water, and epihalohydrin being continuously returned to the reaction system. Further, it is obtained by adding a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst to the dissolved mixture of the phenol resin and epihalohydrin and reacting at 50 to 150 ° C. for 1 to 5 hours. A method of adding a solid or aqueous solution of an alkali metal hydroxide to the halohydrin etherified product of the phenol resin and reacting again at 20 to 120 ° C. for 1 to 10 hours to dehydrohalogenate (ring closure) may be used.
更に、反応を円滑に進行させるためにメタノール、エタノール、イソプロピルアルコール、ブタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、ジオキサンなどのエーテル類、ジメチルスルホン、ジメチルスルホキシド等の非プロトン性極性溶媒などを添加して反応を行うことが好ましい。溶媒を使用する場合のその使用量は、エピハロヒドリンの量に対し通常5〜50重量%、好ましくは10〜30重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの量に対し通常5〜100重量%、好ましくは10〜60重量%である。 Furthermore, alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane, aprotic polar solvents such as dimethyl sulfone and dimethyl sulfoxide, etc. are used in order to facilitate the reaction. It is preferable to carry out the reaction by adding. The amount of the solvent used is usually 5 to 50% by weight, preferably 10 to 30% by weight, based on the amount of epihalohydrin. Moreover, when using an aprotic polar solvent, it is 5-100 weight% normally with respect to the quantity of epihalohydrin, Preferably it is 10-60 weight%.
これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下、110〜250℃、圧力10mmHg以下でエピハロヒドリンや他の添加溶媒などを除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、エピハロヒドリン等を回収した後に得られる粗エポキシ樹脂を再びトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて更に反応させて閉環を確実なものにすることもできる。この場合、アルカリ金属水酸化物の使用量は粗エポキシ樹脂中に残存する加水分解性塩素1モルに対して、通常0.5〜10モル、好ましくは1.2〜5.0モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜3時間である。反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量は、粗エポキシ樹脂に対して0.1〜3.0重量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより本発明のエポキシ樹脂が得られる。 After the epoxidation reaction product is washed with water or without washing with water, epihalohydrin and other added solvents are removed at 110 to 250 ° C. under a pressure of 10 mmHg or less under reduced pressure. Further, in order to obtain an epoxy resin with less hydrolyzable halogen, the crude epoxy resin obtained after recovering epihalohydrin or the like is dissolved again in a solvent such as toluene or methyl isobutyl ketone, and an alkali such as sodium hydroxide or potassium hydroxide is obtained. An aqueous solution of a metal hydroxide can be added and further reacted to ensure ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.5 to 10 mol, preferably 1.2 to 5.0 mol, per 1 mol of hydrolyzable chlorine remaining in the crude epoxy resin. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 3 hours. For the purpose of improving the reaction rate, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present. The amount of the phase transfer catalyst used is preferably in the range of 0.1 to 3.0% by weight based on the crude epoxy resin. After completion of the reaction, the produced salt is removed by filtration, washing with water, and the solvent of toluene, methyl isobutyl ketone, etc. is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.
次に本発明を実施例、比較例により具体的に説明するが、以下において部、%は特に断わりのない限り重量基準である。 EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, parts and% are based on weight unless otherwise specified.
実施例1
攪拌機、コンデンサー、温度計及び滴下ロートを備えた4つ口3リットルフラスコに、ビスフェノールAを530g、MIBKを530g、及び、触媒としてパラトルエンスルホン酸を1g加え、100℃まで昇温した。滴下ロートよりジビニルベンゼン152gとエチルスチレン38gとスチレン210gとの混合物を少量ずつ滴下して、100〜110℃に温度を保ちながら約1時間かけて滴下させた後、10時間反応させた。80℃に冷却後、水酸化ナトリウム2g、水500gを加えて80℃で30分攪拌した。分液し水層を棄却した後、120℃まで蒸留しながら昇温しろ過した。さらに180℃まで昇温し減圧蒸留による精製を行った。反応容器より取り出し、軟化点83℃、水酸基当量220g/eqの固形のフェノール化合物1050gを得た。得られたフェノール化合物の赤外吸収スペクトルと核磁気共鳴スペクトルを図1−1、図1−2に示す。なお、得られたフェノール化合物のn(一般式(2)中の)は、0.7であった。
Example 1
To a 4-neck 3 liter flask equipped with a stirrer, condenser, thermometer and dropping funnel, 530 g of bisphenol A, 530 g of MIBK, and 1 g of paratoluenesulfonic acid as a catalyst were added, and the temperature was raised to 100 ° C. A mixture of 152 g of divinylbenzene, 38 g of ethylstyrene and 210 g of styrene was dropped little by little from the dropping funnel, and the mixture was dropped over about 1 hour while maintaining the temperature at 100 to 110 ° C., and then reacted for 10 hours. After cooling to 80 ° C., 2 g of sodium hydroxide and 500 g of water were added and stirred at 80 ° C. for 30 minutes. After liquid separation and discarding of the aqueous layer, the mixture was heated to 120 ° C. while being distilled and filtered. Furthermore, it heated up to 180 degreeC and refine | purified by vacuum distillation. Taking out from the reaction vessel, 1050 g of a solid phenol compound having a softening point of 83 ° C. and a hydroxyl group equivalent of 220 g / eq was obtained. The infrared absorption spectrum and nuclear magnetic resonance spectrum of the obtained phenol compound are shown in FIGS. 1-1 and 1-2. In addition, n (in General formula (2)) of the obtained phenol compound was 0.7.
実施例2
温度計、滴下ロート、冷却管、攪拌機を取り付けたフラスコに窒素ガスパージを施しながら、実施例1で得られたフェノール化合物220g(水酸基1.0当量)、エピクロルヒドリン467g(6.0モル)、n−ブタノール53g、テトラエチルベンジルアンモニウムクロライド2.3gを仕込み溶解させた。65℃に昇温した後に、共沸する圧力までに減圧して、49%水酸化ナトリウム水溶液82部(1.0モル)を5時間かけて滴下した、次いで同条件下で0.5時間攪拌を続けた。この間、共沸で留出してきた留出分をディーンスタークトラップで分離して、水層を除去し、油層を反応系内に戻しながら反応した。その後、未反応のエピクロルヒドリンを減圧蒸留して留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン550部とn−ブタノール55部とを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液15部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去してエポキシ樹脂300gを得た。得られたエポキシ樹脂の軟化点は60℃、エポキシ当量は330g/eqであった。
Example 2
While performing nitrogen gas purging on a flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer, 220 g of phenol compound obtained in Example 1 (hydroxyl group 1.0 equivalent), 467 g of epichlorohydrin (6.0 mol), n- 53 g of butanol and 2.3 g of tetraethylbenzylammonium chloride were charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to an azeotropic pressure, and 82 parts (1.0 mol) of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours, and then stirred for 0.5 hours under the same conditions. Continued. During this time, the distillate distilled azeotropically was separated by a Dean-Stark trap, the aqueous layer was removed, and the reaction was carried out while returning the oil layer to the reaction system. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure. 550 parts of methyl isobutyl ketone and 55 parts of n-butanol were added to the crude epoxy resin thus obtained and dissolved. Further, 15 parts of a 10% aqueous sodium hydroxide solution was added to this solution and reacted at 80 ° C. for 2 hours. Then, washing with 100 g of water was repeated three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after microfiltration, the solvent was distilled off under reduced pressure to obtain 300 g of an epoxy resin. The resulting epoxy resin had a softening point of 60 ° C. and an epoxy equivalent of 330 g / eq.
実施例3
攪拌機、コンデンサー、温度計及び滴下ロートを備えた4つ口3リットルフラスコに、ビスフェノールAを530g、MIBKを1000g、及び、触媒としてパラトルエンスルホン酸を1g加え、100℃まで昇温した。滴下ロートよりジビニルベンゼン220g、エチルスチレン180gの混合物を少量ずつ滴下して、100〜110℃に温度を保ちながら約1時間かけて滴下させた後、10時間反応させた。80℃に冷却後、水酸化ナトリウム2g、水500gを加えて80℃で30分攪拌した。分液し水層を棄却した後、120℃まで蒸留しながら昇温しろ過した。さらに180℃まで昇温し、減圧蒸留による精製を行った。反応容器より取り出し、軟化点105℃、水酸基当量220g/eqの固形のフェノール化合物を得た。得られたフェノール化合物の赤外吸収スペクトルと核磁気共鳴スペクトルを図2−1、図2−2に示す。なお、得られたフェノール化合物のn(一般式(2)中の)は、2.1であった。
Example 3
To a four-necked 3 liter flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel, 530 g of bisphenol A, 1000 g of MIBK, and 1 g of paratoluenesulfonic acid as a catalyst were added, and the temperature was raised to 100 ° C. A mixture of 220 g of divinylbenzene and 180 g of ethylstyrene was dropped little by little from the dropping funnel and dropped over about 1 hour while maintaining the temperature at 100 to 110 ° C., and then reacted for 10 hours. After cooling to 80 ° C., 2 g of sodium hydroxide and 500 g of water were added and stirred at 80 ° C. for 30 minutes. After liquid separation and discarding of the aqueous layer, the mixture was heated to 120 ° C. while being distilled and filtered. Furthermore, it heated up to 180 degreeC and refine | purified by vacuum distillation. The solid phenol compound having a softening point of 105 ° C. and a hydroxyl group equivalent of 220 g / eq was obtained from the reaction vessel. The infrared absorption spectrum and nuclear magnetic resonance spectrum of the obtained phenol compound are shown in FIGS. 2-1 and 2-2. In addition, n (in General formula (2)) of the obtained phenol compound was 2.1.
実施例4
原料のフェノール化合物を合成例3で得られたフェノール樹脂220gに変更した以外は、実施例2と同様にした。得られたエポキシ樹脂は300gで、軟化点は60℃、エポキシ当量は330g/eqであった。
Example 4
Example 2 was repeated except that the raw material phenol compound was changed to 220 g of the phenol resin obtained in Synthesis Example 3. The obtained epoxy resin was 300 g, the softening point was 60 ° C., and the epoxy equivalent was 330 g / eq.
合成比較例1
攪拌機、コンデンサー、温度計及び滴下ロートを備えた4つ口3リットルフラスコに、ビスフェノールAを530g、MIBKを530g、及び、触媒としてパラトルエンスルホン酸を1g加え、100℃まで昇温した。滴下ロートでジビニルベンゼン152gとエチルスチレン38gとの混合物を少量ずつ滴下して、100〜110℃に温度を保ちながら約1時間かけて滴下させた後、10時間反応させた。80℃に冷却後、水酸化ナトリウム2g、水500gを加えて80℃で30分攪拌した。分液し水層を棄却した後、120℃まで蒸留しながら昇温しろ過した。さらに180℃まで昇温し減圧蒸留による精製を行った。反応容器より取り出し、軟化点90℃、水酸基当量160g/eqの固形の変性ノボラック樹脂705gを得た。
Synthesis Comparative Example 1
To a 4-neck 3 liter flask equipped with a stirrer, condenser, thermometer and dropping funnel, 530 g of bisphenol A, 530 g of MIBK, and 1 g of paratoluenesulfonic acid as a catalyst were added, and the temperature was raised to 100 ° C. A mixture of 152 g of divinylbenzene and 38 g of ethylstyrene was dropped little by little with a dropping funnel and dropped over about 1 hour while maintaining the temperature at 100 to 110 ° C., followed by reaction for 10 hours. After cooling to 80 ° C., 2 g of sodium hydroxide and 500 g of water were added and stirred at 80 ° C. for 30 minutes. After liquid separation and discarding of the aqueous layer, the mixture was heated to 120 ° C. while being distilled and filtered. Furthermore, it heated up to 180 degreeC and refine | purified by vacuum distillation. Taking out from the reaction vessel, 705 g of a solid modified novolak resin having a softening point of 90 ° C. and a hydroxyl group equivalent of 160 g / eq was obtained.
合成比較例2
原料のフェノール樹脂を合成比較例1で得られたフェノール樹脂160gに変更した以外は、実施例2と同様にした。得られたエポキシ樹脂は210gで、軟化点は65℃、エポキシ当量は230g/eqであった。
Synthesis Comparative Example 2
The same procedure as in Example 2 was performed except that the raw material phenol resin was changed to 160 g of the phenol resin obtained in Synthesis Comparative Example 1. The obtained epoxy resin was 210 g, the softening point was 65 ° C., and the epoxy equivalent was 230 g / eq.
実施例5、6および比較例1
第1表に示す配合に従って樹脂ワニスを調製し、エポキシ樹脂組成物を得た。この際の硬化剤とエポキシ樹脂の配合は当量比で1:1とした。また、硬化促進剤としては、主剤のエポキシ樹脂100部に対して0.1部となる割合とした。次いで、それぞれの混合溶液を用いて下記に示す条件で硬化させて両面銅張積層板を試作した。得られた両面銅張積層板は、エッチング処理を施し、銅箔を除去した後、下記の条件において各物性試験を行った。結果を第1表に示す。
(積層板作製条件)
基材:ガラスクロス(#7628タイプ)、プライ数:8、プリプレグ化条件:160℃/3分、銅箔:35μm、硬化条件:170℃にて1時間/40kg/cm2、成型後板厚:1.5mm、樹脂含有量:38%
Examples 5 and 6 and Comparative Example 1
A resin varnish was prepared according to the formulation shown in Table 1 to obtain an epoxy resin composition. At this time, the curing agent and the epoxy resin were mixed in an equivalent ratio of 1: 1. Moreover, as a hardening accelerator, it was set as the ratio used as 0.1 part with respect to 100 parts of epoxy resins of the main ingredient. Next, each of the mixed solutions was cured under the following conditions to produce a double-sided copper-clad laminate. The obtained double-sided copper-clad laminate was subjected to an etching treatment, and after removing the copper foil, each physical property test was performed under the following conditions. The results are shown in Table 1.
(Laminate production conditions)
Base material: glass cloth (# 7628 type), number of plies: 8, prepreg condition: 160 ° C./3 minutes, copper foil: 35 μm, curing condition: 170 ° C. for 1 hour / 40 kg / cm 2 , thickness after molding : 1.5 mm, resin content: 38%
(各物性試験の測定条件)
ガラス転移点:DMAによる(昇温スピード3℃/分)
プレシャークッカーテスト(PCT):121℃水蒸気下中で、所定時間試験片を処理した。
耐湿耐半田性試験:PCT処理後260℃の半田浴に20秒浸漬して評価を行った。評価は、その試験片の外観、特にミーズリングの有無を目視判定で行った。判定基準は、○:全く異常なし、△:わずかにミーズリング発生、×:ミーズリング有り
(Measurement conditions for each physical property test)
Glass transition point: by DMA (temperature increase speed 3 ° C / min)
Pre-shear cooker test (PCT): The test piece was processed for a predetermined time in 121 degreeC water vapor | steam.
Moisture resistance and solder resistance test: Evaluation was performed by immersing in a solder bath at 260 ° C. for 20 seconds after PCT treatment. The evaluation was performed by visual judgment on the appearance of the test piece, in particular, the presence or absence of mesuring. Judgment criteria: ○: No abnormality at all, △: Slightly mis-seen, x: Missed
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003429706A JP2005187607A (en) | 2003-12-25 | 2003-12-25 | Phenolic resin, epoxy resin, epoxy resin composition and cured product of the composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003429706A JP2005187607A (en) | 2003-12-25 | 2003-12-25 | Phenolic resin, epoxy resin, epoxy resin composition and cured product of the composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005187607A true JP2005187607A (en) | 2005-07-14 |
Family
ID=34788286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003429706A Pending JP2005187607A (en) | 2003-12-25 | 2003-12-25 | Phenolic resin, epoxy resin, epoxy resin composition and cured product of the composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005187607A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235819A (en) * | 2009-03-31 | 2010-10-21 | Nippon Steel Chem Co Ltd | Polyvalent hydroxy resin, epoxy resin, methods for producing them, epoxy resin composition, and cured material thereof |
JP2013151684A (en) * | 2013-02-25 | 2013-08-08 | Nippon Steel & Sumikin Chemical Co Ltd | Polyvalent hydroxy resin, method for production thereof, epoxy resin composition, and cured product of the composition |
-
2003
- 2003-12-25 JP JP2003429706A patent/JP2005187607A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235819A (en) * | 2009-03-31 | 2010-10-21 | Nippon Steel Chem Co Ltd | Polyvalent hydroxy resin, epoxy resin, methods for producing them, epoxy resin composition, and cured material thereof |
JP2013151684A (en) * | 2013-02-25 | 2013-08-08 | Nippon Steel & Sumikin Chemical Co Ltd | Polyvalent hydroxy resin, method for production thereof, epoxy resin composition, and cured product of the composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5262389B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP3476027B2 (en) | Manufacturing method of epoxy resin | |
JP4259536B2 (en) | Method for producing phenol resin and method for producing epoxy resin | |
JP4247658B2 (en) | Novel epoxy resin, epoxy resin composition and cured product thereof | |
WO2006101008A1 (en) | Epoxy resin composition, cured product thereof, novel epoxy resin, process for production thereof, and novel phenol resin | |
JP2006307162A (en) | Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin | |
JPH073123A (en) | Epoxy resin composition | |
JP2004137425A (en) | Epoxy resin composition and its molded and cured product | |
EP0133600B1 (en) | Epoxy resin and composition | |
JP4474891B2 (en) | Epoxy resin composition, cured product thereof and epoxy resin | |
JP2003342350A (en) | High-molecular weight epoxy resin, resin composition for electrical laminate, and electrical laminate | |
JP2009286949A (en) | Curable resin composition, its cured product, new epoxy resin, and its production method | |
KR20010023189A (en) | Polyhydric phenol compounds, epoxy resins, epoxy resin compositions and cured products thereof | |
JPH08239454A (en) | Novolac resin, epoxy resin, epoxy resin composition and cured product thereof | |
JP2005187607A (en) | Phenolic resin, epoxy resin, epoxy resin composition and cured product of the composition | |
JPH08193110A (en) | Novolak resin, epoxy resin, epoxy resin composition, and cured article obtained therefrom | |
JP2004131636A (en) | Epoxy resin composition, prepreg and cured product thereof | |
JP3852789B2 (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP4899257B2 (en) | Phenol resin, epoxy resin, epoxy resin composition and cured product thereof. | |
JP4186153B2 (en) | Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board | |
JP3939000B2 (en) | Novolac resin, epoxy resin, epoxy resin composition and cured product thereof | |
JP3651702B2 (en) | Modified phenolic novolak resin, epoxy resin, epoxy resin composition and cured product thereof | |
JP4605420B2 (en) | Epoxy resin composition and cured product thereof | |
JP4158137B2 (en) | Epoxy resin composition and cured product thereof. | |
JP3989458B2 (en) | Method for producing phenolic compound and epoxy resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050905 |