JP2010190654A - リークテスト装置及び方法並びに感温部材 - Google Patents

リークテスト装置及び方法並びに感温部材 Download PDF

Info

Publication number
JP2010190654A
JP2010190654A JP2009034017A JP2009034017A JP2010190654A JP 2010190654 A JP2010190654 A JP 2010190654A JP 2009034017 A JP2009034017 A JP 2009034017A JP 2009034017 A JP2009034017 A JP 2009034017A JP 2010190654 A JP2010190654 A JP 2010190654A
Authority
JP
Japan
Prior art keywords
temperature
internal space
internal
sensitive member
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009034017A
Other languages
English (en)
Other versions
JP5221410B2 (ja
Inventor
Tooru Sasaki
透 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Co Ltd
Original Assignee
Fukuda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Co Ltd filed Critical Fukuda Co Ltd
Priority to JP2009034017A priority Critical patent/JP5221410B2/ja
Priority to US12/604,679 priority patent/US8205484B2/en
Priority to CN201010117008.8A priority patent/CN101806651B/zh
Publication of JP2010190654A publication Critical patent/JP2010190654A/ja
Application granted granted Critical
Publication of JP5221410B2 publication Critical patent/JP5221410B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】検査対象の内部空間が狭隘であっても温度変化を確実に感知できるリークテスト装置を提供する。
【解決手段】感温部材70の良熱伝導性材料からなる本体71を検査対象10の外面に当接し、検査対象10の内部空間11の開口を塞ぐ。感温部材本体71の内部に感温室73を形成する。感温室73内に加圧気体を導入する。感温室73の内圧情報に基づいて、検査対象10の内部空間11の圧変化データを補正し、漏れ判定を行う。
【選択図】図1

