JP2010231059A - 光変調器及び相補強度変調光発生器 - Google Patents

光変調器及び相補強度変調光発生器 Download PDF

Info

Publication number
JP2010231059A
JP2010231059A JP2009079718A JP2009079718A JP2010231059A JP 2010231059 A JP2010231059 A JP 2010231059A JP 2009079718 A JP2009079718 A JP 2009079718A JP 2009079718 A JP2009079718 A JP 2009079718A JP 2010231059 A JP2010231059 A JP 2010231059A
Authority
JP
Japan
Prior art keywords
optical
signal
component
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009079718A
Other languages
English (en)
Other versions
JP4798244B2 (ja
Inventor
Shin Arataira
慎 荒平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2009079718A priority Critical patent/JP4798244B2/ja
Publication of JP2010231059A publication Critical patent/JP2010231059A/ja
Application granted granted Critical
Publication of JP4798244B2 publication Critical patent/JP4798244B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 簡便な調整により、振幅変調方式や位相変調方式のいずれの対応可能な、その動作が非常に安定な光変調器を提供する。
【解決手段】 光パルス列又は連続光である直線偏波の信号光を2つの直線偏波の第1成分及び第2成分に分けて、巡回方向が逆になるように閉ループ光路へ入力する。この閉ループ光路に、強度パターンが相補的な第1及び第2の制御光信号を巡回方向が逆になるように入力し、第1成分、第2成分の光位相を変化させる。さらに、第1成分及び第2成分に相対的な光位相差を付与する光位相差付与部も、信号光の光路上のいずれかの位置に設ける。閉ループ光路から出力された第1成分及び第2成分光を、偏波面を揃えて合波させる。第1成分及び第2成分のトータルの位相シフトの差を所望とするように各部を調整することで、所望する変調光信号を得る。
【選択図】 図1

Description

本発明は光変調器及び相補強度変調光発生器に関し、例えば、長距離大容量光ファイバ通信等に利用される、制御光によって被制御光に強度変調及び又は位相変調を与える全光型の光変調器に適用し得るものである。
インターネットの普及などに伴い、光ファイバ通信の通信容量の大容量化への要求は近年ますます高まってきている。近年の光ファイバ通信の通信容量の大容量化は、送受信可能な波長チャンネル数を増やすこと(波長多重通信、WDM:Wave length Division Multiplexing)と、かつ、各波長チャンネル当たりの通信速度を高速化することによってなされている。
WDM方式による波長チャンネル数の増大は、システムの複雑さの増大やシステム保守の煩雑さの観点から限界を迎えつつあり、従って、各波長チャンネル当たりの通信速度の高速化が近年重要な研究開発の課題となっている。その一手段として、時分割多重通信(TDM:Time Division Multiplexing)等の多重通信方法が、従来より検討され、また実用化されている。
TDM方式は、複数チャンネルを時分割多重した時分割多重信号を用いることにより、波長チャンネル当たりの通信速度を高速化する方式である。TDM方式においては、受信側でクロック信号から生成されるゲート信号によって、時分割多重信号から個々のチャンネルを分離する多重分離手段により、個々のチャンネルの情報を個別に取り出して受信する。
従来、用いられてきたTDM方式は、電子デバイスレベルで、時分割多重信号を発生したり時分割多重信号を多重分離したりする方式であった。この方式を、電気TDMと呼ぶ。電気TDMの通信速度を高速化するためには、電子デバイス、並びに、光電変換や電光変換を行うためのフォトダイオード、半導体レーザなどのオプトエレクトロニクスデバイスの高速化が必要である。その通信速度は、40Gbit/s程度のビットレートが限界であった。
TDM方式の通信速度をさらに高速化するためには、上述の時分割多重信号を発生したり時分割多重信号を多重分離したりする手段を全て光学的な手段で実現することが望ましい。この方式を、光TDMと呼ぶ。光TDM方式では、光カプラなどを結合させた光回路を用いて、時分割多重された光パルス信号の生成を行う。また、受信側での多重分離は、制御光である光制御信号でゲート動作させた、全光型光スイッチを用いて実行するのが望ましい。さらにまた、長距離伝送などのための光中継器や、光ネットワークのノードにおける波長変換や変調光信号の生成さらには光信号再生動作などの光信号制御技術もまた、同様に、制御光信号で、被制御光信号の波長変換、変調光信号の生成、信号再生などを行う、全光型波長変換器・光変調器などを用いて実行するのが望ましい。
すなわち、光TDM方式では、その受信端における多重分離や、あるいは光中継器における光信号再生などを実行するために、制御光信号で、被制御光信号のスイッチ動作、変調信号生成動作を行う、全光型光スイッチ・変調器が必要となる。
全光型光スイッチ・変調器を実現する手法として、光ファイバにおいて発現する光カー効果を利用する方法は、その好ましい一例である。光ファイバにおいて発現する光カー効果は、光ファイバを強度の強い光が伝播することにより光ファイバの屈折率が変化する現象であり、その応答速度は数フェムト秒(fs)である。すなわち、光ファイバの光カー効果を利用して光スイッチや光変調器を構成すれば、数百Gbit/s以上の光パルス信号のスイッチングや変調が可能な光スイッチ・光変調器を実現できる可能性がある。
光カー効果を利用した光スイッチとして、偏波面保存型の単一モード光ファイバ内で発現する光カー効果を利用した光スイッチが研究されている(例えば、非特許文献1参照)。
非特許文献1に開示されている光スイッチにおいて、環境温度変化等に対して実用に足る動作安定性を実現するには、まず、偏波面保存単一モード光ファイバの有する複屈折を相殺するために、光カー効果を発現させる2本の偏波面保存単一モード光ファイバのファイバ長を厳密に一致させる必要がある。一方、各光ファイバのファイバ長は、通常、数百mから数kmの長さがあり、ゆえに、ファイバ長を厳密に一致させるのは、現実のデバイス作製を考慮した場合、非常に高いファイバ長の精度(おおよそ1mm以下)が必要であり、実現性に問題点がある。さらには、非特許文献2に開示される、現実の偏波保存単一モード光ファイバにおいて存在する偏波クロストーク成分による、スイッチ動作の不安定性の問題もある。
これらの問題を解決する方法として、本願発明者等は、非特許文献3に開示される光スイッチをこれまでに提案している。すなわち、非特許文献3には、光スイッチを構成する偏波保存単一モード光ファイバのファイバ長の調整が不要であり、かつ、光カー効果を生じさせる偏波保存単一モード光ファイバとして、長尺なものを用いても、偏波クロストーク成分によるスイッチ動作の不安定性が生じない、光スイッチが開示されている。
一方、光通信システムにおいて利用される光信号の符号化フォーマットは、現在までに多種多様なものが提案、利用されている。その代表的なものは、光信号のピーク強度の大小によって2値デジタル信号を表す振幅変調方式と、光信号の光搬送波の光位相の違いによって2値デジタル信号を表す位相変調方式である。
振幅変調方式及び位相変調方式はそれぞれ、ネットワークの要求仕様を最大限満足するものが、適宜選択されて使用されることが望ましい。また、光通信ネットワークは、様々な仕様の複数のネットワークを相互接続させた形態を有する。すなわち、光通信ネットワークは、振幅変調方式や位相変調方式など様々な変調フォーマットで符号化された様々な光信号が、それぞれ適材適所で混在して運用されることが望ましい。
このような状況を鑑みたとき、符号化された光信号を発生するための光変調器としては、振幅変調方式及び位相変調方式のいずれの方式にも対応できるような汎用性を有していることが望ましい。
非特許文献1や非特許文献3に開示の全光型光スイッチは、制御光として、そのピーク強度の大小による振幅変調方式によって信号化された、光パルス信号を用いることで、振幅変調された変調光信号を発生する全光型光強度変調器として用いることができる。
しかしながら、非特許文献1や非特許文献3に開示の全光型光スイッチは、位相変調された変調光信号を発生する全光型光位相変調器として用いるのは困難である。
非特許文献1や非特許文献3に開示の全光型光スイッチの動作原理である、光カー効果による相互位相変調効果は、そのまま位相変調器の動作原理として転用できるので、これを用いて全光型光位相変調器を提供することはできる。
しかしながら、この場合、振幅変調方式及び相変調方式の双方に対応するために、それぞれの方式に対応した別個の全光型光変調器を用意することになる。このことは、装置の大型化や、コスト増や、消費電力の増大等を招き、問題となる。
1台の装置を用いて、簡便な調整手段によって、振幅変調方式及び位相変調方式のいずれのフォーマットの光信号も発生できる、全光型の強度・位相変調器を実現できれば、上記の問題を解決できる。その際、変調フォーマットの変化に伴う光損失の格段の変化など、光信号品質の格段の変化を伴わないことが実用上望ましい。さらにまた、信号光波長や環境温度が変化しても特性が変化しない、高安定な動作特性を担保できれば、安定化制御にかかわる部品・コスト・消費電力の増加がなく、実用上大きなメリットを享受できるようになる。
一方、本願発明者等は、これまでに、非特許文献4に開示される全光型の強度・位相変調器を提案している。非特許文献4に開示される方式においては、装置内に組み込まれたλ/2波長板の光軸回転という簡便な方式で、容易に、振幅変調方式及び位相変調方式間のフォーマット切り替えが可能である。また、上述した信号光波長や環境温度が変化しても特性が変化しない、高安定な動作特性をも担保されている。
T. Morioka, M. Saruwatari and A. Takada, "Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation−maintaining single−mode fibres", Electronic Letters,Vol.23,No.9,pp.453−454,1987 荒井、齊藤、小山、中村、横溝、相曽共著、「偏波保持光ファイバ」、古河電工時報、第109号、pp.5−10、2002 S. Arahira, H. Murai and Y. Ogawa, "Modified NOLM for stable and improved 2R operation at ultra−high bit rates", IEICE Trans.Commun.,Vol.E89−B,No.12,pp.3296−3305,2006 S. Arahira, H. Murai and K. Fujii, "All−Optical Modulation−Format Convertor Employing Polarization−Rotation−Type Nonlinear Optical Fiber Loop Mirror", IEEE Photnics Technology Letters,Vol.20,No.18,pp.1530−1532,2008
ところで、発生させた変調光信号を長距離光ファイバ通信システムにおける光信号として実用化する場合に、重要な性能指標の一つとなるのは、変調光信号の有する周波数チャーピングの大小である。
周波数チャーピングの観点から見ると、上述した非特許文献1、3及び4に開示の技術に基づき発生させる振幅変調方式や位相変調方式の光変調信号には、下記のような問題点が存在する。
上述した非特許文献1、3及び4に開示の技術は、非線形光ファイバ中の光カー効果に基づく相互位相変調効果による位相シフトをその動作原理としている。この位相シフトは、光ファイバ中での損失や群速度分散、あるいはその他の高次の非線形光学効果などが無視できる単純な場合、制御光信号の光強度に比例する。すなわち、位相シフトの時間波形は、制御光信号の強度時間波形に比例する。
そして、多くの場合、制御光信号のピーク光強度を最大位相シフト量πに対応させて、光変調動作を得る。
一方、制御光信号がそのピーク光強度に達するまでの間に、制御光信号によってもたらされる位相シフトは0からπまでに連続的に変化する。
すなわち、制御光信号によって生じる位相シフトは、その立上り部や立下り部において、位相シフト量が時間的に変化する、いわゆる周波数チャーピングを原理的に生じさせる。
すなわち、上述した非特許文献1、3及び4に開示の技術に基づき発生させる振幅変調方式や位相変調方式の変調光信号は、原理的に周波数チャーピングを有する変調光信号となる。
仮に、被制御光である信号光が、連続光ではなく光パルス信号から構成される光パルス列であり、かつ、そのパルス幅が制御光信号を構成する光パルス信号のパルス幅に比較して十分狭ければ、周波数チャーピングが生じる制御光信号の立上り部や立下り部において、信号光強度が十分減衰された状態で光変調動作を実行することは可能である。このような場合の限り、光変調器において周波数チャーピングを抑制することは可能である。
一方、信号光パルス幅が広かったり、あるいは連続光であったりする場合、生成する変調光信号は、特に、信号光パルスの立上り部や立下り部に大きな周波数チャーピングを有することになってしまう。
このことは、上述した非特許文献1、3及び4に開示の技術に基づき発生させることができる、周波数チャーピングの小さい振幅変調方式や位相変調方式の光変調信号は、いわゆるリターン・トウ・ゼロ(RZ)フォーマットの変調光信号に限定されることを意味する。また特に、光通信システムで多く使われる、いわゆるノン・リターン・トウ・ゼロ(NRZ)フォーマットの光変調信号に関しては、それを発生することはできるが、その場合、立上り部や立下り部に大きな周波数チャーピングを有する変調光信号になってしまうという問題点があった。
本発明は、以上の点に鑑みなされたものであり、簡便な調整手段によって、振幅変調方式や位相変調方式のいずれのフォーマットの変調光信号も発生可能であり、かつ、その動作が非常に安定な光変調器を提供しようとしたものである。また、本発明は、RZフォーマットであろうとNRZフォーマットであろうと、周波数チャーピングが小さい変調光信号を発生できる光変調器を提供しようとしたものである。
さらに、そのような光変調器に適用して好適な相補強度変調光発生器を提供しようとしたものである。
第1の本発明の光変調器は、(1)偏波面保存の第1の閉ループ光路を形成させている第1閉ループ光路部(例えば、図1の22及び26が対応)と、(2)ピーク強度の揃った光パルスが等時間間隔に並んだ光パルス列、若しくは、連続光である直線偏波の第1波長を有する第1の信号光を2つの直線偏波の第1成分及び第2成分に分ける第1・第2成分分割部(例えば、図1の14及び18が対応)と、(3)信号の「0」及び「1」の並びに応じた強度パターンを有する強度変調光であって、第2波長を有する直線偏波の第1の制御光信号と、この第1の制御光信号の強度パターンと相補的な強度パターンを有する強度変調光であって、上記第2波長若しくはその近傍波長を有し、偏波面が上記第1の制御光信号の偏波面と直交している第2の制御光信号とを出力する制御光発生部(例えば、図1の50が対応)と、(4)上記第1の閉ループ光路への上記第1の信号光の入出力を行うものであって、上記第1成分及び第2成分を、巡回方向が逆になるように上記第1の閉ループ光路へ入力する第1閉ループ第1信号光入出力部(例えば、図1の18及び24が対応)と、(5)上記第1の閉ループ光路への上記第1の制御光信号及び上記第2の制御光信号の入出力を行うものであって、上記第1の制御光信号の巡回方向が上記第1成分と同じになると共に、上記第2の制御光信号の巡回方向が上記第2成分と同じになるように、上記第1の制御光信号及び上記第2の制御光信号を上記第1の閉ループ光路へ入力する第1閉ループ制御光入出力部(例えば、図1の51、18及び24が対応)と、(6)同一方向に進行する上記第1の制御光信号及び逆方向に進行する上記第2の制御光信号に応じ、上記第1成分の光位相を変化させる、上記第1の閉ループ光路に介在されている第1成分光位相シフト部(例えば、図1の22が対応)と、(7)同一方向に進行する上記第2の制御光信号及び逆方向に進行する上記第1の制御光信号に応じ、上記第2成分の光位相を変化させる、上記第1の閉ループ光路に介在されている第2成分光位相シフト部(例えば、図1の22が対応)と、(8)上記第1の閉ループ光路から出力された上記第1成分及び上記第2成分を、上記第1の制御光信号及び上記第2の制御光信号から分離する第1信号光抽出部(例えば、図1の51が対応)と、(9)上記第1閉ループ第1信号光入出力部へ向かう第1の信号光と、上記第1閉ループ第1信号光入出力部から出力された戻り光の上記第1成分及び第2成分との光路を分離する第1正逆光路分離部(例えば、図1の10又は30が対応)と、(10)上記第1閉ループ第1信号光入出力部から出力された戻り光が進行するいずれかの箇所に設けられ、上記第1成分及び第2成分の偏波面を揃えて合波させる第1信号光成分合波部(例えば、図1の14が対応)と、(11)上記第1の信号光の第1成分及び第2成分が進行するいずれかの箇所に設けられ、上記第1成分及び第2成分に相対的な光位相差を付与する第1光位相差付与部(例えば、図1の40が対応)とを備え、(12)上記第1の閉ループ光路以外の光路にも偏波面保存光路を適用すると共に、上記第1信号光成分合波部及び上記第1正逆光路分離部の合波及び光路分離がなされた光信号を、変調光信号として出力することを特徴とする。
第2の本発明の相補強度変調光発生器は、(1)偏波面保存の第2の閉ループ光路を形成させている第2閉ループ光路部と、(2)連続光である直線偏波の第2波長を有する第2の信号光を2つの直線偏波の第3成分及び第4成分に分ける第3・第4成分分割部と、(3)第2の閉ループ光路への上記第2の信号光の入出力を行うものであって、上記第3成分及び第4成分を、巡回方向が逆になるように上記第2の閉ループ光路へ入力する第2閉ループ第2信号光入出力部と、(4)信号の「0」及び「1」の並びに応じた強度パターンを有する強度変調光であって、第2波長を有する直線偏波の第3の制御光信号の、上記第2の閉ループ光路への入出力を行うものであって、上記第3の制御光信号の巡回方向が上記第3成分と同じになるように、上記第3の制御光信号を上記第2の閉ループ光路へ入力する第2閉ループ制御光入出力部と、(5)同一方向に進行する上記第3の制御光信号に応じ、上記第3成分の光位相を変化させる、上記第2の閉ループ光路に介在されている第3成分光位相シフト部と、(6)逆方向に進行する上記第3の制御光信号に応じ、上記第4成分の光位相を変化させる、上記第2の閉ループ光路に介在されている第4成分光位相シフト部と、(7)上記第2の閉ループ光路から出力された上記第3成分及び上記第4成分を、上記第3の制御光信号から分離する第2信号光抽出部と、(8)上記第2閉ループ第2信号光入出力部へ向かう第2の信号光と、上記第2閉ループ第2信号光入出力部から出力された戻り光の上記第3成分及び第4成分との光路を分離する第2正逆光路分離部と、(9)上記第2閉ループ第2信号光入出力部から出力された戻り光が進行するいずれかの箇所に設けられ、上記第3成分及び第4成分の偏波面を揃えて合波させる第2信号光成分合波部と、(10)上記第2の信号光の第3成分及び第4成分が進行するいずれかの箇所に設けられ、上記第3成分及び第4成分に相対的な光位相差を付与する第2光位相差付与部とを備え、(11)上記第2の閉ループ光路以外の当該制御光発生部内の光路にも偏波面保存光路を適用し、(12)上記第3成分光位相シフト部、上記第4成分光位相シフト部及び上記第2光位相差付与部による上記第3成分及び上記第4成分に対するトータルの位相シフトの差が、上記第3の制御光信号の信号の「0」、「1」に応じて0又はπで変化し、(13)上記第2信号光成分合波部及び上記第2正逆光路分離部の合波及び光路分離がなされた光信号が、上記強度パターンと同じ強度パターンを有する第1の強度変調光と、上記強度パターンと相補的な強度パターンを有する強度変調光であって、偏波面が上記第1の強度変調光の偏波面と直交している第2の強度変調光とが直交偏波面を維持して重畳されたと同じ光信号にして出力することを特徴とする。
第1の本発明によれば、簡便な調整手段によって、振幅変調方式や位相変調方式のいずれのフォーマットの変調光信号も発生可能であり、かつ、その動作が非常に安定な光変調器を提供でき、また、RZフォーマットであろうとNRZフォーマットであろうと、周波数チャーピングが小さい変調光信号を発生できる光変調器を提供できる。
第2の本発明によれば、第1の本発明の光変調器を実現できる、その構成要素となる相補強度変調光発生器を提供できる。
第1の実施形態に係る全光型光変調器の構成を示す配置図である。 第1の実施形態における第1光位相バイアス回路の内部構成例を示す説明図である。 偏波面保存光ファイバであるパンダ型光ファイバの光の伝播方向に対して垂直に切断した断面の概略的構造を示す断面図である。 第1の実施形態における第1偏波面変換部の構成例を示す説明図である。 第1の実施形態における第2偏波面変換部の構成例を示す説明図である。 第1の実施形態における第1偏波面変換部での信号光の偏波状態の説明図である。 第1の実施形態における制御光信号と第1光位相バイアス回路によって第1の信号光に対して生じる位相シフトの説明図である。 第2の実施形態に係る全光型光変調器の構成を示す配置図である。 第2の実施形態における第3偏波面変換部での信号光の偏波状態の説明図である。 第2の実施形態における制御光信号と第2光位相バイアス回路によって第2の信号光に対して生じる位相シフトの説明図である。
(A)第1の実施形態
以下、本発明による光変調器の第1の実施形態を、図面を参照しながら説明する。第1の実施形態の光変調器は、全光型光変調器である。
(A−1)第1の実施形態の構成
図1は、第1の実施形態に係る全光型光変調器6の構成を示す配置図である。
図1において、第1の実施形態に係る全光型光変調器6は、第1偏波分離合成モジュール10と、第1偏波面保存光ファイバ12と、第1偏波面変換部14と、第2偏波面保存光ファイバ16と、第2偏波分離合成モジュール18と、第3偏波面保存光ファイバ22と、第2偏波面変換部24と、第4偏波面保存光ファイバ26と、第1光位相バイアス回路40と、第1光バンドパスフィルタ51と、第5偏波面保存光ファイバ52とを備えている。
この第1の実施形態における信号光(第1の信号光)1は、波長λsの被制御光である。第1の信号光1は、連続光、又は、ピーク強度の揃った光パルスが等時間間隔に並んだ、いわゆる光パルス列である。所望とする変調光信号のデータフォーマットが、NRZフォーマットである場合には、第1の信号光1として連続光を用い、RZフォーマットである場合には、第1の信号光として光パルス列を用いる。光パルス列を用いる場合、パルス周期は、所望する変調光信号のビットレートをf[bit/s]とした場合、1/f[s]である。
一方、第1の制御光信号2及び第2の制御光信号3は、第1の信号光1の波長λsとは異なる波長λpを有する。第1の制御光信号2及び第2の制御光信号3のビットレートは、所望する光変調信号のビットレートf[bit/s]と一致する。
第1の制御光信号2及び第2の制御光信号3は、その強度時間波形が互いに相補的(complementary)関係にある、強度変調信号(強度変調光)である。すなわち、第1の制御光信号2の強度時間波形と、第2の制御光信号3の強度時間波形を時間軸上で足し合わせた場合、時間軸上で強度が変化しない連続光状の時間波形となる。
相補的関係にある第1の制御光信号2及び第2の制御光信号3は、例えば、NRZフォーマットで発生させた変調光信号のデータ光と反転データ光である。また例えば、RZフォーマットで発生させた変調光信号と、それと同一波長の連続光とを、光干渉計で干渉させたときに光干渉計から出力される、いわゆるconstructive出力とdestructive出力である。以上のように、第1の制御光信号2と、第2の制御光信号3とは、NRZフォーマットの強度変調信号であっても、RZフォーマットの強度変調信号であっても構わない。
第1偏波分離合成モジュール10は、第1の信号光1を入力するための入力用光ファイバ32−2の一端が結合されている第1入出力端10−1と、第1入出力端10−1に対向する側に位置する、第1偏波面保存光ファイバ12の一端が結合されている第2入出力端10−2と、変調された信号光(以下、変調光信号と呼ぶ)を出力する第3入出力端10−3とを備えている。
第2偏波分離合成モジュール18は、第2偏波面保存光ファイバ16の一端を結合する第1入出力端18−1と、第1入出力端18−1に対向する側に位置する、第3偏波面保存光ファイバ22の一端を結合する第2入出力端18−2と、第4偏波面保存光ファイバ26の一端を結合する第3入出力端18−3と、第3入出力端18−3に対向する側に位置する偏波クロストーク成分を出力する第4入出力端18−4を備えている。
なお、第4入出力端18−4は、そこからの光の入出力を行うことはないので、例えば光ファイバピグテール、光コネクタなどの光信号の入出力インターフェイスのための光部品を接続する必要はない。第1の実施形態において、第4入出力端18−4は、後述するように、第3偏波面保存光ファイバ22において生じる偏波クロストークの除去が如何になされるかを説明するために、専ら便宜上設けているだけのものであり、それ自体は第1の実施形態の必須の構成要素ではない。
第1偏波面保存光ファイバ12は、第1偏波分離合成モジュール10の第2入出力端10−2に一端が結合されており、第2偏波面保存光ファイバ16は、第2偏波分離合成モジュール18の第1入出力端18−1に一端が結合されており、第1偏波面保存光ファイバ12の他端と第2偏波面保存光ファイバ16の他端とは第1偏波面変換部14(図1では、Aと示されている位置に設定されている)を介して接続されている。
第3偏波面保存光ファイバ22は、波長λpの制御光信号(第1の制御光信号2及び第2の制御光信号3)による光カー効果により、波長λsの被制御光である第1の信号光1に対して相互位相変調効果による位相シフトが生じる、いわゆる非線形光ファイバである。第3偏波面保存光ファイバ22は、第2偏波分離合成モジュール18の第2入出力端18−2に一端が結合されている。
第4偏波面保存光ファイバ26は、第2偏波分離合成モジュール18の第3入出力端18−3に一端が結合されている。第3偏波面保存光ファイバ22の他端と第4偏波面保存光ファイバ26の他端とは、第2偏波面変換部24(図1ではBと示されている位置に設定されている)を介して接続されている。
第1光位相バイアス回路40は、第3偏波面保存光ファイバ22若しくは第4偏波面保存光ファイバ26の途中の任意の箇所に挿入される(図1では第4偏波面保存光ファイバ26の途中に挿入されている例を示している)。図2は、第1光位相バイアス回路40の内部構成例を示す説明図である。
第1光位相バイアス回路40は、直線偏波光の偏波面を+45°だけ回転する第1ファラデー回転子278と、直線偏波光の偏波面を−45°だけ回転する第2ファラデー回転子280と、光軸X、Yを有し、両光軸間に与える位相差が可変である第1のバビネソレイユ補償板282とから構成される。図2においては、便宜上、第1光位相バイアス回路40は、第4偏波面保存光ファイバ26の中途に挿入されているが、上述のように挿入箇所はここに限定されるわけではない。
第1光位相バイアス回路40の光軸方向は以下のように設定されている。すなわち、今、図2中右側の第4偏波面保存光ファイバ26の左端276から、第4偏波面保存光ファイバ26のfast軸方向に平行な直線偏波光が出力され、第1光位相バイアス回路40に挿入された場合、まず、第2ファラデー回転子280を通過して、偏波方向が−45°だけ回転する。偏波面が回転された直線偏波光の偏波方向が、その光軸方向の一つ(図2では、Y軸)と一致するように、第1のバビネソレイユ補償板282を配置する。この光は、第1のバビネソレイユ補償板282を、そのY軸と平行な直線偏波として通過した後、第1ファラデー回転子278に入力される。そして、第1ファラデー回転子278において、+45°だけ偏波面が回転される。そして、この光は、その偏波方向が図2中左側の第4偏波面保存光ファイバ26のfast軸に平行な直線偏波として、図2中左側の第4偏波面保存光ファイバ26の右端274に結合され、再び第4偏波面保存光ファイバ26を伝播していく。
一方、図2中左側の第4偏波面保存光ファイバ26の右端274から、第4偏波面保存光ファイバ26のfast軸方向に平行な直線偏波光が出力され、第1光位相バイアス回路40に挿入された場合、この光は、まず、第1ファラデー回転子278を通過して、偏波方向が+45°だけ回転する。このとき、偏波面が回転された直線偏波光の偏波方向は、第1のバビネソレイユ補償板282のX軸方向と一致する。この光は、第1のバビネソレイユ補償板282を、そのX軸と平行な直線偏波として通過した後、第2ファラデー回転子280に入力される。そして、第2ファラデー回転子280において、−45°だけ偏波面が回転される。そして、この光は、その偏波方向が図2中右側の第4偏波面保存光ファイバ26のfast軸に平行な直線偏波として、図2中右側の第4偏波面保存光ファイバ26の左端276に結合され、再び第4偏波面保存光ファイバ26を伝播していく。
第1光バンドパスフィルタ51は、第2偏波面保存光ファイバ16の光路途中の任意の箇所に挿入される。第1光バンドパスフィルタ51は、少なくとも3つの光入出力端を有する。すなわち、波長λsである第1の信号光1は第1入出力端51−1と第2入出力端51−2を双方向に通過する。一方、波長λpである第1の制御光信号2及び第2の制御光信号3は、第2入出力端51−2と第3入出力端51−3を双方向に通過する。そして、第1入出力端51−1と第2入出力端51−2とを結ぶ光路は、第2偏波面保存光ファイバ16の光路の一部を構成する。一方、第3入出力端51−3には、第5偏波面保存光ファイバ52の他端が接続される。
第1光バンドパスフィルタ51として、例えば、誘電体多層膜を用いた光バンドパスフィルタを適用できる。すなわち、透過中心波長がλsであって所定の透過帯域を有する誘電体多層膜光バンドパスフィルタを用意し、その透過光が通過する光路に第1入出力端51−1と第2入出力端51−2を用意し、また、その反射光が通過する光路に第3入出力端51−3を用意すれば良い。ここでいう所定の透過帯域とは、その透過帯域が、第1の信号光1の有する波長帯域に比べて十分広く、かつ、制御光信号(制御光信号2及び3)が有する波長帯域にオーバーラップしない程度に十分狭い帯域を意味する。
第5偏波面保存光ファイバ52は、後述する第3偏波分離合成モジュール50の第2入出力端50−2に一端が結合されており、第1光バンドパスフィルタ51の第3入出力端51−3にその他端が接続されている。
第1〜第5偏波面保存光ファイバ12、16、22、26、52として利用して好適な偏波面保存光ファイバとして、図3に示すようなパンダ型光ファイバを挙げることができる。このパンダ型光ファイバは、コアの近傍に応力付与部を形成し、コアに強い応力を加えることにより偏波保持性を得ている。
図3は、パンダ型光ファイバの光の伝播方向に対して垂直に切断した断面の概略的構造を示す断面図である。
光が導波されるコア142を取り囲むクラッド140に、コア142を挟む形で2つの応力付与部144が形成されている。例えば、クラッド140はSiO、コア142はGeOがドープされたSiOで形成され、応力付与部144はBがドープされたSiOから形成される。
このように形成することによって、図3中で、パンダ型光ファイバの光の伝播方向に対して垂直な面内に設定されたslow軸との方向と、slow軸と直交するfast軸の方向では、コア142を導波される光に対する等価屈折率が異なる。すなわち、コア142の近くに、クラッド140の屈折率より高い屈折率を有する応力付与部144がおかれているために、光の電場ベクトルの振動方向がslow軸の方向に平行な光に対する等価屈折率が、光の電場ベクトルの振動方向がfast軸の方向に平行な光に対する等価屈折率よりも高くなる。このような等価屈折率の非対称性があるために、パンダ型光ファイバに入力される光の偏波面は保存されて伝播されるようになる。
すなわち、パンダ型光ファイバでは、直線偏波の偏波面を、図3に示すslow軸(若しくはfast軸)に合わせて入力すると、偏波状態が保たれたままパンダ型光ファイバ中を伝播し、出射端においても、偏波面が、slow軸(若しくはfast軸)に一致した直線偏波の光成分のみを得ることが可能である。
以下の説明において、便宜のために、第1偏波分離合成モジュール10、第2偏波分離合成モジュール18等の偏波分離合成モジュールへ光が入射する場合、入射光の偏波分離合成モジュールの偏波面選択反射面に対する電場ベクトルの振動方向に対応する成分を次のように定義する。すなわち、偏波面選択反射面へ入射する入射光の入射面に平行な方向に電場ベクトルが振動する成分をp成分(p偏波成分、p波とも呼ぶ)、入射光の入射面に垂直な方向に電場ベクトルが振動する成分をs成分(s偏波成分、s波とも呼ぶ)と呼ぶこととする。
例えば、第1偏波分離合成モジュール10へ光が入射する場合、第1偏波分離合成モジュールを構成している偏波分離合成素子の偏波面選択反射面10Rに対する入射面に平行な方向に電場ベクトルが振動する成分はp成分、入射光の入射面に垂直な方向に電場ベクトルが振動する成分はs成分である。第2偏波分離合成モジュール18や、後述する第3偏波分離合成モジュール50においても同様である。
第1偏波分離合成モジュール10においては、第1入出力端10−1から入力されたp偏波成分は、第2入出力端10−2に出力され、第2入出力端10−2から入力されたs偏波成分は、第3入出力端10−3に出力される。また、第2入出力端10−2から入力されたp偏波成分は、第1入出力端10−1に出力される。
第1偏波分離合成モジュール10等の偏波分離合成モジュールには、例えば、市販されている偏光ビームスプリッタの中から好適なものを選んで利用することができる。また、上述した説明で想定している薄膜を用いたタイプの偏光ビームスプリッタに限定されず、複屈折結晶を用いたいわゆる偏光プリズムを用いることもできる。
また、第1偏波分離合成モジュール10等の偏波分離合成モジュールの各入出力端と、それと結合する第1〜第5偏波面保存光ファイバ等の偏波面保存光ファイバの入出力端とは、偏波分離合成モジュールのp波ないしはs波の偏波方向と、偏波面保存光ファイバのslow軸ないしはfast軸の方向とが合致するように接合されているものとする。以下の説明では、便宜のために、各偏波分離合成モジュールのp波の偏波方向と、各偏波面保存光ファイバのslow軸の方向とが合致するように接合されているものとして説明する。なお、本発明はそれには限定されず、何箇所かの接合個所が、偏波分離合成モジュールのp波の偏波方向と、偏波面保存光ファイバのfast軸の方向とが合致するように接合されていたとしても、本発明の効果を実現することができる。
また、第1偏波面保存光ファイバ12の他端と第2偏波面保存光ファイバ16の他端とを接続する第1偏波面変換部14は、入力された直線偏波光に対して、その偏波方向が45°だけ回転された直線偏波光を出力させる機能を有するものである。このような機能は、具体的には、図4(A)に示すように、第1及び第2偏波面保存ファイバ12及び16の互いに対面する他端の端面74、76において、互いのslow軸同士が45°だけ回転される形で融着接続されている構造で実現できる。また、図4(B)に示すように、互いのslow軸同士が一致するようにすると共に、接合部に1/2波長板114を挿入して実現するようにしても良い。1/2波長板114の光軸方向を、互いのslow軸から22.5°だけ回転される形になるように配置することで上述した機能を実現できる。以下では、便宜上、第1偏波面変換部14には、図4(B)に示すような1/2波長板114が挿入されているものとして説明する。
また、第3偏波面保存光ファイバ22の他端と第4偏波面保存光ファイバ26の他端とを接続する第2偏波面変換部24は、入力された直線偏波光に対して、その偏波方向が90°だけ回転された直線偏波光を出力させる機能を有するものである。このような機能は、図5に示すように、第3及び第4偏波面保存ファイバ22及び26の互いに対面する他端の端面174、176において、互いのslow軸同士が90°だけ回転される形で融着接続されている、言い換えれば、互いのslow軸とfast軸が平行になるように融着接続されている構造で実現できる。また、第1偏波面変換部14の場合と同様に、互いのslow軸同士が一致するようにすると共に、接合部に、その光軸方向が互いのslow軸から45°だけ回転された1/2波長板を挿入して実現することもできる。
以下の説明においては、第1偏波分離合成モジュール10の第2入出力端10−2から第1偏波面変換部14に至る経路の長さ、すなわち、第1偏波面保存光ファイバ12の長さをL1(経路L1ということもある)、第1偏波面変換部14から第2偏波分離合成モジュール18の第1入出力端18−1に至る経路の長さ、すなわち、第2偏波面保存光ファイバ16の長さをL2(経路L2ということもある)、第2偏波分離合成モジュール18の第2入出力端18−2から第2偏波面変換部24に至る経路の長さ、すなわち、第3偏波面保存光ファイバ22の長さをL3(経路L3ということもある)、第2偏波面変換部24から第2偏波分離合成モジュール18の第3入出力端18−3に至る経路の長さ、すなわち、第4偏波面保存光ファイバ26の長さをL4(経路L4ということもある)とする。
なお、光カー効果の発現による位相シフトの発生に特段の寄与をしない、第1偏波面保存光ファイバ12、第2偏波面保存光ファイバ16、第4偏波面保存光ファイバ26及び第5偏波面保存光ファイバ52の全て若しくは一部は、光ファイバではなく、空間光学系で実現するようにしても、同様な効果を得ることができる。
第1の実施形態に係る全光型光変調器6は、以上のような基本的な構成に加え、第3偏波分離合成モジュール50、第1光サーキュレータ30、第2光バンドパスフィルタ28及び第2光バンドパスフィルタ38を有する。
第3偏波分離合成モジュール50は、第1の制御光信号2を入力するための第1の制御光入力用光ファイバ31の一端が結合されている第1入出力端50−1と、第1入出力端50−1に対向する側に配置されている、第5偏波面保存光ファイバ52の一端が結合されている第2入出力端50−2と、第2の制御光信号3を入力するための第2の制御光入力用光ファイバ33の一端が結合されている第3入出力端50−3とを備えている。
第1及び第2の制御光信号2及び3はそれぞれ、第1の制御光入力用光ファイバ31、第2の制御光入力用光ファイバ33を介して、第3偏波分離合成モジュール50の第1入出力端50−1、第3入出力端50−3に入力される。
上述した偏波分離合成モジュールの偏波分離合成特性から、第3偏波分離合成モジュール50における制御光信号2、3の光損失を最小限にするために、第1の制御光信号2がp偏波方向に偏波した直線偏波光とし、第2の制御光信号3がs偏波方向に偏波した直線偏波光とすることが望ましい。また、それを実現するためには、上述した第1の制御光入力用光ファイバ31、第2の制御光入力用光ファイバ33もまた偏波面保存光ファイバとすることが望ましい。あるいは、第1及び第2の制御光信号2及び3のそれぞれが、第3偏波分離合成モジュール50の第1入出力端50−1、第3入出力端50−3に至る光路(入力用光ファイバ31、33を含む)のいずれかの箇所に、偏波面コントローラを挿入して、それぞれの制御光信号2、3の偏波状態を所望の偏波状態になるように調整するようにしても良い。
第3偏波分離合成モジュール50内に導入された第1及び第2の制御光信号2及び3は、第3偏波分離合成モジュール50の第2入出力端50−2から合波出力される。その際、偏波分離合成モジュールの性質から、合波出力における第1及び第2の制御光信号2及び3は、それぞれが直線偏波光の状態で、かつ、互いに偏波直交した状態で出力される。
この合波出力光は、第5偏波面保存光ファイバ52に結合され、互いに直交した偏波の直線偏波光状態を維持した上で、第1光バンドパスフィルタ51の第3入出力端51−3に入力され、第1光バンドパスフィルタ51の第2入出力端51−2から出力され、第2偏波分離合成モジュール18の第1入出力端18−1へ入力される。
第1の制御光信号2は、第2偏波分離合成モジュール18の第1入出力端18−1へp偏波方向の直線偏波光として入力されるために、第2偏波分離合成モジュール18の第2入出力端18−2から出力され、その後、光カー効果を生じさせる第3偏波面保存光ファイバ22へと至り、第3偏波面保存光ファイバ22を伝播していく。
一方、第2の制御光信号3は、第2偏波分離合成モジュール18の第1入出力端18−1へs偏波方向の直線偏波光として入力されるために、第2偏波分離合成モジュール18の第3入出力端18−3から出力され、その後、第4偏波面保存光ファイバ26、第1光位相バイアス回路40を介し、第2偏波面変換部24でその偏波面が90°だけ回転された後、光カー効果を生じさせる第3偏波面保存光ファイバ22へと至り、第1の制御光信号2に逆行して第3偏波面保存光ファイバ22を伝播していく。
上述したように、第1及び第2の制御光信号2及び3は、第3偏波面保存光ファイバ22中を互いに逆行しつつも、同じ偏波方向で伝播していく。また、それらはともに、第3偏波面保存光ファイバ22中を互いに逆行して伝播していく、動作の項で後述する二つの第1の信号光の成分(S1成分、S2成分)の偏波方向とも合致している。例えば、それらはともに、第3偏波面保存光ファイバ22のslow軸に平行な直線偏波光として、第3偏波面保存光ファイバ22中を伝播していく。
第1光サーキュレータ30は、第1入出力端30−1に接続されている入力用光ファイバ32−2から入力された第1の信号光1を、第2入出力端30−2に接続されている入力用光ファイバ32−2に出力して、第1偏波分離合成モジュール10の第1入出力端10−1に入射させるものである。また、第1光サーキュレータ30は、第1偏波分離合成モジュール10の第1入出力端10−1から出力され、入力用光ファイバ32−2を介して第2入出力端30−2に入力された光を、第3入出力端30−3に接続されている出力用光ファイバ37に出力するものである。
光バンドパスフィルタ38は、第1光サーキュレータ30の第3入出力端30−3から出力用光ファイバ37に出力された光の所定帯域(中心波長は信号光の波長λsと一致している)だけを濾波し、言い換えると、波長λpの制御光成分などを遮断し、出力用光ファイバ39に出力するものである。
光バンドパスフィルタ28は、第1偏波分離合成モジュール10の第3入出力端10−3から出力用光ファイバ27に出力された光の所定帯域(中心波長は信号光の波長λsと一致している)だけを濾波し、言い換えると、波長λpの制御光成分などを遮断し、出力用光ファイバ29に出力するものである。
(A−2)第1の実施形態の動作
次に、以上のような構成を有する第1の実施形態に係る全光型光変調器1の動作を説明する。
波長λsの被制御光である第1の信号光1が、入力用光ファイバ32−2に入力され、第1偏波分離合成モジュール10の第1入出力端10−1に到達する。ここで、第1の信号光1には、所望する変調光信号のデータフォーマットがNRZフォーマットである場合には連続光を用い、RZフォーマットである場合には光パルス列を用いる。光パルス列を用いる場合、パルス周期は、所望する光変調信号のビットレートの逆数であり、例えば、10ギガビット毎秒(Gbit/s)のデータレートの、強度変調ないしは位相変調された光変調信号を最終的に所望する場合、光パルス列である第1の信号光のパルス時間間隔は100ピコ秒であり、その繰返し周波数にして10ギガヘルツ(GHz)である。
第1偏波分離合成モジュール10の第1入出力端10−1に到達する第1の信号光1は、p偏波成分に平行な直線偏波光となるようにその偏波方向が調整されている。その結果、第1の信号光1は、第1偏波分離合成モジュール10の第2入出力端10−2から直線偏波光として出力され、その後、第1偏波面保存光ファイバ12中を、そのslow軸と平行な直線偏波光として伝播し、図1中左側の経路から第1偏波面変換部14に至る。
第1偏波面変換部14への入出力ポートとなる、第1偏波面保存光ファイバ12と第2偏波面保存光ファイバ16の対向するファイバ端面74及び76の間に、上述のように1/2波長板114が挿入されて第1偏波面変換部14が構成されている場合(図4(B)参照)、以下のように調整されている。
すなわち、ファイバ端面74及び76の互いのslow軸方向が一致するように調整されている(図6(A))。さらにまた、第1偏波面変換部14のいずれか一方の光学軸を、第1偏波面保存光ファイバ12のslow軸から、22.5°だけ傾ける(図6)。
このとき、第1偏波面変換部14を経由して第2偏波面保存光ファイバ16に結合された第1の信号光1の偏波方向は、第2偏波面保存光ファイバ16のslow軸に対して45°だけ傾いた直線偏波光となる(図6(A))。その後、第1の信号光1は、第2偏波面保存光ファイバ16中を、そのslow軸と平行な直線偏波光成分と、そのfast軸方向に平行な直線偏波光成分とに分かれて伝播し、途中、第1光バンドパスフィルタ51の第1入出力端51−1及び第2入出力端51−2を入出力した後、第2偏波分離合成モジュール18の第1入出力端18−1に入力される。ここで、第1の信号光1は、第1光バンドパスフィルタ51を通過した前後でもなんらの偏波変換を生じないものとする。すなわち、図1中で第1光バンドパスフィルタ51よりも左側の第2偏波面保存光ファイバ16中を、そのslow軸と平行な直線偏波光成分として伝播してきた第1の信号光1の成分は、第1光バンドパスフィルタ51を通過した後、図1中で第1光バンドパスフィルタ51よりも右側の第2偏波面保存光ファイバ16中を、やはりそのslow軸方向に平行な直線偏波光成分として伝播していく。同様に、図1中で第1光バンドパスフィルタ51よりも左側の第2偏波面保存光ファイバ16中を、そのfast軸と平行な直線偏波光成分として伝播してきた第1の信号光1の成分は、第1光バンドパスフィルタ51を通過した後、図1中で第1光バンドパスフィルタ51よりも右側の第2偏波面保存光ファイバ16中を、やはりそのfast軸方向に平行な直線偏波光成分として伝播していく。
詳述は省略するが、第1偏波面変換部14が図4(A)に示すように構成されている場合でも、図6(A)に示すように、第1の信号光1の偏波面を変換することができる。
以下では、第1偏波面変換部14から第2偏波面保存光ファイバ16に結合された、slow軸と平行な第1の信号光1の直線偏波光成分をS1成分、そのfast軸方向に平行な第1の信号光1の直線偏波光成分をS2成分と定義する。S1成分とS2成分の強度比は、第2偏波面保存光ファイバ16に結合される、直線偏波光である第1の信号光1の偏波方向が、第2偏波面保存光ファイバ16のslow軸に対して45°だけ傾いているため1:1となる。
以下では、光信号の偏波方向及び光位相状態を便宜的に表すために、図6(A)、(B)に例示するようなベクトル表記を用いることとする。
すなわち、第1の信号光1が、第1偏波面保存光ファイバ12から第2偏波面保存光ファイバ16へ入力するときの信号光の偏波状態は、図6(A)のように表される。第1偏波面保存光ファイバ12を伝播する第1の信号光1は、slow軸に平行な直線偏波光で、これを図6(A)中上向きの矢印と示す。この第1の信号光1は、第2偏波面保存光ファイバ16へ入力するとき、その偏波方向が第2偏波面保存光ファイバ16のslow軸に対して時計方向に45°だけ回転している。従って、S1成分は、図6(A)中上向きの矢印、S2成分は図6(A)中右向きの矢印として示させる。S1成分及びS2成分の振幅は等しい。また、この段階では、それらの間に相対的な位相差も生じない。
第1の信号光1のS1成分及びS2成分は、その後、共に第2偏波分離合成モジュール18の第1入出力端18−1に入力され、それぞれ入出力端18−2、18−3に分岐出力される。すなわち、S1成分は入出力端18−2に出力され、S2成分は入出力端18−3に出力される。
第1及び第2の制御光信号2及び3は、上述した第1の信号光1の波長λsとは異なる波長λpを有する。第1及び第2の制御光信号2及び3のビットレートは、所望する光変調信号のビットレートf[bit/s]と一致する。例えば、上述したように、所望する光変調信号のビットレートが10ギガビット毎秒であれば、第1及び第2の制御光信号2及び3は、ビットレートが10ギガビット毎秒の変調光信号である。
第1及び第2の制御光信号2及び3は、その強度時間波形が互いに相補的関係にある強度変調信号とする。すなわち、図7(A)に示すような第1の制御光信号2の強度時間波形と、図7(C)に示すような第2の制御光信号3の強度時間波形とを時間軸上で足し合わせた場合、時間軸上で強度が変化しない、連続光状の時間波形となる。因みに、図7の例では、光信号(第1の制御光信号2又は第2の制御光信号3)が「1」のときのピーク強度がIp(≠0)、信号が「0」のときのピーク強度がゼロである、いわゆるOn−Off Keying(OOK)光信号を想定している。以下では、特に断らない限り、第1及び第2の制御光信号2及び3はOOK信号であるとして説明を進める。但し、制御光信号がOOK信号に限定されるものではない。例えば、信号が「0」のときのピーク強度がゼロではない、一般的なAmplitude Shift keying(ASK)信号であっても良い。
第1の制御光信号2は、入力用光ファイバ31を介して、第3偏波分離合成モジュール50の第1入出力端50−1に入力される。第1の制御光信号2は、p偏波方向に偏波した直線偏波光であることが望ましい。第2の制御光信号3は、入力用光ファイバ33を介して、第3偏波分離合成モジュール50の第3入出力端50−3に入力される。第2の制御光信号3は、s偏波方向に偏波した直線偏波光であることが望ましい。
ここで、第1の制御光信号2が有する一つの光パルス信号と、それと相補的な関係にある第2の制御光信号3が有する一つの光パルス信号とは、第1の信号光1が第1偏波面変換部14でS1成分及びS2成分に分離される以前の段階において(すなわち、第1偏波面保存光ファイバ12の右端の段階において)、同じ時間位置にいた第1の信号光1の偏波成分S1、S2に対して、第3偏波面保存光ファイバ22において相互位相変調に基づく位相シフトを生じさせるように、その時間的タイミングが調整されている。そのために、第1及び第2の制御光信号2及び3が、各々入力用光ファイバ31、33に入力される時間的タイミングが、図示しない光遅延回路等で調整されている。さらには、第1の信号光1が光パルス列である場合には、制御光信号(2又は3)が有する一つの光パルス信号と、第1の信号光1が有する一つの光パルス信号とが、第3偏波面保存光ファイバ22に入力されるときに時間的に一致するように、制御光信号(2又は3)若しくは第1の信号光1の遅延時間が調整されている。
なお、光カー効果を生じさせる第3偏波面保存光ファイバ22において、群速度分散による制御光信号及び第1の信号光間のウォークオフの効果が存在するときには、光カー効果による相互位相変調効果を最大化するために、制御光の光パルス位置と第1の信号光の光パルス位置に若干のオフセットを与えて入力する場合もある。
第1及び第2の制御光信号2及び3は、第3偏波分離合成モジュール50の第2入出力端50−2から合波出力される。その際、第1及び第2の制御光信号2及び3は、それぞれが直線偏波光の状態で、かつ、互いに偏波直交した状態で出力される。
この合波出力は、第5偏波面保存光ファイバ52に結合され、互いに直交した偏波の直線偏波光状態を維持した上で、第1光バンドパスフィルタ51の第3入出力端51−3に入力され、第2入出力端51−2へと出力される。
その後、これら二つの制御光信号2及び3は、第2偏波分離合成モジュール18の第1入出力端18−1へと入力される。そして、第1の制御光信号2は、第2偏波分離合成モジュール18の第1入出力端18−1へp偏波方向の直線偏波で入力されるために、第2偏波分離合成モジュール18の第2入出力端18−2へ出力され、その後、光カー効果を生じさせる第3偏波面保存光ファイバ22へと至り、第3偏波面保存光ファイバ22を伝播していく。一方、第2の制御光信号3は、第2偏波分離合成モジュール18の第1入出力端18−1へs偏波方向の直線偏波で入力されるために、第2偏波分離合成モジュール18の第3入出力端18−3へ出力され、その後、第4偏波面保存光ファイバ26、第1光位相バイアス回路40を介し、第2偏波面変換部24でその偏波面が90°だけ回転された後、光カー効果を生じさせる第3偏波面保存光ファイバ22へと至り、第1の制御光信号2とは逆行して第3偏波面保存光ファイバ22を伝播していく。すなわち、第1及び第2の制御光信号2及び3は、第3偏波面保存光ファイバ22中を互いに逆行しつつも、同じ偏波方向で伝播していく。
また、第1及び第2の制御光信号2及び3は共に、第3偏波面保存光ファイバ22中を互いに逆行して伝播していく第1の信号光1の二つの偏波成分(S1成分、S2成分)の偏波方向とも合致している。すなわち、第1の制御光信号2と第1の信号光1のS1成分は共に、第3偏波面保存光ファイバ22のslow軸に平行な直線偏波光として、第3偏波面保存光ファイバ22中を同一方向に伝播していく。また、第2の制御光信号3と第1の信号光1のS2成分は共に、第3偏波面保存光ファイバ22のslow軸に平行な直線偏波光として、第3偏波面保存光ファイバ22中を同一方向に伝播していく。そして、第1の制御光信号2及び第1の信号光1のS1成分の第3偏波面保存光ファイバ22中での進行方向は、第2の制御光信号3及び第1の信号光1のS2成分の第3偏波面保存光ファイバ22中での進行方向と逆行している。
次に、第1の実施形態の全光型光変調器6における変調動作を具体的に説明する。
ここで、便宜のために、最終的に所望する強度変調光信号が、第1の制御光信号2が「0」のとき「0」を表す光強度(すなわち、強度ゼロ)、第1の制御光信号2が「1」のとき「1」を表す光強度(すなわち、強度がゼロではない)をとる信号であるとして、説明を行う。同様に、所望する位相変調光信号が、第1の制御光信号2が「0」のとき光位相「0」、第1の制御光信号2が「1」のとき光位相「π」に対応する信号であるとして、説明を行う。
また、便宜のために、上述したように、第1の制御光信号2は、信号「1」に対応するピーク強度がIpに対して、信号「0」に対応するピーク強度が限りなく0に近い、消光比が無限大のOOK信号であるとする。
さらに、第1の制御光信号2が「0」である場合、第1の信号光1は何ら相互位相変調による位相シフトを受けない。この状態を、光位相「0」の位相変調を受けた光信号であるとする。
はじめに、第1及び第2の制御光信号2及び3の入力がない場合を考える。すなわち、第1の信号光1は何ら相互位相変調による位相シフトを受けない場合を考える。また、便宜上、当面は、光位相バイアス回路40における、後述する光位相バイアス効果を考慮しないで議論を進める。
第1偏波面変換部14から出力された第1の信号光1のS1成分及びS2成分は、第2偏波分離合成モジュール18、第3偏波面保存光ファイバ22、第2偏波面変換部24、第4偏波面保存光ファイバ26、第1光位相バイアス回路40で構成される閉ループを時計回り若しくは反時計回りに通過し、第2偏波面保存光ファイバ16を経由し、再度、第1偏波面変換部14に入力される。
ここで、S1成分及びS2成分が、第2偏波面保存光ファイバ16の左端、すなわち図4に示す端面76から入力され、第2偏波分離合成モジュール18、第3偏波面保存光ファイバ22、第2偏波面変換部24、第1光位相バイアス回路40、第4偏波面保存光ファイバ26で構成される閉ループを通過し、第2偏波面保存光ファイバ16の左端(すなわち、端面76)に再度到達するまでの光路長を考える。光路長とは、光ファイバなどの光学媒体の物理長に屈折率を掛けた値である。
S1成分は、第2偏波面保存光ファイバ16をまずそのslow軸方向に平行な直線偏波として伝播し、次に、第3偏波面保存光ファイバ22をそのslow軸方向に平行な直線偏波として伝播する。さらに、第2偏波面変換部24を通過した後、第4偏波面保存光ファイバ26をそのfast軸方向に平行な直線偏波として伝播する。そして、第2偏波面保存光ファイバ16をそのfast軸方向に平行な直線偏波として伝播し、第1光バンドパスフィルタの第2入出力端51−2から第1入出力端51−1を経過した後、第2偏波面保存光ファイバ16の左端に到達する。
従って、S1成分の通過する全光路長は、(1)式で表すことができる。ここで、各偏波面保存光ファイバのslow軸の屈折率をn、fast軸の屈折率をnとしている。
L2+nL3+nL4+nL2 …(1)
一方、S2成分は、第2偏波面保存光ファイバ16をまずそのfast軸方向に平行な直線偏波として伝播し、次に、第4偏波面保存光ファイバ26をそのfast軸方向に平行な直線偏波として伝播する。さらに、第2偏波面変換部24を通過した後、第3偏波面保存光ファイバ22をそのslow軸方向に平行な直線偏波として伝播する。そして、第2偏波面保存光ファイバ16をそのslow軸方向に平行な直線偏波として伝播し、第1光バンドパスフィルタの第2入出力端51−2から第1入出力端51−1を経過した後、第2偏波面保存光ファイバ16の左端に到達する。
従って、S2成分の通過する全光路長は、(2)式で表すことができる。
L2+nL4+nL3+nL2 …(2)
で与えられる。
(1)式及び(2)式から、S1成分、S2成分が、第2偏波面保存光ファイバ16の左端より第2偏波面保存光ファイバ16へ入力され、第2偏波面保存光ファイバ16の左端に再度到達するまでの光路長は、全く同じであることが分かる。すなわち、第1及び第2の制御光信号2及び3の入力がない、若しくは、共に「0」信号である場合、S1成分とS2成分との間には、第2偏波面保存光ファイバ16の左端に再度到達するまでの間に相対的な光位相の差は生じない。従って、第2偏波面保存光ファイバ16の左端に再度到達したときの、S1成分、S2成分のベクトル表現は、図6(B)に示すようになる。すなわち、図6(A)の場合と同様に、上向きの矢印、右向きの矢印として表現される。但し、S1成分の偏波方向はfast軸平行方向、S2成分の偏波方向はslow軸平行となるため、図6(A)に示す、第2偏波面保存光ファイバ16の左端入力時の状態に比較して、互いに入れ替えた状態となる。第1光位相バイアス回路40における、光位相バイアス効果を考慮しない場合、これらS1成分及びS2成分は同じ光路を通過するので、この段階で相対的な光位相差は生じない。
これらS1成分及びS2成分が再び、第1偏波面変換部14を逆方向に通過する。その結果、第1偏波面保存光ファイバ12の右端に再度結合するときのS1成分及びS2成分はそれぞれ、第1偏波面保存光ファイバ12のslow軸方向からそれぞれ反時計回りに45°(−45°とする)、時計回りに45°(+45°とする)だけ傾いた直線偏波となる。すなわち、ベクトルで表記すれば、S1成分は左斜め45°方向の上向きの矢印、S2成分は右斜め45°方向の上向きの矢印として表される。そして、S1成分とS2成分との間には、上記の理由で相対的な光位相差は生じないから、結果、第1偏波面保存光ファイバ12の右端に到達するとき、S1成分とS2成分が合波して得られる第1の信号光1は、第1偏波面保存光ファイバ12のslow軸に平行な直線偏波となる(図6(B))。
第1の信号光1は、その後再び第1偏波分離合成モジュール10の第2入出力端10−2に入力され、その偏波方向がp偏波方向であるため、第1入出力端10−1から出力される。すなわち、第3入出力端10−3には出力されない。
以上のように、なんら制御光信号が存在しないとき、第1の信号光の成分は全て第1偏波分離合成モジュール10の第1入出力端10−1から出力され、第3入出力端10−3からはなんら出力されない。
次に、第1及び第2の制御光信号2及び3が入力された場合を考える。この場合、第1の信号光1に対して光カー効果に基づく相互位相変調による位相シフトが生じる。
ここで、簡単のために、第1の制御光信号2として、「1011」の信号パターンで強度変調されたRZフォーマットのOOK信号を考える。図7(A)はその強度時間波形の模式図である。信号が「1」のときのピーク光強度をIp(>0)とし、信号が「0」のときの最小光強度を0であるとする。図7(A)に与えた第1の制御光信号2と相補的な、第2の制御光信号3の強度時間波形を図7(C)に示す。第2の制御光信号3は、第1の制御光信号2と相補的であるから、第1の制御光信号2が信号「1」のときに光強度が0まで減少するdip(くぼみ)を持ち、また、第1の制御光信号2が信号「0」のときに光強度Ipの一定値を有する。また、第1の制御光信号2が「1」であるときの光信号の立上り及び立下りの時間波形はそれぞれ、第1の制御光信号2と相補関係にある第2の制御光信号3のdipの立下り及び立上りの時間波形と、時間的に対称になっている。
今、制御光信号(2又は3)の光強度がIpであるとき、第1の信号光1に対して、相互位相変調によってaπの位相シフトが生じるものとする。aの符号は用いる光ファイバの種類によって一意に決まる。ここでは、aは正の値をとるものとする(a>0)。
以下、第1及び第2の制御光信号2及び3が及び第1光位相バイアス回路40が存在するときに、第1の信号光1(のS1成分およびS2成分)に対して生じる位相シフトについて考察する。
第1の信号光1に対して生じる位相シフトは、制御光信号による相互位相変調による位相シフトと、第1光位相バイアス回路40によって生じる位相シフトの総和となる。
ここで、制御光信号による相互位相変調による位相シフトの効果は、第1の信号光1と同一方向に伝播する制御光信号からの効果と、逆行する制御光信号からの効果の2つの寄与が存在する。すなわち、第1の信号光1のS1成分に対しては、同一方向に伝播する第1の制御光信号2からの寄与と、逆行する第2の制御光信号3からの寄与が存在する。一方、第1の信号光1のS2成分に対しては、同一方向に伝播する第2の制御光信号3からの寄与と、逆行する第1の制御光信号2からの寄与が存在する。
同一方向に伝播する制御光信号からの効果は、上述したように、第1の制御光信号2、第2の制御光信号3の光強度がIpである場合、S1成分及びS2成分共にそれぞれaπで与えられる。
一方、第3偏波面保存光ファイバ22のファイバ長が、数十m〜数kmの実用的な長さであるとき、逆行する制御光信号からの相互位相変調による位相シフトの効果は、第1の信号光1のそれぞれのパルスに対して同量だけ与えられる時間無依存の連続的な位相シフトとなり、かつ、その量は逆行する制御光信号の平均強度で決定されることが、下記の参照文献などで明らかにされている。実際上の応用では、逆行する制御光信号からの相互位相変調による位相シフトの効果は、第1の信号光1のS1成分及びS2成分を構成する連続光又は光パルス信号列のそれぞれに対して、同量だけ与えられる時間無依存の連続的な位相シフトと考えることができる。
「参照文献」 M. Jinno and T. Matsumoto,”Nonlinear Sagnac interferometer switch and its applications” , IEEE J. Quantum Electron., Vol.28, No.4, pp.875−882, 1992
一方、第1及び第2の制御光信号2及び3は、同じ波長であっても、デューティ比、マーク率が同じであるとは限らない。つまり、それらのピーク光強度がIpで同一であっても、平均強度は一般には一致しない。但し、例外の一つは、第1及び第2の制御光信号2及び3が、デューティ比0.5、マーク率0.5のNRZ信号である場合である。
すなわち、S1成分及びS2成分に対する、逆行制御光信号による相互位相変調による時間連続的位相シフト量は、一般には一致しない。しかしながら、この位相シフトは、S1成分、S2成分を構成する個々の信号光に対して、制御光信号の「1」、「0」に拘らず常に同量だけ与えられる。
ここで今、S1成分とS2成分との間で生じる、上記のような逆行制御光信号による相互位相変調による時間連続的位相シフト量の差異をbπであるとする。ここでは、第1の信号光のS2成分に対して与えられる位相シフトが、第1の信号光のS1成分に対して与えられる位相シフトよりもbπだけ大きいとする。但し、bは制御光のデューティ比やマーク率によって正負いずれの値(0を含む)もとり得る。
次に、第1光位相バイアス回路40による位相シフトについて、図2を参照して考察する。ここでは、第1光位相バイアス回路40が、第4偏波面保存光ファイバ26の中途に挿入されているとする。
S1成分は、まず、上述したように、図2中右側の第4偏波面保存光ファイバ26の左端276から、そのfast軸に平行な直線偏波として出力され、第1光位相バイアス回路40に結合される。第1光位相バイアス回路40にて、まず、第2ファラデー回転子280を通過して、偏波方向が−45°だけ回転する。偏波回転されたS1成分の偏波方向が、その光軸方向の一つ(図2では、Y軸)と一致するように、複屈折媒体である第1のバビネソレイユ補償板282を配置されている。S1成分は、第1のバビネソレイユ補償板282を、そのY軸と平行な直線偏波として通過した後、第1ファラデー回転子278に入力される。そして、第1ファラデー回転子278において、偏波方向が+45°だけ回転される。その結果、S1成分は、その偏波方向が図2中左側の第4偏波面保存光ファイバ26のfast軸に平行な直線偏波として、図2中左側の第4偏波面保存光ファイバ26の右端274に結合され、再び第4偏波面保存光ファイバ26を伝播していく。
一方、S2成分は、上述したように、図2中左側の第4偏波面保存光ファイバ26の右端274から、そのfast軸に平行な直線偏波として出力され、第1光位相バイアス回路40に結合される。第1光位相バイアス回路40にて、まず、第1ファラデー回転子278を通過して、偏波方向が+45°だけ回転する。このとき、偏波回転されたS2成分の偏波方向は、第1のバビネソレイユ補償板282のX軸方向と一致する。従って、S2成分は、第1のバビネソレイユ補償板282を、そのX軸と平行な直線偏波として通過する。その後、第2ファラデー回転子280に入力される。そして、第2ファラデー回転子280において、偏頗方向が−45°だけ回転される。その結果、S2成分は、その偏波方向が図2中右側の第4偏波面保存光ファイバ26のfast軸に平行な直線偏波として、図2中右側の第4偏波面保存光ファイバ26の左端276に結合され、再び第4偏波面保存光ファイバ26を伝播していく。
すなわち、S1成分及びS2成分は、第1光位相バイアス回路40の挿入にも拘らず、当該箇所以外は、上述したのと同じ偏波状態で、各光路を通過していく。すなわち、第1光位相バイアス回路40の挿入箇所以外での第1の信号光1のS1成分、S2成分の光位相や偏波方向に変化はない。
一方、第1光位相バイアス回路40の挿入によって、S1成分、S2成分は、第1光位相バイアス回路40内に配置された、複屈折媒体である第1のバビネソレイユ補償板282を、互いに直交する光軸(X軸、Y軸)に平行な直線偏波の状態で通過する。そのため、この両成分間に、複屈折媒体である第1のバビネソレイユ補償板282の有する複屈折に基づく光位相差が生じる。
従って、上述のような第1光位相バイアス回路40を挿入することで、結果的に、第1の信号光1のS1成分及びS2成分間に時間無依存な連続的位相差を付与することができる。この位相差を、後で、第1光位相バイアス回路40において生じる位相オフセットと呼ぶこともある。なお、第1のバビネソレイユ補償板282において、与える位相差が可変であれば、第1の信号光1のS1成分及びS2成分間に任意の位相差を付与することができる。
今、第1光位相バイアス回路40で生じる、上述したS1成分とS2成分との間で生じる位相差をcπであるとする。ここでは、この位相差は、第1の信号光1のS2成分の位相が、第1の信号光1のS1成分の位相シフトよりもcπだけ大きいため生じたものとする。但し、cは第1のバビネソレイユ補償板282の与える光位相差であり、正負いずれの値(0を含む)もとり得る。
上述した考察と、さらには、第1の信号光1と同一方向に伝播する制御光信号に基づく相互位相変調による位相シフトの時間波形は、制御光信号の強度時間波形に比例するということから、第1の信号光1のS1成分及びS2成分に対して生じる位相シフトの時間波形はそれぞれ、図7(B)、図7(D)に示すようになる。
すなわち、S1成分に対しては、第1の制御光信号2が信号「1」(強度Ip)のとき、位相シフトはaπ(ピークの位相シフト)であり、第1の制御光信号2が信号「0」(強度0)のとき、位相シフトは0である。
一方、S2成分に対しては、第1の制御光信号2が信号「1」のときに、位相シフトは(b+c)πまで減少するdipを持ち、また、第1の制御光信号2が信号「0」のときに位相シフト(a+b+c)πの一定値を有する。ここで、(b+c)πは、逆行制御光信号ならびに第1光位相バイアス回路40によって与えられた、時間変化しない連続的な位相オフセット量に相当する。
また、第1の制御光信号2が「1」であるときのS1成分に対する位相シフトの立上り及び立下りの時間波形はそれぞれ、第1の制御光信号2と相補関係にある第2の制御光信号3によって生じるS2成分に対する位相シフトのdipの立下り及び立上りの時間波形と時間的に対称になる。
次に、図7(B)及び(D)に示す、第1の信号光1のS1成分及びS2成分の位相シフトの時間波形を参照して、第1及び第2の制御光信号2及び3が入力された場合に第1の実施形態の全光型光変調器6で実行される変調動作について説明する。
上述した図7(B)に示したように、第1及び第2の制御光信号2及び3が入力されず(すなわち、a=b=0)、また、第1光位相バイアス回路40による位相オフセットのない場合(すなわち、c=0)、第1の信号光1は第1偏波面保存ファイバ12にそのslow軸方向に平行な直線偏波光として再入力される。そしてそれは全て、第1偏波分離合成モジュール10の第1入出力端10−1へと出力され、第3入出力端10−3へは出力されない。
すなわち、第1の信号光1のS1成分及びS2成分になんらの位相シフトも与えられない場合、第1の信号光1は第1偏波分離合成モジュール10の第3入出力端10−3へは出力されない。
また、第1の信号光1のS1成分及びS2成分に何らかの位相シフトが与えられたとしても、それが同量である場合には、第1の信号光1のS1成分及びS2成分間に相対的な位相差が生じないため、第1の信号光1は第1偏波面保存ファイバ12にそのslow軸方向に平行な直線偏波光として再入力されるため、第1の信号光1は第1偏波分離合成モジュール10の第3入出力端10−3へは出力されない。
すなわち、第1の信号光1が第1偏波分離合成モジュール10の第3入出力端10−3から出力されるには、第1の信号光1のS1成分及びS2成分間に相対的な位相差が生じている必要がある。
図1及び図6(B)から推測すれば、第1の信号光1が第1偏波分離合成モジュール10の第3入出力端10−3から、最大の出力強度で出力されるのは、第1の信号光1が第1偏波面保存ファイバ12に、そのfast軸方向に平行な直線偏波光として再入力される場合である。すなわち、これは、図6(B)から推測して、第1の信号光1のS1成分の矢印が左向きになっていてS2成分の矢印が上向きのままか、あるいは、第1の信号光のS2成分の矢印が下向きになっていてS1成分の矢印が右向きのままか、のどちらかである。すなわち、このことは、第1の信号光1のS1成分及びS2成分間に相対的にπの位相差が生じることを意味する。
すなわち、第1の実施形態においては、第1の信号光のS1成分及びS2成分間に相対的にπの位相差が生じときに、第1偏波分離合成モジュール10の第3入出力端10−3から変調光信号が出力される。
そして、第1の実施形態においては、制御光2又は3のピーク強度Ip、ひいては位相シフトaπと、第1光位相バイアス回路40で与える位相オフセットcπを適宜調整することで、第1偏波分離合成モジュール10の第3入出力端10−3から、強度変調光信号、位相変調光信号のいずれのフォーマットの変調光信号をも出力することができる。
(a)強度変調動作
まず、強度変調光信号を出力するときの、第1の実施形態に係る全光型光変調器1の動作について図7をも参照しながら説明する。
今、発生したい強度変調光信号が、図7(A)に示す第1の制御光信号2と同じ符号パターン(「1011」)の強度変調光信号であるとする。
まず、第1の制御光信号2が信号「0」であるときに、第1偏波分離合成モジュール10の第3入出力端10−3から、信号「0」である信号光(この段階では強度変調光信号になっている)を出力するためには、第1の制御光信号2が信号「0」であるときに対応する、S1成分の位相シフト(0)とS2成分の位相シフト((a+b+c)π)との位相差が等価的に0でなければいけない。
かつ、同時に、第1の制御光信号2が信号「1」であるときに、第1偏波分離合成モジュール10の第3入出力端10−3から、信号「1」である信号光を出力するためには、第1の制御光信号2が信号「1」であるときに対応する、S1成分の位相シフト(aπ)と、S2成分の位相シフト((b+c)π)との位相差が、等価的にπでなければいけない。
上述した二つの条件を満足する、aが最小であるa、b、cとして、(3)式を満たすものが得られる。ここで、aが最小である解を求めるのは、必要とされる第1及び第2の制御光信号の光強度が最小となるためである。
a=0.5 b+c=−0.5 …(3)
すなわち、(3)式を満足するように、第1及び第2の制御光信号2及び3のピーク強度Ip、ひいては位相シフトaπと、第1光位相バイアス回路40で与える位相オフセットcπを設定することで、第1偏波分離合成モジュール10の第3入出力端10−3から、強度変調光信号フォーマットの変調光信号を出力することができる。
(b)位相変調動作
次に、位相変調光信号を出力するときの、第1の実施形態に係る全光型光変調器1の動作について図7をも参照しながら説明する。
今、発生したい位相変調光信号が、図7(A)に示す第1の制御光信号2の符号パターン(「1011」)に対応する、「π0ππ」の位相変調パターンを有する位相変調光信号であるとする。
この場合、第1の制御光信号2の光信号の「1」、「0」に関わらず、常に、第1偏波分離合成モジュール10の第3入出力端10−3から信号光(この段階では位相変調光信号になっている)を出力しなければならない。そのため、第1の制御光信号2が信号「0」であるときに対応する、S1成分の位相シフト0と、S2成分の位相シフト(a+b+c)πとの位相差と、第1の制御光信号2が信号「1」であるときに対応する、S1成分の位相シフトaπと、S2成分の位相シフト(b+c)πとの位相差は、ともに等価的にπでなければいけない。
さらには、出力される位相変調光信号が、所望とする「π0ππ」の位相変調光信号であるために、第1の制御光信号2が信号「0」であるときに対応する、S1成分の位相シフト0と、第1の制御光信号2が信号「1」であるときに対応する、S1成分の位相シフトaπとの位相差もまた、等価的にπでなければいけない。
上述した条件を満足する、aが最小であるa、b、cとして、(4)式を満たすものが得られる。
a=1 b+c=−0 …(4)
すなわち、式(4)を満足するように、制御光のピーク強度Ip、ひいては位相シフトaπと、第1光位相バイアス回路40で与える位相オフセットcπを設定することで、第1偏波分離合成モジュール10の第3入出力端10−3から、位相変調光信号フォーマットの変調光信号を出力することができる。
次に、上述した手法で発生した変調光信号のもつ、周波数チャープ特性を考察する。
上述したように、第1の制御光信号2と第2の制御光信号3とは相補関係にある強度変調信号であり、第1の制御光信号2が「1」であるときのS1成分に対する位相シフトの立上り部及び立下り部の時間波形はそれぞれ、第2の制御光信号3によってS2成分に対して生じる位相シフトのdipの立下り部及び立上り部の時間波形と、時間的に対称になる。
図7(B)及び(D)を参照して、このことを言い換えれば、S2成分の位相シフトの時間波形は、S1成分の位相シフトの時間波形を、位相シフト軸上で上下反転して、それに(a+b+c)πの位相オフセットを与えた波形となる。
今、S1成分の位相シフトの時間波形S(t)が、第1の制御光信号2の強度時間波形に比例し、ピーク強度が1に規格化された時間波形I(t)を用いて、(5)式で与えられたとすると、S2成分の位相シフトの時間波形S(t)は、(6)式で与えられる。
(t)=aπI(t) …(5)
(t)=(a+b+c)π−aπI(t) …(6)
このとき、第1偏波分離合成モジュール10の第3入出力端10−3から出力される信号光(変調光信号)の振幅時間波形Emod(t)は、それが同じ振幅の信号光のS1成分及びS2成分の干渉波形であること、さらには、S(t)=S(t)=0のとき、すなわち、S1成分及びS2成分の位相シフトがともに0であるとき、第1偏波分離合成モジュール10の第3入出力端10−3からの出力が0であるために、S(t)=0となることを考慮すれば、(7)式で表される(jは虚数記号)。
mod(t)=ejS1(t)−ejS2(t) …(7)
(7)式の右辺を、実数部Re{Emod(t)}と虚数部Im{Emod(t)}に分けて書き直せば、(8)式及び(9)式が得られる。
Re{Emod(t)}=cos(aπI(t))[1−cos{(a+b+c)π}]
−sin{(a+b+c)π}sin(aπI(t)) …(8)
Im{Emod(t)}=sin(aπI(t))[1+cos{(a+b+c)π}]
−sin{(a+b+c)π}cos(aπI(t)) …(9)
(8)式及び(9)式から、仮に、a、b、cが次の(10)式を満足すれば、実数部Re{Emod(t)}又は虚数部Im{Emod(t)}のどちらか一方は完全に0となることが分かる。
sin{(a+b+c)π}=0 …(10)
このことは、(10)式を満足するとき、第1偏波分離合成モジュール10の第3入出力端10−3から出力される信号光(変調光信号)の振幅時間波形Emod(t)が、時間tに依らずに常に実数又は純虚数で表されることを意味し、すなわち、変調光信号が周波数チャーピングを持たないことを意味する。
上述した(3)式及び(4)式の条件は、(10)式の条件を満足する。すなわち、第1の実施形態によって、第1偏波分離合成モジュール10の第3入出力端10−3から出力される、強度変調若しくは位相変調された変調信号光は、周波数チャープを有しないことが分かる。
第3偏波面保存光ファイバ22を時計回りに通過した後の第1の制御光信号2は、第2偏波分離合成モジュール18の第3入出力端18−3にs偏波の偏波光として入力され、その結果、第3偏波面保存光ファイバ22を通過した後の第2偏波分離合成モジュール18の第1入出力端18−1に出力される。一方、第3偏波面保存光ファイバ22を反時計回りに通過した後の第2の制御光信号3は、第2偏波分離合成モジュール18の第3入出力端18−2にp偏波の偏波光として入力され、結果、第2偏波分離合成モジュール18の第1入出力端18−1に出力される。
その後、第1及び第2の制御光信号2及び3はそれぞれ、第1光バンドパスフィルタ51の第2入出力端51−2に入力され、第3入出力端51−3に出力される。ここで、第1光バンドパスフィルタ51の透過特性が理想的で、すなわち、第1光バンドパスフィルタ51の透過率が波長λpで0%である場合、制御光信号が第1光バンドパスフィルタ51の第1入出力端51−1へと出力されることはなく、結果、第1偏波分離合成モジュール10の第3入出力端10−3へと出力されることもない。
また、これら第1光バンドパスフィルタ51の第3入出力端51−3に出力された制御光信号は、その後、第5偏波面保存ファイバ52、第3偏波分離合成モジュール50を介して、元の制御光入力用光ファイバ31、33へと逆行して、装置の安定動作や、あるいは装置外部の機器あるいは伝送システムに悪影響を及ぼす恐れがある。これを抑制するために、第5偏波面保存ファイバ52の途中に第1光アイソレータ60を挿入して、このような逆行制御光信号をカットしている。
一方、強度変調若しくは位相変調された信号光(変調光信号)は、第1偏波分離合成モジュール10の第3入出力端10−3に結合された出力用光ファイバ27を経由し、所望される変調光信号として外部へと出力される。第1光バンドパスフィルタ51の透過特性が理想的である場合、出力用光ファイバ27からの出力光に制御光成分が含まれることはないため、これを最終的に所望とする変調光信号として実用に供することができる。
一方、第1光バンドパスフィルタ51の透過特性が不十分である場合、第1及び第2の制御光信号2及び3の漏れ光が、第1光バンドパスフィルタ51の第1入出力端51−1へと出力され、結果、第1偏波分離合成モジュール10の第3入出力端10−3、さらには出力用光ファイバ27に出力される。
このような場合、出力用光ファイバ27の出力端に、透過中心波長がλsである第2光バンドパスフィルタ28を接続させ、波長λsの第1の信号光波長成分のみを選択的に通過させ、波長λpの制御光信号の成分を遮断する。第2光バンドパスフィルタ28を通過した波長λsの光成分は、出力用光ファイバ29に結合され、最終的に所望される変調光信号が出力される。
(A−3)第1の実施形態の効果
以上述べたように、第1の実施形態によれば、光ファイバ中での超高速な光カー効果に基づく相互位相変調効果を用いて、電子デバイスの速度制限を越えた超高速変調光信号を発生することができる。また、装置を構成する主要素である偏波面保存ファイバの複屈折は、(1)式及び(2)式に示したように、自動的にキャンセルされる構造を有している。すなわち、複屈折をキャンセルするための偏波面保存ファイバ長の高精度な調整など、複雑かつ高精度な制御が不要である。言い換えれば、非特許文献1に開示の技術における、干渉計の光路調整のための格別の制御手段を必要とせずに、より簡便かつ安定な光干渉計の構成が可能となる。
さらにまた、第3偏波面保存光ファイバ22及び第4偏波面保存光ファイバ26で生じる偏波クロストーク成分は、全て第2偏波分離合成モジュール18の、光ファイバ等への結合を必要としない第4入出力端18−4に出力される。従って、第1偏波分離合成モジュール10の第3入出力端10−3に、第3偏波面保存光ファイバ22で生じる偏波クロストーク成分が、本来所望とする変調光信号に混在して出力されることはない。
従って、必要な制御光信号のピーク強度を低減するために、長尺な第3偏波面保存光ファイバ22を用いても、それらのファイバで生じる偏波クロストークによる動作不安定性の発現を抑制できる。
以上のことから、第1の実施形態においては、偏波面保存フアイパの使用による複屈折の影響や、また、偏波クロストークの発生による、光変調動作の動作不安定性を抑制できる。このことから、信号光波長や環境温度が変化しても特性が変化せず、また、高安定な動作特性を担保した全光型光変調器6を提供することができる。
さらにまた、制御光信号のピーク強度や、第1光位相バイアス回路40での位相オフセットを適宜調整することで、単一の装置構成で、強度変調方式、位相変調方式いずれのフォーマットの変調光信号をも発生することができる。
さらにまた、発生する変調光信号の周波数チャーピングを原理的に0にすることができる。
また、第1の実施形態の光変調器6を用いて強度変調光信号を発生する際には、出力用光ファイバ29から出力される、所望する変調光信号とは論理反転した変調光信号が、入力用光ファイバ32−2から、第1の信号光1と逆行して伝播する形で、同時に出力される。この論理反転信号を、所望する正論理変調光信号の信号品質モニタ等として使用することもできる。
この場合、図1に示すように、入力用光ファイバ32−2の信号光入力端に、第1光サーキュレータ30を接続する。第1光サーキュレータ30は、それぞれの入出力ポートに接続された光ファイバ32−1、32−2、37を有する。光ファイバ32−1から入力された第1の信号光は、光ファイバ32−2から出力される。光ファイバ32−2の他端は、第1偏波分離合成モジュール10の第1入出力端10−1に接続される。第1偏波分離合成モジュール10の第1入出力端10−1に入力される第1の信号光1は、p偏波成分に平行な直線偏波光となるように、その偏波方向が調整されているものとする。論理反転した変調光信号は、第1偏波分離合成モジュール10の第1入出力端10−1から出力され、光ファイバ32−2に入力され、光ファイバ37から出力される。所望とする正論理変調光信号の場合と同様に、制御光除去用の第3光バンドパスフィルタ38を透過する第1の信号光1の波長成分のみを、論理反転した変調光信号として、出力用光ファイバ39を介して出力させる。
また、上記の説明においては、第1の制御光信号2として、RZフォーマットのOOK信号を考慮したが、第1の実施形態の効果は、第1の制御光信号2が、NRZフォーマットの強度変調信号の場合でも得ることができる。この場合、第1の信号光1として連続光を用意すれば、NRZフォーマットの強度変調若しくは位相変調光信号を得ることができる。また、第1の信号光1として光パルス列を用意すれば、RZフォーマットの強度変調若しくは位相変調光信号を得ることができる。いずれの場合でも、周波数チャーピングが生じない、高品質な変調光信号を供することができる。
上述した第1の実施形態による効果を要約すると、以下の通りである。
すなわち、1台の装置を用いて、振幅変調方式及び位相変調方式のいずれのフォーマットの変調光信号も発生できる、全光型光強度・位相変調器を提供することができる。その際、周波数チャーピングが十分抑制された高品質な変調光信号を発生することができる。さらにまた、NRZフォーマット、RZフォーマットいずれの信号フォーマットにも対応することができる。さらにまた、信号光波長や環境温度が変化しても特性が変化しない、高安定な動作特性を担保することできる。
(B)第2の実施形態
次に、本発明による光変調器の第2の実施形態を、図面を参照しながら説明する。第2の実施形態の光変調器は、第1の実施形態の構成に加えて、第1の実施形態で必要となる、互いに相補的な関係にある第1及び第2の制御光信号2及び3を発生する機能を有した光回路の構成をも有する全光型光変調器である。
(B−1)第2の実施形態の構成
図8は、第2の実施形態に係る全光型光変調器7の構成を示す配置図である。
図8において、第2の実施形態に係る全光型光変調器7は、図1に示した第1の実施形態の構成(第3偏波分離合成モジュール50、第1光アイソレータ60などは存在しない)300に加えて、第1及び第2の制御光信号2及び3を発生する相補制御光発生部8を備えている。
相補制御光発生部8は、第6偏波面保存光ファイバ312と、第3偏波面変換部314と、第7偏波面保存光ファイバ316と、第4偏波分離合成モジュール318と、第8偏波面保存光ファイバ322と、第4偏波面変換部324と、第9偏波面保存光ファイバ326と、第2光位相バイアス回路340と、第4光バンドパスフィルタ351と、第10偏波面保存光ファイバ352と、第2光サーキュレータ330とを少なくとも備えている。
図8において、全光型光変調器本体300は、第1の実施形態で説明した全光型光変調器の中心構成と同様である。図8中で、第1の実施形態の全光型光変調器に相当する部分300は、第2の実施形態の説明で必要となる、第1の制御光信号2と第2の制御光信号3を合波入力するための第5偏波面保持光ファイバ52の一端、並びに、所望する変調光信号の外部取り出し口となる、変調光信号出力用光ファイバ27若しくは29の一端の部分以外は、詳細構成の図示を割愛し、1つのブロックとして示している。
相補制御光発生部8は、第2の信号光4と、第3の制御光信号5とから、上述した第1及び第2の制御光信号2及び3を発生するものであって、第1の実施形態の全光型光変調器と同様な光変調構成を有する。
第2の信号光4は、波長λpの被制御光であって、ここでは連続光とする。
第3の制御光信号5は、第2の信号光4の波長λpとは異なる波長λs’を有する、強度変調光信号である。第3の制御光信号5のビットレートは、所望する変調光信号のビットレートf[bit/s]と一致する。
第2の実施形態で用いる、第4偏波分離合成モジュール318、第6〜第10偏波面保存光ファイバ312、316、322、326、352、第3偏波面変換部314、第4偏波面変換部324、第2光位相バイアス回路340、第4光バンドパスフィルタ351の各光部品の特性、構成、接続形態、役割はそれぞれ、第1の実施形態で用いている第2偏波分離合成モジュール18、第1〜第5偏波面保存光ファイバ12、16、22、26、52、第1偏波面変換部14、第2偏波面変換部24、第1光位相バイアス回路40、第1光バンドパスフィルタ51の各光部品の特性、構成、接続形態、役割と、次の1点を除いて全く等価なものである。すなわち、第1の実施形態においては、第1光バンドパスフィルタ51においては波長λsの第1の信号光1が第1及び第2入出力端51−1、51−2を通過する設計としていたが、第2の実施形態においては、第4光バンドパスフィルタ351においては波長λpの第2の信号光4が第1及び第2入出力端351−1、351−2を通過する点だけが異なっている。
すなわち、第2の実施形態において用いる第4偏波分離合成モジュール318、第6〜第10偏波面保存光ファイバ312、316、322、326、352、第3偏波面変換部314、第4偏波面変換部324、第2光位相バイアス回路340、第4光バンドパスフィルタ351はそれぞれ、第1の実施形態において用いた第2偏波分離合成モジュール18、第1〜第5偏波面保存光ファイバ12、16、22、26、52、第1偏波面変換部14、第2偏波面変換部24、第1光位相バイアス回路40、第1光バンドパスフィルタ51と、上記で述べた光バンドパスフィルタの通過特性の違い以外は等価な光部品であり、また、第2の実施形態におけるそれらの光部品の接続や使用形態もまた、第1の実施形態の場合と同様であり、第2の実施形態の各光部品についての詳細な機能説明は割愛する。各光部品対応は、下記のようになる(但し、通過波長は異なる)。
第2偏波分離合成モジュール18→第4偏波分離合成モジュール318
第1〜第5偏波面保存光ファイバ12、16、22、26、52
→第6〜第10偏波面保存光ファイバ312、316、322、326、352
第1偏波面変換部14→第3偏波面変換部314
第2偏波面変換部24→第4偏波面変換部324
第1光位相バイアス回路40→第2光位相バイアス回路340
第1光バンドパスフィルタ51→第4光バンドパスフィルタ351
以下では、第2の実施形態で、新たに加えられた光部品のみについて、その構成や機能等を詳細に説明する。
第2光サーキュレータ330は、少なくとも3つの入出力端を有する。第1入出力端330−1から入力された第2の信号光4は第2入出力端330−2に出力される。また、第2入出力端330−2から入力された光(第1及び第2の制御光信号3及び4)は第3入出力端330−3に出力される。また、第2光サーキュレータ330においては、それらの入出力動作の際、入出力光の偏波状態は維持されるものとする。すなわち、直線偏波光で入力された光は直線偏波光として出力される。
入力用光ファイバ331は、第3の制御光信号5を入力するための光ファイバであり、その一端は、第10偏波面保存光ファイバ352の、第4バンドパスフィルタ351の第3入出力端351−3に接続されていない方の他端と接続されている。
入力用光ファイバ332は、第2の信号光4を入力するための光ファイバであり、その一端には、第2光サーキュレータ330の第1入出力端330−1が接続される。
出力用光ファイバ327は、第2の信号光4が変調された中間変調光信号を、第1の制御光信号2及び第2の制御光信号3として出力する光ファイバである。その一端は、第2光サーキュレータ330の第3入出力端330−3に接続され、他端は、第5偏波面保存光ファイバ52の一端に接続されている。
また、第2光サーキュレータ330の第2入出力端330−2には、第6偏波面保存光ファイバ312の、第3偏波面変換部314に接続されていない方の他端が接続されている。
ここで、第2光サーキュレータ330の第2入出力端330−2から第3偏波面変換部314に至る経路の長さ、すなわち第6偏波面保存光ファイバ312の長さをL6(経路L6ということもある)、第3偏波面変換部314から第4偏波分離合成モジュール318の第1入出力端318−1に至る経路の長さ、すなわち第7偏波面保存光ファイバ316の長さをL7(経路L7ということもある)、第4偏波分離合成モジュール318の第2入出力端318−2から第4偏波面変換部324に至る経路、すなわち第8偏波面保存光ファイバ322の長さをL8(経路L8ということもある)、第4偏波面変換部324から第4偏波分離合成モジュール318の第3入出力端318−3に至る経路、すなわち第9偏波面保存光ファイバ326の長さをL9(経路L9ということもある)とする。
なお、光カー効果の発現による位相シフトの発生に特段の寄与をしない、第6偏波面保存光ファイバ312、第7偏波面保存光ファイバ316、第9偏波面保存光ファイバ326、第10偏波面保存光ファイバ352は、第1の実施形態と同様、光ファイバではなく、空間光学系とすることでも、第2の実施形態の効果を奏することができる。
波長λpの第2の信号光4(連続光)は、信号光入力用光ファイバ332に入力され、第2の光サーキュレータ330の第1入出力端330−1、第2入出力端330−2を経由して、第6偏波面保存光ファイバ312へと入力される。その際、第6偏波面保存光ファイバ312のslow軸に平行な直線偏波光として入力されるように、第2の信号光4の偏波状態が、図示しない偏波面コントローラなどで適宜調整されて入力されるものとする。
第2の信号光4は、その後、第6偏波面保存光ファイバ312、第3偏波面変換部314、第7偏波面保存光ファイバ316、第4光バンドパスフィルタ351の第1及び第2入出力端351−1、351−2を通過して、第4偏波分離合成モジュール318の第1入出力端318−1へと至る。
波長λs’の第3の制御光信号5は、入力用光ファイバ331に入力され、第10偏波面保存光ファイバ352を経由して、第4光バンドパスフィルタ351の第3入出力端351−3に入力され、第2入出力端351−2へと出力され、その後、第4偏波分離合成モジュール318の第1入出力端318−1へと至る。その際、第10偏波面保存光ファイバ352及び第7偏波面保存光ファイバ316中を、例えば、そのslow軸に平行な直線偏波光として伝播し、結果として、第4偏波分離合成モジュール318の第1入出力端318−1へ、p偏波方向に偏波した直線偏波光の状態で入力するように、第3の制御光信号5の偏波状態が、図示しない偏波面コントローラなどで適宜調整されて入力されるものとする。
その後、第3の制御光信号5は、第4偏波分離合成モジュール318の第1入出力端318−1へp偏波方向の直線偏波で入力されるために、第4偏波分離合成モジュール318の第2入出力端318−2へ出力され、その後、光カー効果を生じさせる第8偏波面保存光ファイバ322へと至り、第8偏波面保存光ファイバ322を図8中で時計回りに、すなわち、後述する第2の信号光4のS3成分と同じ進行方向で伝播していく。
第1の実施形態と同様に、第8偏波面保存光ファイバ322内において、第3の制御光信号5の偏波方向は、第8偏波面保存光ファイバ322中を互いに逆行して伝播していく、後述する二つの第2の信号光4の偏波成分(S3成分、S4成分)の偏波方向と合致している。例えば、それらはともに、第8偏波面保存光ファイバ322のslow軸に平行な直線偏波として、第8偏波面保存光ファイバ322中を伝播していく。また、第3の制御光信号5が、第8偏波面保存光ファイバ322中を伝播していく方向は、第2の信号光4の偏波成分(S3成分、S4成分)の一方(図8ではS3成分)と一致し、もう一方(図8ではS4成分)と逆行している。
(B−2)第2の実施形態の動作
次に、第2の実施形態に係る全光型光変調器7の相補制御光発生部8が、第2の信号光4と、第3の制御光信号5とから、第1及び第2の制御光信号2及び3を発生する動作を説明する。
波長λpの連続光でなる第2の信号光4が、入力用光ファイバ332に入力され、第2の光サーキュレータ330の第1入出力端330−1、第2入出力端330−2を経由して、第6偏波面保存光ファイバ312へ、第6偏波面保存光ファイバ312のslow軸に平行な直線偏波として入力される。
その後、第2の信号光4は、第6偏波面保存光ファイバ312中を、そのslow軸と平行な直線偏波光として伝播し、図8中左側の経路から第3偏波面変換部314に至る。
第1の実施形態における第1の信号光1と同様、第3偏波面変換部314から出力して第7偏波面保存光ファイバ316に結合される第2の信号光の偏波方向は、第7偏波面保存光ファイバ316のslow軸と45°だけ傾いた直線偏波光となる。その後、第2の信号光4は、第7偏波面保存光ファイバ316中を、そのslow軸と平行な直線偏波光成分と、そのfast軸方向に平行な直線偏波光成分とに分かれて伝播し、途中、第4光バンドパスフィルタ351の第1入出力端351−1及び第2入出力端351−2を入出力した後、第4偏波分離合成モジュール318の第1入出力端318−1に入力される。第2の信号光4は、第1の実施形態における第1の信号光1と同様に、第4光バンドパスフィルタ351を通過した前後でもなんらの偏波変換を生じない。
ここで、上述した第7偏波面保存光ファイバ316中をそのslow軸と平行な第2の信号光4の直線偏波光成分をS3成分、そのfast軸方向に平行な第2の信号光4の直線偏波光成分をS4成分と定義する。S3成分とS4成分の強度比は、第1の実施形態における第1の信号光1と同様に、1:1となる(図9(A)参照)。なお、図9は、第2の実施形態における第3偏波面変換部314での信号光の偏波状態の説明図である。
第2の信号光4のS3成分及びS4成分は、その後、共に第4偏波分離合成モジュール318の第1入出力端318−1に入力され、それぞれ入出力端318−2、318−3に分岐出力される。すなわち、S3成分は入出力端318−2に出力され、S4成分は入出力端318−3に出力される。
ここで、第3の制御光信号5の入力がない場合を考える。なお、ここでは、第2光位相バイアス回路340での位相バイアスの効果も無視する。
上述したように、第2の実施形態において追加して用いる大半の光部品は、第1の実施形態の対応部品と等価な光部品である。従って、第4偏波分離合成モジュール318、第8偏波面保存光ファイバ322、第9偏波面保存光ファイバ326、第4偏波面変換部324、第2光位相バイアス回路340で構成される第2の実施形態における光ループは、第1の実施形態の場合に、それらに対応する光部品で構成された光ループと同様である。
それ故、第3の制御光信号5の入力がない場合、第1の実施形態と同様に、第2の信号光4が、上述した光ループを通過して、第6偏波面保存光ファイバ312の右端に到達し、S3成分とS4成分とが合波して再度得られる第2の信号光4は、第6偏波面保存光ファイバ312のslow軸に平行な直線偏波光となる。
第2の信号光4は、その後、第2光サーキュレータの入出力端330−2に入力され、その偏波方向を保ったまま、第3入出力端330−3から出力される。
次に、第3の制御光信号5が入力された場合を考える。併せて、第2光位相バイアス回路340による位相オフセットの効果も考慮する。
強度変調信号である、波長λs’の第3の制御光信号5は、入力用光ファイバ331に入力され、第10偏波面保存光ファイバ352を経由して、第4光バンドパスフィルタ351の第3入出力端351−3に入力され、第2入出力端351−2へと出力され、その後、第4偏波分離合成モジュール318の第1入出力端318−1へと至る。その際、第10偏波面保存光ファイバ352及び第7偏波面保存光ファイバ316中を、そのslow軸に平行な直線偏波光として伝播し、結果として、第4偏波分離合成モジュール318の第1入出力端318−1へ、p偏波方向に偏波した直線偏波光の状態で入力する。
その後、第3の制御光信号5は、第4偏波分離合成モジュール318の第1入出力端318−1へp偏波方向の直線偏波で入力されるために、第4偏波分離合成モジュール318の第2入出力端318−2へ出力され、その後、光カー効果を生じさせる第8偏波面保存光ファイバ322へと至り、第8偏波面保存光ファイバ322を伝播していく。
第1の実施形態と同様に、第8偏波面保存光ファイバ322内において、第3の制御光信号5の偏波方向は、第8偏波面保存光ファイバ322中を互いに逆行して伝播していく、後述する第2の信号光4の二つの偏波成分(S3成分、S4成分)の偏波方向と合致している。例えば、それらは共に、第8偏波面保存光ファイバ322のslow軸に平行な直線偏波光として、第8偏波面保存光ファイバ322中を伝播していく。また、第3の制御光信号5が、第8偏波面保存光ファイバ322中を伝播していく方向は、第2の信号光の偏波成分(S3成分、S4成分)の一方(図8ではS3成分)と一致し、もう一方(図8ではS4成分)と逆行している。
第1の実施形態で説明したように、S3成分に対しては、同一方向に伝播する第3の制御光信号5からの相互位相変調効果による位相シフトが生じる。そのピーク値を、第1の実施形態に倣ってa’πで表す。
一方、S4成分に対しては、第3の制御光信号5は逆方向に伝播する。第1の実施形態の場合と異なり、同一方向に進行する制御光は存在しない。そのため、第1の実施形態に倣って考えれば、S4成分に対しては、逆行制御光信号による相互位相変調による時間連続的位相シフト(b’π)と、第2光位相バイアス回路340で与えられる、同じく時間連続的位相シフト(c’π)が生じる。
その結果、第2の信号光4のS3成分及びS4成分に対して生じる位相シフトの時間波形と、第3の制御光信号5の強度時間波形の関係は、図10のように示すことができる。図10は、第1の実施形態における第1の信号光1のS1成分及びS2成分の位相シフトの時間波形と、第1及び第2の制御光信号2及び3の強度時間波形の関係とを示す図7に対応する図面である。
すなわち、S3成分の位相シフトの時間波形は、第3の制御光信号の強度時間波形に比例した形で、第3の制御光信号5が信号「1」のとき、ピークの位相シフトa’πとなり、第3の制御光信号5が信号「0」のとき、位相シフト0となる(図10(B))。一方、S4成分の位相シフトの時間波形は、位相シフト量が(b’+c’)πであり、時間経過に依存しない時間連続的波形である(図10(C))。
ここで、a’=1、かつ、b’+c’=0となるように、第3の制御光信号5のピーク光強度、ならびに、第2光位相バイアス回路340における位相オフセット(c’)が与えられたとする。この場合、S4成分の位相シフト量は常に0である。
従って、第3の制御光信号5が信号「0」のとき、S3成分及びS4成分間に相対的な位相差が生じない。その結果、このとき、上述した第3の制御光信号5がない場合と同様に、第2の信号光4が、光ループを通過して、第6偏波面保存光ファイバ312の右端に再度到達し、S3成分とS4成分が合波して得られる第2の信号光4は、第6偏波面保存光ファイバ312のslow軸に平行な直線偏波となる(図9(B))。
一方、第3の制御光信号5の信号が「1」であるとき、S3成分にπ(=a’π)の最大位相シフトが生じる。つまり、S3成分とS4成分の間にπの位相差が生じる。このとき、第2の信号光4が、光ループを通過して、第7偏波面保存光ファイバ316の左端に再度到達するとき、S3成分を表示する矢印の向きが反転することになる。その結果、第2の信号光4が、光ループを通過して、第6偏波面保存光ファイバ312の右端に再度到達し、S3成分とS4成分が合波して得られる第2の信号光は、第6偏波面保存光ファイバ312のfast軸に平行な直線偏波となる(図9(C))。
すなわち、光ループを通過して、第6偏波面保存光ファイバ312の右端に再度到達するときの第2の信号光4は、第3の制御光信号5の信号が「0」であるときは第6偏波面保存光ファイバ312のslow軸に平行な直線偏波光、第3の制御光信号5の信号が「1」であるときは第6偏波面保存光ファイバ312のfast軸に平行な直線偏波光となり、すなわち、第3の制御光信号5の信号符号により直線偏波の偏波方向が90°だけ回転する、偏波変調信号となっている。
この偏波変調信号となった信号光は、その後、偏波状態を維持しながら、第6偏波面保存光ファイバ312、第2光サーキュレータの第2入出力端330−2、第3入出力端330−3を通過し、第2光サーキュレータの第3入出力端330−3に接続された出力用光ファイバ327へと出力される。
出力用光ファイバ327へ出力された信号光は、第3の制御光信号5の信号符号により直線偏波の偏波方向が90°だけ回転している偏波変調信号である。このとき、偏波変調信号の互いに直交する偏波成分の光強度の和の時間波形を取り、過剰損失を無視すれば、当初入力した第2の信号光4の時間波形と一致した時間波形、すなわち連続光となっている。このことは、出力用光ファイバ327へ出力された信号光の、互いに偏波直交した成分は相補的関係にあることが分かる。また、一方の偏波成分、図8の例では、第6偏波面保存光ファイバ312のslow軸に平行な直線偏波光として出力された成分の強度時間波形の信号パターンは、第3の制御光信号5の信号パターンと一致する。
上述したように、出力用光ファイバ327へ出力された信号光(偏波変調信号)の、互いに偏波直交した成分は相補的関係にあり、かつ、それらは互いに偏波直交している。このことは、第1の実施形態で必要とした、互いに相補的で、かつ、偏波直交した二つの制御光信号である、第1の制御光信号2及び第2の制御光信号3が、第2の実施形態における出力用光ファイバ327から出力されていることを意味する。出力用光ファイバ327へ出力された信号光(偏波変調信号)は、図1の第3偏波分離合成モジュール50の第2入出力端50−2から第5偏波面保存光ファイバ52へ出力された光信号と同等なものとなっている。
従って、出力用光ファイバ327へ出力された信号光を、第1の実施形態の光変調器300に、第5偏波面保存光ファイバ52を介して、第1及び第2の制御光信号2及び3として入力すれば、第1の実施形態で説明した効果により、最終的に所望する、強度変調あるいは位相変調された、周波数チャーピングを持たない変調光信号が、第1の実施形態の光変調器300の出力用光ファイバ27若しくは29より出力される。
ここで、出力用光ファイバ327へ出力された信号光の光強度を、第1の実施形態の光変調器300を動作させる第1及び第2の制御光信号2及び3として適当な光強度にまで増幅するために、エルビウム添加光ファイバ増幅器などの光増幅器370を出力用光ファイバ327の一端と第5偏波面保存光ファイバ52の一端を結ぶいずれかの光路に挿入しても良い。
さらにはまた、光増幅器370で発生するノイズ光の除去のため、あるいはまた、出力用光ファイバ327へ出力された信号光に含まれる第3の制御光信号5の波長成分を除去するために、出力用光ファイバ327と第5偏波面保存光ファイバ52を結ぶいずれかの光路に、通過中心波長が第2の光信号4の波長λpである、第5光バンドパスフィルタ338を挿入するようにしても良い。
一方、第8偏波面保存光ファイバ322を通過した後の第3の制御光信号5は、第1の実施形態と同様に、最終的に第4光バンドパスフィルタ351の第2入出力端351−2に入力され、第3入出力端351−3に出力される。ここで、第4光バンドパスフィルタ351の透過特性が理想的である場合、第3の制御光信号5が第4光バンドパスフィルタ351の第1入出力端351−1へ出力されることはなく、結果、第2光サーキュレータ330の第3入出力端330−3を介して出力用光ファイバ327へと出力されることもない。一方、理想的でない場合、第3の制御光信号5の波長成分は、第2光サーキュレータ330の第3入出力端330−3を介して出力されることになるが、最終的に、上述した第5光バンドパスフィルタ338で除去され、第1の実施形態の光変調器300に入力されることはない。
また、第4光バンドパスフィルタ351の第3入出力端351−3に出力された第3の制御光信号5は、その後、第10偏波面保存ファイバ352を介して、元の制御光入力用光ファイバ331を逆行して、装置の安定動作や、あるいは装置外部の機器あるいは伝送システムに悪影響を及ぼす恐れがある。これを抑制するためには、第10偏波面保存ファイバ352の途中に第2光アイソレータ360を挿入して、このような逆行制御光をカットするのが好適である。
なお、以上の説明においては、第2の信号光4と第1及び第2の制御光信号3及び4の波長は同一であること(λp)を要する。しかし、第1の信号光1の波長λsや第3の制御光信号5の波長λs’は、第2の信号光4や第1及び第2の制御光信号3及び4の波長と異なっていれば良く、第1の信号光1の波長λsと第3の制御光信号5の波長λs’とが同一であることは必しも要件ではない。
しかし、第1の信号光1の波長λsと第3の制御光信号の波長λs’を一致させるようにしても良い(λs=λs’)。この場合、第3の制御光信号5と同一波長の変調光信号を全光型光変調器300が提供することになる。このように、波長を維持した上で光変調動作を行う使用法は、特に、長距離ネットワークにおける光信号再生などにおいて重要である。このことから、第2の実施形態は、長距離ネットワークにおける光信号再生を行う光中継器としての応用も可能であるということができる。すなわち、中継器へ入力された変調光信号を第3の制御光信号5として用い、位相変調若しくは強度変調がなされた後の第1の信号光1を当該中継器からの出力光として用いるようにすれば、中継器への入力光及び出力光の波長が同じになり、中継器を多段接続する場合であっても、各中継器毎に、入力光及び出力光の波長を設定することが不要となる。
(B−3)第2の実施形態の効果
第2の実施形態によれば、一つの制御光信号(第3の制御光信号)を用いて、第1の実施形態の動作に必要な、相補的関係にある第1及び第2の制御光信号を発生できる光回路をも備えるので、第1の実施形態の効果に比べて、下記のような効果がより顕著となる。
全光型光変調器の適用として尤もふさわしい形態の一つは、電子デバイスの速度制限を越えた超高速変調光信号を発生する場合である。第1の実施形態の効果のみを用いて、本装置を動作する場合、相補的関係にある第1及び第2の制御光信号を発生する段階において、電子デバイスの速度制限を受けることが想定される。
一方、第2の実施形態に記載の構成を加えることで、以下のような動作形態が可能となる。すなわち、光TDMを用いて、電子デバイスの速度制限を越えたデータレートで発生させた第3の制御光信号を用意し、第2の実施形態に記載の構成を用いて、電子デバイスの速度制限に律則されずに、相補的な第1及び第2の制御光信号を発生し、それらを用いて、第1の実施形態に記載の光変調器を動作させる。その結果、電子デバイスの速度制限を越えた超高速変調光信号の発生が可能となる。
(C)他の実施形態
上記各実施形態では、光カー効果に基づき相互位相変調効果を発現する媒体として光ファイバを考慮したが、本発明で得られる効果は、このような光ファイバの使用に限定されるものではない。制御光により被制御光の光位相を変化させる効果を有する光デバイスであれば、その応用形態に応じて、多種多様なデバイスを用いて、本発明の効果を生じることができる。例えば、動作するビットレートが、1Gb/sなど比較的低ビットレートであれば、半導体光増幅器や電界吸収型光変調器を用いることもできる。また、Siをコアとし、SiOをクラッドとして形成した、いわゆるシリコン細線導波路を用いることもできる。
また、第1の制御光信号2と第2の制御光信号3は、その波長が同一波長λpであるものを想定して説明したが、本発明で得られる効果はこれに限定されるものではない。具体的には、第1の制御光信号2及び第2の制御光信号3の波長をそれぞれλp1、λp2とした場合、それらが、第1光バンドパスフィルタ51の透過波長帯域に掛からない程度に十分に、信号光波長λsから離れていれば、λp1とλp2が一致していなくても、本発明の効果は得られる。
また、第1光バンドパスフィルタ51等として信号光波長を透過波長としたものを想定したが、制御光波長を透過波長としたものとしても本発明で得られる効果を実現できる。
上記第2の実施形態における相補制御光発生部8は、光変調器に組み込まれて構成されるだけでなく、独立した光学装置として構成され、市販などがされるものであっても良い。このように、独立した光学装置として構成された相補制御光発生部8が本発明の相補強度変調光発生器に該当する。
6、7、300…全光型光変調器、8…相補制御光発生部、10…第1偏波分離合成モジュール、12…第1偏波面保存光ファイバ、14…第1偏波面変換部、16…第2偏波面保存光ファイバ、18…第2偏波分離合成モジュール、22…第3偏波面保存光ファイバ、24…第2偏波面変換部、26…第4偏波面保存光ファイバ、28…第2光バンドパスフィルタ、30…第1光サーキュレータ、38…第2光バンドパスフィルタ、40…第1光位相バイアス回路、50…第3偏波分離合成モジュール、51…第1光バンドパスフィルタ、52…第5偏波面保存光ファイバ、312…第6偏波面保存光ファイバ、314…第3偏波面変換部、316…第7偏波面保存光ファイバ、318…第4偏波分離合成モジュール、322…第8偏波面保存光ファイバ、324…第4偏波面変換部、326…第9偏波面保存光ファイバ、330…第2光サーキュレータ、340…第2光位相バイアス回路、351…第4光バンドパスフィルタ、352…第10偏波面保存光ファイバ。

Claims (10)

  1. 偏波面保存の第1の閉ループ光路を形成させている第1閉ループ光路部と、
    ピーク強度の揃った光パルスが等時間間隔に並んだ光パルス列、若しくは、連続光である直線偏波の第1波長を有する第1の信号光を2つの直線偏波の第1成分及び第2成分に分ける第1・第2成分分割部と、
    信号の「0」及び「1」の並びに応じた強度パターンを有する強度変調光であって、第2波長を有する直線偏波の第1の制御光信号と、この第1の制御光信号の強度パターンと相補的な強度パターンを有する強度変調光であって、上記第2波長若しくはその近傍波長を有し、偏波面が上記第1の制御光信号の偏波面と直交している第2の制御光信号とを出力する制御光発生部と、
    上記第1の閉ループ光路への上記第1の信号光の入出力を行うものであって、上記第1成分及び第2成分を、巡回方向が逆になるように上記第1の閉ループ光路へ入力する第1閉ループ第1信号光入出力部と、
    上記第1の閉ループ光路への上記第1の制御光信号及び上記第2の制御光信号の入出力を行うものであって、上記第1の制御光信号の巡回方向が上記第1成分と同じになると共に、上記第2の制御光信号の巡回方向が上記第2成分と同じになるように、上記第1の制御光信号及び上記第2の制御光信号を上記第1の閉ループ光路へ入力する第1閉ループ制御光入出力部と、
    同一方向に進行する上記第1の制御光信号及び逆方向に進行する上記第2の制御光信号に応じ、上記第1成分の光位相を変化させる、上記第1の閉ループ光路に介在されている第1成分光位相シフト部と、
    同一方向に進行する上記第2の制御光信号及び逆方向に進行する上記第1の制御光信号に応じ、上記第2成分の光位相を変化させる、上記第1の閉ループ光路に介在されている第2成分光位相シフト部と、
    上記第1の閉ループ光路から出力された上記第1成分及び上記第2成分を、上記第1の制御光信号及び上記第2の制御光信号から分離する第1信号光抽出部と、
    上記第1閉ループ第1信号光入出力部へ向かう第1の信号光と、上記第1閉ループ第1信号光入出力部から出力された戻り光の上記第1成分及び第2成分との光路を分離する第1正逆光路分離部と、
    上記第1閉ループ第1信号光入出力部から出力された戻り光が進行するいずれかの箇所に設けられ、上記第1成分及び第2成分の偏波面を揃えて合波させる第1信号光成分合波部と、
    上記第1の信号光の第1成分及び第2成分が進行するいずれかの箇所に設けられ、上記第1成分及び第2成分に相対的な光位相差を付与する第1光位相差付与部とを備え、
    上記第1の閉ループ光路以外の光路にも偏波面保存光路を適用すると共に、上記第1信号光成分合波部及び上記第1正逆光路分離部の合波及び光路分離がなされた光信号を、変調光信号として出力する
    ことを特徴とする光変調器。
  2. 上記第1の閉ループ光路は、上記第1の制御光信号若しくは上記第2の制御光信号による光カー効果により、上記第1の閉ループ光路を巡回する上記第1成分若しくは上記第2成分に対して相互位相変調効果による位相シフトを生じさせる第1位相シフト用非線形光ファイバを含み、
    上記第1位相シフト用非線形光ファイバが、上記第1成分光位相シフト部と上記第2成分光位相シフト部とを構成した
    ことを特徴とする請求項1に記載の光変調器。
  3. 上記第1閉ループ第1信号光入出力部は、偏光ビームスプリッタ又は偏光プリズムでなる、上記第1・第2成分分割部及び上記第1閉ループ制御光入出力部を兼ねたものであり、上記第1閉ループ光路部は、上記第1成分及び上記第2成分の偏波面を90°だけ回転させるループ内偏波面変換部を含む
    ことを特徴とする請求項1又は2に記載の光変調器。
  4. 上記第1閉ループ第1信号光入出力部へ向かう第1の信号光と、上記第1閉ループ第1信号光入出力部から出力された戻り光とが通過する位置に設けられた第1ループ外偏波面変換部を有し、
    上記第1ループ外偏波面変換部が、上記第1閉ループ第1信号光入出力部へ向かう第1の信号光の偏波面を、偏光ビームスプリッタ又は偏光プリズムでなる上記第1閉ループ第1信号光入出力部の偏波面選択反射面を通過する上記第1成分と反射される上記第2成分とが生じる角度の偏波面に変換すると共に、上記第1閉ループ第1信号光入出力部から出力された戻り光の上記第1成分及び上記第2成分の偏波面を揃える上記第1信号光成分合波部として機能する
    ことを特徴とする請求項3に記載の光変調器。
  5. 上記第1信号光抽出部は、上記第1閉ループ第1信号光入出力部及び上記第1閉ループ制御光入出力部兼ねた、上記偏光ビームスプリッタ又は上記偏光プリズムから出力された出力光から上記第1成分及び上記第2成分を抽出する第1光バンドパスフィルタで構成されていることを特徴とする請求項3又は4に記載の光変調器。
  6. 上記第1光位相差付与部は、上記第1の閉ループ光路に介挿されたものであり、上記第1成分及び上記第2成分の偏波面を保持したまま位相差を付与することを特徴とする請求項3〜5のいずれかに記載の光変調器。
  7. 上記第1正逆光路分離部が、偏光ビームスプリッタ又は偏光プリズムでなることを特徴とする請求項1〜6のいずれかに記載の光変調器。
  8. 上記第1正逆光路分離部が、サーキュレータでなることを特徴とする請求項1〜6のいずれかに記載の光変調器。
  9. 上記制御光発生部が、
    偏波面保存の第2の閉ループ光路を形成させている第2閉ループ光路部と、
    連続光である直線偏波の上記第2波長を有する第2の信号光を2つの直線偏波の第3成分及び第4成分に分ける第3・第4成分分割部と、
    上記第2の閉ループ光路への上記第2の信号光の入出力を行うものであって、上記第3成分及び第4成分を、巡回方向が逆になるように上記第2の閉ループ光路へ入力する第2閉ループ第2信号光入出力部と、
    上記第1の制御光信号の強度パターンと同じ強度パターンを有する強度変調光であって、第2波長を有する直線偏波の第3の制御光信号の、上記第2の閉ループ光路への入出力を行うものであって、上記第3の制御光信号の巡回方向が上記第3成分と同じになるように、上記第3の制御光信号を上記第2の閉ループ光路へ入力する第2閉ループ制御光入出力部と、
    同一方向に進行する上記第3の制御光信号に応じ、上記第3成分の光位相を変化させる、上記第2の閉ループ光路に介在されている第3成分光位相シフト部と、
    逆方向に進行する上記第3の制御光信号に応じ、上記第4成分の光位相を変化させる、上記第2の閉ループ光路に介在されている第4成分光位相シフト部と、
    上記第2の閉ループ光路から出力された上記第3成分及び上記第4成分を、上記第3の制御光信号から分離する第2信号光抽出部と、
    上記第2閉ループ第2信号光入出力部へ向かう第2の信号光と、上記第2閉ループ第2信号光入出力部から出力された戻り光の上記第3成分及び第4成分との光路を分離する第2正逆光路分離部と、
    上記第2閉ループ第2信号光入出力部から出力された戻り光が進行するいずれかの箇所に設けられ、上記第3成分及び第4成分の偏波面を揃えて合波させる第2信号光成分合波部と、
    上記第2の信号光の第3成分及び第4成分が進行するいずれかの箇所に設けられ、上記第3成分及び第4成分に相対的な光位相差を付与する第2光位相差付与部とを備え、
    上記第2の閉ループ光路以外の当該制御光発生部内の光路にも偏波面保存光路を適用し、
    上記第3成分光位相シフト部、上記第4成分光位相シフト部及び上記第2光位相差付与部によるトータルの位相シフトが、上記第3の制御光信号の信号の「0」、「1」に応じて0又はπとし、
    上記第2信号光成分合波部及び上記第2正逆光路分離部の合波及び光路分離がなされた光信号が、上記第1の制御光信号と上記第2の制御光信号とが直交偏波面を維持して重畳されたと同じ信号にして出力する
    ことを特徴とする請求項1〜8のいずれかに記載の光変調器。
  10. 偏波面保存の第2の閉ループ光路を形成させている第2閉ループ光路部と、
    連続光である直線偏波の第2波長を有する第2の信号光を2つの直線偏波の第3成分及び第4成分に分ける第3・第4成分分割部と、
    第2の閉ループ光路への上記第2の信号光の入出力を行うものであって、上記第3成分及び第4成分を、巡回方向が逆になるように上記第2の閉ループ光路へ入力する第2閉ループ第2信号光入出力部と、
    信号の「0」及び「1」の並びに応じた強度パターンを有する強度変調光であって、第2波長を有する直線偏波の第3の制御光信号の、上記第2の閉ループ光路への入出力を行うものであって、上記第3の制御光信号の巡回方向が上記第3成分と同じになるように、上記第3の制御光信号を上記第2の閉ループ光路へ入力する第2閉ループ制御光入出力部と、
    同一方向に進行する上記第3の制御光信号に応じ、上記第3成分の光位相を変化させる、上記第2の閉ループ光路に介在されている第3成分光位相シフト部と、
    逆方向に進行する上記第3の制御光信号に応じ、上記第4成分の光位相を変化させる、上記第2の閉ループ光路に介在されている第4成分光位相シフト部と、
    上記第2の閉ループ光路から出力された上記第3成分及び上記第4成分を、上記第3の制御光信号から分離する第2信号光抽出部と、
    上記第2閉ループ第2信号光入出力部へ向かう第2の信号光と、上記第2閉ループ第2信号光入出力部から出力された戻り光の上記第3成分及び第4成分との光路を分離する第2正逆光路分離部と、
    上記第2閉ループ第2信号光入出力部から出力された戻り光が進行するいずれかの箇所に設けられ、上記第3成分及び第4成分の偏波面を揃えて合波させる第2信号光成分合波部と、
    上記第2の信号光の第3成分及び第4成分が進行するいずれかの箇所に設けられ、上記第3成分及び第4成分に相対的な光位相差を付与する第2光位相差付与部とを備え、
    上記第2の閉ループ光路以外の当該制御光発生部内の光路にも偏波面保存光路を適用し、
    上記第3成分光位相シフト部、上記第4成分光位相シフト部及び上記第2光位相差付与部による上記第3成分及び上記第4成分に対するトータルの位相シフトの差が、上記第3の制御光信号の信号の「0」、「1」に応じて0又はπで変化し、
    上記第2信号光成分合波部及び上記第2正逆光路分離部の合波及び光路分離がなされた光信号が、上記強度パターンと同じ強度パターンを有する第1の強度変調光と、上記強度パターンと相補的な強度パターンを有する強度変調光であって、偏波面が上記第1の強度変調光の偏波面と直交している第2の強度変調光とが直交偏波面を維持して重畳されたと同じ光信号にして出力する
    ことを特徴とする相補強度変調光発生器。
JP2009079718A 2009-03-27 2009-03-27 光変調器 Expired - Fee Related JP4798244B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079718A JP4798244B2 (ja) 2009-03-27 2009-03-27 光変調器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079718A JP4798244B2 (ja) 2009-03-27 2009-03-27 光変調器

Publications (2)

Publication Number Publication Date
JP2010231059A true JP2010231059A (ja) 2010-10-14
JP4798244B2 JP4798244B2 (ja) 2011-10-19

Family

ID=43046916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079718A Expired - Fee Related JP4798244B2 (ja) 2009-03-27 2009-03-27 光変調器

Country Status (1)

Country Link
JP (1) JP4798244B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007521A (ja) * 2012-06-22 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> 光パルス発生装置
JP2019148794A (ja) * 2018-02-22 2019-09-05 株式会社東芝 量子通信システムのための送信機、量子通信システム、及び強度変調された光子パルスを生成する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007521A (ja) * 2012-06-22 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> 光パルス発生装置
JP2019148794A (ja) * 2018-02-22 2019-09-05 株式会社東芝 量子通信システムのための送信機、量子通信システム、及び強度変調された光子パルスを生成する方法

Also Published As

Publication number Publication date
JP4798244B2 (ja) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4683099B2 (ja) 光多値変調信号発生装置
JP4043463B2 (ja) 光スイッチ
JP4458169B2 (ja) 光変調器及び光信号発生装置
US9030731B2 (en) Quantum entangled photon pair generator
EP2672318B1 (en) Optical amplifier
JP4946662B2 (ja) 光クロック信号再生装置、光クロック信号再生方法
JP2006191410A (ja) 量子光伝送装置およびそのための量子光発生装置
JP3732371B2 (ja) 光信号発生回路
US5848205A (en) Polarization independent non-linear optical mirror
US7706649B2 (en) Optical processing device and optical processing method
JP2011158764A (ja) 光変調装置および光変調方法
JP4798244B2 (ja) 光変調器
CA2676482C (en) Method and system for dynamic dispersion compensation
JP4798246B2 (ja) 4値psk光信号発生装置
JP2006058508A (ja) 光スイッチ
JP2006072028A (ja) 光スイッチ
JP4844405B2 (ja) 光クロック信号再生装置
Su et al. Ultra high-speed data signals with alternating and pairwise alternating optical phases
JP4089707B2 (ja) 光信号発生回路
JP4779177B2 (ja) 非線形光デバイスとそれを用いた応用機器
JP5212411B2 (ja) 光信号再生装置及び光信号再生方法
JP6106062B2 (ja) 光変調器
JP3244104B2 (ja) 偏波無依存・全光型信号再生回路
JPH03148641A (ja) 偏波スクランブラ
JPH0882814A (ja) 全光キャリア再生中継器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees