JP2010183676A - 車両の制御装置および制御方法 - Google Patents

車両の制御装置および制御方法 Download PDF

Info

Publication number
JP2010183676A
JP2010183676A JP2009022996A JP2009022996A JP2010183676A JP 2010183676 A JP2010183676 A JP 2010183676A JP 2009022996 A JP2009022996 A JP 2009022996A JP 2009022996 A JP2009022996 A JP 2009022996A JP 2010183676 A JP2010183676 A JP 2010183676A
Authority
JP
Japan
Prior art keywords
vehicle
motor
inverter
frequency
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009022996A
Other languages
English (en)
Inventor
Kenji Uchida
健司 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009022996A priority Critical patent/JP2010183676A/ja
Publication of JP2010183676A publication Critical patent/JP2010183676A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】車両の衝突時に車両の安全性を確保できる車両の制御装置および制御方法を提供する。
【解決手段】HV_ECUは、車両の衝突を判定し(S100にてYES)、システムメインリレーが開放された場合(S102にてYES)、高周波ディスチャージ制御を実行するステップ(S104)と、システムメインリレーが開放されていない場合(S102にてNO)、予め定められた時間が経過するまで待機するステップ(S106)とを含む、プログラムを実行する。
【選択図】図6

Description

本発明は、駆動源であるモータとインバータとを搭載した車両の制御に関し、特に、車両の衝突時に、車両に搭載されたコンデンサの電荷を放電するインバータ制御に関する。
近年、環境問題対策の1つとして、モータにより生じる駆動力により走行するハイブリッド車、燃料電池車、電気自動車などが注目されている。これらの車両には、コンデンサなどの高電圧の蓄電装置が搭載される。これらの高電圧の蓄電装置に充電された電力は、車両の衝突時においては、車両の安全性を確保するため、適切に放電することが望ましい。
このような問題に鑑みて、特開2005−020952号公報(特許文献1)は、車両に搭載され、車両の衝突時においても、コンデンサなどの高電圧の蓄電回路を含む電気回路による危険性を完全に排除することができる、車両の制御装置を開示する。この車両の制御装置は、回転電機を駆動源の1つとする車両の制御装置である。この制御装置は、回転電機に電力を供給するための供給手段と、供給手段による電力の供給および電力の供給停止のいずれかを選択的に切替るための切替手段と、車両の衝突を予知するための予知手段とを含む。供給手段は、回転電機に電力を供給する電気回路と、高電圧の電力を蓄電するための蓄電機構とを有する。制御装置はさらに、予知手段により衝突の予知が検知されたことに応答して、供給手段による電力の供給を停止させるように切替手段を制御するとともに、電気回路を用いて蓄電機構に蓄電された高電圧の電力を放電するように供給手段を制御するための制御手段を含む。
上述した公報に開示された車両の制御装置によると、回転電機である駆動用電動機に電力を供給するための供給手段は、回転電機に電力を供給する電気回路であるインバータと、高電圧の電力を蓄電するための蓄電機構である平滑コンデンサとを有する。車両の衝突が予知されると、制御手段は、供給手段による電力の供給を停止させるように切替手段であるシステムメインリレーをオフに制御する。さらに、制御手段は、インバータのIGBT(Insulated Gate Bipolar Transistor)やIPM(Intelligent Power Module)のスイッチング用のパワー素子を用いて平滑コンデンサに蓄電された高電圧の電力を放電する。このとき、駆動用電動機にトルクが発生しないように制御されることが好ましい。その結果、車両の衝突時においても、コンデンサなどの高電圧の蓄電回路を含む電気回路による危険性を完全に排除することができる、車両の制御装置を提供することができる。
特開2005−020952号公報
しかしながら、上述した公報に開示された車両の制御装置においては、回転電機の回転子が形成する磁界の向きと平行な方向に放電電流のベクトルが向くように放電を制御するため、回転子の位置検出の精度が悪化した場合には、回転電機においてトルクが発生するという問題がある。回転電機にトルクが発生すると、車両に駆動力が生じ、車両が移動する可能性がある。回転子の位置検出の精度の悪化は、車両の衝突時のセンサの位置ずれにより実回転子位置とセンサにより認識され得る回転子位置との差が拡大することにより生じ得る。
本発明は、上述した課題を解決するためになされたものであって、その目的は、車両の衝突時に車両の安全性を確保できる車両の制御装置および制御方法を提供することである。
第1の発明に係る車両の制御装置は、交流電動機と、直流電力を出力する主電源と、主電源からの直流電力を入力側に受け、周波数指令値に対応した交流電力に変換して交流電動機に出力するインバータとを含む車両の制御装置である。インバータの入力側には、コンデンサが接続される。この制御装置は、車両の衝突を検出するための衝突検出手段と、車両の衝突が検出された場合に、主電源からインバータへの直流電力の供給を遮断しつつ、周波数指令値を交流電動機において脱調が発生する周波数に設定し、コンデンサの電力が交流電動機で消費されるようにインバータを制御するための制御手段とを含む。第7の発明に係る車両の制御方法は、第1の発明に係る車両の制御装置と同様の構成を有する。
第1の発明によると、車両の衝突が検出された場合に、周波数指令値を交流電動機において脱調が発生する周波数に設定し、コンデンサの電力が交流電動機で消費されるようにインバータを制御することにより、コンデンサの電荷を交流電動機に流れる電流の損失により放電させることができ、さらに、交流電動機において脱調を発生するようにすると交流電動機においてトルクの発生を抑制することができる。すなわち、交流電動機を作動させることなく、コンデンサの電荷を放電させることができる。したがって、車両の衝突時に車両の安全性を確保できる車両の制御装置および制御方法を提供することができる。
第2の発明に係る車両の制御装置においては、第1の発明の構成に加えて、脱調が発生する周波数は、交流電動機における同期周波数より高い周波数であって、同期周波数の予め定められた倍率の周波数以上の周波数である。第8の発明に係る車両の制御方法は、第2の発明に係る車両の制御装置と同様の構成を有する。
第2の発明によると、同期周波数よりも高い周波数であって、同期周波数の予め定められた倍率の周波数以上の周波数を周波数指令値としてインバータを制御することにより、交流電動機において脱調を発生させて、トルクの発生を抑制することができる。そのため、交流電動機を作動させることなく、コンデンサの電荷を放電させることができる。
第3の発明に係る車両の制御装置においては、第1または2の発明の構成に加えて、車両は、主電源とインバータとの間に設けられ、電気的に導通状態および遮断状態のうちのいずれか一方の状態に制御されるリレーをさらに含む。コンデンサは、リレーとインバータとの間に設けられる。制御装置は、コンデンサの電圧を検出するための電圧検出手段をさらに含む。制御手段は、リレーが導通状態から遮断状態に制御された後に、コンデンサの電圧が予め定められた値以下になるまでインバータの制御を継続する。第9の発明に係る車両の制御方法は、第3の発明に係る車両の制御装置と同様の構成を有する。
第3の発明によると、車両の衝突が検出され、かつ、リレーが導通状態から遮断状態に制御された後に、コンデンサの電圧が予め定められた値以下になるまでインバータを制御することにより、コンデンサ内の電荷が放電されて、車両の衝突時に車両の安全性を確保することができる。
第4の発明に係る車両の制御装置においては、第1または2の発明の構成に加えて、車両は、主電源とインバータとの間に設けられ、電気的に導通状態および遮断状態のうちのいずれか一方の状態に制御されるリレーをさらに含む。コンデンサは、リレーとインバータとの間に設けられる。制御手段は、リレーが導通状態から遮断状態に制御された後に、予め定められた時間が経過するまでインバータの制御を継続する。第10の発明に係る車両の制御方法は、第4の発明に係る車両の制御装置と同様の構成を有する。
第4の発明によると、車両の衝突が検出され、かつ、リレーが導通状態から遮断状態に制御された後に、予め定められた時間が経過するまでインバータを制御することにより、コンデンサ内の電荷が放電されて、車両の衝突時に車両の安全性を確保することができる。
第5の発明に係る車両の制御装置においては、第1〜4のいずれかの発明の構成に加えて、交流電動機は、同期電動機および誘導電動機のうちのいずれか一方である。第11の発明に係る車両の制御方法は、第5の発明に係る車両の制御装置と同様の構成を有する。
第5の発明によると、車両の衝突が検出された場合に、同期電動機または誘導電動機を作動させることなく、コンデンサ内の電荷を放電させることにより、車両の衝突時に車両の安全性を確保することができる。
第6の発明に係る車両の制御装置においては、第1〜5のいずれかの発明の構成に加えて、交流電動機は、車両の駆動源となる交流電動機である。第12の発明に係る車両の制御方法は、第6の発明に係る車両の制御装置と同様の構成を有する。
第6発明によると、車両の衝突が検出された場合に、車両の駆動源となる交流電動機を作動させることなく、コンデンサ内の電荷を放電させることにより、車両の衝突時に車両が移動することを抑制することができる。そのため、車両の安全性を確保することができる。
本実施の形態におけるハイブリッド車両の構成を示す制御ブロック図である。 本実施の形態におけるモータジェネレータ駆動装置の構成を示す概略ブロック図である。 本実施の形態に係る車両の制御装置であるHV_ECUの機能ブロック図である。 脱調が発生する周波数指令値の設定の態様を説明するための図(その1)である。 脱調が発生する周波数指令値の設定の態様を説明するための図(その2)である。 本実施の形態に係る車両の制御装置であるHV_ECUで実行されるプログラムの制御構造を示すフローチャートである。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。
図1を参照して、本発明の実施の形態に係る車両の制御装置が搭載されるハイブリッド車両の制御ブロック図を説明する。なお、本実施の形態においては、ハイブリッド車両を一例として説明するが、駆動源である交流電動機が搭載された車両であれば、特にハイブリッド車両に限定されるものではない。たとえば、電気自動車あるいは燃料電池車両等に本発明を適用するようにしてもよい。
ハイブリッド車両は、駆動源としての内燃機関(以下、エンジンという)120と、回転電機であるモータジェネレータ(MG)140と、エンジン120およびモータジェネレータ140にそれぞれ接続されるトランスミッション202とを含む。なお、図1においては、説明の便宜上、モータジェネレータ140を、ジェネレータ140Aとモータ140Bと表現するが、ハイブリッド車両の走行状態に応じて、ジェネレータ140Aがモータとして機能したり、モータ140Bがジェネレータとして機能したりする。モータジェネレータ140は、ベクトル制御等により制御される交流電動機である。本実施の形態においてモータジェネレータ140は、同期電動機であるとして説明するが、誘導電動機であってもよい。
なお、本実施の形態において、ハイブリッド車両は、前輪駆動車であるとして説明するが、後輪駆動車であってもよい。あるいは、駆動力を発生する第三のモータ(リアモータ)を後輪に設けた4輪駆動車としてもよい。
本実施の形態において、エンジン120は、リーンバーンガソリンエンジンであるとして説明するが、ディーゼルエンジンであってもよい。
エンジン120の吸気通路122には、吸入空気のほこりを捕捉するエアクリーナ122A、エアクリーナ122Aを通ってエンジン120に吸入される空気量を検出するエアフローメータ122B、エンジン120に吸入される空気量を調整するためのスロットルバルブを有する電子スロットル122Cが設けられている。電子スロットル122Cにはスロットルポジションセンサ122Dが設けられている。エンジンECU(Electronic Control Unit)280には、エアフローメータ122Bにより検出された吸入空気量や、スロットルポジションセンサ122Dにより検出された電子スロットル122Cの開度等が入力される。
エンジン120は、複数の気筒と、複数の気筒のそれぞれに燃料を供給する燃料噴射装置130が設けられる。燃料噴射装置130は、エンジンECU280からの燃料噴射制御信号に基づいて各気筒に対して適切な時期に適切な量の燃料を噴射する。
また、エンジン120の排気通路124には、排気浄化触媒である三元触媒コンバータ124Bと、三元触媒コンバータ124Bに導入される排出ガスにおける空燃比(A/F)を検出する空燃比センサ124Aと、三元触媒コンバータ124Bの温度を検出する触媒温度センサ124Cと、消音器124Dと、三元触媒コンバータ124Bから排出される排出ガスにおける酸素濃度を検出する酸素センサ124Eとが設けられている。
エンジンECU280には、空燃比センサ124Aにより検出された三元触媒コンバータ124Bに導入される排出ガスの空燃比、触媒温度センサ124Cにより検出された三元触媒コンバータ124Bの温度、酸素センサ124Eにより検出された三元触媒コンバータ124Bから排出される排出ガスの酸素濃度等を示すが入力される。なお、空燃比センサ124Aに代えて、酸素センサを用いてもよいし、酸素センサ124Eに代えて空燃比センサを用いてもよい。
また、エンジンECU280には、エンジン120の冷却水の温度を検出する水温検出センサ360からエンジン冷却水温を示す信号が入力される。エンジン120の出力軸には、クランクポジションセンサ380が設けられており、エンジンECU280には、クランクポジションセンサ380から出力軸の回転数を示す信号が入力される。
トランスミッション202は、減速機180と動力分割機構200とを含む。減速機180は、エンジン120やモータジェネレータ140で発生した動力を車輪160に伝達したり、車輪160の駆動をエンジン120やモータジェネレータ140に伝達する。動力分割機構200は、たとえば、遊星歯車機構であって、エンジン120の発生する動力を車輪160(すなわち、モータ140B)とジェネレータ140Aとの2経路に分配する。遊星歯車機構は、サンギヤとリングギヤとキャリアとピニオンギヤとを含む。たとえば、遊星歯車機構のサンギヤは、ジェネレータ140Aに接続し、キャリアは、エンジンに接続され、リングギヤは、モータ140Bに接続されるものとする。なお、リングギヤとモータ140Bとの間に変速機構が設けられるようにしてもよい。
また、ハイブリッド車両は、走行用バッテリ220と、インバータ240とをさらに含む。
走行用バッテリ220は、モータジェネレータ140を駆動するための電力を蓄電する主電源である。走行用バッテリ220は、直流電力を出力する。本実施の形態において、走行用バッテリ220は、充電可能な二次電池であり、たとえば、ニッケル水素電池またはリチウムイオン電池などからなる。なお、これに限らず、直流電圧を生成できるもの、たとえば、キャパシタ、太陽電池、燃料電池等であっても適用され得る。
インバータ240は、走行用バッテリ220の直流とジェネレータ140Aおよびモータ140Bの交流とを変換しながら電流制御を行なう。インバータ240は、走行用バッテリ220からの直流電力を入力側に受け、周波数指令値に対応した交流電力に変換してジェネレータ140Aおよびモータ140Bに出力する。
さらに、ハイブリッド車両は、電池監視ユニット260と、エンジンECU280と、MG_ECU300と、HV_ECU320と、エアバッグECU322とをさらに含む。
電池監視ユニット260は、走行用バッテリ220の充放電状態を管理制御する。エンジンECU280は、エンジン120の動作状態を制御する。MG_ECU300は、ハイブリッド車両の状態および電池関しユニット260からの走行用バッテリの充電状態に応じてモータジェネレータ140、インバータ240およびコンバータ242等を制御する。
HV_ECU320は、電池監視ユニット260、エンジンECU280およびMG_ECU300等を相互に管理制御して、ハイブリッド車両が最も効率よく運行できるようにハイブリッドシステム全体を制御する。
エアバッグECU322は、車両の衝突時等の加速度の変化に基づいてエアバッグ(図示せず)を作動させる。Gセンサ324は、エアバッグECU322に接続される。Gセンサ324は、たとえば、車両の前後方向の加速度を検出する。なお、Gセンサ324は、車両の幅方向の加速度を検出するものであってもよいし、車両の前後方向および幅方向の加速度をそれぞれ検出するものであってもよい。Gセンサ324は、検出された車両の加速度を示す信号をエアバッグECU322に送信する。
エアバッグECU322は、Gセンサ324から受信する車両の加速度に基づいてエアバッグを作動させる。エアバッグECU322は、たとえば、車両の加速度の絶対値が予め定められた値以上である場合にエアバッグを作動させる。また、エアバッグECU322は、エアバッグの作動とともに車両が衝突したことを示す信号(衝突検出信号)をHV_ECU320に送信する。
なお、本実施の形態においては、HV_ECU320がエアバッグECU322から受信する衝突検出信号により車両の衝突を判定するものとして説明したが、特に、このような構成に限定されるものではない。たとえば、Gセンサ324からHV_ECU320に対して車両の加速度を示す信号を直接送信し、HV_ECU320において車両の加速度の絶対値が予め定められた値以上である場合に衝突検出フラグをオンするなどして、車両の衝突を判定するようにしてもよい。
また、車両の衝突の判定には、Gセンサ324を用いた車両の加速度に基づく判定に限定されるものではなく、たとえば、接触センサによる接触の有無やミリ波レーダによる移動方向の障害物との距離等により車両の衝突を判定するようにしてもよい。
HV_ECU320は、車両の衝突が判定されると、システムメインリレー222を遮断するようにシステムメインリレー222のリレー回路を制御する。
システムメインリレー222は、走行用バッテリ220とインバータ240との間に設けられ、電気的に導通状態および遮断状態のうちのいずれか一方の状態に制御される。
本実施の形態においては、走行用バッテリ220とインバータ240との間にはコンバータ242が設けられている。これは、走行用バッテリ220の定格電圧が、ジェネレータ140Aやモータ140Bの定格電圧よりも低いので、走行用バッテリ220からジェネレータ140Aやモータ140Bに電力を供給するときには、コンバータ242で電力を昇圧する。
なお、図1においては、各ECUを別構成しているが、2個以上のECUを統合したECUとして構成してもよい(たとえば、図1に、点線で示すように、エンジンECU280とMG_ECU300とHV_ECU320とを統合したECUとすることがその一例である)。
HV_ECU320は、アクセルペダルの踏み込み量に対応する車両に対する要求駆動力を算出する。HV_ECU320は、踏込み量に対応する要求駆動力に応じて、ジェネレータ140A、モータ140BおよびエンジンECU280を介してエンジン120の出力あるいは発電量を制御する。
動力分割機構200は、エンジン120の動力を、車輪160とジェネレータ140Aとの両方に振り分けるために、遊星歯車機構(プラネタリーギヤ)が使用される。ジェネレータ140Aの回転数を制御することにより、動力分割機構200は無段変速機としても機能する。
図1に示すようなハイブリッドシステムを搭載するハイブリッド車両においては、発進時や低速走行時等であってエンジン120の効率が悪い場合には、モータジェネレータ140のモータ140Bのみによりハイブリッド車両の走行を行ない、通常走行時には、たとえば動力分割機構200によりエンジン120の動力を2経路に分け、一方で車輪160の直接駆動を行ない、他方でジェネレータ140Aを駆動して発電を行なう。この時、発生する電力でモータ140Bを駆動して車輪160の駆動補助を行なう。また、高速走行時には、さらに走行用バッテリ220からの電力をモータ140Bに供給してモータ140Bの出力を増大させて車輪160に対して駆動力の追加を行なう。
一方、減速時には、車輪160により従動するモータ140Bがジェネレータとして機能して(すなわち、モータ140Bが負方向の駆動力を発生して)回生発電を行ない、回収した電力を走行用バッテリ220に蓄える。なお、走行用バッテリ220の充電量が低下し、充電が特に必要な場合には、エンジン120の出力を増加してジェネレータ140Aによる発電量を増やして走行用バッテリ220に対する充電量を増加する。もちろん、低速走行時でも必要に応じてエンジン120の駆動力を増加する制御を行なう場合もある。たとえば、上述のように走行用バッテリ220の充電が必要な場合や、エアコン等の補機を駆動する場合や、エンジン120の冷却水の温度を所定温度まで上げる場合等である。
さらに、図1に示すようなハイブリッドシステムを搭載するハイブリッド車両においては、車両の運転状態や走行用バッテリ220の状態によっては、燃費を向上させるために、エンジン120を停止させる。そして、その後も車両の運転状態や走行用バッテリ220の状態を検出して、エンジン120を再始動させる。このように、このエンジン120は間欠運転され、従来の車両(エンジンしか搭載していない車両)においては、イグニッションスイッチがSTART位置にまで回されてエンジンが始動すると、イグニッションスイッチがON位置からACC位置またはOFF位置にされるまでエンジンが停止しない点で異なる。なお、本実施の形態のハイブリッド車両においては、車両の速度が予め定められた速度V(0)以上である場合には、エンジン120の停止が抑制される。
図2に本実施の形態におけるモータジェネレータ駆動装置270を示す。図2に示すように、モータジェネレータ駆動装置270は、走行用バッテリ220と、システムメインリレー222と、コンデンサC1,C2と、コンバータ242と、インバータ240と、ジェネレータ140Aと、モータ140Bとを含む。
本実施の形態において、ジェネレータ140Aおよびモータ140Bは、いずれも三相の交流同期電動機であり、U相コイル、V相コイルおよびW相コイルをステータコイルとして含む。
システムメインリレー222は、SMR(1)、SMR(2)およびSMR(3)を含む。SMR(1),SMR(2)およびSMR(3)は、HV_ECU320からの信号により導通状態および遮断状態のうちのいずれか一方の状態から他方の状態に切り換えられるように制御される。本実施の形態においては、車両の走行中(すなわち、SMR(1)、SMR(2)およびSMR(3)がいずれも導通状態である場合)において車両の衝突が判定された場合に、SMR(1),SMR(2)およびSMR(3)は、HV_ECU320からの信号により導通状態から遮断状態に切り換えられるように制御される。
コンデンサC1は、走行用バッテリ220から供給された直流電圧を平滑化し、その平滑化した直流電圧をコンバータ242へ出力する。
コンバータ242は、コンデンサC1から供給された直流電圧を昇圧してコンデンサC2へ供給する。コンバータ242は、リアクトルL1と、IGBT(Insulated Gate Bipolar Transistor)素子Q1,Q2と、ダイオードD1,D2とを含む。
リアクトルL1の一方端は走行用バッテリ220の電源ラインに接続され、他方端はIGBT素子Q1とIGBT素子Q2との中間点、すなわち、IGBT素子Q1のエミッタとIGBT素子Q2のコレクタとの間に接続される。IGBT素子Q1,Q2は、電源ラインとアースラインとの間に直列に接続される。そして、IGBT素子Q1のコレクタは電源ラインに接続され、IGBT素子Q2のエミッタはアースラインに接続される。また、各IGBT素子Q1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2がそれぞれ接続されている。
コンデンサC2は、インバータ240の入力側に接続される。コンデンサC2は、コンバータ242からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ240へ供給する。インバータ240は、コンデンサC2から与えられる直流電圧を三相交流に変換してジェネレータ140Aまたはモータ140Bへ出力する。インバータ240は、ジェネレータ用インバータ244と、モータ用インバータ246とを含む。
モータ用インバータ246は、モータ140Bに対してコンバータ242の出力電圧を三相交流に変換して出力する。また、モータ用インバータ246は、回生制動に伴ない、モータ140Bにおいて発電された電力をコンバータ242に戻す。このとき、コンバータ242は、降圧回路として動作するようにHV_ECU320によって制御される。
モータ用インバータ246は、U相アーム15と、V相アーム16と、W相アーム17とを含む。U相アーム15、V相アーム16、およびW相アーム17は、コンバータ242の出力ライン間に並列に接続される。
U相アーム15は、直列接続されたIGBT素子Q3,Q4から成り、V相アーム16は、直列接続されたIGBT素子Q5,Q6から成り、W相アーム17は、直列接続されたIGBT素子Q7,Q8から成る。また、各IGBT素子Q3〜Q8のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
各相アームの中間点は、モータ140Bの各相コイルの各相端に接続されている。すなわち、モータ140Bは、三相の交流同期電動機であり、U,V,W相の3つのコイルの一端が中点に共通接続されている。そして、U相コイルの他端がIGBT素子Q3,Q4の中間点に、V相コイルの他端がIGBT素子Q5,Q6の中間点に、W相コイルの他端がIGBT素子Q7,Q8の中間点にそれぞれ接続されている。
HV_ECU320は、モータ140Bに対するトルク指令値、モータ回転数、走行用バッテリ220の直流電圧、コンバータ242の出力電圧、U相,V相,W相の各アームにおけるモータ電流に基づいて、MG_ECU300を経由してコンバータ242に対して昇圧指示および降圧指示のうちのいずれかを出力する。以下の説明において、HV_ECU320がインバータ240およびコンバータ242に対して行なう制御は、MG_ECU300を経由して行なうものとして説明するが、HV_ECU320に代えてMG_ECU300が制御を行なうようにしてもよいし、HV_ECU320とMG_ECU300とを統合したECUが制御を行なうようにしてもよい。
HV_ECU320は、モータ用インバータ246に対してコンバータ242から出力される直流電圧をモータ140Bを駆動するための交流電圧に変換する駆動指示を行なう信号と、モータ140Bで発電された交流電圧を直流電圧に変換してコンバータ242側に戻す回生指示とのうちのいずれかを出力する。
HV_ECU320は、キャリア信号のキャリア周波数を設定するためのキャリア周波数マップを図示しないROM(Read Only Memory)から読出し、その読出したキャリア周波数マップを用いてキャリア信号のキャリア周波数を設定する。キャリア周波数マップは、モータ140Bのトルクおよび回転数に応じたキャリア周波数がマップ化されており、HV_ECU320は、ROMから読出したキャリア周波数マップを用いて、モータ140Bのトルク指令値およびモータ回転数に基づいてキャリア周波数を設定する。そして、HV_ECU320は、設定されたキャリア周波数に基づいて、実際にモータ用インバータ246のIGBT素子Q3〜Q8をオン/オフするための信号を生成し、その生成した信号をモータ用インバータ246の各IGBT素子Q3〜Q8へ出力する。
これにより、各IGBT素子Q3〜Q8は、スイッチング制御され、モータ140Bが指令されたトルクを出すようにモータ140Bの各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値に応じたモータトルクが出力される。
ジェネレータ用インバータ244は、ジェネレータ140Aに対してコンバータ242の出力電圧を三相交流に変換して出力する。また、ジェネレータ用インバータ244は、ジェネレータ140Aにおいて発電された電力をコンバータ242に戻す。なお、ジェネレータ用インバータ244の構成および制御態様については、モータ用インバータ246の構成および制御態様と同様であるため、その詳細な説明は繰返さない。
以上のような構成を有するハイブリッド車両において、本実施の形態に係る車両の制御装置であるHV_ECU320が、車両の衝突が検出された場合に、走行用バッテリ220からインバータ240への直流電力の供給を遮断しつつ、周波数指令値をジェネレータ140Bにおいて脱調が発生する周波数に設定し、コンデンサC1,C2の電力がジェネレータ140Bで消費されるようにインバータ240を制御する点に特徴を有する。予め定められた値は、ジェネレータ140Bにおける同期周波数よりも高い周波数であって、同期周波数の予め定められた倍率の周波数以上の周波数である。
なお、ジェネレータ140Bに代えてモータ140AでコンデンサC1,C2の電力が消費されるようにしてもよいし、モータ140Aおよびジェネレータ140Bの双方でコンデンサC1,C2の電力が消費されるようにしてもよい。また、車両にリアモータが設けられる場合においては、モータ140A、ジェネレータ140Bおよびリアモータのうちの少なくともいずれか一つでコンデンサC1,C2の電力が消費されるようにしてもよい。
本実施の形態において、HV_ECU320は、車両の衝突が検出され、かつ、SMR(1)、SMR(2)およびSMR(3)がいずれも導通状態から遮断状態に制御された後に、コンデンサC1,C2の電圧がそれぞれ予め定められた値以下になるまでモータ用インバータ246の制御を継続するようにしてもよいし、予め定められた時間が経過するまでモータ用インバータ246の制御を継続するようにしてもよい。予め定められた時間は、少なくともコンデンサC1,C2の双方の電圧が車両の安全を確保できる値となる時間であって、実験等により適合される。
図3に、本実施の形態に係る車両の制御装置であるHV_ECU320の機能ブロック図を示す。
HV_ECU320は、衝突判定部350と、リレー開放判定部352と、高周波ディスチャージ制御部354とを含む。
衝突判定部350は、車両が衝突したか否かを判定する。衝突判定部350は、エアバッグECU322から衝突検出信号を受信した場合に、車両が衝突したと判定する。なお、車両の衝突判定の詳細については上述したとおりであるため、その詳細な説明は繰返さない。また、衝突判定部350は、たとえば、車両が衝突したと判定した場合に、衝突判定フラグをオンするようにしてもよい。
リレー開放判定部352は、衝突判定部350にて車両が衝突したと判定された場合に、SMR(1)、SMR(2)およびSMR(3)がいずれも導通状態から遮断状態に制御されたか否かを判定する。リレー開放判定部352は、SMR(1)、SMR(2)およびSMR(3)のうちの少なくともいずれか一つが導通状態から遮断状態に制御されていないと判定した場合、判定してから予め定められた時間が経過するまで待機した後、再度判定を行なう。
なお、リレー開放判定部352は、たとえば、衝突判定フラグがオンの場合に、SMR(1)、SMR(2)およびSMR(3)のいずれもが導通状態から遮断状態に制御されたか否かを判定し、SMR(1),SMR(2)およびSMR(3)のいずれもが導通状態から遮断状態に制御されたと判定すると、リレー開放判定フラグをオンするようにしてもよい。
また、リレー開放判定部352は、車両の衝突が判定された場合に、SMR(1)、SMR(2)およびSMR(3)のいずれかが遮断状態であれば、リレー開放判定フラグをオンするようにしてもよい。
高周波ディスチャージ制御部354は、車両が衝突したと判定され、かつ、SMR(1)、SMR(2)およびSMR(3)のいずれもが導通状態から遮断状態に制御されたと判定した場合に、高周波ディスチャージ制御を実行する。
具体的には、高周波ディスチャージ制御部354は、周波数指令値をモータ140Bにおいて脱調が発生する周波数に設定し、コンデンサC1,C2の電力がモータ140Bに供給されるようにモータ用インバータ246を制御する。脱調が発生する周波数は、モータ140Bにおける同期周波数(基本波の周波数)よりも高い周波数であって、同期周波数の予め定められた倍率の周波数以上の周波数である。予め定められた倍率とは、少なくとも同期周波数よりも高い周波数になる倍率であれば特に限定されるものではないが、予め定められた整数倍であってもよいし、たとえば、10倍、10倍以上の整数、10倍前後の整数であってもよい。
また、高周波ディスチャージ制御部354は、衝突直前の車両の速度に基づくモータ140Bの回転数に対して倍率を変更して脱調が発生する周波数を周波数指令値とするようにしてもよい。たとえば、高周波ディスチャージ制御部354は、図4の斜線領域に示すように、予め定められた値N(0)以上であって、かつ、通常の車両の速度に対応したモータ140Bの回転数の使用領域に対して予め定められた10倍の回転数以上の値に対応する周波数を周波数指令値としてもよい。この場合、車両の速度V(0)以上においては、予め定められた上限値に対応する周波数を周波数指令値としてもよい。あるいは、図5の斜線領域に示すように、通常の車両の速度に対応したモータ140Bの回転数の使用領域の上限にマージンαを加えた回転数に対応する周波数を周波数指令値としてもよい。車両の速度は、モータ140Bの回転数から検出すればよい。
なお、高周波ディスチャージ制御部354は、電圧センサ等を用いてコンデンサC1,C2の電圧を検出し、検出された電圧が予め定められた電圧以下になるまでモータ用インバータ246の制御を継続するようにしてもよいし、車両が衝突したと判定され、かつ、SMR(1)、SMR(2)およびSMR(3)のいずれもが導通状態から遮断状態に切り換えられた後に予め定められた時間が経過するまでモータ用インバータ246の制御を継続するようにしてもよい。
また、高周波ディスチャージ制御部354は、たとえば、衝突判定フラグおよびリレー開放判定フラグがいずれもオンである場合に、高周波ディスチャージ制御を実行するようにしてもよい。
高周波ディスチャージ制御部354は、MG_ECU300に対して高周波ディスチャージ制御要求を出力することにより高周波ディスチャージ制御を実行する。
本実施の形態において、衝突判定部350と、リレー開放判定部352と、高周波ディスチャージ制御部354とは、いずれもHV_ECU320のCPU(Central Processing Unit)がメモリに記憶されたプログラムを実行することにより実現される、ソフトウェアとして機能するものとして説明するが、ハードウェアにより実現されるようにしてもよい。なお、このようなプログラムは記憶媒体に記録されて車両に搭載される。
図6を参照して、本実施の形態に係る車両の制御装置であるHV_ECU320で実行されるプログラムの制御構造について説明する。
ステップ(以下、ステップをSと記載する)100にて、HV_ECU320は、車両が衝突したか否かを判定する。車両が衝突したと判定すると(S100にてYES)、処理はS102に移される。もしそうでないと(S100にてNO)、処理はS100に戻され、車両が衝突したと判定するまで処理は待機する。
S102にて、HV_ECU320は、SMR(1)、SMR(2)およびSMR(3)のいずれもが導通状態から遮断状態に制御されることにより開放されたか否かを判定する。SMR(1)、SMR(2)およびSMR(3)のいずれもが開放されると(S102にてYES)、処理はS104に移される。もしそうでないと(S102にてNO)、処理はS106に移される。
S104にて、HV_ECU320は、高周波ディスチャージ制御を実行する。S106にて、HV_ECU320は、予め定められた待機時間が経過するまで処理を待機させて、その後、処理をS102に移す。
なお、本実施の形態において、システムメインリレー222の開放制御は、図6のフローチャートに示すプログラムとは別に行なわれるものとして説明するが、たとえば、図6のフローチャートに示すプログラムにおいて、車両の衝突を判定した後であって(S100にてYES)、S102にて、システムメインリレー222が開放されたか否かの判定を行なう前に、システムメインリレー222の開放制御を行なうようにしてもよい。
以上のような構造およびフローチャートに基づく本実施の形態に係る車両の制御装置であるHV_ECU320の動作について説明する。
車両が衝突することなく走行している場合は(S100にてNO)、通常の車両制御が行なわれる。
一方、車両が衝突した場合において、Gセンサ324により検出される車両の加速度の絶対値が予め定められた値以上になると、衝突が検出され(S100にてYES)、SMR(1)、SMR(2)およびSMR(3)の開放制御が実行される。
SMR(1)、SMR(2)およびSMR(3)のいずれかが開放されていない場合、(S102にてNO)、予め定められた時間が経過するまで処理が待機され(S106)、SMR(1)、SMR(2)およびSMR(3)のいずれもが開放されると(S102にてYES)、高周波ディスチャージ制御が実行される(S104)。
そのため、モータ140Bにおいて脱調が発生する周波数が周波数指令値として設定され、設定された周波数指令値に基づいてモータ用インバータ246が制御される。
このとき、モータ140Bにおいては、電流は流れるものの脱調が発生するためトルクは生じない。また、電流が流れることによりジュール熱が生じる。このようなモータ用インバータ246に対する制御が予め定められた時間あるいはコンデンサC1,C2の電圧が予め定められた電圧以下になるまで継続されることにより、コンデンサC1,C2の電荷は放電されることとなる。
以上のようにして、本実施の形態に係る車両の制御装置によると、車両の衝突が検出された場合に、周波数指令値をモータにおいて脱調が発生する周波数に設定し、コンデンサC1,C2の電力がモータで消費されるようにモータ用インバータを制御することにより、コンデンサC1,C2の電荷をモータに流れる電流の損失により放電させることができ、さらに、モータにおいて脱調を発生するようにするとモータにおいてトルクの発生を抑制することができる。すなわち、意図しない車両の駆動力の発生を抑制して、コンデンサC1,C2の電荷を放電させることができる。したがって、車両の衝突時に車両の安全性を確保できる車両の制御装置および制御方法を提供することができる。
車両の衝突が検出され、かつ、リレーが導通状態から遮断状態に制御された後に、コンデンサの電圧が予め定められた値以下になるまであるいは予め定められた時間が経過するまでモータ用インバータを制御することにより、コンデンサ内の電荷が放電されて、車両の衝突時に車両の安全性を確保することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
15 U相アーム、16 V相アーム、17 W相アーム、120 エンジン、122 吸気通路、122A エアクリーナ、122B エアフローメータ、122C 電子スロットル、122D スロットルポジションセンサ、124 排気通路、124A 空燃比センサ、124B 三元触媒コンバータ、124C 触媒温度センサ、124D 消音器、124E 酸素センサ、130 燃料噴射装置、140A ジェネレータ、140B モータ、140 モータジェネレータ、160 車輪、180 減速機、200 動力分割機構、202 トランスミッション、220 走行用バッテリ、222 システムメインリレー、240 インバータ、242 コンバータ、244 ジェネレータ用インバータ、246 モータ用インバータ、260 電池監視ユニット、270 モータジェネレータ駆動装置、280 エンジンECU、320 HV_ECU、322 エアバッグECU、324 Gセンサ、350 衝突判定部、352 リレー開放判定部、354 高周波ディスチャージ制御部、360 水温検出センサ、380 クランクポジションセンサ、C1,C2 コンデンサ、D1〜D8 ダイオード、L1 リアクトル、Q1〜Q8 IGBT素子。

Claims (12)

  1. 交流電動機と、直流電力を出力する主電源と、前記主電源からの直流電力を入力側に受け、周波数指令値に対応した交流電力に変換して前記交流電動機に出力するインバータとを含む車両の制御装置であって、前記インバータの入力側には、コンデンサが接続され、
    前記車両の衝突を検出するための衝突検出手段と、
    前記車両の衝突が検出された場合に、前記主電源から前記インバータへの前記直流電力の供給を遮断しつつ、前記周波数指令値を前記交流電動機において脱調が発生する周波数に設定し、前記コンデンサの電力が前記交流電動機で消費されるように前記インバータを制御するための制御手段とを含む、車両の制御装置。
  2. 前記脱調が発生する周波数は、前記交流電動機における同期周波数より高い周波数であって、前記同期周波数の予め定められた倍率の周波数以上の周波数である、請求項1に記載の車両の制御装置。
  3. 前記車両は、前記主電源と前記インバータとの間に設けられ、電気的に導通状態および遮断状態のうちのいずれか一方の状態に制御されるリレーをさらに含み、
    前記コンデンサは、前記リレーと前記インバータとの間に設けられ、
    前記制御装置は、前記コンデンサの電圧を検出するための電圧検出手段をさらに含み、
    前記制御手段は、前記リレーが前記導通状態から前記遮断状態に制御された後に、前記コンデンサの電圧が予め定められた値以下になるまで前記インバータの制御を継続する、請求項1または2に記載の車両の制御装置。
  4. 前記車両は、前記主電源と前記インバータとの間に設けられ、電気的に導通状態および遮断状態のうちのいずれか一方の状態に制御されるリレーをさらに含み、
    前記コンデンサは、前記リレーと前記インバータとの間に設けられ、
    前記制御手段は、前記リレーが前記導通状態から前記遮断状態に制御された後に、予め定められた時間が経過するまで前記インバータの制御を継続する、請求項1または2に記載の車両の制御装置。
  5. 前記交流電動機は、同期電動機および誘導電動機のうちのいずれか一方である、請求項1〜4のいずれかに記載の車両の制御装置。
  6. 前記交流電動機は、前記車両の駆動源となる交流電動機である、請求項1〜5のいずれかに記載の車両の制御装置。
  7. 交流電動機と、直流電力を出力する主電源と、前記主電源からの直流電力を入力側に受け、周波数指令値に対応した交流電力に変換して前記交流電動機に出力するインバータとを含む車両の制御方法であって、前記インバータの入力側には、コンデンサが接続され、
    前記車両の衝突を検出するステップと、
    前記車両の衝突が検出された場合に、前記主電源から前記インバータへの前記直流電力の供給を遮断しつつ、前記周波数指令値を前記交流電動機において脱調が発生する周波数に設定し、前記コンデンサの電力が前記交流電動機で消費されるように前記インバータを制御するステップとを含む、車両の制御方法。
  8. 前記脱調が発生する周波数は、前記交流電動機における同期周波数より高い周波数であって、前記同期周波数の予め定められた倍率の周波数以上の周波数である、請求項7に記載の車両の制御方法。
  9. 前記車両は、前記主電源と前記インバータとの間に設けられ、電気的に導通状態および遮断状態のうちのいずれか一方の状態に制御されるリレーをさらに含み、
    前記コンデンサは、前記リレーと前記インバータとの間に設けられ、
    前記制御方法は、前記コンデンサの電圧を検出するステップをさらに含み、
    前記インバータを制御するステップは、前記リレーが前記導通状態から前記遮断状態に制御された後に、前記コンデンサの電圧が予め定められた値以下になるまで前記インバータの制御を継続する、請求項7または8に記載の車両の制御方法。
  10. 前記車両は、前記主電源と前記インバータとの間に設けられ、電気的に導通状態および遮断状態のうちのいずれか一方の状態に制御されるリレーをさらに含み、
    前記コンデンサは、前記リレーと前記インバータとの間に設けられ、
    前記インバータを制御するステップは、前記リレーが前記導通状態から前記遮断状態に制御された後に、予め定められた時間が経過するまで前記インバータの制御を継続する、請求項7または8に記載の車両の制御方法。
  11. 前記交流電動機は、同期電動機および誘導電動機のうちのいずれか一方である、請求項7〜10のいずれかに記載の車両の制御方法。
  12. 前記交流電動機は、前記車両の駆動源となる交流電動機である、請求項7〜11のいずれかに記載の車両の制御方法。
JP2009022996A 2009-02-03 2009-02-03 車両の制御装置および制御方法 Withdrawn JP2010183676A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022996A JP2010183676A (ja) 2009-02-03 2009-02-03 車両の制御装置および制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022996A JP2010183676A (ja) 2009-02-03 2009-02-03 車両の制御装置および制御方法

Publications (1)

Publication Number Publication Date
JP2010183676A true JP2010183676A (ja) 2010-08-19

Family

ID=42764754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022996A Withdrawn JP2010183676A (ja) 2009-02-03 2009-02-03 車両の制御装置および制御方法

Country Status (1)

Country Link
JP (1) JP2010183676A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028328A (ja) * 2011-07-28 2013-02-07 Hyundai Motor Co Ltd ハイブリッド自動車の残留高電圧放電システムおよびその方法
WO2013021445A1 (ja) * 2011-08-08 2013-02-14 トヨタ自動車株式会社 車両および車両の制御方法
JP2013051755A (ja) * 2011-08-30 2013-03-14 Toyota Motor Corp 車両の制御装置及び制御方法
CN104071011A (zh) * 2013-03-27 2014-10-01 富士重工业株式会社 车辆的高电压系统控制装置
CN103770655B (zh) * 2012-10-23 2015-07-29 广州汽车集团股份有限公司 一种动力电池的高压保护系统及车辆
US10122317B2 (en) 2014-08-01 2018-11-06 Denso Corporation Electric compressor for vehicle
CN111319467A (zh) * 2018-12-14 2020-06-23 本田技研工业株式会社 车辆的电源系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028328A (ja) * 2011-07-28 2013-02-07 Hyundai Motor Co Ltd ハイブリッド自動車の残留高電圧放電システムおよびその方法
DE102011089003B4 (de) 2011-07-28 2023-08-03 Hyundai Motor Co. Entladetechnik für die Rest-Hochspannung in einem Hybridfahrzeug und Verfahren dafür
WO2013021445A1 (ja) * 2011-08-08 2013-02-14 トヨタ自動車株式会社 車両および車両の制御方法
JP5641145B2 (ja) * 2011-08-08 2014-12-17 トヨタ自動車株式会社 車両および車両の制御方法
US9114698B2 (en) 2011-08-30 2015-08-25 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for vehicle
JP2013051755A (ja) * 2011-08-30 2013-03-14 Toyota Motor Corp 車両の制御装置及び制御方法
CN103770655B (zh) * 2012-10-23 2015-07-29 广州汽车集团股份有限公司 一种动力电池的高压保护系统及车辆
CN104071011A (zh) * 2013-03-27 2014-10-01 富士重工业株式会社 车辆的高电压系统控制装置
US9340209B2 (en) * 2013-03-27 2016-05-17 Fuji Jukogyo Kabushiki Kaisha High-voltage system control device for vehicle
US20140297152A1 (en) * 2013-03-27 2014-10-02 Fuji Jukogyo Kabushiki Kaisha High-voltage system control device for vehicle
US10122317B2 (en) 2014-08-01 2018-11-06 Denso Corporation Electric compressor for vehicle
CN111319467A (zh) * 2018-12-14 2020-06-23 本田技研工业株式会社 车辆的电源系统
CN111319467B (zh) * 2018-12-14 2023-07-28 本田技研工业株式会社 车辆的电源系统

Similar Documents

Publication Publication Date Title
JP5321660B2 (ja) 車両の制御装置及び制御方法
EP2692603B1 (en) Vehicle, engine control method, and engine control device
EP2332798B1 (en) Vehicle, vehicle control method and control device
JP5062288B2 (ja) エンジンの始動装置
JP5200991B2 (ja) 電動車両のモータ制御方法及びその装置
JP5714239B2 (ja) 車両の制御システム
JP5392421B2 (ja) 車両、車両の制御方法および車両の制御装置
JP5590157B2 (ja) 車両、車両の制御方法および車両の制御装置
US9718372B2 (en) Control apparatus for vehicle and vehicle
WO2007026946A1 (ja) ハイブリッド自動車およびその制御方法
JP2010183676A (ja) 車両の制御装置および制御方法
JP2013119349A (ja) 車両の表示装置
JP2011057117A (ja) ハイブリッド車
JP5747988B2 (ja) 車両、および、車両の制御方法ならびに制御装置
JP5842899B2 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびエンジンの制御装置
JP2010070030A (ja) 車両の制御装置
JPWO2011089723A1 (ja) 電力制御ユニットおよび電力制御ユニットの制御方法
JP2012019587A (ja) 電動車両
JP2012249455A (ja) 車両の電気システム
JP5549730B2 (ja) ハイブリッド車の制御装置、ハイブリッド車の制御方法およびハイブリッド車
JP5621264B2 (ja) 車両の電気システム
US20220080949A1 (en) Hybrid vehicle
JP2012254763A (ja) 車両の制御装置
JP2022059691A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403