JP2008146859A - 膜−電極接合体およびそれを備えた燃料電池 - Google Patents

膜−電極接合体およびそれを備えた燃料電池 Download PDF

Info

Publication number
JP2008146859A
JP2008146859A JP2006329339A JP2006329339A JP2008146859A JP 2008146859 A JP2008146859 A JP 2008146859A JP 2006329339 A JP2006329339 A JP 2006329339A JP 2006329339 A JP2006329339 A JP 2006329339A JP 2008146859 A JP2008146859 A JP 2008146859A
Authority
JP
Japan
Prior art keywords
electrolyte layer
electrolyte
membrane
electrode assembly
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006329339A
Other languages
English (en)
Inventor
Masaki Ando
雅樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006329339A priority Critical patent/JP2008146859A/ja
Publication of JP2008146859A publication Critical patent/JP2008146859A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 効率よく掃気することが可能な膜−電極接合体およびそれを備えた燃料電池を提供する。
【解決手段】 膜−電極接合体(100)は、プロトン伝導性を有する固体高分子型の第1電解質層(10)と、第1電解質層の一面側に設けられた酸素極(30,40)と、第1電解質層の他面側に設けられた燃料極(50,60)と、第1電解質層と酸素極との間であって酸素極に供給されるパージガスの入口領域に配置されプロトン伝導性を有する固体高分子型の第2電解質層(20)とを備え、第2電解質層は、第1電解質層の含水率よりも低い含水率を有する。
【選択図】 図1

Description

本発明は、膜−電極接合体およびそれを備えた燃料電池に関する。
燃料電池は、一般的には水素及び酸素を燃料として電気エネルギーを得る装置である。この燃料電池は、環境面において優れかつ高いエネルギー効率を実現できることから、今後のエネルギー供給システムとして広く開発が進められてきている。
例えば、固体高分子型燃料電池は、プロトン伝導性を有する固体高分子型電解質からなる電解質層の両側に、それぞれアノードおよびカソードが設けられた膜−電極接合体(MEA:Membrane Electrode Assembly)が、セパレータによって挟持された構造を有している。
この燃料電池においては、アノードに供給された燃料ガスに含まれる水素が触媒を介してプロトンと電子とに解離される。このプロトンは、電解質層を介してカソード側へと移動する。水素の解離によって生じた電子は、外部回路に取り出されて直流の電気エネルギーとして利用される。カソードには、酸素を含有する酸化剤ガスが供給される。カソードにおいては、触媒を介してプロトン、電子および酸素が反応して水が生成される。
ここで、固体高分子型燃料電池の電解質層におけるプロトン伝導性を維持するためには、電解質層を適度に加湿しておく必要がある。一方で、カソードでは、発電に伴う生成水が存在している。このため、燃料電池を氷点下で始動させようとすると、燃料電池内の水分の凍結によって発電反応が行われ難いという不具合が指摘されている。
そのため、上記燃料電池の発電停止後に、燃料ガスおよび酸化剤ガスの流路に乾燥ガスを供給して、電解質膜の過度の乾燥を抑制しつつ残存する水を掃気する(パージする)ことが燃料電池の凍結時における起動能力を向上させる点で好ましいとされている。特許文献1には、発電停止後に、通常の発電時とは逆方向に乾燥した反応ガスを流す技術が開示されている。この場合、効率よく掃気できるとともにMEA内の水分分布を均一にすることができる旨が記載されている。
特開2005−209609号公報
しかしながら、特許文献1の技術では、ガスの出入口を逆転させるための部品点数が多くなる。それにより、システムが複雑になって信頼性が低下するおそれがある。
本発明は、部品点数の増加を抑制でき、かつ、効率よく掃気することが可能な膜−電極接合体およびそれを備えた燃料電池を提供することを目的とする。
本発明に係る膜−電極接合体は、プロトン伝導性を有する固体高分子型の第1電解質層と、第1電解質層の一面側に設けられた酸素極と、第1電解質層の他面側に設けられた燃料極と、第1電解質層と酸素極との間であって酸素極に供給されるパージガスの入口領域に配置されプロトン伝導性を有する固体高分子型の第2電解質層とを備え、第2電解質層は、第1電解質層の含水率よりも低い含水率を有することを特徴とするものである。
本発明に係る膜−電極接合体においては、パージガスの流動に伴い、第2電解質層に含まれる水分が持ち去られる。それにより、第2電解質層が乾燥する。この場合、第2電解質層の厚み方向における水移動パスが閉塞される。それにより、第1電解質層からの第2電解質層を介した水移動が抑制されて、パージガス入口側の第1電解質層が過剰に乾燥することを抑制できる。また、第2電解質層からパージガスへの水分供給が抑制されることから、第1電解質層の下流側に乾燥したパージガスを供給することができる。それにより、下流側の第1電解質層を効率よく乾燥させることができる。その結果、掃気過程が短縮化される。また、第2電解質層を設けるだけで本発明の効果が得られることから、部品点数増加を抑制することができる。
第2電解質層は、イオン交換基1mol当たりのイオン交換樹脂乾燥重量をEW値として定義したときに、第1電解質層を構成する電解質のEW値よりも大きいEW値を有する電解質からなるものであってもよい。
第2電解質層の含水率は、パージガスの流動方向に沿って増加してもよい。この場合、パージガスの流動方向に沿って第2電解質層の含水率が増加することから、パージガスの流動方向に沿って第1電解質層からパージガスへの水移動効率が増加する。それにより、第2電解質層が設けられた領域の第1電解質層において、パージガス入口側に比較してパージガス出口側における乾燥が促進される。その結果、第1電解質層における水分分布のバラツキを抑制することができる。また、第2電解質層の含水率は、パージガスの流動方向に沿って段階的に増加してもよい。
本発明に係る燃料電池は、請求項1〜4のいずれかに記載の膜−電極接合体と、酸素極の第1電解質層と反対側の面に設けられ酸素極に供給されるガスの流路が設けられた第1セパレータと、燃料極の第1電解質層と反対側の面に設けられ燃料極に供給されるガスの流路が設けられた第2セパレータとを備えることを特徴とするものである。
本発明に係る燃料電池においては、パージガスの流動に伴い、第2電解質層に含まれる水分が持ち去られる。それにより、第2電解質層が乾燥する。この場合、第2電解質層の厚み方向における水移動パスが閉塞される。それにより、第1電解質層からの第2電解質層を介した水移動が抑制されて、パージガス入口側の第1電解質層が過剰に乾燥することを抑制できる。また、第2電解質層からパージガスへの水分供給が抑制されることから、ガス流路の下流側に乾燥したパージガスを供給することができる。それにより、下流側のガス流路を効率よく乾燥させることができる。その結果、掃気過程が短縮化される。また、第2電解質層を設けるだけで本発明の効果が得られることから、部品点数増加を抑制することができる。
本発明によれば、効率よく掃気することができる。それにより、掃気過程が短縮化される。
以下、本発明を実施するための最良の形態を説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る燃料電池200を示す模式的断面図である。図1に示すように、燃料電池200は、膜−電極接合体100(MEA:Membrane Electrode Assembly)およびセパレータ110,120を備える。セパレータ110は、膜−電極接合体100のカソード側に配置されている。セパレータ110の膜−電極接合体100側の面には、酸素を含有する酸化剤ガスまたはパージガスが流動するための流路が形成されている。セパレータ120は、膜−電極接合体100のアノード側に配置されている。セパレータ120の膜−電極接合体100側の面には、水素を含有する燃料ガスまたはパージガスが流動するための流路が形成されている。セパレータ110,120は、ステンレス等の導電性材料からなる。