Description

この発明は、検査対象の内部空間に加圧気体を導入してその圧変化を測定することによりリークテストを行なう装置及び方法並びにこれら装置又は方法に用いる感温部材に関する。
一般に差圧式のリークテストでは、検査対象の内部空間と基準となる空間とに圧縮エア等の加圧気体を導入した後、この内部空間と基準空間とを互いに遮断して各々閉鎖系とする。検査対象から漏れがあったときは、これが差圧として検出される。これによって、検査対象の良否を判定することができる。
検査対象の内部空間に加圧気体を導入すると、断熱圧縮により昇温し、その後、経時的に放熱し、温度が下がる。また、検査対象が加温又は冷却され周辺の設備や雰囲気との間に温度差があったり、加圧気体が検査対象とは異なる温度であったりすると、検査対象の内部温度が経時的に変動する。このような温度変化も圧変化の原因となる。
そこで、特許文献1に記載のリークテスト方法では、検査対象の内部空間の圧変化だけでなく温度変化をも測定し、圧変化のうち温度変化による分を除く補正を行なっている。これにより、漏れ判定ひいては検査対象の良否判定の精度を高めることができる。
具体的には、例えば、良熱伝導性の感温部材を用意する。感温部材の内部には密閉された感温室が形成されている。この感温部材を検査対象の内部空間に配置する。感温部材の感温室に加圧気体を導入する。さらに、検査対象の内部空間(正確には検査対象の内部空間の内壁と感温部材との間の空間部分)に加圧気体を導入する。そして、検査対象の内部空間の圧変化を測定するとともに、感温室の圧変化を測定する。感温室の圧変化は、主に検査対象の内部空間の温度変化に起因する。したがって、感温室の圧変化の測定データに基づいて、検査対象の内部空間の圧変化の測定データを補正し、該圧変化のうち温度変化に起因する分を除くことができる。補正後のデータに基づいて漏れ判定する。感温部材の感温室の内圧は微小な温度変化にも大きく感応する。よって、温度測定の感度を高めることができる。また、検査対象の内部空間の温度を平均的に測定できるため、内部空間内に温度分布があっても信頼性を確保できる。
特開2007−064737
検査対象によっては内部空間が狭隘で、感温部材を収容できない場合がある。
本発明は、上記課題を解決するためになされたものであり、検査対象の内部空間を密閉し、該内部空間内に加圧気体を導入して内部空間の内圧を測定し、この内部空間の圧変化のうち温度変化に起因する分を差し引く補正をし、補正後のデータに基づいて漏れ判定を行なうリークテスト装置において、
検査対象の外面に当接されて前記内部空間の前記外面への開口を塞ぐ良熱伝導性材料からなる感温部材本体を有する感温部材を備え、前記感温部材本体の内部に加圧気体が導入される感温室が形成されており、前記感温室の内圧情報に基づいて前記補正を行なうことを特徴とする。
また、検査対象の内部空間を密閉し、該内部空間内に加圧気体を導入して内部空間の内圧を測定し、この内部空間の圧変化のうち温度変化に起因する分を差し引く補正をし、補正後のデータに基づいて漏れ判定を行なうリークテスト方法において、
良熱伝導性の感温部材を検査対象の外面に当接して、前記内部空間の前記外面への開口を塞ぎ、前記感温部材の内部に形成された感温室に加圧気体を導入し、前記感温室の内圧情報に基づいて前記補正を行なうことを特徴とする。
検査対象の内部空間の温度変化が感温部材に伝達され、感温室の内圧が変化する。したがって、感温室の内圧を測定することで、検査対象の内部空間の温度変化を間接的に把握できる。ひいては、検査対象の内部空間の圧変化のうち温度変化に起因する分を除くことができ、漏れ判定(検査対象の良否判定)の精度を高めることができる。感温部材は、検査対象の内部空間の開口を塞ぐように検査対象の外面に当接すればよい。したがって、検査対象の内部空間の大きさや形状に制限されることなく、感温部材の大きさひいては感温室の大きさを設定でき、温度変化を確実に感知できる。
さらに、感温部材によって、検査対象の内部空間の開口を塞ぐことができる。したがって、検査対象の内部空間の開口を塞ぐ閉塞部材を別途設ける必要がなく、部品点数を削減できる。
前記感温部材本体の前記開口を塞ぐ部分の周囲には、シール部材が設けられていることが好ましい。これによって、検査対象の内部空間を一層確実に密閉できる。
前記検査対象に複数の内部空間が形成されており、前記感温部材本体が、複数の内部空間に跨ってこれら内部空間の開口を塞ぎ、前記シール部材が、各内部空間の開口に対応して設けられていることが好ましい。
検査対象の複数の内部空間の開口を1つの感温部材で閉塞できる。各内部空間に対応してシール部材を設けることで、各内部空間の開口を確実にシールできる。
前記感温室への加圧気体の導入圧を、前記内部空間への加圧気体の導入圧より高くすることが好ましい。
これによって、感温室の内圧が温度変化に対してより大きくする変動するようにでき、微小な温度変化を確実に感知することができる。
前記検査対象の外面のうち前記感温部材が当接される部分とは別の部分の温度を他の温度測定器で測定することが好ましい。或いは、前記感温部材の温度を他の温度測定器で測定することにしてもよい。
これにより、前記他の温度測定器による温度情報が、前記感温室の内圧情報より前記内部空間の内圧情報との相関性が大きいときは、前記感温室の内圧情報に代えて、前記温度情報に基づいて前記補正を行なうことができる。
上記他の温度測定器は、温度に応じて電気抵抗が変わる材料を用いた抵抗式温度計でもよく、2種の金属間に温度に応じた起電力が発生する熱電対でもよく、温度に応じて体積が変わる水銀等の感温液を用いた液柱温度計でもよく、熱膨張率が異なる2つの金属板を貼り合わせたバイメタル温度計でもよい。上記他の温度測定器は、検査対象の外面に接触させるものに限られず、非接触で温度検出するものであってもよい。例えば、上記他の温度測定器は、検査対象の表面から放射された赤外線の強度を検出する赤外放射温度計でもよい。
前記感温部材の温度を他の温度測定器で測定することにしてもよい。
前記感温室が、複数の直線状の孔部を含むことが好ましい。
孔部は直線状であるから容易に加工できる。孔部を複数設けることで、感温部材の温度感知領域を広くすることができる。
前記複数の孔部のうち一部が、互いに平行になり、他の一部が、前記互いに平行な孔部と交差していることが好ましい。
これにより、複数の孔部からなる感温室を感温部材の内部に広く行き渡るようにでき、感温部材の温度感知領域を確実に広くすることができる。複数の孔部を互いに直接又は間接的に交差させることにより、加圧気体を何れか一つの孔部に導入すれば、全ての孔部に加圧気体が行き渡るようにすることができる。
本発明によれば、検査対象の内部空間の大きさや形状に制限されることなく、温度変化を確実に感知でき、圧変化の測定データの温度補正を確実に行ない、漏れ判定を行なうことができる。
本発明の第1実施形態に係るリークテスト装置の概略構成を示す回路図である。 上記リークテスト装置の感温部材を示し、図1のII−II線に沿う平面断面図である。 本発明の第2実施形態を示す正面断面図である。 第2実施形態の変形例を示す正面断面図である。 本発明の第3実施形態に係るリークテスト装置の概略構成を示す回路図である。
以下、本発明の実施形態を図面にしたがって詳述する。
図1は、リークテスト装置1の回路構成を概略図示したものである。リークテスト装置1の検査対象であるワーク10は、例えば自動車エンジンのシリンダブロック等である。ワーク10の内部には、複数の内部空間11が形成されている。この実施形態では、各内部空間11がワーク10の上側及び下側の外面に開口されている。
図1に示すように、リークテスト装置1は、加圧気体供給源としての圧縮エア源2と、エア圧回路3を有している。圧縮エア源2は、数百kPaオーダーのエア圧を供給できるようになっている。エア圧回路3は、次のように構成されている。
圧縮エア源2からエア圧回路3の共通路31が延びている。共通路31には、レギュレータ32が設けられている。レギュレータ32によって共通路31の二次圧が調節されるようになっている。共通路31の下流端から第1差圧検出回路40と第2差圧検出回路50が分岐されている。
第1差圧検出回路40は、共通路31に連なる元路41と、この元路41から分岐して延びる2つの枝路42,43を有している。これら路41,42,43に、開閉弁V41,V42,V43がそれぞれ設けられている。各開閉弁Vの符号には、その弁Vが設けられた路41,42,43の符号を添字にて示す(後記の弁V51,V53において同様)。開閉弁V42,V43より下流の枝路42,43どうしの間に、センサ接続路42a,43aを介して差圧センサ44が設けられている。
2つの枝路42,43のうち一方の枝路42の下流端には、エアタンク45が接続されている。もう1つの枝路43の下流端は、ワーク10の近傍へ延びている。
第2差圧検出回路50は、共通路31に連なる元路51と、この元路51から分岐して延びる2つの枝路52,53を有している。元路51と枝路53に、開閉弁V51,V53がそれぞれ設けられている。枝路52からセンサ接続路52aが分岐し、このセンサ接続路52aと枝路53の下流端どうしの間に差圧センサ54が設けられている。枝路52の下流端は、ワーク10の近傍へ延びている。
ワーク10は、上側の圧導入路形成部材60と下側の感温部材70によって上下から挟まれている。ワーク10の上面に圧導入路形成部材60が被せられている。圧導入路形成部材60は、複数の内部空間11の上端部間に跨り、これら内部空間11の上端開口を塞いでいる。圧導入路形成部材60の下面(ワーク10との当接面)には複数のOリング69(シール部材)が設けられている。Oリング69は、内部空間11に一対一に対応している。各Oリング69が、対応する内部空間11を塞ぐ部分の周囲に設けられている。Oリング69によって、ワーク10の内部空間11の周辺部分と圧導入路形成部材60との間がシールされている。
圧導入路形成部材60の一側部にポート62が設けられている。ポート62に枝路43の下流端が接続されている。圧導入路形成部材60の内部に圧導入路63が形成されている。圧導入路63は、ポート62から延び、かつ複数の分岐路63aに分岐している。分岐路63aは、圧導入路形成部材60の下面に達している。分岐路63aは、内部空間11に一対一に対応している。各分岐路63aが、対応する内部空間11の上端部に連なっている。
ワーク10の下面に感温部材70が被せられている。感温部材70は、感温部材本体71と、複数のOリング79(シール部材)とを備えている。感温部材本体71は、アルミニウム等の良熱伝導材料にて構成されている。感温部材本体71は、複数の内部空間11の下端部間に跨り、これら内部空間11の下端開口を塞いでいる。感温部材本体71の上面(ワーク10との当接面)に複数の環状溝71cが形成されている。各環状溝71cにOリング79が収容されている。Oリング79は、内部空間11に一対一に対応している。各Oリング79が、対応する内部空間11を塞ぐ部分の周囲に設けられている。Oリング79によって、ワーク10の内部空間11の周辺部分と感温部材70との間がシールされている。
感温部材70は、台座4上に設置されている。圧導入路形成部材60上にシリンダーアクチュエータ等からなる押圧手段5が突き当てられている。押圧手段5が圧導入路形成部材60を下に押圧することにより、圧導入路形成部材60と感温部材70がワーク10に強く当たり、Oリング69,79が圧縮される。これによって、内部空間11の上下両端の開口が確実にシールされる。
感温部材70の内部に感温室73(圧力室)が形成されている。図2に示すように、感温室73は、互いに連通する複数の孔部73aにて構成されている。各孔部73aは、直線状に延びている。複数の孔部73aのうち一部が、互いに平行になり、他の一部が、上記互いに平行な孔部73aと交差している。複数の孔部73aが全体として互いに格子状に配列されている。複数の孔部73aからなる感温室73が、Oリング79の全体に行き渡るように配置されている。孔部73aの両端は、感温部材本体71の端面に達している。一つの孔部73aの一端部には、ポート72が設けられている。ポート72に枝路52の下流端が接続されている。上記一つの孔部73aのポート接続端以外の孔部73aの端部は、栓74によって塞がれている。
孔部73aの一端部を栓74にて塞ぐのに代えて、該孔部73aの一端部を感温部材本体71の端面まで達しないようにしてもよい。
図示は省略するが、リークテスト装置1は、後記のリークテスト方法を実施するための制御手段を更に備えている。制御手段は、開閉弁V41,V42,V43,V51,V53の駆動回路、信号変換回路を含む入出力部、制御プログラムを格納したROM、差圧センサ44,54による測定データ等を格納するRAM、漏れ判定(ワークの良否判定)を含む制御動作を行なうCPU等を有している。
上記構成のリークテスト装置1を用いたリークテスト方法を説明する。このリークテスト方法は、相関関係取得工程と本検査工程を順次実行する。
〔相関関係取得工程〕
相関関係取得工程は、ワーク10の内部空間11の圧変化と温度変化の相関関係を求めるものである。この工程で用いるワーク10は、「相関関係採取対象」を構成する。この相関関係採取対象としてのワーク10は、後の本検査工程において検査すべきワーク10と同一構成のものを用いる。漏れが無いことが判明しているワーク10を用いてもよく、漏れの有無が不明なワーク10を用いてもよい。ワーク10と実質的に同構成の擬似ワークを作り、これを用いることにしてもよい。
この相関関係取得工程で用いるワーク10には、適宜、符号に「X」を添え、本検査でのワーク10と区別することにする。
図1に示すように、ワーク10Xを感温部材70上に載せる。ワーク10Xの上に圧導入路形成部材60を被せる。押圧手段5によって圧導入路形成部材60を押圧する。これによって、ワーク10Xの各内部空間11を密閉する。
開閉弁V41,V42,V43,V51,V53は、全て開いておく。そして、圧縮エア源2からエア圧回路3に数百kPaの圧縮エア(加圧気体)を導入する。圧縮エアの一部が、元路41、枝路43、ポート62、圧導入路63を順次経て、ワーク10Xの各内部空間11に導入される。圧縮エアの他の一部が、枝路42を経てエアタンク45に導入される。圧縮エアの更に他の一部が、元路51、枝路52、ポート72を順次経て、感温室73に導入される。感温室73を構成する複数の孔部が互いに直接又は間接的に交差しているため、圧縮エアを1つのポート72を介して1つの孔部73aに導入すれば、全ての孔部73aに圧縮エアが行き渡って充填される。
次に、開閉弁V41,V51を閉じる。
続いて、開閉弁V42,V43を閉じる。これによって、ワーク10Xの内部空間11及びそれに連なる差圧センサ44の第1室44aと、エアタンク45及びそれに連なる差圧センサ44の第2室44bとが、互いに遮断され、それぞれ独立した閉鎖系となる。したがって、差圧センサ44によって、エアタンク45の圧力を基準とする内部空間11の差圧(内部空間11の内圧情報)を測定できる。
また、開閉弁V53を閉じる。これによって、感温室73及びそれに連なる差圧センサ54の第1室54aと、差圧センサ54の第2室54bとが、それぞれ独立した閉鎖系となる。したがって、差圧センサ54によって、第2室54bの圧力を基準とする感温室73の差圧(感温室73の内圧情報)を測定できる。
上記開閉弁V42,V43を閉じてから2〜3秒程度の所定のバランス期間を経た時点(時刻t=t0)で、差圧センサ44,54の読みをそれぞれリセットし、これ以降の差圧変化をそれぞれ測定し記録する。
内部空間11の差圧変化には、周辺との温度差等による温度変化に起因する成分、断熱圧縮後の放熱による温度変化に起因する成分、ワーク10Xからの漏れに起因する成分等が含まれている。
内部空間11の温度変化は、良熱伝導性の感温部材本体71内を伝って感温室73に及ぶ。これによって、感温室73においても差圧変化が生じる。この差圧変化データ(感温室73の内圧情報)を差圧センサ54にて採取する。
以後、圧縮エア源2からの導入圧力、ワーク10Xの初期温度、圧導入路形成部材60及び感温部材70の初期温度、雰囲気温度等の条件を種々変更し、上記と同様にして、ワーク10Xの内部空間11の差圧変化のデータと感温室73の差圧変化のデータをそれぞれ採取する。なお、ワーク10Xは、上記の条件変更に拘わらず同じものを用いることが好ましい。
そして、採取条件ごとの内部空間11の差圧の経時曲線(内部空間11の内圧情報)と感温室73の差圧の経時曲線(感温室73の内圧情報)を見比べ、両者の相関関係を探す。
例えば、時刻t0からある一定の時間t1だけ経過した時点における内部空間11の差圧値と感温室73の差圧値をそれぞれピックアップする。時間t1は、2つの差圧曲線が互いに似た挙動を示している範囲内で設定するとよい。この時間t1は、任意に設定変更できる。そして、感温室73の時間t1における差圧値を横軸xとし、内部空間11の時間t1における差圧値を縦軸yとしたグラフ(上掲特許文献1の図5参照)上に上記採取条件ごとのピックアップデータをプロットし、最小二乗法等による直線補間を行なう。これによって、感温室73の差圧値xと内部空間11の差圧値yとの相関関係を表す一次式(1)を得ることができる。
y=a・x+b …(1)
式(1)において、a、bは、それぞれ定数である。
なお、時間t1における差圧値に代えて、t0での差圧とt1での差圧を結ぶ線の傾きをピックアップデータにしてもよく、この場合、上記式(1)と等価の相関関係式が得られる。また、時間t0における差圧の微分値をピックアップデータにして相関関係式を求めることにしてもよい。或いは、特開2004−61201に記載されているように、指数関数を用いた近似式を立てて非線形フィッティングを行ない、上記近似式の係数を確定することにしてもよい。
上記の相関関係式(1)は、内部空間11における温度変化と差圧変化の関係を示していると看做すことができる。また、相関関係式(1)の右辺第1項と第2項のうち感温室73の差圧値xを含むのは、第1項のみであり、第2項の定数bは、感温室73の差圧変化すなわち内部空間11の温度変化とは無関係の量である。すなわち、定数bは、内部空間11の差圧変化量のうち温度変化に依存する分を除いたものに相当する。すなわち、定数bは、内部空間11からの漏れに起因する差圧変化成分を表している。したがって、内部空間11の温度変化と、それのみに起因する差圧変化成分との相関関係は、次式(2)で表すことができる。
y=a・x …(2)
相関関係取得工程の後、ワーク10Xをリークテスト装置1から外す。
〔本検査工程〕
その後、本検査を行なう。
検査に先立ち、実際に検査すべきワーク10を、例えば40℃程度の温洗浄水で洗浄する。これにより、ワーク10が例えば約40℃程度に加温される。このワーク10を感温部材70上に載せる。ワーク10の上に圧導入路形成部材60を被せる。押圧手段5によって圧導入路形成部材60を押圧する。これによって、ワーク10の各内部空間11を密閉する。
加温されたワーク10の熱が感温部材70に伝達し、感温部材70の温度が上昇する。ワーク10の温度は低下する。
そして、上記相関関係取得工程と略同様の操作を順次実行する。
すなわち、圧縮エアを内部空間11と感温室73にそれぞれ導入する。
次に、開閉弁V41,V51を閉じる。続いて、開閉弁V42,V43を閉じるとともに、開閉弁V53を閉じる。これによって、内部空間11と感温室73が、それぞれ独立した閉鎖系となる。
開閉弁V42,V43の閉じ操作時から所定のバランス期間(2〜3秒程度)を経た時点t0で、差圧センサ44,54をそれぞれリセットし、内部空間11と感温室73の各々について差圧測定を開始する。そして、時間t0から一定時間t1経ったときの差圧センサ44による内部空間11の測定差圧D11(内部空間11の内圧情報)と、上記時間t1における差圧センサ54による感温室73の測定差圧D73(感温室73の内圧情報)とをそれぞれピックアップする。
次いで、内部空間11の測定差圧D11を、感温室73の測定差圧D73と、上記相関関係取得工程で得られた相関関係式(2)とに基づいて補正する。具体的には、感温室73の差圧値D73を式(2)の右辺の変数xに代入し、内部空間11の温度起因分の差圧変化量y=a・D73を求める。これを実際の測定差圧D11から差し引く。すなわち、下式の演算を行なう。
LEAK=D11−a・D73 …(3)
これによって、内部空間11の漏れだけに起因する差圧変化量DLEAKを得ることができる。
この漏れによる差圧変化量DLEAKに基づいて、ワーク10の良否判定を行なう。すなわち、差圧変化量DLEAKが許容限度以下であれば、ワーク10を良品と判定する。差圧変化量DLEAKが許容限度を上回っていれば、ワーク10を不良品と判定する。
この判定方法によれば、温度変化に起因する差圧変化分が取り除かれているので、判定の正確度を向上させることができる。
しかも、ワーク10の内部空間11の温度変化を圧力換算で測定するものであるため、温度変化が微小であっても確実に感知できる。例えば、初期圧力を500kPa、初期温度を25℃とし、この温度が、+0.1℃だけ変化したものとすると、圧変化量は、ボイルシャルルの法則により167.8Paとなる。すなわち、感温室73の圧力を内部空間11に導入するテスト圧と同程度のオーダーにすれば、微小な温度変化に対して大きな圧変化を得ることができる。これによって、温度測定を極めて高感度に行なうことができる。加えて、差圧センサ54による差圧によって圧変化量を測定しているので、測定感度を一層高めることができる。
感温部材70は、ワーク10の内部空間11内に入れる必要がない。したがって、ワーク10の内部空間11の大きさや形状に制限されることなく、感温部材70の大きさを設定でき、更には感温室73の大きさを設定でき、温度変化を確実に感知できる。内部空間11が狭隘であっても容易に対応できる。
感温部材70をワーク10の外面に当てることによって、感温部材70の温度をワーク10の温度に近づけることができ、ひいては内部空間11の温度変化を確実に測定することができる。
更に、感温部材70は、ワーク10の底面の全体から熱を受けることができ、ひいては内部空間11全体の温度を平均的に測定できる。したがって、内部空間11内に温度分布があっても信頼性を確保できる。
感温室63を構成する各孔部63aは直線状であるから容易に加工できる。複数の孔部63aを格子状にして感温部材63の内部のほぼ全体に行き渡らせることで、感温部材63の温度感知領域を広くできる。
感温部材70によって、ワーク10の内部空間11の下端の開口を塞ぐことができる。したがって、閉塞部材を別途設ける必要がなく、部品点数を削減できる。ワーク10の複数の内部空間11の開口を1つの感温部材70で閉塞できる。シール部材79を各内部空間11に対応して設けることで、各内部空間11の開口を確実にシールできる。
次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の形態と重複する構成に関しては図面に同一符号を付して説明を省略する。
ワーク10には種々の形状があり得る。ワーク10の形状に合わせて圧導入路形成部材60及び感温部材70を作製する。
例えば、図3に示す第2実施形態では、複数の内部空間11のうちの一つの内部空間11Aが、ワーク10の上面から延び、かつワーク10の下面に達していない。内部空間11Aの下端部と感温部材70とが離れている。したがって、内部空間11A内の温度変化が感温部材70まで伝達されるのに時間を要する。一方、内部空間11Aは、ワーク10の一側面に接近して設けられている、
そこで、温度測定器80をワーク10の内部空間11A側の側面に当てる。温度測定器80は、抵抗式温度計で構成されている。詳細な図示は省略するが、温度測定器80には温度測定回路が組み込まれている。温度測定回路には、2つ(複数)の温度感知部81が設けられている。これら温度感知部81は、温度測定器80の円盤状の先端部に互いに離れて設けられ、それぞれ被検温対象(ワーク10の側面)に接するようになっている。温度感知部81は、例えば白金製の抵抗器にて構成され、温度によって電気抵抗値が変わる。ひいては、温度によって温度測定回路の電流又は電圧が変わる。この電流又は電圧を読み取ることによって、被検温対象の温度を測定できる。2つ(複数)の温度感知部81は、互いに直接に接続されていてもよく、並列に接続されていてもよい。
第2実施形態の相関関係取得工程では、差圧センサ44によるワーク内部空間11の内圧情報と差圧センサ54による感温室73の内圧情報との相関関係だけでなく、差圧センサ44による内部空間11の内圧情報と温度測定器80によるワーク10Xの温度情報との相関関係をも取得する。具体的には、例えば2つのグラフを作成する。1つは、第1実施形態と同様に、時間t1における感温室73の差圧値(横軸x)と内部空間11の差圧値(縦軸y)とをプロットしたグラフである。このグラフは、ワーク10の内部空間11の内圧情報と感温室73の内圧情報との相関関係データである。もう1つは、時間t1における温度測定器80の測定温度(横軸x)と内部空間11の差圧値(縦軸y)とをプロットしたグラフである。このグラフは、ワーク10の内部空間11の内圧情報とワーク10の温度情報との相関関係データである。作成した2つのグラフから横軸と縦軸の相関関係がより顕著なグラフを選択する。すなわち、近似式(1)を得やすいグラフを選択する。
第2実施形態の本検査工程では、上記の選択したグラフに基づいて漏れ判定を行なう。選択したグラフが感温室73の差圧値を横軸とするグラフであれば、第1実施形態と同様に、時間t1における内部空間11の差圧値D11と感温室73の差圧値D73を読み取り、補正式(3)に代入し、補正後の差圧量DLEAKに基づいて、ワーク10の良否を判定する。
一方、選択したグラフが温度測定器80の測定温度を横軸とするグラフであれば、時間t1における内部空間11の差圧値D11と温度測定器80の測定温度T80を読み取り、次式(3’)の演算を行なう。
LEAK=D11−a・T80 …(3’)
式(3’)の右辺第2項のaは、相関関係取得工程において温度測定器80の測定温度を横軸とし、内部空間11の差圧を縦軸としたグラフから得た近似直線の勾配である。そして、式(3’)で得られた値DLEAKに基づいて、ワーク10の良否を判定する。
これによって、温度測定器80のほうが感温部材60よりも感度が高い場合には、温度測定器80による温度情報に基づいて温度補正を行なうことができ、感温部材70による温度検知を補助することができる。
内部空間11Aは、感温部材70よりも温度測定器80に近い。したがって、内部空間11Aの温度変化は、感温部材70よりも温度測定器80に反映されやすい。しかも、互いに離れた2つ(複数)の温度感知部81によって、内部空間11Aの平均的な温度変化を検出できる。
図4に示すように、第2実施形態において、温度測定器80を検査対象10ではなく感温部材70に取り付けることにしてもよい。この温度測定器80で感温部材70の温度を測定する。感温部材70の測定温度が感温室73の内圧より内部空間11の内圧との相関関係が強い場合には、感温部材70の測定温度に基づいて、内部空間11の内圧の温度補正を行なう。
図5に示す形態では、第1差圧検出回路40に圧力制御弁V40が設けられている。圧力制御弁V40によって、第1差圧検出回路40のエア圧を調節でき、ひいては内部空間11内への導入圧力を調節できる。第2差圧検出回路50に圧力制御弁V50が設けられている。圧力制御弁V50によって、第2差圧検出回路50のエア圧を調節でき、ひいては感温室73内の圧力を調節できる。
これら圧力制御弁V40,V50によって、内部空間11の内圧より感温室73の内圧を大きくする。たとえば、内部空間11の内圧を300kPaとする一方、感温室73の内圧を500kPaとする。これによって、温度変化に対して感温室73内の圧力がより大きく変動する。よって、温度変化に対する感温部材70の測定感度をより高めることができ、微小な温度変化を確実に感知することができる。
本発明は、上記実施形態に限定されるものではなく、種々の改変をなすことができる。
例えば、 差圧センサ44,54に代えて(差圧ではなく)、内部空間11及び感温室73の圧力そのものを測定する圧力センサを設けてもよい。
複数の孔部73aの端部にポート72をそれぞれ設け、かつ枝路52を複数の分岐路に分岐させて、これら分岐路を上記複数のポート72に接続してもよい。
感温室73を構成する一部の孔部73aと他の一部の孔部73aが、直角に交差しているのに限らず、斜めに交差していてもよい。
孔部73aが曲がっていてもよい。
感温部材70は箱状であってもよく、箱状の感温部材70の内部空間が感温室73になっていてもよい。感温部材70を箱状にする場合、押圧手段5の押圧力に十分耐え得るよう、リブ等の補強部を設けることが好ましい。
検査対象10の内部空間11が検査対象10の左右の側面にも開口しているときは、該左右の側面に当接して該側面の開口を塞ぐ感温部材70を付加するとよい。
検査対象10の上側に感温部材70を設けてもよく、検査対象10の下側に圧導入路形成部材60を設けてもよい。図1において、検査対象10を90度回転させた姿勢にし、圧導入路形成部材60と感温部材70とによって検査対象10を左右から挟み付けるようにしてもよい。
加圧気体を感温部材70から内部空間11に導入してもよい。
温度測定器80は、抵抗式温度計に限られず、熱電対式温度計でもよく、液柱温度計でもよく、バイメタル式温度計でもよく、赤外放射温度計でもよく、その他の温度計を用いてもよい。
温度測定器80が、温度感知部81を1つだけ有していてもよい。温度測定器80が、温度感知部81を3つ以上有していてもよい。
検査対象10は、約40℃程度に限られず、それより高温又は低温の状態でリークテスト装置1にセットされるようになっていてもよい。検査対象10は、加熱された状態に限られず、常温又は冷却された状態でリークテスト装置1にセットされるようになっていてもよい。
1 リークテスト装置
2 圧縮エア源(加圧気体供給源)
3 エア圧回路
4 台座
5 押圧手段
10 ワーク(検査対象)
10X ワーク(採取対象)
11 内部空間
31 共通路
32 レギュレータ
40 第1差圧検出回路
41 元路
42 枝路
42a センサ接続路
43 枝路
43a センサ接続路
44 差圧センサ
45 エアタンク
50 第2差圧検出回路
51 元路
52 枝路
52a センサ接続路
53 枝路
54 差圧センサ
60 圧導入路形成部材
62 ポート
63 圧導入路
63a 分岐路
69 Oリング(シール部材)
70 感温部材
71 感温部材本体
71c 環状溝
72 ポート
73 感温室
73a 孔部
74 栓
79 Oリング(シール部材)
80 他の温度測定器
81 温度感知部
40 圧力制御弁
41,V42,V43 開閉弁
50 圧力制御弁
51,V53 開閉弁

Claims (8)

  1. 検査対象の内部空間を密閉し、該内部空間内に加圧気体を導入して内部空間の内圧を測定し、この内部空間の圧変化のうち温度変化に起因する分を差し引く補正をし、補正後のデータに基づいて漏れ判定を行なうリークテスト装置において、
    検査対象の外面に当接されて前記内部空間の前記外面への開口を塞ぐ良熱伝導性材料からなる感温部材本体を有する感温部材を備え、前記感温部材本体の内部に加圧気体が導入される感温室が形成されており、前記感温室の内圧情報に基づいて前記補正を行なうことを特徴とするリークテスト装置。
  2. 前記感温部材本体の前記開口を塞ぐ部分の周囲には、シール部材が設けられていることを特徴とする請求項1に記載のリークテスト装置。
  3. 前記検査対象に複数の内部空間が形成されており、前記感温部材本体が、複数の内部空間に跨ってこれら内部空間の開口を塞ぎ、前記シール部材が、各内部空間の開口に対応して設けられていることを特徴とする請求項2に記載のリークテスト装置。
  4. 検査対象の内部空間を密閉し、該内部空間内に加圧気体を導入して内部空間の内圧を測定し、この内部空間の圧変化のうち温度変化に起因する分を差し引く補正をし、補正後のデータに基づいて漏れ判定を行なうリークテスト方法において、
    良熱伝導性の感温部材を検査対象の外面に当接して、前記内部空間の前記外面への開口を塞ぎ、前記感温部材の内部に形成された感温室に加圧気体を導入し、前記感温室の内圧情報に基づいて前記補正を行なうことを特徴とするリークテスト方法。
  5. 前記感温室への加圧気体の導入圧を、前記内部空間への加圧気体の導入圧より高くすることを特徴とする請求項4に記載のリークテスト方法。
  6. 前記検査対象の外面のうち前記感温部材が当接される部分とは別の部分の温度又は前記感温部材の温度を他の温度測定器で測定し、前記他の温度測定器による温度情報が、前記感温室の内圧情報より前記内部空間の内圧情報との相関性が大きいときは、前記感温室の内圧情報に代えて、前記温度情報に基づいて前記補正を行なうことを特徴とする請求項4又は5に記載のリークテスト方法。
  7. 請求項1〜3の何れか1項に記載のリークテスト装置又は請求項4〜6の何れか1項に記載のリークテスト方法に用いられる感温部材であって、前記感温室が、複数の直線状の孔部を含むことを特徴とするリークテスト用感温部材。
  8. 前記複数の孔部のうち一部が、互いに平行になり、他の一部が、前記互いに平行な孔部と交差していることを特徴とする請求項7に記載のリークテスト用感温部材。
JP2009034017A 2009-02-17 2009-02-17 リークテスト装置及び方法並びに感温部材 Expired - Fee Related JP5221410B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009034017A JP5221410B2 (ja) 2009-02-17 2009-02-17 リークテスト装置及び方法並びに感温部材
US12/604,679 US8205484B2 (en) 2009-02-17 2009-10-23 Apparatus and method for leak testing
CN201010117008.8A CN101806651B (zh) 2009-02-17 2010-02-09 泄漏测试设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034017A JP5221410B2 (ja) 2009-02-17 2009-02-17 リークテスト装置及び方法並びに感温部材

Publications (2)

Publication Number Publication Date
JP2010190654A true JP2010190654A (ja) 2010-09-02
JP5221410B2 JP5221410B2 (ja) 2013-06-26

Family

ID=42816860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034017A Expired - Fee Related JP5221410B2 (ja) 2009-02-17 2009-02-17 リークテスト装置及び方法並びに感温部材

Country Status (1)

Country Link
JP (1) JP5221410B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122805A (ja) * 2010-12-07 2012-06-28 Fukuda:Kk 洩れ検査装置
CN104865026A (zh) * 2015-04-12 2015-08-26 中国计量学院 聚乙烯阀门密封性室温低压试验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543406A (en) * 1978-09-22 1980-03-27 Toyota Motor Corp Fluid leak test device
JPH11304632A (ja) * 1998-04-24 1999-11-05 Cosmo Keiki:Kk 洩れ検査用ドリフト補正値算出装置及びこれを用いた洩れ検査装置
JP2001141597A (ja) * 1999-11-17 2001-05-25 Cosmo Instruments Co Ltd 洩れ検査装置の温度測定装置・洩れ検査装置
JP2004177275A (ja) * 2002-11-27 2004-06-24 Toyota Motor Corp リークテスト方法およびリークテスト装置
JP2007064737A (ja) * 2005-08-30 2007-03-15 Fukuda:Kk リークテスト方法及びそれに用いる感温部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543406A (en) * 1978-09-22 1980-03-27 Toyota Motor Corp Fluid leak test device
JPH11304632A (ja) * 1998-04-24 1999-11-05 Cosmo Keiki:Kk 洩れ検査用ドリフト補正値算出装置及びこれを用いた洩れ検査装置
JP2001141597A (ja) * 1999-11-17 2001-05-25 Cosmo Instruments Co Ltd 洩れ検査装置の温度測定装置・洩れ検査装置
JP2004177275A (ja) * 2002-11-27 2004-06-24 Toyota Motor Corp リークテスト方法およびリークテスト装置
JP2007064737A (ja) * 2005-08-30 2007-03-15 Fukuda:Kk リークテスト方法及びそれに用いる感温部材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122805A (ja) * 2010-12-07 2012-06-28 Fukuda:Kk 洩れ検査装置
CN104865026A (zh) * 2015-04-12 2015-08-26 中国计量学院 聚乙烯阀门密封性室温低压试验方法

Also Published As

Publication number Publication date
JP5221410B2 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
US8205484B2 (en) Apparatus and method for leak testing
US8448498B1 (en) Hermetic seal leak detection apparatus
EP0473173A2 (en) Apparatus and method for detecting leaks in packages
CN106226696A (zh) 一种gis中隔离开关触头接触状态模拟试验系统及方法
US9097609B1 (en) Hermetic seal leak detection apparatus with variable size test chamber
JP2008309698A (ja) 気密検査装置および気密検査方法並びに気密性製品の製造方法
JP4630769B2 (ja) リークテスト方法及びそれに用いる感温部材
CN105466633B (zh) 一种低温下压力传感器校准装置
JP2008541118A (ja) 相対湿度センサを較正するための方法及び装置
JP5221410B2 (ja) リークテスト装置及び方法並びに感温部材
JP2007327849A (ja) 洩れ検査方法及び洩れ検査装置
JP6370113B2 (ja) 圧力計の検査方法
US20050152431A1 (en) Dynamic dew point analysis method and a device for determining the dew point temperature and relative humidity
KR101091882B1 (ko) 버터플라이밸브 검사장치
JP2010266282A (ja) リークテスト装置及び方法
JP6738702B2 (ja) リーク検査方法 リーク検査装置
JP2012255687A (ja) 圧力洩れ測定方法
JP2004198396A (ja) 洩れ検査装置のドリフト値取得方法・ゼロ点変動値取得方法・湿度補正係数取得方法・洩れ検査装置の校正方法・洩れ検査装置
JP3151231U (ja) リークテスト装置及び温度測定器
JP2007064737A5 (ja)
JP2008026016A (ja) 漏洩検査装置及び漏洩検査方法
JP7162301B2 (ja) 圧力計の検査方法、および圧力計の検査装置
CN206074764U (zh) 一种gis中隔离开关触头接触状态模拟试验系统
JP5340802B2 (ja) リークテスト装置及び方法
JP3751958B2 (ja) 洩れ検査装置の校正方法、洩れ検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5221410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees