JP2010225433A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2010225433A
JP2010225433A JP2009071819A JP2009071819A JP2010225433A JP 2010225433 A JP2010225433 A JP 2010225433A JP 2009071819 A JP2009071819 A JP 2009071819A JP 2009071819 A JP2009071819 A JP 2009071819A JP 2010225433 A JP2010225433 A JP 2010225433A
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel cell
ionomer
electrolyte membrane
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009071819A
Other languages
English (en)
Inventor
Wataru Otsu
亘 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009071819A priority Critical patent/JP2010225433A/ja
Publication of JP2010225433A publication Critical patent/JP2010225433A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】燃料電池の運転時の加湿状態に関わらず、燃料電池の触媒層におけるプロトン伝導性の低下を抑制するとともに、ガス透過性の低下をも抑制できるようにする。
【解決手段】電解質膜と、電解質膜を挟んで配置されたアノード触媒層とカソード触媒層とを備える燃料電池において、カソード触媒層を、少なくとも第1触媒層と、第2触媒層との2層に積層されるように構成する。ここで、第1触媒層を、第2触媒層よりも、電解質膜側に配置される触媒層とすると、第1触媒層のアイオノマは、第2触媒層のアイオノマに比べて、酸素溶解度が低くかつ表面積が小さいものとする。
【選択図】図2

Description

この発明は、燃料電池に関する。
例えば、特許文献1には、2層以上に積層された電極触媒層を有する燃料電池が開示されている。具体的に、この燃料電池の電極触媒層の各層は、その空孔率が異なるものであり、電解質側から拡散層側に向けて段階的に空孔率が減少するように積層されている。この電極触媒層は、それぞれ高分子電解質量が異なる複数の触媒インクを、電解質膜に重ねて塗布することにより形成される。特許文献1によれば、電極触媒層を2層に形成することにより、反応ガスの拡散透過性と、プロトンの伝導性等を改善し発電性能を向上させることができるものとしている。
特開2008−186798号公報 特開2007−123235号公報 特開2006−12476号公報
しかしながら、燃料電池のガス拡散性や排水特性、プロトンの伝導性等は、燃料電池が加湿状態や運転温度等により異なるものである。例えば、燃料電池が高加湿の状態の場合には排水性を向上させて、フラッディングを抑制しガス拡散性を向上させる必要がある。しかしながら、触媒層の排水性を向上させた場合、低加湿となると液水が極度に少なくなり、プロトン伝導性が低下し、プロトン移動抵抗を増大させてしまう場合がある。
上記従来技術においては、2層に触媒層を形成することで、ガス拡散性を向上させることができるものとしているが、拡散層側の触媒層の空孔率を大きくするだけでは、高加湿及び低加湿の両状態において反応ガスの拡散性やプロトン伝導性を向上させることは困難である。
従って、この発明は、上記課題を解決することを目的として、燃料電池の運転時の加湿状態に関わらず、プロトン伝導性の低下を抑制するとともに、ガス透過性の低下をも抑制できるように改良した燃料電池を提供するものである。
この発明は、上記の目的を達成するため、燃料電池であって、
電解質膜と
前記電解質膜を挟んで配置されたアノード触媒層とカソード触媒層と、を備え、
前記カソード触媒層は、少なくとも第1触媒層と、第2触媒層とを備え、
前記第1触媒層は、前記第2触媒層よりも、前記電解質膜側に配置され、
前記第1触媒層のアイオノマは前記第2触媒層のアイオノマに比べて、酸素溶解度が低く、かつ表面積が小さいことを特徴とする。
第1の発明によれば、カソード触媒層が少なくとも2層に形成され、内側(電解質膜側)の触媒層は外側の触媒層に比べてアイオノマの酸素溶解度が低く、かつ表面積が小さくなるように構成されている。この構成により、燃料電池の加湿状態に関わらず、高い発電性能を実現することができる。
この発明の実施の形態における燃料電池のセルについて説明するための模式図である。 この発明の実施の形態における燃料電池のカソード極について説明するための模式図である。 この発明の実施の形態における触媒層形成時の熱処理温度と、アイオノマの酸素溶解度との関係を説明するための図である。 この発明の実施例の燃料電池と比較例の燃料電池との、電流―電圧特性及び抵抗値について比較説明するための図である。 この発明の実施例の燃料電池と比較例の燃料電池との、電流―電圧特性及び抵抗値について比較説明するための図である。 この発明の実施例の燃料電池と比較例の燃料電池との、温度と電圧及び抵抗との関係について比較説明するための図である。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。
実施の形態.
[燃料電池の構成]
図1は、この発明の実施の形態における燃料電池について説明するための模式図である。図1は、この発明の燃料電池に積層される複数のセルのうち1つを表している。図1のセルは、固体高分子電解質膜2(電解質膜)を有している。電解質膜2を挟んで、カソード極10及びアノード極20が配置されている。
カソード極10は、電解質膜2に接するカソード触媒層12とその外側(カソード触媒層12の電解質膜2とは反対側)の拡散層14を含む。更に、カソード触媒層12は、電解質膜2に接する第1触媒層16と、第1触媒層16と拡散層14とに挟まれた第2触媒層18とが積層されて、2層に構成されている。一方、アノード極20は、電解質膜2に接するアノード触媒層22とその外側(アノード触媒層22の電解質膜2とは反対側)の拡散層24を含む。アノード触媒層22は単層となっている。
カソード極10と、アノード極20の外側には、それぞれ、セパレータ30、40が配置されている。カソード極10側のセパレータ30には、カソード極10に酸素を流通させるための酸素流路32が形成されている。アノード極側のセパレータ40には、アノード極に燃料ガスを流通させるための燃料流路42が形成されている。
[触媒層の形成方法]
カソード触媒層12の形成方法について説明する。まず、触媒(Pt)を担持したPt担持カーボンとアイオノマを含む触媒インクを、基材に塗布して、熱処理を施して乾燥させる。これにより、基材から剥がれやすい転写シートが形成される。ここでは、第1触媒層16用及び第2触媒層18用の転写シートをそれぞれ形成しておく。次に、まず電解質膜2に第1触媒層16用の転写シートを接触させ、熱プレスすることで転写する。これにより電解質膜2表面に第1触媒層16が形成される。次に、第1触媒層16上に第2触媒層18用の転写シートを接触させて熱プレスする。これにより、第1触媒層16表面に第2触媒層18が転写される。
なお、アノード触媒層22は単層であるが、カソード極10の第1触媒層16と同様に、アノード触媒層22用の転写シートを形成し、これを熱プレスにより電解質膜2に転写することで、形成することができる。
[カソード触媒層の2層の触媒層に関して]
ところで、低加湿時、カソード極10には液水が殆ど存在しない状態となり得る。このような状態のカソード触媒層12の酸素拡散抵抗を低減させるためには、アイオノマ中の酸素透過性を向上させることが必要となる。ここで、アイオノマの酸素透過性は、アイオノマ表面の酸素の吸着しやすさ(酸素溶解度)とアイオノマ中の酸素拡散性(酸素拡散係数)によって決まる。しかし、Pt担持カーボン上のアイオノマ厚さは数nmと薄いため、酸素透過性に対する影響は、アイオノマ中の酸素拡散よりもアイオノマ表面の酸素の吸着しやすさ(酸素溶解度)の方が大きいと考えられる。
従って、この実施の形態においては、低加湿時の酸素拡散抵抗を低減するため、アイオノマの酸素溶解度を向上させるとともに、アイオノマ表面積を大きくすることで、アイオノマの酸素吸着性を更に向上させる。図2は、この発明の実施の形態の燃料電池のカソード極を拡大して表した模式図である。図2に示すように、拡散層14側に近い、第2触媒層18を、第1触媒層16よりもアイオノマの酸素溶解度が高く、アイオノマの表面積が大きいものとしている。
[アイオノマの酸素溶解度に関して]
図3は、転写シート作成時の熱処理温度とアイオノマの酸素溶解度との関係を説明するための図である。図3において、横軸は熱処理温度[℃]、縦軸はその温度での熱処理がなされた触媒層のアイオノマの酸素溶解度[mol/cm3]を表している。図3から、熱処理温度を高くすることで、アイオノマの酸素溶解度を高くすることができることがわかる。
従って、この実施の形態においては、第1触媒層16用転写シート作成時の熱処理温度と比較して、第2触媒層18用転写シート作成時の熱処理温度を高くする。この転写シートを順に、電解質膜2に転写することにより、拡散層14側に、酸素溶解度の高い触媒層が配置されたカソード触媒層12を得ることができる。
[アイオノマの表面積に関して]
また、第2触媒層18には、低Pt担持密度の触媒を用いた方が、同じPt目付け量でも、アイオノマ表面積を大きくすることができることが判明した。従って、第2触媒層18には、第1触媒層16に比べて低担持密度の触媒を用いる。これにより、図2に示されるように、第1触媒層16と比較して第2触媒層18のアイオノマの表面積を大きくする。
なお、この実施の形態において触媒層を転写シートを用いて形成する方法について説明したが、触媒層の形成方法は転写シートを用いるものに限るものではない。この発明においては、カソード触媒層が2層以上に形成され、拡散層側に配置される触媒層の方が、電解質膜側に配置される触媒層よりも、アイオノマの表面の酸素溶解度が高く、またアイオノマの表面積が大きいものであればよく、形成方法は限定されない。
また、その他の部分においても、実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、この実施の形態において説明する構造等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
実施例1.
下記表1に、実施例1のサンプルと、これに対する比較例1、2のサンプルの概要を示す。
Figure 2010225433
表1に示されるように、実施例1のサンプルは、第2触媒層18のアイオノマの酸素溶解度を、第1触媒層16の酸素溶解度の1.8倍とし、また、Pt担持密度は、第1触媒層16が47[%]、第2触媒層18が30[%]とし、第2触媒層18の方が小さいものとした。すなわち、Pt担持密度を小さくすることで、第2触媒層18のアイオノマ表面積は第1触媒層16に比べて大きなものとなっている。
これに対し、比較例1のサンプルは、カソード触媒層を単層としたものである。また、比較例2のサンプルは、第2触媒層の酸素溶解度を、第1触媒層18の1.8倍とし、Pt担持密度は、第1触媒層が47[%]、第2触媒層18が70[%]とした。すなわち、比較例2のサンプルでは、第2触媒層のアイオノマの表面積は、第1触媒層に比べて小さなものとなっている。
図4〜図6は、各サンプル(実施例1、比較例1、2)から得られた値を比較するための図である。図4〜6に共通して、実施例1、比較例1、比較例2の場合を、順に四角、丸、三角でプロットした線で表している。
図4、図5は、それぞれ、105[℃]低加湿(湿度16[%RH])時、60[℃]フル加湿時における電流―電圧特性(ホールドI−V)を説明するための図である。図4、図5において、横軸は電流密度[A/cm2]、縦軸は電圧[V]又は抵抗[mohm・cm2]を表し、実線は電圧、破線は抵抗を表すものである。
図4から、低加湿域においては、この発明の実施例1と、触媒層を単層とした比較例1とを比較して、実施例1のサンプルの限界電流値が向上していることが確認される。また、この例では、Pt担持密度が低い実施例1の方が、比較例2のPt担持密度が大きい場合に比べて限界電流が大きくなっている。即ち、低加湿域においては、カソード触媒層12の外側の第2触媒層18は、プロトン伝導性を考慮して薄くするよりも、表面積を大きくして酸素溶解性を高くしたものの方が効果的であることがわかる。また、図5から、触媒層が単層の比較例1のサンプルに比べて、酸素溶解度の高い2層目を有する実施例1のサンプルの方が、高負荷の出力を高く得られることが確認される。
図6は、無加湿の場合の各サンプルの温度特性を評価した結果を表す図である。図6において、横軸は温度、縦軸は電圧[V]又は抵抗[mohm・cm2]を表している。図6に示されるように、無加湿で温度特性を比べると、全温度域に渡り、実施例1のサンプルの場合高い出力が得られることが確認される。
2 電解質膜(固体高分子電解質膜)
10 カソード極
12 カソード触媒層
14 拡散層
16 第1触媒層
18 第2触媒層
20 アノード極
22 アノード触媒層
24 拡散層

Claims (1)

  1. 電解質膜と
    前記電解質膜を挟んで配置されたアノード触媒層とカソード触媒層と、を備え、
    前記カソード触媒層は、少なくとも第1触媒層と、第2触媒層とを備え、
    前記第1触媒層は、前記第2触媒層よりも、前記電解質膜側に配置され、
    前記第1触媒層のアイオノマは前記第2触媒層のアイオノマに比べて、酸素溶解度が低くかつ表面積が小さいことを特徴とする燃料電池。
JP2009071819A 2009-03-24 2009-03-24 燃料電池 Pending JP2010225433A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071819A JP2010225433A (ja) 2009-03-24 2009-03-24 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071819A JP2010225433A (ja) 2009-03-24 2009-03-24 燃料電池

Publications (1)

Publication Number Publication Date
JP2010225433A true JP2010225433A (ja) 2010-10-07

Family

ID=43042409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071819A Pending JP2010225433A (ja) 2009-03-24 2009-03-24 燃料電池

Country Status (1)

Country Link
JP (1) JP2010225433A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037940A (ja) * 2011-08-09 2013-02-21 Toyota Motor Corp 燃料電池用電極、燃料電池用電極の製造方法、固体高分子形燃料電池、および触媒インク
WO2014020650A1 (ja) * 2012-08-02 2014-02-06 トヨタ自動車株式会社 燃料電池用電極並びに燃料電池用電極、膜電極接合体及び燃料電池の製造方法
JP2016058396A (ja) * 2015-12-10 2016-04-21 トヨタ自動車株式会社 燃料電池用電極、燃料電池用電極の製造方法、固体高分子形燃料電池、および触媒インクの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037940A (ja) * 2011-08-09 2013-02-21 Toyota Motor Corp 燃料電池用電極、燃料電池用電極の製造方法、固体高分子形燃料電池、および触媒インク
WO2014020650A1 (ja) * 2012-08-02 2014-02-06 トヨタ自動車株式会社 燃料電池用電極並びに燃料電池用電極、膜電極接合体及び燃料電池の製造方法
JP5862780B2 (ja) * 2012-08-02 2016-02-16 トヨタ自動車株式会社 燃料電池用電極並びに燃料電池用電極、膜電極接合体及び燃料電池の製造方法
JPWO2014020650A1 (ja) * 2012-08-02 2016-07-11 トヨタ自動車株式会社 燃料電池用電極並びに燃料電池用電極、膜電極接合体及び燃料電池の製造方法
US9692058B2 (en) 2012-08-02 2017-06-27 Toyota Jidosha Kabushiki Kaisha Electrode for fuel cell and production method of electrode for fuel cell, membrane electrode assembly and fuel cell
JP2016058396A (ja) * 2015-12-10 2016-04-21 トヨタ自動車株式会社 燃料電池用電極、燃料電池用電極の製造方法、固体高分子形燃料電池、および触媒インクの製造方法

Similar Documents

Publication Publication Date Title
EP1775788B1 (en) Gas diffusion electrode and solid polymer electrolyte fuel cell
JP2009521795A5 (ja)
JP2013020939A (ja) 燃料電池用ガス拡散層
JP5251062B2 (ja) 燃料電池用複合集電板及び燃料電池
WO2007059278A2 (en) Method of making a membrane electrode assembly comprising a vapor barrier layer, a gas diffusion layer, or both
JP2011243314A (ja) 固体高分子型燃料電池用膜電極構造体
JP2006294594A (ja) 燃料電池用電極触媒層、および、これを用いた燃料電池
JP4190478B2 (ja) 固体高分子型燃料電池
JP5298436B2 (ja) 膜−電極接合体およびそれを備えた燃料電池
JP2006260994A (ja) 燃料電池
JP5743762B2 (ja) 電解質膜・電極接合体及びその製造方法
JP2010225433A (ja) 燃料電池
JP2005142001A (ja) スタック構造を有する燃料電池
JP5592789B2 (ja) 全平面内の熱勾配に対処するsofcスタック中のセル材料の変動
US20180145341A1 (en) Component for fuel cell including graphene foam and functioning as flow field and gas diffusion layer
JP4942362B2 (ja) 膜−電極接合体及びそれを用いた固体高分子型燃料電池
JP5298412B2 (ja) 燃料電池
JP5023591B2 (ja) 燃料電池用の膜・電極接合体
JP2013084486A (ja) 燃料電池セルスタック
JP5870643B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
JP2009272052A (ja) 膜電極接合体および燃料電池
KR20160058275A (ko) 금속지지형 고체산화물 연료전지 및 그 제조 방법
JP2008300133A (ja) 燃料電池の製造方法
JP2008146859A (ja) 膜−電極接合体およびそれを備えた燃料電池
JP2016085921A (ja) セル支持体および固体酸化物形燃料電池