膜−電極接合体100は、第1電解質層10、第2電解質層20、カソード触媒層30、カソードガス拡散層40、アノード触媒層50およびアノードガス拡散層60を含む。膜−電極接合体100を構成する各部材は、互いに接合されている。第1電解質層10は、プロトン伝導性を有する固体高分子型電解質からなる。固体高分子型電解質として、フッ素系電解質、炭化水素系電解質等を用いることができる。第1電解質層10の層厚は、例えば、数十μm程度である。
第2電解質層20は、第1電解質層10のセパレータ110側のパージガスの入口領域に積層されている。ここで、パージガスの入口領域とは、パージガス入口周辺のいずれかの箇所であればよい。第2電解質層20は、第1電解質層10に熱圧着等によって接合されていてもよい。第2電解質層20の層厚は、例えば、数μm程度である。第2電解質層20は、第1電解質層10の含水率よりも低い含水率を有するプロトン伝導性の固体高分子型電解質からなる。ここで、含水率とは、含水前の電解質の重量に対する最大含水量の比率のことをいう。例えば、第2電解質層20は、第1電解質層10が20wt%程度の含水率を有する場合、10wt%程度の含水率を有する。第2電解質層20は、フッ素系電解質、炭化水素系電解質等からなる。
上記の含水率は、電解質層を構成する電解質のEW値によって調整することができる。ここで、EW値とは、イオン交換基1mol当たりのイオン交換樹脂乾燥重量のことをいう。EW値が高いと含水率が低下し、EW値が低いと含水率が増加する。したがって、第2電解質層20は、第1電解質層10を構成する電解質のEW値よりも高いEW値を有する電解質から構成される。
また、第1電解質層10および第2電解質層20を異なる材質によって構成することによって、上記の含水率を実現してもよい。例えば、第1電解質層10として含水率が20wt%程度のフッ素系電解質を用い、第2電解質層20として含水率が10wt%程度の炭化水素系電解質を用いてもよい。
カソード触媒層30は、第2電解質層20のセパレータ110側および第1電解質層10のセパレータ110側の露出領域に積層されている。カソード触媒層30は、プロトンと酸素との反応を促進するための触媒を担持する導電性材料等から構成される。例えば、カソード触媒層30として、白金担持カーボンを用いることができる。カソードガス拡散層40は、カソード触媒層30のセパレータ110側に積層されている。カソードガス拡散層40は、酸化剤ガスを拡散させる機能を有し、カーボンペーパ等の導電性材料からなる。
アノード触媒層50は、第1電解質層10のセパレータ120側に積層されている。アノード触媒層50は、水素のプロトン化を促進するための触媒を担持する導電性材料等から構成される。例えば、アノード触媒層50として、白金担持カーボンを用いることができる。アノードガス拡散層60は、アノード触媒層50のセパレータ120側に積層されている。アノードガス拡散層60は、燃料ガスを拡散させる機能を有し、カーボンペーパ等の導電性材料からなる。
続いて、膜−電極接合体100の動作について説明する。まず、燃料ガスは、セパレータ120のガス流路を経由してアノードガス拡散層60に供給される。アノードガス拡散層60に供給された燃料ガスは、アノードガス拡散層60を透過してアノード触媒層50に到達する。アノード触媒層50に到達した燃料ガス中の水素は、プロトンと電子とに解離する。プロトンは、第1電解質層10および第2電解質層20を伝導し、カソード触媒層30に到達する。
一方、酸素を含有する酸化剤ガスは、セパレータ110のガス流路を経由してカソードガス拡散層40に供給される。カソードガス拡散層40に供給された酸化剤ガスは、カソードガス拡散層40を透過してカソード触媒層30に到達する。カソード触媒層30に到達した酸化剤ガス中の酸素とプロトンとから水が発生するとともに電力が発生する。発生した電力は、セパレータ110,120等によって回収される。以上の動作によって、燃料電池200は発電を行う。なお、発電によってカソード側に水が生成されることから、第2電解質層20における水分不足による発電性能低下は生じにくい。
続いて、燃料電池200の掃気について説明する。図2は、燃料電池200の掃気について説明するための模式図である。図2に示すように、燃料電池200の掃気過程においては、セパレータ110のガス流路にパージガスが供給される。パージガスの流動に伴い、セパレータ110のガス流路内が乾燥する。なお、パージガスとしては、乾燥した空気、不活性ガス等を用いることができる。また、パージガスの流動に伴い、第2電解質層20に含まれる水分が持ち去られる。それにより、第2電解質層20が乾燥する。
この場合、第2電解質層20の厚み方向における水移動パスが閉塞される。それにより、第1電解質層10からの第2電解質層20を介した水移動が抑制される。その結果、第1電解質層10が過剰に乾燥することを抑制できる。また、第2電解質層20からパージガスへの水分供給が抑制されることから、ガス流路の下流側に乾燥したパージガスを供給することができる。それにより、下流側のガス流路を効率よく乾燥させることができる。その結果、第1電解質層10内の水分分布のバラツキを抑制することができるとともに、掃気過程が短縮化される。さらに、ガス流路内の水分の凍結による発電不良を抑制することができる。なお、第2電解質層20を設けるだけで掃気過程が短縮化されることから、部品点数増加を抑制することができる。
ここで、掃気によって第1電解質層10が乾燥すると、燃料電池200のセル抵抗が増加する。セル抵抗が増加すると発電性能が低下するおそれがあるため、第1電解質層10の過度の乾燥を抑制することが好ましい。そこで、第2電解質層20は、第2電解質層20が設けられていない場合において、掃気後に第1電解質膜10におけるセル抵抗が所定値以上になる領域に配置されていることが好ましい。
例えば、第2電解質層20は、想定される掃気条件においてセル抵抗が400mΩ・cm以上になる領域に配置されていることが好ましい。以下、その理由について説明する。図3は、第2電解質層が設けられていない場合のセル抵抗の実測値とセル電圧の実測値との関係を示す図である。図3の左側の縦軸はセル電圧を示し、図3の右側の縦軸はセル抵抗を示し、図3の横軸は発電時間を示す。セル温度を80℃に調整し、酸化剤ガスおよび燃料ガス(以下、反応ガス)の相対湿度を30%に調整し、電流密度を1.0A/cmに調整し、反応ガスの背圧を1.5atmに調整した。
図3に示すように、時間の経過とともにセル抵抗が増加した。これは、湿度の低い反応ガスによって第1電解質層10が乾燥するからであると考えられる。セル抵抗の増加とともにセル電圧は低下し、セル抵抗が400mΩ・cm以上になるとセル電圧はほぼ0Vになった。したがって、掃気後にセル抵抗が400mΩ・cm以上になる領域に第2電解質層20を設けることによって、起動時における発電不能を抑制できることが裏付けられる。なお、第2電解質層20は、想定される掃気条件においてセル抵抗が300mΩ・cm以上になる領域に配置されていることがより好ましい。起動時における発電不能をより確実に抑制することができるからである。なお、どのような固体高分子型電解質を用いても、セル抵抗が400mΩ・cm以上になるとセル電圧はほぼ0Vとなる。
(第2の実施の形態)
図4は、本発明の第2の実施の形態に係る燃料電池200aを示す模式的断面図である。図4に示すように、燃料電池200aが図1の燃料電池200と異なる点は、第2電解質層20の代わりに第2電解質層20aが設けられている点である。
第2電解質層20aは、第1電解質層10のセパレータ110側のパージガスの入口領域に積層されている。第2電解質層20aは、電解質層21および電解質層22からなる。電解質層21は第2電解質層20aのパージガス上流側の領域に配置され、電解質層22は第2電解質層20aのパージガス下流側の領域に配置されている。電解質層21および電解質層22は、第1電解質層10の含水率よりも低い含水率を有するプロトン伝導性の固体高分子型電解質からなる。また、電解質層21は、電解質層22の含水率よりも低い含水率を有する。すなわち、パージガスの上流側から下流側にかけて、第2電解質層20aの含水率が段階的に増加する。
本実施の形態においてはパージガスの流動方向に沿って第2電解質層20aの含水率が増加することから、パージガスの流動方向に沿って第1電解質層10からパージガスへの水移動効率が増加する。この場合、電解質層21が設けられた領域の第1電解質層10に比較して、電解質層22が設けられた領域の第1電解質層10からの乾燥が促進される。それにより、第1電解質膜10における含水量のバラツキが抑制される。その結果、パージ後の起動時における発電性能のバラツキを抑制することができる。
なお、本実施の形態においては第2電解質層20aの含水率を2段階で低下させたが、それ以上の段階で低下させてもよい。また、第2電解質層20aの含水率を、パージガスの流動方向に沿って徐々に低下するよう調整してもよい。さらに、第2電解質層20aの層厚を、パージガスの流動方向に沿って小さくなるように調整してもよい。この場合においても、第2電解質層20aにおけるパージガスへの水移動効率は、パージガスの流動方向に沿って増加するからである。また、第2電解質層20aは、想定される掃気条件においてセル抵抗が400mΩ・cm以上になる領域に配置されていることが好ましく、セル抵抗が300mΩ・cm以上になる領域に配置されていることがより好ましい。
上記各実施の形態においては、カソード触媒層30およびカソードガス拡散層40が酸素極に相当し、アノード触媒層50およびアノードガス拡散層60が燃料極に相当し、セパレータ110が第1セパレータに相当し、セパレータ120が第2セパレータに相当する。
以下、上記実施の形態に係る燃料電池を作製し、その特性について調べた。
(実施例)
実施例においては、第1の実施の形態に係る燃料電池200の第2電解質層20が含まれる領域を作製した。第1電解質層10には、膜厚が30μmであり、EW値が1100であり、含水率が25%であるフッ素系電解質を用いた。第2電解質層20には、層厚1μmであり、EW値が1500であり、含水率が10%であるフッ素系電解質を用いた。
(比較例1)
比較例1においては、第2電解質層20を備えていない燃料電池を作製した。その他の構成については、実施例と同様のものである。
(比較例2)
比較例2においては、第2電解質層20を第1電解質層10のアノード触媒層50側に設けた。その他の構成については、実施例と同様のものである。
(分析)
実施例および比較例1,2に係る燃料電池のセル電圧およびセル抵抗を調べた。各燃料電池のセル温度を80℃に調整し、反応ガスの湿度を30%に調整した。実験結果を表1に示す。表1に示すように、比較例2に係る燃料電池のセル抵抗が大幅に増加した。これは、第2電解質層20に含まれる水分がプロトンの移動に伴ってカソード側に移動し、第2電解質層20に含まれる水分量が低下したためであると考えられる。
Figure 2008146859
実施例に係る燃料電池のセル電圧およびセル抵抗は、比較例1に係る燃料電池のセル電圧およびセル抵抗とそれぞれ同様の値となった。これは、カソード側において生成される水によって低含水率を有する第2電解質層20の影響が抑制されることを示していると考えられる。したがって、第2電解質層20をカソード側に設けても、通常の発電性能に影響がないことがわかった。
本発明の第1の実施の形態に係る燃料電池を示す模式的断面図である。 燃料電池の掃気について説明するための模式図である。 第2電解質層が設けられていない場合のセル抵抗の実測値とセル電圧の実測値との関係を示す図である。 本発明の第2の実施の形態に係る燃料電池を示す模式的断面図である。
符号の説明
10 第1電解質層
20 第2電解質層
20a 第3電解質層
20b 第4電解質層
100 膜−電極接合体
110,120 セパレータ
200,200a 燃料電池

Claims (5)

  1. プロトン伝導性を有する固体高分子型の第1電解質層と、
    前記第1電解質層の一面側に設けられた酸素極と、
    前記第1電解質層の他面側に設けられた燃料極と、
    前記第1電解質層と前記酸素極との間であって前記酸素極に供給されるパージガスの入口領域に配置され、プロトン伝導性を有する固体高分子型の第2電解質層とを備え、
    前記第2電解質層は、前記第1電解質層の含水率よりも低い含水率を有することを特徴とする膜−電極接合体。
  2. 前記第2電解質層は、イオン交換基1mol当たりのイオン交換樹脂乾燥重量をEW値として定義したときに、前記第1電解質層を構成する電解質のEW値よりも大きいEW値を有する電解質からなることを特徴とする請求項1記載の膜−電極接合体。
  3. 前記第2電解質層の含水率は、前記パージガスの流動方向に沿って増加することを特徴とする請求項1または2記載の膜−電極接合体。
  4. 前記第2電解質層の含水率は、前記パージガスの流動方向に沿って段階的に増加することを特徴とする請求項1または2記載の膜−電極接合体。
  5. 請求項1〜4のいずれかに記載の膜−電極接合体と、
    前記酸素極の前記第1電解質層と反対側の面に設けられ、前記酸素極に供給されるガスの流路が設けられた第1セパレータと、
    前記燃料極の前記第1電解質層と反対側の面に設けられ、前記燃料極に供給されるガスの流路が設けられた第2セパレータとを備えることを特徴とする燃料電池。
JP2006329339A 2006-12-06 2006-12-06 膜−電極接合体およびそれを備えた燃料電池 Pending JP2008146859A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006329339A JP2008146859A (ja) 2006-12-06 2006-12-06 膜−電極接合体およびそれを備えた燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329339A JP2008146859A (ja) 2006-12-06 2006-12-06 膜−電極接合体およびそれを備えた燃料電池

Publications (1)

Publication Number Publication Date
JP2008146859A true JP2008146859A (ja) 2008-06-26

Family

ID=39606806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329339A Pending JP2008146859A (ja) 2006-12-06 2006-12-06 膜−電極接合体およびそれを備えた燃料電池

Country Status (1)

Country Link
JP (1) JP2008146859A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040208A1 (de) * 2008-07-07 2010-01-14 Robert Bosch Gmbh Brennstoffzellensystem mit einem Ausgleichsbereich zum Befeuchten und/oder Temperieren
JP2019185909A (ja) * 2018-04-04 2019-10-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 高分子電解質薄膜
WO2022071684A1 (ko) * 2020-09-29 2022-04-07 코오롱인더스트리 주식회사 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료 전지

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040208A1 (de) * 2008-07-07 2010-01-14 Robert Bosch Gmbh Brennstoffzellensystem mit einem Ausgleichsbereich zum Befeuchten und/oder Temperieren
US8663854B2 (en) 2008-07-07 2014-03-04 Robert Bosch Gmbh Fuel cell system with a compensation region for moistening and/or tempering
JP2019185909A (ja) * 2018-04-04 2019-10-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 高分子電解質薄膜
JP7093665B2 (ja) 2018-04-04 2022-06-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 高分子電解質薄膜
WO2022071684A1 (ko) * 2020-09-29 2022-04-07 코오롱인더스트리 주식회사 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료 전지
CN114730900A (zh) * 2020-09-29 2022-07-08 可隆工业株式会社 聚合物电解质膜、包括该聚合物电解质膜的膜-电极组件和燃料电池
JP2023500598A (ja) * 2020-09-29 2023-01-10 コーロン インダストリーズ インク 高分子電解質膜、それを含む膜-電極アセンブリ及び燃料電池

Similar Documents

Publication Publication Date Title
US7566511B2 (en) Solid polymer cell assembly
JP5294550B2 (ja) 膜電極接合体および燃料電池
US9472821B2 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP2014209416A (ja) 燃料電池システム、および燃料電池システムの制御方法
JP2008146859A (ja) 膜−電極接合体およびそれを備えた燃料電池
JP2005158298A (ja) 燃料電池発電システムの運転方法および燃料電池発電システム
JP5298412B2 (ja) 燃料電池
JP2011171301A (ja) 直接酸化型燃料電池
TW200818593A (en) Fuel cell
KR20060096610A (ko) 연료전지용 막/전극 어셈블리, 및 이를 포함하는 연료전지용 스택 및 연료전지 시스템
JP2007087742A (ja) 固体高分子形燃料電池
JP2009043688A (ja) 燃料電池
JP2009283350A (ja) 発電体および燃料電池
JP2021166151A (ja) 燃料電池システム
JP2015153568A (ja) 燃料電池スタック
WO2011052650A1 (ja) 燃料電池
JP7306361B2 (ja) 燃料電池
JP5748984B2 (ja) 燃料電池システムおよびその運転方法
JP2011096468A (ja) 燃料電池
JP5339262B2 (ja) 燃料電池
JP2018156819A (ja) 電解質膜・電極構造体
JP2008288068A (ja) 燃料電池、燃料電池のアノード、および、膜電極接合体
JP6127946B2 (ja) 燃料電池の検査方法
KR20060093792A (ko) 연료전지용 전극 및 이를 포함하는 연료전지 시스템
KR100550955B1 (ko) 가습막 일체형 연료전지용 막-전극-가스켓 접합체