JP4474891B2 - Epoxy resin composition, cured product thereof and epoxy resin - Google Patents

Epoxy resin composition, cured product thereof and epoxy resin Download PDF

Info

Publication number
JP4474891B2
JP4474891B2 JP2003349401A JP2003349401A JP4474891B2 JP 4474891 B2 JP4474891 B2 JP 4474891B2 JP 2003349401 A JP2003349401 A JP 2003349401A JP 2003349401 A JP2003349401 A JP 2003349401A JP 4474891 B2 JP4474891 B2 JP 4474891B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
structural formula
group
condensed polycyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003349401A
Other languages
Japanese (ja)
Other versions
JP2005113022A (en
Inventor
一郎 小椋
知之 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2003349401A priority Critical patent/JP4474891B2/en
Publication of JP2005113022A publication Critical patent/JP2005113022A/en
Application granted granted Critical
Publication of JP4474891B2 publication Critical patent/JP4474891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Conductive Materials (AREA)

Description

本発明は、耐熱性、耐湿性、誘電特性(低誘電率、低誘電正接)に優れ、プリント基板用樹脂組成物、電子部品の封止材用樹脂組成物、レジストインキ、導電ペースト、塗料、接着剤、複合材料等に好適に用いることができるエポキシ樹脂組成物、それを用いて得られる硬化物、及び、これらの用途として好適に用いることができるエポキシ樹脂に関する。   The present invention is excellent in heat resistance, moisture resistance and dielectric properties (low dielectric constant, low dielectric loss tangent), resin composition for printed circuit boards, resin composition for encapsulants for electronic parts, resist ink, conductive paste, paint, The present invention relates to an epoxy resin composition that can be suitably used for adhesives, composite materials, and the like, a cured product obtained by using the composition, and an epoxy resin that can be suitably used for these applications.

エポキシ樹脂組成物は、耐熱性、密着性、電気絶縁性等に優れた硬化物が得られることから、半導体封止材、プリント配線基板、塗料、注型材料用途等に好適に用いられている。これらの中でも、特に高信頼性が求められる電気・電子用途においては、下記一般式(4)で表されるジシクロペンタジエン型エポキシ樹脂を用いることが提案されている(例えば、特許文献1参照。)。   Epoxy resin compositions are suitable for use in semiconductor encapsulants, printed wiring boards, paints, casting materials, and the like because cured products with excellent heat resistance, adhesion, electrical insulation, and the like are obtained. . Among these, it is proposed to use a dicyclopentadiene type epoxy resin represented by the following general formula (4) in electrical / electronic applications particularly requiring high reliability (for example, see Patent Document 1). ).

Figure 0004474891
(式中、各Rは独立に水素又は1〜4個の炭素原子を有するアルキル基であり、各Xは独立に水素、1〜10個の炭素原子を有するヒドロカルビル基もしくは置換ヒドロカルビル基、ハロゲン原子、又はニトロ基であり、mは1.01〜12の値を有し、nは1〜12の平均値を有する)
Figure 0004474891
Wherein each R is independently hydrogen or an alkyl group having 1 to 4 carbon atoms, and each X is independently hydrogen, a hydrocarbyl group or substituted hydrocarbyl group having 1 to 10 carbon atoms, a halogen atom Or a nitro group, m has a value of 1.01 to 12, and n has an average value of 1 to 12)

しかし近年、半導体封止材やプリント配線基板等の電子デバイス分野では、高密度実装化や高速演算化などの高機能化が進み、一層優れた特性を付与できるエポキシ樹脂組成物、及び該組成物において主剤として用いることができる新規のエポキシ樹脂の開発が待望されている。   However, in recent years, in the field of electronic devices such as semiconductor encapsulants and printed circuit boards, epoxy resin compositions capable of imparting more excellent characteristics and higher performance such as high-density mounting and high-speed computation, and the composition Development of a novel epoxy resin that can be used as a main agent in the field is awaited.

特開平3−188123号公報(第8−12頁)Japanese Patent Laid-Open No. 3-188123 (pages 8-12)

本発明はかかる状況に鑑みてなされたものであり、本発明の課題は、ジシクロペンタジエン型エポキシ樹脂に代表される従来の材料よりも一層優れた耐湿性、誘電特性を有する硬化物が得られ、高信頼性が要求される電気・電子用途や、耐湿性が必要な塗料、接着剤用途、更に高機能性が求められる複合材料等に好適に用いることができるエポキシ樹脂組成物、及びその硬化物を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is to obtain a cured product having moisture resistance and dielectric properties superior to conventional materials typified by dicyclopentadiene type epoxy resins. , Epoxy resin compositions that can be suitably used for electrical and electronic applications that require high reliability, paints that require moisture resistance, adhesive applications, and composite materials that require high functionality, and curing thereof To provide things.

更に、上記特性を有するエポキシ樹脂組成物の主剤として好適に用いることができるエポキシ樹脂を提供することにある。   Furthermore, it is providing the epoxy resin which can be used suitably as a main ingredient of the epoxy resin composition which has the said characteristic.

本発明者等は、上記課題を解決する為に鋭意検討したところ、
下記構造式(a1−1)、

Figure 0004474891

下記構造式(a1−2)、
Figure 0004474891

及び下記構造式(a1−3)、
Figure 0004474891

から成る群から選択される縮合多環脂肪族炭化水素基(a1)と所定のグリシジル基含有芳香族炭化水素基(a2)とを有し、且つ、前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有するエポキシ樹脂(A)と硬化剤(B)とを含有することを特徴とするエポキシ樹脂組成物は、得られる硬化物の耐湿性、誘電特性が優れることを見出し、本発明を完成させた。 The present inventors have intensively studied to solve the above problems,
The following structural formula (a1-1),
Figure 0004474891

The following structural formula (a1-2),
Figure 0004474891

And the following structural formula (a1-3),
Figure 0004474891

A condensed polycyclic aliphatic hydrocarbon group (a1) selected from the group consisting of: a predetermined glycidyl group-containing aromatic hydrocarbon group (a2), and the structural formula (a1-1) and the structure Epoxy resin (A) and hardener containing 20 mol% or more of condensed polycyclic aliphatic hydrocarbon group (x1) selected from formula (a1-2) in condensed polycyclic aliphatic hydrocarbon group (a1) The epoxy resin composition characterized by containing (B) was found to be excellent in moisture resistance and dielectric properties of the resulting cured product, and completed the present invention.

更に本発明者等は、下記一般式(3’)

Figure 0004474891

(X’は、下記構造式(a1−1)、
Figure 0004474891

下記構造式(a1−2)、
Figure 0004474891

及び下記構造式(a1−3)、
Figure 0004474891

から成る群から選択される縮合多環脂肪族炭化水素基(a1)であり、かつ、前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有しており、かつ、nは1〜10で表される繰り返しの平均値であり、Rは独立に水素原子、または炭素数1〜4のアルキル基であり、Gはグリシジル基であり、mは1〜3の整数である。)で表されることを特徴とするエポキシ樹脂は、前記エポキシ樹脂組成物中の主剤として用いることができる化合物であることを見出し、本発明を完成させた。 Furthermore, the present inventors have the following general formula (3 ′)
Figure 0004474891

(X ′ is the following structural formula (a1-1),
Figure 0004474891

The following structural formula (a1-2),
Figure 0004474891

And the following structural formula (a1-3),
Figure 0004474891

A condensed polycyclic aliphatic hydrocarbon group (a1) selected from the group consisting of: and a condensed polycyclic aliphatic group selected from the structural formula (a1-1) and the structural formula (a1-2) The hydrocarbon group (x1) is contained in the condensed polycyclic aliphatic hydrocarbon group (a1) in an amount of 20 mol% or more, and n is an average value represented by 1 to 10 and R is independent. Are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, G is a glycidyl group, and m is an integer of 1 to 3. The epoxy resin characterized by the above was found to be a compound that can be used as the main agent in the epoxy resin composition, and the present invention was completed.

即ち、本発明は、下記一般式(3’)

Figure 0004474891

(X’は、下記構造式(a1−1)、
Figure 0004474891

下記構造式(a1−2)、
Figure 0004474891

及び下記構造式(a1−3)、
Figure 0004474891

から成る群から選択される縮合多環脂肪族炭化水素基(a1)であり、かつ、前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有しており、かつ、nは1〜10で表される繰り返しの平均値であり、Rは独立に水素原子、または炭素数1〜4のアルキル基であり、Gはグリシジル基であり、mは1〜3の整数である。)で表されるエポキシ樹脂(A)と硬化剤(B)とを含有することを特徴とするエポキシ樹脂組成物、及びこれを用いて得られる硬化物を提供するものである。 That is, the present invention provides the following general formula (3 ′)
Figure 0004474891

(X ′ is the following structural formula (a1-1),
Figure 0004474891

The following structural formula (a1-2),
Figure 0004474891

And the following structural formula (a1-3),
Figure 0004474891

A condensed polycyclic aliphatic hydrocarbon group (a1) selected from the group consisting of: and a condensed polycyclic aliphatic group selected from the structural formula (a1-1) and the structural formula (a1-2) The hydrocarbon group (x1) is contained in the condensed polycyclic aliphatic hydrocarbon group (a1) in an amount of 20 mol% or more, and n is an average value represented by 1 to 10 and R is independent. Are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, G is a glycidyl group, and m is an integer of 1 to 3. The epoxy resin composition characterized by containing the epoxy resin (A) represented by this, and the hardening | curing agent (B), and the hardened | cured material obtained using this are provided.

更に本発明は、下記一般式(3’)

Figure 0004474891

(X’は、下記構造式(a1−1)、
Figure 0004474891

下記構造式(a1−2)、
Figure 0004474891

及び下記構造式(a1−3)、
Figure 0004474891

から成る群から選択される縮合多環脂肪族炭化水素基(a1)であり、かつ、前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有しており、かつ、nは1〜10で表される繰り返しの平均値であり、Rは独立に水素原子、または炭素数1〜4のアルキル基であり、Gはグリシジル基であり、mは1〜3の整数である。)で表されることを特徴とするエポキシ樹脂を提供するものである。 Furthermore, the present invention provides the following general formula (3 ′)
Figure 0004474891

(X ′ is the following structural formula (a1-1),
Figure 0004474891

The following structural formula (a1-2),
Figure 0004474891

And the following structural formula (a1-3),
Figure 0004474891

A condensed polycyclic aliphatic hydrocarbon group (a1) selected from the group consisting of: and a condensed polycyclic aliphatic group selected from the structural formula (a1-1) and the structural formula (a1-2) The hydrocarbon group (x1) is contained in the condensed polycyclic aliphatic hydrocarbon group (a1) in an amount of 20 mol% or more, and n is an average value represented by 1 to 10 and R is independent. Are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, G is a glycidyl group, and m is an integer of 1 to 3. The epoxy resin characterized by being represented by this is provided.

本発明のエポキシ樹脂組成物は、実用レベルの成形性、硬化性を有し、ジシクロペンタジエン型エポキシ樹脂に代表される従来材料よりも一層優れた耐湿性、誘電特性、特に吸湿時の誘電特性をその硬化物に付与できる。このため、プリント基板用樹脂組成物、電子部品用封止材用樹脂組成物、レジストインキ、導電ペースト等の電子材料分野に用いた場合は、高密度実装化や、高周波対応化、高速演算化などに対応する樹脂組成物としてきわめて有用である。また、得られる該成形硬化物は耐熱性、密着性等においても上記用途における要求を満たすものであり、高信頼性が必要な分野に対応できる。更に、本発明のエポキシ樹脂は、前記エポキシ樹脂組成物中の主剤として好適に用いることができ、またエポキシアクリレート樹脂原料、半導体フォトレジスト等の感光性樹脂原料等の高機能性樹脂原料として有用である。   The epoxy resin composition of the present invention has a practical level of moldability and curability and is superior to conventional materials typified by dicyclopentadiene type epoxy resins, in particular, moisture resistance and dielectric properties, especially when absorbing moisture. Can be imparted to the cured product. For this reason, when used in the field of electronic materials such as printed circuit board resin compositions, electronic component encapsulant resin compositions, resist inks, and conductive pastes, high-density mounting, high-frequency compatibility, and high-speed computation It is extremely useful as a resin composition corresponding to the above. Further, the obtained molded cured product satisfies the requirements for the above-mentioned uses in terms of heat resistance, adhesion, and the like, and can cope with a field requiring high reliability. Furthermore, the epoxy resin of the present invention can be suitably used as a main agent in the epoxy resin composition, and is useful as a high-functional resin raw material such as an epoxy acrylate resin raw material and a photosensitive resin raw material such as a semiconductor photoresist. is there.

以下、本発明を詳細に説明する。
本発明で用いるエポキシ樹脂(A)は、下記一般式(3’)

Figure 0004474891

(X’は、下記構造式(a1−1)、
Figure 0004474891

下記構造式(a1−2)、
Figure 0004474891

及び下記構造式(a1−3)、
Figure 0004474891

から成る群から選択される縮合多環脂肪族炭化水素基(a1)であり、かつ、前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有しており、かつ、nは1〜10で表される繰り返しの平均値であり、Rは独立に水素原子、または炭素数1〜4のアルキル基であり、Gはグリシジル基であり、mは1〜3の整数である。)で表されるものである。前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%未満では、得られる硬化物の耐湿性、誘電特性が不足する為に好ましくない。 Hereinafter, the present invention will be described in detail.
The epoxy resin (A) used in the present invention is represented by the following general formula (3 ′)
Figure 0004474891

(X ′ is the following structural formula (a1-1),
Figure 0004474891

The following structural formula (a1-2),
Figure 0004474891

And the following structural formula (a1-3),
Figure 0004474891

A condensed polycyclic aliphatic hydrocarbon group (a1) selected from the group consisting of: and a condensed polycyclic aliphatic group selected from the structural formula (a1-1) and the structural formula (a1-2) The hydrocarbon group (x1) is contained in the condensed polycyclic aliphatic hydrocarbon group (a1) in an amount of 20 mol% or more, and n is an average value represented by 1 to 10 and R is independent. Are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, G is a glycidyl group, and m is an integer of 1 to 3. ). The condensed polycyclic aliphatic hydrocarbon group (x1) selected from the structural formula (a1-1) and the structural formula (a1-2) is 20 mol% in the condensed polycyclic aliphatic hydrocarbon group (a1). If it is less than 1, it is not preferable because the resulting cured product lacks moisture resistance and dielectric properties.

前記縮合多環脂肪族炭化水素基(a1)としては、例えば、3個の5員環からなるジシクロペンタジエンから誘導される構造を有する炭化水素基(a1−3)、5個の5員環からなるトリジシクロペンタジエンから誘導される構造を有する炭化水素基[(a1−1)、(a1−2)]が挙げられる。前記縮合多環脂肪族炭化水素基(x1)中の前記構造式(a1−1)で表される基と前記構造式(a1−2)で表される基のモル比(a1−1)/(a1−2)が50/50〜99/1であることが特に好ましい。 Examples of the condensed polycyclic aliphatic hydrocarbon group (a1), for example, a hydrocarbon group having a structure derived from dicyclopentadiene consisting of three 5-membered ring (a1-3), 5 pieces of 5-membered ring And hydrocarbon groups [(a1-1), (a1-2)] having a structure derived from tridicyclopentadiene . The molar ratio of the group represented by the condensed polycyclic aliphatic hydrocarbon group (x1) the structural formula (a1-1) a group with the formula represented in (a1-2) (a1- 1) / It is particularly preferable that ( a1-2 ) is 50/50 to 99/1 .

前記縮合多環脂肪族炭化水素基(a1)を分子中に導入する方法としては特に制限されるものではないが、原料としてジシクロペンタジエン、トリシクロペンタジエン等の不飽和環状炭化水素(y1)を用い、これを後述するヒドロキシ基含有芳香族炭化水素類(y2)と反応させた後、エポキシ化する方法が挙げられ、所望のエポキシ樹脂(A)中に占める前記縮合多環脂肪族炭化水素基(x1)の含有量に応じて、これらの不飽和環状炭化水素(y1)を単独または混合して用いる。 The method for introducing the condensed polycyclic aliphatic hydrocarbon group (a1) into the molecule is not particularly limited, but an unsaturated cyclic hydrocarbon (y1) such as dicyclopentadiene or tricyclopentadiene is used as a raw material. used, after reacting with hydroxy group-containing aromatic hydrocarbons, which will be described later this (y2), a method of epoxidizing the like, the condensed polycyclic aliphatic hydrocarbon group occupying in the desired epoxy resin (a) These unsaturated cyclic hydrocarbons (y1) are used alone or in combination depending on the content of (x1).

前記ジシクロペンタジエンとしては、例えば、前記特許文献1には、原料のジシクロペンタジエン中に存在しうるトリシクロペンタジエンの重量割合として10重量%含有する例が示されている。一方、ジシクロペンタジエンは試薬として純品を入手することができる。本発明者等は、様々な原料を用いて、縮合多環脂肪族炭化水素基(a1)を有するエポキシ樹脂について鋭意検討した結果、前記5個の5員環からなる縮合多環脂肪族炭化水素基(x1)を縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有するエポキシ樹脂(A)を用いることによって、従来使用されてきたジシクロペンタジエン型エポキシ樹脂よりも耐湿性、誘電特性に優れる硬化物が得られることを見出したものであり、例えば、前記特許文献1に記載されたジシクロペンタジエン型エポキシ樹脂(=前記(x1)の含有量は7モル%)と、ジシクロペンタジエンの純品から得られるジシクロペンタジエン型エポキシ樹脂(=前記(x1)の含有量0モル%)とを比較した場合には、両者間に得られる硬化物の物性において大差は見られず、且つそれらは本発明で用いるエポキシ樹脂を使用して得られる硬化物よりも耐湿性、誘電特性に劣るものであった。   As the dicyclopentadiene, for example, Patent Document 1 shows an example in which 10% by weight is contained as a weight ratio of tricyclopentadiene that may be present in the raw material dicyclopentadiene. On the other hand, dicyclopentadiene can be obtained as a pure product as a reagent. As a result of intensive studies on an epoxy resin having a condensed polycyclic aliphatic hydrocarbon group (a1) using various raw materials, the present inventors have found that the condensed polycyclic aliphatic hydrocarbon is composed of the five 5-membered rings. By using the epoxy resin (A) containing 20 mol% or more of the group (x1) in the condensed polycyclic aliphatic hydrocarbon group (a1), the moisture resistance is higher than that of the conventionally used dicyclopentadiene type epoxy resin, It has been found that a cured product having excellent dielectric properties can be obtained. For example, a dicyclopentadiene type epoxy resin described in Patent Document 1 (= content of (x1) is 7 mol%), When compared with a dicyclopentadiene type epoxy resin obtained from a pure product of cyclopentadiene (= content of (x1) 0 mol%), the physical properties of the cured product obtained between them are large. Not observed, and they moisture resistance than a cured product obtained by using the epoxy resin used in the present invention, was poor in dielectric properties.

前記5個の5員環からなる縮合多環脂肪族炭化水素基(x1)の縮合多環脂肪族炭化水素基(a1)中に占める割合としては、特に50〜100モル%であることが好ましい。   The proportion of the five-membered condensed polycyclic aliphatic hydrocarbon group (x1) in the condensed polycyclic aliphatic hydrocarbon group (a1) is particularly preferably 50 to 100 mol%. .

前記一般式(3’)中のグリシジル基含有芳香族炭化水素基(a2)分子内に導入する方法としては、例えば、前述の不飽和環状炭化水素(y1)と所望の構造を有するヒドロキシ基含有芳香族炭化水素類(y2)とを反応させ、更にヒドロキシ基をグリシジル基とする(エポキシ化する)方法が挙げられる。 Examples of the method for introducing the glycidyl group-containing aromatic hydrocarbon group (a2) in the general formula (3 ′) into the molecule include the unsaturated cyclic hydrocarbon (y1) and a hydroxy group having a desired structure. Examples include a method in which the aromatic hydrocarbon (y2) is reacted and a hydroxy group is converted into a glycidyl group (epoxidation).

前記ヒドロキシ基含有芳香族炭化水素類(y2)としては、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール、o−イソプロピルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−sec−ブチルフェノール、p−tert−ブチルフェノール、p−シクロヘキシルフェノール、p−クロロフェノール、o−ブロモフェノール、m−ブロモフェノール、p−ブロモフェノール等のフェノール類挙げることができる。特にフェノール、o−クレゾール、m−クレゾールが経済性及び製造の容易さの点から好ましい。また、これらのヒドロキシ基含有芳香族炭化水素類(y2)としては、単独でも2種以上の混合物として使用しても良い。 Examples of the hydroxy group-containing aromatic hydrocarbon (y2) include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, and o-isopropylphenol. , M-propylphenol, p-propylphenol, p-sec-butylphenol, p-tert-butylphenol, p-cyclohexylphenol, p-chlorophenol, o-bromophenol, m-bromophenol, p-bromophenol, etc. mention may be made of a kind. In particular, phenol, o-cresol, m-cresol and the like are preferable from the viewpoints of economy and ease of production. These hydroxy group-containing aromatic hydrocarbons (y2) may be used alone or as a mixture of two or more.

本発明で用いるエポキシ樹脂(A)の製造方法としては特に限定されるものではないが、例えば、前述の不飽和環状炭化水素(y1)とヒドロキシ含有芳香族炭化水素類(y2)とを酸触媒を用いて反応させ、更に、エピハロヒドリンと反応させる方法を挙げることができる。   Although it does not specifically limit as a manufacturing method of the epoxy resin (A) used by this invention, For example, the above-mentioned unsaturated cyclic hydrocarbon (y1) and hydroxy containing aromatic hydrocarbons (y2) are acid catalysts. And a method of reacting with epihalohydrin.

この反応における不飽和環状炭化水素(y1)とヒドロキシ基含有芳香族炭化水素類(y2)とのモル比としては、目的とするエポキシ樹脂(A)の分子量および溶融粘度により、適宜に調節することが好ましく、通常は、ヒドロキシ基含有芳香族炭化水素類(y2)と不飽和環状炭化水素(y1)とのモル比(y2)/(y1)=1〜20の範囲が好ましい。特に溶融粘度を低くするには、前記モル比(y2)/(y1)=2〜15の範囲が好ましい。なお、溶融粘度が低いエポキシ樹脂は、半導体封止材料に用いた場合にフィラーの高充填が可能で線膨張係数が小さくなり、また、耐湿性が向上するので好ましく、特に150℃における溶融粘度が10dPa・s以下であることが好ましい。   The molar ratio between the unsaturated cyclic hydrocarbon (y1) and the hydroxy group-containing aromatic hydrocarbon (y2) in this reaction is appropriately adjusted depending on the molecular weight and melt viscosity of the target epoxy resin (A). Usually, the molar ratio (y2) / (y1) = 1-20 of the hydroxy group-containing aromatic hydrocarbons (y2) and the unsaturated cyclic hydrocarbons (y1) is preferable. In particular, in order to lower the melt viscosity, the molar ratio (y2) / (y1) = 2 to 15 is preferable. An epoxy resin having a low melt viscosity is preferable because it can be filled with a high filler when used in a semiconductor encapsulating material, has a low coefficient of linear expansion, and has improved moisture resistance. It is preferably 10 dPa · s or less.

前記酸触媒としては、硫酸、塩酸、硝酸、リン酸などの無機酸、トルエンスルホン酸、メタンスルホン酸、キシレンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、ギ酸、トリクロロ酢酸、トリフルオロ酢酸などの有機酸、塩化アルミニウム、塩化鉄、塩化スズ、塩化ガリウム、塩化チタン、臭化アルミニウム、臭化ガリウム、三フッ化ホウ素、三フッ化ホウ素・エーテル錯体、三フッ化ホウ素・フェノール錯体、三フッ化ホウ素・水錯体、三フッ化ホウ素・アルコール錯体、三フッ化ホウ素・アミン錯体などのルイス酸、さらにはこれらの混合物等が用いられる。これらの中でも特に、触媒活性および触媒除去の容易さの点から、三フッ化ホウ素、三フッ化ホウ素・フェノール錯体、三フッ化ホウ素・エーテル錯体が工業的に好ましく用いられるが、それらに限定されるものでは無い。また、これらの添加量は不飽和環状炭化水素(y1)とヒドロキシ基含有芳香族炭化水素(y2)との合計重量部に対して、10ppm〜5重量%の範囲で用いることが好ましい。   Examples of the acid catalyst include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, organic acids such as toluenesulfonic acid, methanesulfonic acid, xylenesulfonic acid, trifluoromethanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid, and trifluoroacetic acid. Acid, Aluminum chloride, Iron chloride, Tin chloride, Gallium chloride, Titanium chloride, Aluminum bromide, Gallium bromide, Boron trifluoride, Boron trifluoride / ether complex, Boron trifluoride / phenol complex, Boron trifluoride A Lewis acid such as a water complex, boron trifluoride / alcohol complex, boron trifluoride / amine complex, or a mixture thereof is used. Among these, boron trifluoride, boron trifluoride / phenol complex, and boron trifluoride / ether complex are preferably used industrially from the viewpoint of catalytic activity and ease of catalyst removal, but are not limited thereto. It is not something. Moreover, it is preferable to use these addition amount in 10 ppm-5 weight% with respect to the total weight part of unsaturated cyclic hydrocarbon (y1) and hydroxy group containing aromatic hydrocarbon (y2).

この反応の方法としては特に限定されるものではないが、例えば、反応器に所定量のヒドロキシ基含有芳香族炭化水素類(y2)および酸触媒等を仕込み、次いで不飽和環状炭化水素(y2)を滴下して反応を行う方法が挙げられる。   The reaction method is not particularly limited. For example, the reactor is charged with a predetermined amount of a hydroxy group-containing aromatic hydrocarbon (y2) and an acid catalyst, and then the unsaturated cyclic hydrocarbon (y2). The method of performing reaction by dripping is mentioned.

反応に際しては、通常、反応器内を窒素、アルゴン等の不活性ガスで置換する。不活性ガスで置換された密閉系において反応を行うのが好ましいが、反応器内に不活性ガスを供給しつつ開放系で反応を行うこともできる。   In the reaction, the inside of the reactor is usually replaced with an inert gas such as nitrogen or argon. The reaction is preferably performed in a closed system substituted with an inert gas, but the reaction can also be performed in an open system while supplying the inert gas into the reactor.

反応温度としては、反応の進行度に応じて適宜調整すれば良く、特に限定されるものではないが、通常30〜150℃、好ましくは50〜120℃の範囲で反応を行うことにより、反応の進行を好ましく制御することができる。ここでいう反応の進行度は、例えば反応途中の混合物をGPC(ゲルパーミエーションクロマトグラフィー)等を用いて分析することにより追跡することができる。   The reaction temperature may be adjusted as appropriate according to the degree of progress of the reaction, and is not particularly limited. Usually, the reaction is carried out in the range of 30 to 150 ° C., preferably 50 to 120 ° C. Progress can be preferably controlled. The degree of progress of the reaction here can be followed by, for example, analyzing the mixture in the middle of the reaction using GPC (gel permeation chromatography) or the like.

反応時間としては、反応の進行度に応じて適宜調節すればよく特に限定されるものではないが、特に混合物中の一官能性成分(不飽和環状炭化水素にヒドロキシ基含有芳香族炭化水素類が1箇所のみ反応した構造を有する化合物)の量を追跡し、所望の量となるところで停止することが好ましく、通常10分〜60時間、好ましくは1〜20時間、さらに好ましくは2〜10時間の範囲で反応を行うことにより、効率的に反応を行うことができる。   The reaction time is not particularly limited as long as the reaction time is appropriately adjusted according to the degree of progress of the reaction. In particular, the monofunctional component in the mixture (unsaturated cyclic hydrocarbon has hydroxy group-containing aromatic hydrocarbons). The amount of the compound having a structure that has reacted at only one place is traced, and it is preferable to stop at a desired amount, usually 10 minutes to 60 hours, preferably 1 to 20 hours, more preferably 2 to 10 hours. By performing the reaction within the range, the reaction can be efficiently performed.

反応は触媒を失活させることにより終了させる。その際、反応を確実に停止させることが重要である。失活の手段は特に制限されないが、失活剤として、アルカリ金属、アルカリ土類金属もしくはそれらの酸化物、水酸化物、炭酸塩、水酸化アンモニウム、アンモニアガス等の無機塩基類、トリエチルアミン等の有機塩基類、ハイドロタルサイト等を用いることができる。   The reaction is terminated by deactivating the catalyst. At that time, it is important to reliably stop the reaction. The means for deactivation is not particularly limited, but as a deactivator, alkali metals, alkaline earth metals or oxides thereof, hydroxides, carbonates, ammonium hydroxide, ammonia gas and other inorganic bases, triethylamine and the like Organic bases, hydrotalcite and the like can be used.

次に、濃縮工程について説明する。上述の方法で得られた反応液は、水洗、濾過などにより失活剤等を除去したのち濃縮工程で処理される。濃縮工程では、未反応のフェノール類が回収されるとともに一官能性成分の含有量も制御できる。濃縮条件としては、濃縮系内の温度や圧力と蒸気圧との関係から一定の条件が定められるものではないが、以下の条件で行うことにより最も効率的な濃縮が可能となる。すなわち、系内温度については、樹脂の分解が起こらない範囲であれば特に制限されるものではないが、250℃以下が好ましく、さらに好ましくは180〜220℃の範囲である。系内圧力については、常圧、減圧、加圧のいずれの条件下で実施しても良いが、前記の温度範囲で濃縮を円滑にかつ迅速にすませるために系内を減圧下にすることが好ましい。具体的には、66.5kPa(500torr)以下の範囲が好ましく、特に40kPa(300torr)以下にすることが好ましい。さらに、樹脂中の未反応フェノール類を効率良く除去するために、減圧条件下において系内に窒素あるいは高圧水蒸気等を吹き込む操作を行うのが好ましい。系内に導入する水蒸気あるいは窒素の圧力については特に限定されるものではないが、具体的には0.3〜2.0MPaの範囲が好ましく、より好ましくは0.5〜1.5MPaの範囲で吹き込み操作を行った場合に効率良く不純物を除去できる。   Next, the concentration step will be described. The reaction solution obtained by the above-mentioned method is treated in a concentration step after removing the deactivator and the like by washing with water, filtering and the like. In the concentration step, unreacted phenols are recovered and the content of the monofunctional component can be controlled. As a concentration condition, a certain condition is not determined from the relationship between the temperature in the concentration system, the pressure, and the vapor pressure. However, the most efficient concentration is possible by performing the following conditions. That is, the system temperature is not particularly limited as long as the resin does not decompose, but is preferably 250 ° C. or lower, more preferably 180 to 220 ° C. The system pressure may be carried out under normal pressure, reduced pressure, or increased pressure, but the system may be reduced under reduced pressure in order to smoothly and quickly concentrate in the above temperature range. preferable. Specifically, the range is preferably 66.5 kPa (500 torr) or less, and particularly preferably 40 kPa (300 torr) or less. Furthermore, in order to efficiently remove unreacted phenols in the resin, it is preferable to perform an operation of blowing nitrogen or high-pressure steam into the system under reduced pressure conditions. The pressure of water vapor or nitrogen introduced into the system is not particularly limited, but specifically, it is preferably in the range of 0.3 to 2.0 MPa, more preferably in the range of 0.5 to 1.5 MPa. Impurities can be efficiently removed when the blowing operation is performed.

以上のようにして得られたヒドロキシ化合物を更にエピハロヒドリンと反応させることによって、本発明のエポキシ樹脂を得ることができる。以下にエポキシ樹脂の製造法を記載する。   The epoxy resin of the present invention can be obtained by further reacting the hydroxy compound obtained as described above with epihalohydrin. The manufacturing method of an epoxy resin is described below.

前述のヒドロキシ化合物とエピクロルヒドリン、エピブロムヒドリン、β−メチルエピクロルヒドリン等のエピハロヒドリンとの溶解混合物に水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を添加し、または添加しながら20〜120℃で1〜10時間反応させることにより本発明に使用されるエポキシ樹脂を得ることが出来る。エピハロヒドリン類の添加量は、原料のヒドロキシ化合物の水酸基1当量に対して、通常0.3〜20当量の範囲が用いられる。エピハロヒドリン類が2.5当量よりも少ない場合、エポキシ基と未反応水酸基が反応しやすくなるため、エポキシ基と未反応水酸基が付加反応して生成する基(−CHCR(OH)CH−、R:水素原子又は有機炭素基)を含んだ高分子量物が得られる。一方、2.5当量よりも多い場合、理論構造物(繰り返し単位数n=1)の含有量が高くなる。所望の特性によってエピハロヒドリンの量を適宜調節すればよい。 An alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or the like is added to a dissolved mixture of the above hydroxy compound and an epihalohydrin such as epichlorohydrin, epibromohydrin, β-methylepichlorohydrin or the like, or 20 to 120 ° C. with addition. The epoxy resin used in the present invention can be obtained by reacting for 1 to 10 hours. The addition amount of epihalohydrins is usually in the range of 0.3 to 20 equivalents relative to 1 equivalent of hydroxyl group of the starting hydroxy compound. If epihalohydrin is 2.5 less than equivalent, since unreacted hydroxyl and epoxy groups is likely to react, groups unreacted hydroxyl and epoxy groups are generated by the addition reaction (-CH 2 CR (OH) CH 2 - , R: a hydrogen atom or an organic carbon group). On the other hand, when it is more than 2.5 equivalents, the content of the theoretical structure (number of repeating units n = 1) becomes high. The amount of epihalohydrin may be appropriately adjusted according to desired characteristics.

前記エポキシ樹脂を得る反応において、アルカリ金属水酸化物はその水溶液を使用してもよく、その場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液し水は除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。また、該ヒドロキシ化合物とエピハロヒドリンとの溶解混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加し50〜150℃で1〜5時間反応させて得られる該ヒドロキシ化合物のハロヒドリンエーテル化物にアルカリ金属水酸化物の固体または水溶液を加え、再び20〜120℃で1〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。   In the reaction for obtaining the epoxy resin, an aqueous solution of the alkali metal hydroxide may be used. In that case, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system and the reaction is performed under reduced pressure or at normal temperature. A method may be used in which water and epihalohydrin are continuously distilled under pressure, liquid separation is performed, water is removed, and epihalohydrin is continuously returned to the reaction system. In addition, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride or the like is added to the dissolved mixture of the hydroxy compound and epihalohydrin as a catalyst and reacted at 50 to 150 ° C. for 1 to 5 hours. A method of adding a solid or aqueous solution of an alkali metal hydroxide to the halohydrin etherified product of the hydroxy compound and reacting again at 20 to 120 ° C. for 1 to 10 hours to dehydrohalogenate (ring closure) may be used.

更に、反応を円滑に進行させるためにメタノール、エタノール、イソプロピルアルコール、ブタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、1,4−ジオキサンなどのエーテル類、ジメチルスルホン、ジメチルスルホキシド等の非プロトン性極性溶媒などを添加して反応を行うことが好ましい。アルコール類、ケトン類、エーテル類を溶媒を使用する場合のその使用量は、エピハロヒドリンの量に対し通常5〜50重量%、好ましくは10〜30重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの量に対し通常5〜100重量%、好ましくは10〜60重量%である。   Furthermore, in order to make the reaction proceed smoothly, alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, ethers such as 1,4-dioxane, aprotic such as dimethyl sulfone and dimethyl sulfoxide It is preferable to carry out the reaction by adding a polar solvent or the like. The amount of alcohols, ketones and ethers used in the solvent is usually 5 to 50% by weight, preferably 10 to 30% by weight, based on the amount of epihalohydrin. Moreover, when using an aprotic polar solvent, it is 5-100 weight% normally with respect to the quantity of epihalohydrin, Preferably it is 10-60 weight%.

これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下、110〜250℃、圧力10mmHg以下でエピハロヒドリンや他の添加溶媒などを除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、エピハロヒドリンを回収した後に得られる粗エポキシ樹脂を再びトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて更に反応させて閉環を確実なものにすることもできる。この場合、アルカリ金属水酸化物の使用量は粗エポキシ樹脂中に残存する加水分解性塩素1モルに対して、通常0.5〜10モル、好ましくは1.2〜5.0モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜3時間である。反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量は、粗エポキシ樹脂に対して0.1〜3.0重量%の範囲が好ましい。   After the epoxidation reaction product is washed with water or without washing with water, epihalohydrin and other added solvents are removed at 110 to 250 ° C. under a pressure of 10 mmHg or less under reduced pressure. Furthermore, in order to obtain an epoxy resin with less hydrolyzable halogen, the crude epoxy resin obtained after recovering the epihalohydrin is dissolved again in a solvent such as toluene or methyl isobutyl ketone, and an alkali metal such as sodium hydroxide or potassium hydroxide. An aqueous solution of hydroxide can also be added and reacted further to ensure ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.5 to 10 mol, preferably 1.2 to 5.0 mol, per 1 mol of hydrolyzable chlorine remaining in the crude epoxy resin. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 3 hours. For the purpose of improving the reaction rate, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present. The amount of the phase transfer catalyst used is preferably in the range of 0.1 to 3.0% by weight based on the crude epoxy resin.

反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のエポキシ樹脂が得られる。   After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and a solvent such as toluene and methyl isobutyl ketone is distilled off under heating and reduced pressure to obtain a high-purity epoxy resin.

また、本発明で用いるエポキシ樹脂(A)としては、ジシクロペンタジエン単独から上述の方法で得られた化合物と、トリシクロペンタジエン単独から得られた化合物とを各々合成、精製した後、所望の5個の5員環からなる縮合多環脂肪族炭化水素基(x1)含有量になるように混合して得られるものでも良く、また、原料の段階で不飽和環状炭化水素(y1)としてジシクロペンタジエンとトリシクロペンタジエンを適宜混合して上述の手法によってエポキシ樹脂としたものでも良い。また、必要に応じて、原料として、4−ビニルシクロヘキセン、5−ビニルノルボルナ−2−エン、3a,4,7,7a−テトラヒドロインデン、α−ピネン、β−ピネン、リモネン等の他の不飽和化合物を不飽和環状炭化水素(y1)と予め混合し、上述の方法でヒドロキシ基含有芳香族炭化水素類(y2)と反応させ、更にエポキシ化して得られるものであっても良い。   In addition, as the epoxy resin (A) used in the present invention, the compound obtained by the above-mentioned method from dicyclopentadiene alone and the compound obtained from tricyclopentadiene alone are synthesized and purified, respectively, and then the desired 5 It may be obtained by mixing so as to have a condensed polycyclic aliphatic hydrocarbon group (x1) content consisting of a single 5-membered ring, and dicyclohexane as an unsaturated cyclic hydrocarbon (y1) at the raw material stage. Pentadiene and tricyclopentadiene may be appropriately mixed to form an epoxy resin by the above-described method. In addition, if necessary, other unsaturated compounds such as 4-vinylcyclohexene, 5-vinylnorborna-2-ene, 3a, 4,7,7a-tetrahydroindene, α-pinene, β-pinene, limonene May be obtained by previously mixing with unsaturated cyclic hydrocarbon (y1), reacting with hydroxy group-containing aromatic hydrocarbons (y2) by the above-mentioned method, and further epoxidizing.

本発明のエポキシ樹脂組成物には、前記のエポキシ樹脂(A)以外にもその他のエポキシ樹脂(C)を併用して使用することができる。併用する場合、前記エポキシ樹脂(A)が全エポキシ樹脂に占める割合は、20重量%以上が好ましく、特に40重量%以上が好ましい。併用しうるその他のエポキシ樹脂(C)としては、種々のエポキシ樹脂を用いることができるが、例示するならば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等の2価のフェノール類から誘導されるエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール変性型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等の3価以上のフェノール類から誘導されるエポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂などが挙げられるがこれらに限定されるものではない。またこれらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。   The epoxy resin composition of the present invention can be used in combination with another epoxy resin (C) in addition to the epoxy resin (A). When used in combination, the proportion of the epoxy resin (A) in the total epoxy resin is preferably 20% by weight or more, and particularly preferably 40% by weight or more. As the other epoxy resin (C) that can be used in combination, various epoxy resins can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type are exemplified. Epoxy resin derived from divalent phenols such as epoxy resin, resorcinol type epoxy resin, hydroquinone type epoxy resin, catechol type epoxy resin, dihydroxynaphthalene type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, phenol Novolac epoxy resin, cresol novolac epoxy resin, triphenylmethane epoxy resin, tetraphenylethane epoxy resin, dicyclopentadiene-phenol modified epoxy resin, pheno Ruaralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified Examples include, but are not limited to, epoxy resins derived from trivalent or higher phenols such as phenol resin type epoxy resins and biphenyl-modified novolak type epoxy resins, tetrabromobisphenol A type epoxy resins, brominated phenol novolak type epoxy resins and the like. Is not to be done. Moreover, these epoxy resins may be used independently and may mix 2 or more types.

これらの中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール変性型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂を用いることが特に好ましい。   Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, catechol type epoxy resin, dihydroxynaphthalene type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin , Cresol novolak type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol modified epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol Aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolak Epoxy resins, it is particularly preferable to use a biphenyl-modified novolak type epoxy resin.

本発明のエポキシ樹脂組成物に用いる硬化剤(B)としては、特に制限されるものではなく、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などの種々の硬化剤が全て用いることができるが、例示するならば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂、ビスフェノールAノボラック樹脂、ビスフェノールFノボラック樹脂等を始めとする多価フェノール化合物、及びこれらの変性物、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体などが挙げられる。またこれらの硬化剤は単独で用いてもよく、2種以上を混合してもよい。これらの硬化剤のなかでも、特に耐熱性が優れる点では、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ナフトールノボラック樹脂、フェノールトリメチロールメタン樹脂が特に好ましく、耐湿性が優れる点では、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂が特に好ましく、難燃性が優れる点では、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、アミノトリアジン変性フェノール樹脂が特に好ましい。 The curing agent (B) used in the epoxy resin composition of the present invention is not particularly limited, and various curing agents such as amine compounds, acid anhydride compounds, amide compounds, phenol compounds and the like. Can be used, but for example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid dimer and ethylenediamine, phthalic anhydride , Trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, cresol no Rack resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol trimethylol methane resin, tetraphenylol ethane resin , Naphthol novolac resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, aminotriazine-modified phenol resin, bisphenol A novolac resin, bisphenol F novolac resin and the like And modified products thereof, imidazole, BF 3 -amine complexes, guanidine derivatives and the like. Moreover, these hardening | curing agents may be used independently and may mix 2 or more types. Among these curing agents, phenol novolak resin, bisphenol A novolak resin, naphthol novolak resin, and phenol trimethylol methane resin are particularly preferable in terms of excellent heat resistance, and phenol aralkyl resin and cresol in terms of excellent moisture resistance. Aralkyl resins, naphthol aralkyl resins, and biphenyl-modified phenol aralkyl resins are particularly preferable. From the viewpoint of excellent flame retardancy, phenol aralkyl resins, cresol aralkyl resins, naphthol aralkyl resins, biphenyl-modified phenol aralkyl resins, and aminotriazine-modified phenol resins are particularly preferable. .

本発明のエポキシ樹脂組成物において、エポキシ樹脂(A)、硬化剤(B)、必要に応じて配合されるその他のエポキシ樹脂(C)の配合比率としては、良好な硬化物が得られる点から、エポキシ樹脂(A)とその他のエポキシ樹脂(C)中のエポキシ基の合計1当量に対して、硬化剤(B)中の活性基の合計が0.5〜2.0当量になる量が好ましい。   In the epoxy resin composition of the present invention, as a blending ratio of the epoxy resin (A), the curing agent (B), and other epoxy resins (C) blended as necessary, a good cured product can be obtained. The total amount of the active groups in the curing agent (B) is 0.5 to 2.0 equivalents relative to 1 equivalent of the total epoxy groups in the epoxy resin (A) and the other epoxy resin (C). preferable.

さらに硬化促進剤を適宜使用することもでき、その硬化促進剤としては、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられ、これらは単独のみならず2種以上の併用も可能である。   Further, a curing accelerator can be used as appropriate, and examples of the curing accelerator include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. In addition, two or more types can be used in combination.

また本発明のエポキシ樹脂組成物には必要に応じて、無機充填剤、難燃付与剤、顔料、シランカップリング剤、離型剤等の種々の配合剤を添加することができる。   Moreover, various compounding agents, such as an inorganic filler, a flame-retarding agent, a pigment, a silane coupling agent, a mold release agent, can be added to the epoxy resin composition of this invention as needed.

前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。無機充填材の配合量を特に大きくする場合は溶融シリカを用いるのが一般的である。溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は適用用途や所望特性によって、望ましい範囲が異なるが、例えば半導体封止材用途に使用する場合は、線膨張係数や難燃性を鑑みれば高い方が好ましく、組成物全体量に対して65重量%以上が好ましく、特に好ましくは85重量%以上である。また導電ペーストや導電フィルムなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。   Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. In order to increase the blending amount of the inorganic filler, it is common to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The desired range varies depending on the application and desired properties, but for example, when used in semiconductor encapsulant applications, it is preferably higher in view of the coefficient of linear expansion and flame retardancy. It is preferably 65% by weight or more, particularly preferably 85% by weight or more. Moreover, when using for uses, such as an electrically conductive paste and an electrically conductive film, electroconductive fillers, such as silver powder and copper powder, can be used.

前記難燃付与剤としては種々のものが全て使用できるが、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物などが挙げられる。それらの具体例を挙げるならばテトラブロモビスフェノールA型エポキシ樹脂などのハロゲン化合物、赤燐、燐酸エステル化合物などの燐原子含有化合物、メラミンなどの窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、硼酸カルシウムなどの無機系難燃化合物が例示できる。   Various flame retardants can be used as the flame retardant, and examples thereof include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, and inorganic flame retardant compounds. Specific examples thereof include halogen compounds such as tetrabromobisphenol A type epoxy resin, phosphorus atom-containing compounds such as red phosphorus and phosphate compounds, nitrogen atom-containing compounds such as melamine, aluminum hydroxide, magnesium hydroxide, boric acid Examples thereof include inorganic flame retardant compounds such as zinc and calcium borate.

本発明のエポキシ樹脂組成物の使用用途としては、特に制限されるものではなく、例えば、プリント基板用、電子部品の封止材用、レジストインキ、導電ペースト、樹脂注型材料、接着剤、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも、得られる硬化物の誘電特性に優れる点から、プリント基板用樹脂組成物、電子部品の封止材用樹脂組成物、レジストインキ、導電ペーストに好適に用いることができ、耐湿性に優れる点から塗料、接着剤に好適に用いることができ、更に高機能性である点から複合材料に好適に用いることができる。   The use of the epoxy resin composition of the present invention is not particularly limited, and for example, for printed circuit boards, electronic component sealing materials, resist inks, conductive pastes, resin casting materials, adhesives, and insulation. Examples include coating materials such as paints. Among these, from the point that the cured product obtained has excellent dielectric properties, it is suitable for resin compositions for printed circuit boards, resin compositions for encapsulants for electronic components, resist inks, and conductive pastes. It can be used suitably, can be used suitably for a paint and an adhesive from the point which is excellent in moisture resistance, and can be used suitably for a composite material from the point which is further highly functional.

前記プリント基板用としては、特にプリプレグ用、銅張り積層板用、ビルドアッププリント基板の層間絶縁材料用に好適に用いることができる。   As the printed circuit board, it can be suitably used particularly for prepregs, copper-clad laminates, and interlayer insulation materials for build-up printed circuit boards.

本発明のエポキシ樹脂組成物をプリント基板用プリプレグ用樹脂組成物とするには、該樹脂組成物の粘度によっては無溶媒で用いることもできるが、有機溶剤を用いてワニス化することでプリプレグ用樹脂組成物とすることが好ましい。前記有機溶剤としては、メタノール、エタノール、イソプロピルアルコール、メチルセロソルブ、エチルセロソルブ等のアルコール性溶媒、トルエン、キシレン等の芳香族炭化水素性溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド等の非アルコール性極性溶媒等沸点160℃以下の溶剤が挙げられ、適宜に2種または、それ以上の混合溶剤として使用することができる。得られた該ワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得ることができる。この時用いる樹脂組成物と補強基材の重量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60重量%となるように調整することが好ましい。   In order to make the epoxy resin composition of the present invention into a resin composition for a prepreg for a printed circuit board, it can be used without a solvent depending on the viscosity of the resin composition, but for prepreg by varnishing with an organic solvent. A resin composition is preferred. Examples of the organic solvent include alcoholic solvents such as methanol, ethanol, isopropyl alcohol, methyl cellosolve, and ethyl cellosolve, aromatic hydrocarbon solvents such as toluene and xylene, non-alcohols such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and dimethylformamide. Examples thereof include solvents having a boiling point of 160 ° C. or lower, such as a polar solvent, and can be appropriately used as a mixed solvent of two or more. The obtained varnish is impregnated into various reinforcing substrates such as paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth, and the heating temperature according to the solvent type used, preferably 50 By heating at ˜170 ° C., a prepreg that is a cured product can be obtained. The weight ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is adjusted to 20 to 60% by weight.

本発明のエポキシ樹脂組成物から銅張り積層板用樹脂組成物を得るには、上記プリプレグ用樹脂組成物とする方法と同じであり、得られたプリプレグを、例えば特開平7−41543号公報に記載されているように積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。   In order to obtain a resin composition for a copper-clad laminate from the epoxy resin composition of the present invention, it is the same as the method for preparing the resin composition for prepreg, and the obtained prepreg is disclosed in, for example, JP-A-7-41543. A copper-clad laminate can be obtained by laminating as described, stacking copper foils as appropriate, and thermocompression bonding at 170-250 ° C. for 10 minutes to 3 hours under a pressure of 1-10 MPa.

本発明のエポキシ樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては特に限定されないが、例えば特公平4−6116号公報、特開平7−304931号公報、特開平8−64960号公報、特開平9−71762号公報、特開平9−298369号公報などに記載の各種方法を採用できる。より具体的には、ゴム、フィラーなどを適宜配合した当該樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   Although it does not specifically limit as a method of obtaining the interlayer insulation material for buildup boards from the epoxy resin composition of the present invention, for example, Japanese Patent Publication No. 4-6116, Unexamined-Japanese-Patent No. 7-304931, Unexamined-Japanese-Patent No. 8-64960, Various methods described in JP-A-9-71762, JP-A-9-298369 and the like can be employed. More specifically, the resin composition appropriately blended with rubber, filler, and the like is applied to a wiring board on which a circuit is formed using a spray coating method, a curtain coating method, or the like, and then cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

前記電子部品の封止材用としては、半導体チップの封止材用、アンダーフィル用、半導体の層間絶縁膜用に好適に用いることができる。   As the electronic component sealing material, it can be suitably used for a semiconductor chip sealing material, underfill, and semiconductor interlayer insulating film.

本発明のエポキシ樹脂組成物を半導体封止材料用に調整するためには、エポキシ樹脂(A)、硬化剤(B)、必要に応じて配合されるその他のエポキシ樹脂(C)、カップリング剤、離型剤などの添加剤や無機充填材などを予備混合した後、押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合する手法が挙げられる。溶融混合型(無溶媒)組成物の場合は、該組成物を注型、或いはトランスファ−成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより硬化物を得ることができ、半導体パッケージ成形はこれに該当する。   In order to adjust the epoxy resin composition of the present invention for a semiconductor sealing material, an epoxy resin (A), a curing agent (B), other epoxy resins (C) blended as necessary, a coupling agent A method of premixing additives such as mold release agents and inorganic fillers, and then sufficiently mixing until uniform using an extruder, kneader, roll, or the like. In the case of a melt mixed type (solvent-free) composition, the composition is cast or molded using a transfer molding machine, an injection molding machine, etc., and further heated at 50 to 200 ° C. for 2 to 10 hours. Thus, a cured product can be obtained, and semiconductor package molding corresponds to this.

またテープ状封止剤として使用する場合には、前述の手法によって得られた樹脂組成物を加熱して半硬化シートを作製し、封止剤テープとした後、この封止剤テープを半導体チップ上に置き、100〜150℃に加熱して軟化させ成形し、170〜250℃で完全に硬化させる方法を挙げることができる。   Moreover, when using as a tape-shaped sealing agent, after heating the resin composition obtained by the above-mentioned method and producing a semi-hardened sheet and using it as a sealing agent tape, this sealing agent tape is used as a semiconductor chip. Examples of the method include placing it on top, heating to 100 to 150 ° C, softening and molding, and completely curing at 170 to 250 ° C.

更にポッティング型液状封止剤として使用する場合には、前述の手法によって得られた樹脂組成物を半導体チップや電子部品上に塗布し、直接、硬化させればよい。   Furthermore, when using as a potting type liquid sealing agent, the resin composition obtained by the above-mentioned method may be applied on a semiconductor chip or an electronic component and directly cured.

本発明のエポキシ樹脂組成物をアンダーフィル樹脂として使用する方法についても特に限定されないが、特開平9−266221号公報や「エレクトロニクス分野のプラスチック」(工業調査会発行、1999年、27〜34頁)に記載されるような方法を採用できる。より具体的には、フリップチップ実装時に電極のついた半導体素子と半田のついたプリント配線基板との空隙に、本発明のエポキシ樹脂組成物を毛細管現象を利用してキャピラリーフロー法によって注入し硬化させる方法、予め基板ないし半導体素子上に本発明のエポキシ樹脂組成物を半硬化させてから、加熱して半導体素子と基板を密着させ、完全硬化させるコンプレッションフロー法等が挙げられる。この場合、本発明のエポキシ樹脂組成物は、有機溶剤を含有しない液状のエポキシ樹脂組成物の形態で使用するのが好ましい。特にキャピラリーフロー法を用いる場合には低粘度である必要があり、5000mPa・s以下の粘度であることが好ましい。当該樹脂組成物がこれを超える粘度であれば、室温〜100℃以下に加温して注入することもできる。   The method of using the epoxy resin composition of the present invention as an underfill resin is not particularly limited. However, Japanese Patent Application Laid-Open No. 9-266221 and “Plastics in the Electronics Field” (published by Industrial Research Council, 1999, pages 27 to 34). Can be used. More specifically, the epoxy resin composition of the present invention is injected into the gap between the semiconductor element with electrodes and the printed wiring board with solder during flip-chip mounting by a capillary flow method using a capillary phenomenon and cured. And a compression flow method in which the epoxy resin composition of the present invention is semi-cured on a substrate or a semiconductor element in advance, and then the semiconductor element and the substrate are brought into close contact with each other to be completely cured. In this case, the epoxy resin composition of the present invention is preferably used in the form of a liquid epoxy resin composition containing no organic solvent. In particular, when the capillary flow method is used, the viscosity needs to be low, and the viscosity is preferably 5000 mPa · s or less. If the said resin composition is a viscosity exceeding this, it can also inject | pour after heating to room temperature-100 degrees C or less.

本発明のエポキシ樹脂組成物を半導体の層間絶縁材料として使用する場合は、例えば特開平6−85091号公報の記載の方法が採用できる。層間絶縁膜に用いる場合は半導体に直接接することになるため、高温環境下において線膨張率の差によるクラックが生じないよう、絶縁材の線膨張率を半導体の線膨張率に近づけることが要求される。また、半導体の微細化、多層化、高密度化による信号遅延の問題に対応するため、絶縁材の低容量化技術が求められており、絶縁材を低誘電化することによってこの問題を解決することができる。当該樹脂組成物は、これらの要求を満たす特性を有するため好ましい。   When the epoxy resin composition of the present invention is used as a semiconductor interlayer insulating material, for example, the method described in JP-A-6-85091 can be employed. When used as an interlayer insulating film, it will be in direct contact with the semiconductor, so it is required that the linear expansion coefficient of the insulating material be close to the linear expansion coefficient of the semiconductor so that cracks due to the difference in linear expansion coefficient do not occur in a high temperature environment. The In addition, in order to deal with the problem of signal delay due to miniaturization, multilayering, and high density of semiconductors, there is a demand for technology for reducing the capacity of insulating materials, and this problem can be solved by reducing the dielectric of insulating materials. be able to. The resin composition is preferable because it has characteristics satisfying these requirements.

本発明のエポキシ樹脂組成物をレジストインキとして使用する場合には、例えば特開平5−186567号公報に記載の方法に準じて、レジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。   When the epoxy resin composition of the present invention is used as a resist ink, for example, according to the method described in JP-A No. 5-186567, a resist ink composition is prepared and then printed on a printed circuit board by a screen printing method. The method of making it a resist ink hardened | cured material after apply | coating to is mentioned.

本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、特開平3−46707号公報に記載の微細導電性粒子を該樹脂組成物中に分散させ異方性導電膜用組成物とする方法、特開昭62−40183号公報、特開昭62−76215号公報、特開昭62−176139号公報などに開示されているような室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。   When using the epoxy resin composition of the present invention as a conductive paste, for example, fine conductive particles described in JP-A-3-46707 are dispersed in the resin composition, and the composition for anisotropic conductive film is used. And a paste resin composition for circuit connection which is liquid at room temperature as disclosed in JP-A-62-240183, JP-A-62-276215, JP-A-62-176139, etc. And an anisotropic conductive adhesive.

本発明のエポキシ樹脂組成物を塗料用樹脂組成物として使用する場合には、例えば、エポキシ樹脂(A)、必要に応じて併用されるその他のエポキシ樹脂(C)に顔料、着色剤、添加剤等を配合し、必要に応じて有機溶剤を加え、混合ミキサー、ボールミル等の装置を用いて十分に混練、均一に分散させた顔料ペーストを予め用意し、これに硬化剤(B)、硬化促進剤等を更に配合して均一にし、所望の粘度に有機溶剤等で調製する方法を挙げることができる。また、粉体塗料を得る方法としては、固形のエポキシ樹脂(A)、固形の硬化剤(B)、更に必要に応じて、その他のエポキシ樹脂(C)、硬化促進剤、添加剤、顔料等を粗粉砕、配合した後、ヘンシェルミキサー等の粉砕機を用いて充分に粉砕、混合し、これを加熱されたニーダーを用いて溶融混練し、冷却後粉砕、分級して得ることができる。   When the epoxy resin composition of the present invention is used as a resin composition for coatings, for example, the epoxy resin (A) and other epoxy resins (C) used in combination as necessary may include pigments, colorants, and additives. Etc., add an organic solvent if necessary, and prepare in advance a pigment paste that is sufficiently kneaded and uniformly dispersed using an apparatus such as a mixing mixer or a ball mill. The curing agent (B) and curing acceleration are prepared in advance. A method of further blending an agent or the like to make it uniform and preparing it with an organic solvent or the like to have a desired viscosity can be mentioned. Moreover, as a method of obtaining a powder coating material, solid epoxy resin (A), solid curing agent (B), and, if necessary, other epoxy resin (C), curing accelerator, additive, pigment, etc. After coarsely pulverizing and blending, the mixture can be sufficiently pulverized and mixed using a pulverizer such as a Henschel mixer, melted and kneaded using a heated kneader, pulverized and classified after cooling.

前記手法によって得られた塗料用に調製された樹脂組成物は、各種の塗装方法によって様々な基材に塗布することができ、特にその手法は制限されるものではなく、例えば液状の塗料用樹脂組成物では、グラビアコーター、ナイフコーター、ロールコーター、コンマコーター、スピンコーター、バーコーター、刷毛塗り、ディッピング塗布、スプレー塗布等のコーティング方法が挙げられ、粉体塗料では、静電塗装等が挙げられる。   The resin composition prepared for the paint obtained by the above technique can be applied to various substrates by various coating methods, and the technique is not particularly limited. For example, a liquid paint resin Examples of the composition include a gravure coater, knife coater, roll coater, comma coater, spin coater, bar coater, brush coating, dipping coating, spray coating and the like, and powder coating includes electrostatic coating and the like. .

また、前記塗料用に調製された樹脂組成物を塗装した後の硬化方法についても特に制限されるものではなく、常温硬化、加熱硬化の何れでも硬化塗膜を得ることができる。   Further, the curing method after coating the resin composition prepared for the paint is not particularly limited, and a cured coating film can be obtained by any of room temperature curing and heat curing.

本発明のエポキシ樹脂組成物を接着剤用樹脂組成物として使用する場合には、例えば、エポキシ樹脂(A)、硬化剤(B)、必要に応じて併用されるその他のエポキシ樹脂(C)、硬化促進剤、添加剤等を室温または加熱下で混合ミキサー等を用いて均一に混合することによって得ることができ、各種の基材に塗布した後、室温又は加熱下に放置することによって基材の接着を行うことができる。   When using the epoxy resin composition of the present invention as a resin composition for an adhesive, for example, an epoxy resin (A), a curing agent (B), other epoxy resins (C) used in combination as necessary, Curing accelerators, additives, etc. can be obtained by uniformly mixing with a mixing mixer or the like at room temperature or under heating, and after being applied to various base materials, the base material is allowed to stand at room temperature or under heating. Can be bonded.

本発明のエポキシ樹脂組成物から複合材料を得るには、本発明のエポキシ樹脂組成物を粘度によっては無溶媒系で使用することが可能であるが、無溶媒系での扱いが困難な場合は、有機溶剤を用いてワニス化し、該当ワニスを補強基材に含浸し、加熱してプリプレグを得た後、それを繊維の方向を少しずつ変えて、擬似的に等方性を持たせるように積層し、その後加熱することにより硬化成形する方法が挙げられる。前記有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、メチルセロソルブ、エチルセロソルブ等のアルコール性溶媒、トルエン、キシレン等の芳香族炭化水素性溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド等の非アルコール性極性溶媒等沸点160℃以下の溶剤が挙げられ、適宜に2種または、それ以上の混合溶剤として使用することができる。加熱温度としては、用いる溶剤の種類を考慮して決定され、好ましくは50〜150℃とされる。補強基材の種類は特に限定されず、例えば炭素繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。樹脂分と補強基材の割合も特に限定されないが、通常、プリプレグ中の樹脂分が20〜60重量%となるように調整するのが好ましい。   In order to obtain a composite material from the epoxy resin composition of the present invention, the epoxy resin composition of the present invention can be used in a solvent-free system depending on the viscosity, but it is difficult to handle in a solvent-free system. After varnishing with an organic solvent, impregnating the varnish into a reinforcing base material and heating to obtain a prepreg, the direction of the fiber is changed little by little to make it pseudo-isotropic The method of carrying out hardening shaping | molding by laminating | stacking and heating after that is mentioned. Examples of the organic solvent include alcoholic solvents such as methanol, ethanol, isopropyl alcohol, methyl cellosolve, and ethyl cellosolve, aromatic hydrocarbon solvents such as toluene and xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, and the like. Non-alcoholic polar solvents and the like have a boiling point of 160 ° C. or lower, and can be used as a mixed solvent of two or more as appropriate. The heating temperature is determined in consideration of the type of solvent used, and is preferably 50 to 150 ° C. The type of the reinforcing substrate is not particularly limited, and examples thereof include carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. The ratio of the resin component and the reinforcing substrate is not particularly limited, but it is usually preferable that the resin component in the prepreg is adjusted to 20 to 60% by weight.

本発明の硬化物は、前述の本発明のエポキシ樹脂組成物を成形硬化させて得られるものであり、積層物、注型物、接着剤、塗膜、フィルム等として使用できる。その硬化方法としては特に制限されるものではなく、例えば、エポキシ樹脂(A)と硬化剤(B)、必要に応じて配合されるその他のエポキシ樹脂(C)、各種配合剤等を均一に混合した後、室温または80〜200℃で加熱硬化する方法を挙げることができる。また、前述の各種用途に応じて調製されたエポキシ樹脂組成物は、適応する用途に応じた硬化方法を適宜採用することが好ましい。   The cured product of the present invention is obtained by molding and curing the above-described epoxy resin composition of the present invention, and can be used as a laminate, a cast product, an adhesive, a coating film, a film and the like. The curing method is not particularly limited. For example, the epoxy resin (A) and the curing agent (B), other epoxy resins (C) blended as necessary, various blending agents, etc. are uniformly mixed. Then, a method of heat curing at room temperature or 80 to 200 ° C. can be mentioned. Moreover, it is preferable to employ | adopt suitably the hardening method according to the use to which the epoxy resin composition prepared according to the above-mentioned various uses.

本発明のエポキシ樹脂は、下記一般式(3’)

Figure 0004474891

(X’は、下記構造式(a1−1)、
Figure 0004474891

下記構造式(a1−2)、
Figure 0004474891

及び下記構造式(a1−3)、
Figure 0004474891

から成る群から選択される縮合多環脂肪族炭化水素基(a1)であり、かつ、前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有しており、かつ、nは1〜10で表される繰り返しの平均値であり、Rは独立に水素原子、または炭素数1〜4のアルキル基であり、Gはグリシジル基であり、mは1〜3の整数である。)で表されることを特徴とする。これらのなかでも、前記一般式(3’)中、Xが前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)である、下記一般式(3)
Figure 0004474891
nは1〜10で表される繰り返しの平均値であり、Rは独立に水素原子、または炭素数1〜4のアルキル基であり、Gはグリシジル基であり、mは1〜3の整数である。)で表されるものが好ましい。
The epoxy resin of the present invention has the following general formula (3 ′)
Figure 0004474891

(X ′ is the following structural formula (a1-1),
Figure 0004474891

The following structural formula (a1-2),
Figure 0004474891

And the following structural formula (a1-3),
Figure 0004474891

A condensed polycyclic aliphatic hydrocarbon group (a1) selected from the group consisting of: and a condensed polycyclic aliphatic group selected from the structural formula (a1-1) and the structural formula (a1-2) The hydrocarbon group (x1) is contained in the condensed polycyclic aliphatic hydrocarbon group (a1) in an amount of 20 mol% or more, and n is an average value represented by 1 to 10 and R is independent. Are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, G is a glycidyl group, and m is an integer of 1 to 3. ). Among these, in the general formula (3 ′), X is a condensed polycyclic aliphatic hydrocarbon group (x1) selected from the structural formula (a1-1) and the structural formula (a1-2). The following general formula (3)
Figure 0004474891
n is an average value of repetitions represented by 1 to 10, R is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, G is a glycidyl group, and m is an integer of 1 to 3. is there. ) Is preferred.

前記一般式(3)で表される化合物の合成方法としては、原料としてトリシクロペンタジエンと所望の構造を有するヒドロキシ基含有芳香族炭化水素(例えば、フェノール、クレゾール、キシレノール、p−t−ブチルフェノール等)を用いて、前述のヒドロキシ化合物と同様の手法で酸触媒を用いて反応させ、更にエピハロヒドリンを用いてエポキシ化することにより得ることができる。なお、前記一般式(3)中のグリシジル基は、用いるエピハロヒドリンの構造によって下記から選ばれる1種以上の基である。   As a synthesis method of the compound represented by the general formula (3), tricyclopentadiene as a raw material and a hydroxy group-containing aromatic hydrocarbon having a desired structure (for example, phenol, cresol, xylenol, pt-butylphenol, etc.) ) Using an acid catalyst in the same manner as the hydroxy compound described above, and further epoxidized using epihalohydrin. In addition, the glycidyl group in the said General formula (3) is 1 or more types of groups chosen from the following by the structure of the epihalohydrin to be used.

Figure 0004474891
(R2は水素原子、または炭素数1〜4のアルキル基を表す)
Figure 0004474891
(R2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)

前記一般式(3)で表されるエポキシ樹脂の用途としては、本発明のエポキシ樹脂組成物の主剤として、更に、エポキシアクリレート樹脂原料、半導体フォトレジスト等の感光性樹脂原料等の高機能性樹脂原料として用いることが可能であり、硬化物の耐湿性、誘電特性、耐熱性等の物性向上に寄与する。   As the use of the epoxy resin represented by the general formula (3), as a main component of the epoxy resin composition of the present invention, a high-functional resin such as an epoxy acrylate resin raw material, a photosensitive resin raw material such as a semiconductor photoresist It can be used as a raw material and contributes to improvement of physical properties such as moisture resistance, dielectric properties, heat resistance and the like of the cured product.

次に本発明を合成例、実施例、比較例により具体的に説明するが、以下において「部」「%」は特に断わりのない限り重量基準である。   Next, the present invention will be specifically described with reference to synthesis examples, examples and comparative examples. In the following, “parts” and “%” are based on weight unless otherwise specified.

また、合成に使用する不飽和環状炭化水素のうち、トリシクロペンタジエンは丸善石油化学株式会社製トリシクロペンタジエン(前記構造式(1)の構造を有するものを85%、前記構造式(2)の構造を有するものを15%含有する)を用い、ジシクロペンタジエンは市販の試薬(和光純薬工業株式会社製、特級)を用いた。   Of the unsaturated cyclic hydrocarbons used in the synthesis, tricyclopentadiene is a tricyclopentadiene manufactured by Maruzen Petrochemical Co., Ltd. (85% having the structure of the structural formula (1), of the structural formula (2) (Containing 15% of those having a structure), and a commercially available reagent (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used as dicyclopentadiene.

なお本発明で得られたエポキシ樹脂組成物の硬化物物性評価方法を(1)〜(3)に示す。
(1)ガラス転移温度:DMA法(昇温速度3℃/分)によりガラス転移温度を測定した。
(2)吸湿率: 85℃/85%RHの恒温恒湿装置中で300時間処理した前後の重量変化(wt%)を吸湿率として測定(試験片のサイズ75×25×2mm)。
(3)誘電特性:誘電特性評価器を用いて10MHz、100MHz、1GHzの周波数における誘電率と誘電正接を測定した(試験片のサイズ75×25×2mm)。吸湿後の誘電特性には上記(2)記載の方法で処理した試験片を用いて、誘電率と誘電正接を測定した。
In addition, the cured-material physical-property evaluation method of the epoxy resin composition obtained by this invention is shown to (1)-(3).
(1) Glass transition temperature: The glass transition temperature was measured by the DMA method (temperature increase rate 3 ° C./min).
(2) Moisture absorption rate: The change in weight (wt%) before and after being treated for 300 hours in a constant temperature and humidity device at 85 ° C./85% RH was measured as the moisture absorption rate (test piece size 75 × 25 × 2 mm).
(3) Dielectric properties: Dielectric constant and dielectric loss tangent at frequencies of 10 MHz, 100 MHz, and 1 GHz were measured using a dielectric property evaluator (test piece size 75 × 25 × 2 mm). For the dielectric properties after moisture absorption, the dielectric constant and dielectric loss tangent were measured using a test piece treated by the method described in (2) above.

実施例1
フェノール940g(10モル)を、温度計、滴下ロート、冷却管、撹拌機を取り付けた反応器に仕込み、70℃に加熱して、三フッ化ホウ素−エーテル錯体9.4gを添加した後、反応温度を70℃に制御しながら、トリシクロペンタジエン198g(1モル)を1.5時間かけて徐々に滴下し、滴下終了後、100℃で5時間反応を行った。反応終了後、得られた反応生成物にトリエチルアミン7.4gを添加し、30分間撹拌して触媒を失活させた後、未反応フェノールを濃縮回収して粗多価ヒドロキシ化合物を得た。次いで、得られた触媒残差を含む粗多価ヒドロキシ化合物をメチルイソブチルケトン600gに溶解した後、水200gで3回水洗を行った。溶剤を濃縮回収し、ヒドロキシ化合物(1)を372g得た。得られたヒドロキシ化合物(1)は、150℃における溶融粘度が15dPa・s、軟化点が115℃であり、フェノール性水酸基当量は206g/eq.であった。また、GPCより、繰り返し単位数であるnは1.3であり、MSスペクトルによりM=386、678、971、1262の各ピークを確認した。
Example 1
940 g (10 mol) of phenol was charged into a reactor equipped with a thermometer, a dropping funnel, a condenser, and a stirrer, heated to 70 ° C., and 9.4 g of boron trifluoride-ether complex was added, followed by reaction. While controlling the temperature at 70 ° C., 198 g (1 mol) of tricyclopentadiene was gradually added dropwise over 1.5 hours, and after completion of the addition, reaction was performed at 100 ° C. for 5 hours. After completion of the reaction, 7.4 g of triethylamine was added to the obtained reaction product and stirred for 30 minutes to deactivate the catalyst. Then, the unreacted phenol was concentrated and recovered to obtain a crude polyvalent hydroxy compound. Next, the obtained crude polyvalent hydroxy compound containing the catalyst residue was dissolved in 600 g of methyl isobutyl ketone, and then washed with 200 g of water three times. The solvent was concentrated and recovered to obtain 372 g of hydroxy compound (1). The obtained hydroxy compound (1) has a melt viscosity at 150 ° C. of 15 dPa · s, a softening point of 115 ° C., and a phenolic hydroxyl group equivalent of 206 g / eq. Met. Moreover, n which is the number of repeating units was 1.3 from GPC, and each peak of M + = 386, 678, 971, 1262 was confirmed by MS spectrum.

温度計、滴下ロート、冷却管、撹拌機を取り付けた反応器に窒素ガスパージを施しながら、ヒドロキシ化合物(1)206g(水酸基当量206)、エピクロルヒドリン463g、n−ブタノール53g、テトラエチルベンジルアンモニウムクロライド2.3gを仕込み溶解させた。65℃に昇温した後に、共沸する圧力までに減圧して、49%水酸化ナトリウム水溶液82gを5時間かけて滴下し、次いで同条件下で0.5時間撹拌を続けた。この間、共沸で留出してきた留出分をディーンスタークトラップで分離して、水層を除去し、油層を反応系内に戻しながら反応した。その後、未反応のエピクロルヒドリンを減圧蒸留して留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン550gとn−ブタノール55gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液15gを添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(A−1)254gを得た。得られたエポキシ樹脂中の遊離フェノール含有量を4−アミノアンチピリンで発色させる方法を用いて測定した結果、発色が認められないことから50ppm以下を確認した。また得られたエポキシ樹脂のエポキシ当量は296g/eq.であり、エポキシ化されていることを確認した。なお、得られた樹脂の150℃における溶融粘度は3.0dPa.sであり、軟化点は81℃であった。   While purging the reactor equipped with a thermometer, a dropping funnel, a condenser, and a stirrer with nitrogen gas, 206 g of hydroxy compound (1) (hydroxyl equivalent 206), 463 g of epichlorohydrin, 53 g of n-butanol, 2.3 g of tetraethylbenzylammonium chloride Was charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to an azeotropic pressure, and 82 g of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours, and then stirring was continued for 0.5 hours under the same conditions. During this time, the distillate distilled azeotropically was separated by a Dean-Stark trap, the aqueous layer was removed, and the reaction was carried out while returning the oil layer to the reaction system. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure. 550 g of methyl isobutyl ketone and 55 g of n-butanol were added to the crude epoxy resin thus obtained and dissolved. Further, 15 g of a 10% aqueous sodium hydroxide solution was added to this solution and reacted at 80 ° C. for 2 hours. After that, washing with 100 g of water was repeated three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after microfiltration, the solvent was distilled off under reduced pressure to obtain 254 g of the desired epoxy resin (A-1). As a result of measuring the free phenol content in the obtained epoxy resin using a method of coloring with 4-aminoantipyrine, no color development was observed, and 50 ppm or less was confirmed. Moreover, the epoxy equivalent of the obtained epoxy resin is 296 g / eq. It was confirmed that it was epoxidized. The melt viscosity at 150 ° C. of the obtained resin was 3.0 dPa.s. s and the softening point was 81 ° C.

実施例2
使用するフェノール類をo−クレゾール1080g(10モル)に変えた以外は、実施例1と同様な操作を行い、ヒドロキシ化合物(2)392gを得た。得られたヒドロキシ化合物(2)は、溶融粘度が11dPa・s、軟化点が125℃であり、フェノール性水酸基当量は234g/eq.であった。GPCよりn=1.3、MSスペクトルによりM=415、721、1027、1333の各ピークを確認した。
Example 2
Except having changed the phenol to be used into 1080 g (10 mol) of o-cresol, the same operation as in Example 1 was performed to obtain 392 g of a hydroxy compound (2). The obtained hydroxy compound (2) has a melt viscosity of 11 dPa · s, a softening point of 125 ° C., and a phenolic hydroxyl group equivalent of 234 g / eq. Met. From GPC, it confirmed each peak of n = 1.3 and MS spectrum M + = 415, 721, 1027, 1333.

ヒドロキシ化合物(1)206gの代わりにヒドロキシ化合物(2)234gを用いる以外は実施例1と同様にしてエポキシ化を行い、目的のエポキシ樹脂(A−2)を得た。実施例と同じ手法を用い、フェノール性水酸基がエポキシ化されていることを確認した。得られたエポキシ樹脂のエポキシ当量は322g/eq.、150℃における溶融粘度は5.8dPa.sであり、軟化点は86℃であった。   Epoxidation was carried out in the same manner as in Example 1 except that 234 g of the hydroxy compound (2) was used instead of 206 g of the hydroxy compound (1) to obtain the target epoxy resin (A-2). Using the same method as in the example, it was confirmed that the phenolic hydroxyl group was epoxidized. The epoxy equivalent of the obtained epoxy resin is 322 g / eq. The melt viscosity at 150 ° C. is 5.8 dPa.s. s and the softening point was 86 ° C.

実施例3
使用する不飽和環状炭化水素をトリシクロペンタジエン99g(0.5モル)、ジシクロペンタジエン66g(0.5モル)の混合物に変えた以外は、実施例1と同様な操作を行い、ヒドロキシ化合物(3)334gを得た。得られたヒドロキシ化合物(3)は、150℃における溶融粘度が4.0dPa・s、軟化点が102℃であり、フェノール性水酸基当量は188g/eq.であった。
Example 3
Except that the unsaturated cyclic hydrocarbon used was changed to a mixture of 99 g (0.5 mol) of tricyclopentadiene and 66 g (0.5 mol) of dicyclopentadiene, the same operation as in Example 1 was carried out to obtain a hydroxy compound ( 3) 334 g was obtained. The obtained hydroxy compound (3) had a melt viscosity at 150 ° C. of 4.0 dPa · s, a softening point of 102 ° C., and a phenolic hydroxyl group equivalent of 188 g / eq. Met.

ヒドロキシ化合物(1)206gの代わりにヒドロキシ化合物(3)188g(水酸基当量188g/eq.)を用いる以外は、実施例1と同様な操作を行い、エポキシ樹脂(A−3)241部を得た。得られたエポキシ樹脂のエポキシ当量が274g/eq.、150℃における溶融粘度が1.4dPa・sであり、軟化点は80℃であった。   Except for using 188 g of hydroxy compound (3) (hydroxyl equivalent 188 g / eq.) Instead of 206 g of hydroxy compound (1), the same operation as in Example 1 was carried out to obtain 241 parts of epoxy resin (A-3). . The epoxy equivalent of the obtained epoxy resin was 274 g / eq. The melt viscosity at 150 ° C. was 1.4 dPa · s, and the softening point was 80 ° C.

比較例1
使用する不飽和環状炭化水素をトリシクロペンタジエン30g(0.15モル)、ジシクロペンタジエン112g(0.85モル)の混合物に変えた以外は、実施例1と同様な操作を行い、ヒドロキシ化合物(4)320gを得た。得られたヒドロキシ化合物(4)は、150℃における溶融粘度が1.5dPa・s、軟化点が88℃であり、フェノール性水酸基当量は172g/eq.であった。
Comparative Example 1
Except that the unsaturated cyclic hydrocarbon used was changed to a mixture of 30 g (0.15 mol) of tricyclopentadiene and 112 g (0.85 mol) of dicyclopentadiene, the same operation as in Example 1 was carried out to obtain a hydroxy compound ( 4) 320 g was obtained. The obtained hydroxy compound (4) has a melt viscosity at 150 ° C. of 1.5 dPa · s, a softening point of 88 ° C., and a phenolic hydroxyl group equivalent of 172 g / eq. Met.

ヒドロキシ化合物(1)206gの代わりにヒドロキシ化合物(4)172g(水酸基当量172g/eq.)を用いる以外は、実施例1と同様な操作を行い、エポキシ樹脂(A−4)217gを得た。得られたエポキシ樹脂のエポキシ当量が255g/eq.、150℃における溶融粘度が0.6dPa.sであり、軟化点は61℃であった。   Except using 172 g of hydroxy compound (4) (hydroxyl equivalent 172 g / eq.) Instead of 206 g of hydroxy compound (1), the same operation as in Example 1 was performed to obtain 217 g of epoxy resin (A-4). The epoxy equivalent of the obtained epoxy resin is 255 g / eq. The melt viscosity at 150 ° C. is 0.6 dPa.s. s and the softening point was 61 ° C.

実施例4〜6、比較例2〜4
表1に示す配合比で、エポキシ樹脂組成物を調製し、それを加熱硬化(175℃×5時間;プレス成形)し、所定のサイズに切り出して試験片を得た。尚、硬化剤(B)としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製 フェノライト TD−2131、水酸基当量104g/eq.)を用い、エポキシ樹脂として、上記実施例1〜3及び比較例1で得られたエポキシ樹脂(A−1)〜(A−4)を用いた。また、比較例3としてジシクロペンタジエン−フェノール変性型エポキシ樹脂(大日本インキ化学工業株式会社製 EPICLON HP−7200、エポキシ当量259g/eq.)、比較例4としてオルソクレゾール型エポキシ樹脂(大日本インキ化学工業株式会社製 EPICLON N−665−EXP、エポキシ当量203g/eq.)を用いた。
Examples 4-6, Comparative Examples 2-4
An epoxy resin composition was prepared at a blending ratio shown in Table 1, and was heat-cured (175 ° C. × 5 hours; press molding), cut into a predetermined size, and a test piece was obtained. A phenol novolak resin (Phenolite TD-2131, manufactured by Dainippon Ink & Chemicals, Inc., hydroxyl equivalent: 104 g / eq.) Was used as the curing agent (B), and Examples 1 to 3 and Comparative Example 1 were used as the epoxy resin. The epoxy resins (A-1) to (A-4) obtained in (1) were used. Further, as Comparative Example 3, dicyclopentadiene-phenol-modified epoxy resin (EPICLON HP-7200, manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 259 g / eq.), As Comparative Example 4, orthocresol type epoxy resin (Dainippon Ink) Chemical Industry Co., Ltd. EPICLON N-665-EXP, epoxy equivalent 203g / eq.) Was used.

Figure 0004474891
Figure 0004474891

Claims (14)

下記一般式(3’)
Figure 0004474891

(X’は、下記構造式(a1−1)、
Figure 0004474891

下記構造式(a1−2)、
Figure 0004474891

及び下記構造式(a1−3)、
Figure 0004474891

から成る群から選択される縮合多環脂肪族炭化水素基(a1)であり、かつ、前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有しており、かつ、nは1〜10で表される繰り返しの平均値であり、Rは独立に水素原子、または炭素数1〜4のアルキル基であり、Gはグリシジル基であり、mは1〜3の整数である。)で表されるエポキシ樹脂(A)と硬化剤(B)とを含有することを特徴とするエポキシ樹脂組成物。
The following general formula (3 ')
Figure 0004474891

(X ′ is the following structural formula (a1-1),
Figure 0004474891

The following structural formula (a1-2),
Figure 0004474891

And the following structural formula (a1-3),
Figure 0004474891

A condensed polycyclic aliphatic hydrocarbon group (a1) selected from the group consisting of: and a condensed polycyclic aliphatic group selected from the structural formula (a1-1) and the structural formula (a1-2) The hydrocarbon group (x1) is contained in the condensed polycyclic aliphatic hydrocarbon group (a1) in an amount of 20 mol% or more, and n is an average value represented by 1 to 10 and R is independent. Are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, G is a glycidyl group, and m is an integer of 1 to 3. The epoxy resin composition characterized by containing the epoxy resin (A) represented by this, and a hardening | curing agent (B).
前記縮合多環脂肪族炭化水素基(x1)中の前記構造式(a1−1)で表される基と前記構造式(a1−2)で表される基のモル比(a1−1)/(a1−2)が50/50〜99/1である請求項記載のエポキシ樹脂組成物。 The molar ratio of the group represented by the condensed polycyclic aliphatic hydrocarbon group (x1) the structural formula (a1-1) a group with the formula represented in (a1-2) (a1- 1) / (a1- 2) is 50 / 50-99 / 1 in a claim 1 epoxy resin composition. エポキシ樹脂(A)が、トリシクロペンタジエンと一価フェノール類とを反応させて得られる化合物を、更にエピハロヒドロンを用いてエポキシ化して得られる化合物を含有する請求項記載のエポキシ樹脂組成物。 Epoxy resin (A), a compound obtained by reacting a tri-cyclopentadiene and monohydric phenols, further claim 1 epoxy resin composition according containing the compound obtained by epoxidizing with Epiharohidoron. エポキシ樹脂(A)の150℃における溶融粘度が10dPa・s以下である請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the epoxy resin (A) has a melt viscosity at 150 ° C. of 10 dPa · s or less. プリント基板用樹脂組成物調製される請求項1〜の何れか1項記載のエポキシ樹脂組成物。 Claim 1 any one epoxy resin composition according 4 which is prepared in the printed circuit board resin composition. 電子部品の封止材用樹脂組成物に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。The epoxy resin composition according to any one of claims 1 to 4, which is prepared as a resin composition for an electronic component sealing material. レジストインキに調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, which is prepared as a resist ink. 導電ペーストに調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, which is prepared into a conductive paste. 塗料に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。The epoxy resin composition according to any one of claims 1 to 4, which is prepared into a paint. 接着剤に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。The epoxy resin composition according to any one of claims 1 to 4, which is prepared as an adhesive. 複合材料に調製される請求項1〜4の何れか1項記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, which is prepared into a composite material. 請求項1〜の何れか1項記載のエポキシ樹脂組成物を硬化させて得られることを特徴とする硬化物。 A cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 4 . 下記一般式(3’)
Figure 0004474891

(X’は、下記構造式(a1−1)、
Figure 0004474891

下記構造式(a1−2)、
Figure 0004474891

及び下記構造式(a1−3)、
Figure 0004474891

から成る群から選択される縮合多環脂肪族炭化水素基(a1)であり、かつ、前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)が縮合多環脂肪族炭化水素基(a1)中に20モル%以上含有しており、かつ、nは1〜10で表される繰り返しの平均値であり、Rは独立に水素原子、または炭素数1〜4のアルキル基であり、Gはグリシジル基であり、mは1〜3の整数である。)で表されることを特徴とするエポキシ樹脂。
The following general formula (3 ')
Figure 0004474891

(X ′ is the following structural formula (a1-1),
Figure 0004474891

The following structural formula (a1-2),
Figure 0004474891

And the following structural formula (a1-3),
Figure 0004474891

A condensed polycyclic aliphatic hydrocarbon group (a1) selected from the group consisting of: and a condensed polycyclic aliphatic group selected from the structural formula (a1-1) and the structural formula (a1-2) The hydrocarbon group (x1) is contained in the condensed polycyclic aliphatic hydrocarbon group (a1) in an amount of 20 mol% or more, and n is an average value represented by 1 to 10 and R is independent. Are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, G is a glycidyl group, and m is an integer of 1 to 3. Epoxy resin, characterized by being represented by).
前記一般式(3’)中、Xが前記構造式(a1−1)及び前記構造式(a1−2)から成る選択される縮合多環脂肪族炭化水素基(x1)である請求項13記載のエポキシ樹脂。14. In the general formula (3 ′), X is a condensed polycyclic aliphatic hydrocarbon group (x1) selected from the structural formula (a1-1) and the structural formula (a1-2). Epoxy resin.
JP2003349401A 2003-10-08 2003-10-08 Epoxy resin composition, cured product thereof and epoxy resin Expired - Lifetime JP4474891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349401A JP4474891B2 (en) 2003-10-08 2003-10-08 Epoxy resin composition, cured product thereof and epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349401A JP4474891B2 (en) 2003-10-08 2003-10-08 Epoxy resin composition, cured product thereof and epoxy resin

Publications (2)

Publication Number Publication Date
JP2005113022A JP2005113022A (en) 2005-04-28
JP4474891B2 true JP4474891B2 (en) 2010-06-09

Family

ID=34541277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349401A Expired - Lifetime JP4474891B2 (en) 2003-10-08 2003-10-08 Epoxy resin composition, cured product thereof and epoxy resin

Country Status (1)

Country Link
JP (1) JP4474891B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150144650A (en) * 2014-06-17 2015-12-28 코오롱인더스트리 주식회사 Pure Tricyclopentadiene and Method of Preparing the Same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5516657B2 (en) * 2005-05-27 2014-06-11 日立化成株式会社 Metal foil with adhesion aid, printed wiring board using the same, and method for producing the same
JP5353163B2 (en) * 2008-09-30 2013-11-27 三菱マテリアル株式会社 Conductive ink composition and solar cell in which collector electrode is formed using the composition
JP5277844B2 (en) * 2008-09-30 2013-08-28 三菱マテリアル株式会社 Conductive ink composition and solar cell module formed using the composition
KR101986723B1 (en) * 2013-04-26 2019-06-07 코오롱인더스트리 주식회사 Low Dielectric Constant Epoxy Resin and Processes for Production thereof
JP5692295B2 (en) * 2013-07-04 2015-04-01 三菱マテリアル株式会社 Method for forming solar cell collector electrode and solar cell module provided with the solar cell
CN106867447A (en) * 2017-01-19 2017-06-20 福建沃斯盾建材有限公司 A kind of joint mixture and preparation method thereof
JP7069555B2 (en) * 2017-03-29 2022-05-18 富士フイルムビジネスイノベーション株式会社 Powder coating and electrostatic powder coating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150144650A (en) * 2014-06-17 2015-12-28 코오롱인더스트리 주식회사 Pure Tricyclopentadiene and Method of Preparing the Same
KR102122944B1 (en) 2014-06-17 2020-06-15 코오롱인더스트리 주식회사 Pure Tricyclopentadiene and Method of Preparing the Same

Also Published As

Publication number Publication date
JP2005113022A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP5245199B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin
WO2006101008A1 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, process for production thereof, and novel phenol resin
WO2010047169A1 (en) Curable resin composition and cured product thereof, printed circuit board, and epoxy resin and method for producing same
WO2007099670A1 (en) Process for producing phenolic resin and process for producing epoxy resin
JP5135702B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and semiconductor device
JP4474891B2 (en) Epoxy resin composition, cured product thereof and epoxy resin
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP5246481B2 (en) Curable resin composition, cured product thereof, novel epoxy resin, and production method thereof
JP5168547B2 (en) Epoxy resin composition, semiconductor sealing material, and semiconductor device
JP4716082B2 (en) Epoxy resin composition and cured product thereof
WO2007083715A1 (en) Liquid epoxy resin, epoxy resin composition, and cured article
JP5127160B2 (en) Epoxy resin, curable resin composition, and cured product thereof
KR20010023189A (en) Polyhydric phenol compounds, epoxy resins, epoxy resin compositions and cured products thereof
JP4844796B2 (en) 1-pack type epoxy resin composition and cured product thereof
JP2006257137A (en) Epoxy resin composition and cured product thereof
JP4474890B2 (en) Epoxy resin composition, cured product thereof and polyvalent hydroxy compound
JP4363048B2 (en) Epoxy resin composition and cured product thereof
JP2005307032A (en) One-component epoxy resin composition and its cured product
JP4636307B2 (en) Epoxy resin composition and cured product thereof
JP4656374B2 (en) Epoxy resin composition and cured product thereof
JPH08193110A (en) Novolak resin, epoxy resin, epoxy resin composition, and cured article obtained therefrom
JP4665444B2 (en) Production method of epoxy resin
JP3866922B2 (en) Method for producing phenolic resin
JP4942384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP2005187609A (en) Epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4474891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term