JP2010183194A - 画像補正処理装置および画像補正処理方法 - Google Patents

画像補正処理装置および画像補正処理方法 Download PDF

Info

Publication number
JP2010183194A
JP2010183194A JP2009023023A JP2009023023A JP2010183194A JP 2010183194 A JP2010183194 A JP 2010183194A JP 2009023023 A JP2009023023 A JP 2009023023A JP 2009023023 A JP2009023023 A JP 2009023023A JP 2010183194 A JP2010183194 A JP 2010183194A
Authority
JP
Japan
Prior art keywords
camera shake
motion vector
blocks
block
captured image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009023023A
Other languages
English (en)
Other versions
JP5298899B2 (ja
Inventor
Mamoru Chiku
守 知久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2009023023A priority Critical patent/JP5298899B2/ja
Priority to US12/699,051 priority patent/US8400515B2/en
Publication of JP2010183194A publication Critical patent/JP2010183194A/ja
Application granted granted Critical
Publication of JP5298899B2 publication Critical patent/JP5298899B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory

Abstract

【課題】光学ズーム操作中に手ぶれ補正をすることは難しい。
【解決手段】動きベクトル取得部52は、複数のブロックに分割された撮影画像において、光学ズーム操作中の各ブロックの動きベクトルを取得する。一次関数算出部54は、ブロック毎に、撮影画像の中心と代表点とを結ぶ直線と傾きが同じで、ベクトル検出点を通る直線を一次関数として算出する。手ぶれ動きベクトル算出部56は、算出された一次関数の傾きが異なる少なくとも二つのブロックを選択し、選択されたブロックの一次関数のグラフの交点を求めることにより、手ぶれによる動きベクトルを算出する。手ぶれ補正部58は、算出された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正する。
【選択図】図22

Description

本発明は、撮影時の手ぶれ補正を行うための画像補正処理装置および画像補正処理方法に関する。
ビデオカメラやデジタルスチルカメラなどの撮像装置は、携帯に便利なように小型・軽量化が進んでおり、撮影時の手ぶれを避けることは難しい。また、最近の機種には高倍率のズームレンズが搭載されており、望遠撮影の際の手ぶれが目立ちやすい。さらに、撮像画像の高画質化に伴い、高解像度のディスプレイやプリンタで出力したとき、手ぶれによる画像のぶれや歪みが顕在化することが多い。
手ぶれを補正する方法として、従来、手ぶれを検出するためのジャイロセンサなどを使って手ぶれによる角速度を検出し、カメラの撮影機構において手ぶれによるずれを防止するように高速にフィードバック制御する方法や、撮影された画像に対して手ぶれによる動きベクトルを検出し、撮影画像に手ぶれによる影響を除去するための画像処理を施す方法などが取られている。
特許文献1には、光学ズーム操作がなされたと判別したとき、動きベクトル検出工程で検出された動きベクトルと光学ズーム分算出工程で算出された光学ズーム分ベクトルとの差分を求め、差分演算結果の動きベクトルから撮像画像についての手ぶれベクトルを算出し、手ぶれによる画像歪みを補正する方法が記載されている。
特許文献2には、基準画像と比較画像を比較演算し、手ぶれ補正に必要となる移動ベクトルを算出する際、光学ズーム倍率が変動した場合は、光学ズーム倍率の情報に基づき基準画像と比較画像とが同一倍率となるように基準画像または比較画像をズーム補正する方法が記載されている。
特許文献3には、画面の分割領域毎に動きベクトルを検出して画像の揺れを検出する装置において、光学ズーム操作が検出された場合には、分割領域毎に検出された動きベクトルを用いずに、画面中央位置の分割領域から検出された動きベクトルのみを用いるように切替制御することが記載されている。
特開2007−221631号公報 特開2008−160274号公報 特開平7−264464号公報
特許文献1に記載の方法では、光学ズームの位置や速度から画像の変化成分を演算するが、光学ズームの速度ひとつを取ってみても十段階程度を考慮する必要があり、光学ズームの位置や速度のテーブル情報が大きくなり、動きベクトル検出工程における光学ズーム成分の演算量が大規模になるという課題がある。
特許文献2に記載の方法では、基準画像と比較画像とが同一倍率となるようにズーム補正するための逆ズーム回路をカメラ内に設ける必要があり、余分なコストがかかる。
特許文献3に記載の方法では、画面中央位置では光学ズームの影響がないが、この画面中央位置の分割領域の画像の輝度レベルが一様であった場合は、動きベクトルの検出ができなくなるため、実用上、信頼性が劣るという課題がある。
このような課題があるため、従来の動きベクトル検出による手ぶれ補正では、光学ズーム動作中は補正処理を一時的に中断し、手ぶれ補正をせずに、単に撮影された画像を中心から切り出して出力することで済ませるのが一般的である。
本発明はこうした状況に鑑みてなされたものであり、その目的は、光学ズーム操作時であっても手ぶれ補正を効率的に行うことができる画像補正処理装置および方法を提供することにある。
上記課題を解決するために、本発明のある態様の画像補正処理装置は、複数のブロックに分割された撮影画像において、光学ズーム操作中の各ブロックの代表点画素の輝度をもつ画素の動きを検出する動きベクトル検出部と、ブロック毎に、撮影画像の中心と代表点とを結ぶ直線と傾きが同じで、ベクトル検出点を通る直線を一次関数として算出する一次関数算出部と、算出された一次関数の傾きが異なる少なくとも二つのブロックを選択し、選択されたブロックの一次関数のグラフの交点を求めることにより、手ぶれによる動きベクトルを算出する手ぶれ算出部と、算出された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正する手ぶれ補正部とを含む。
本発明の別の態様もまた、画像補正処理装置である。この装置は、複数のブロックに分割された撮影画像において、光学ズーム操作中の各ブロックの動きベクトルを検出する動きベクトル検出部と、撮影画像の中心に対して対称の位置にある二つのブロックを選択し、選択された二つのブロックで検出された二つの動きベクトルを平均化することにより、光学ズームによるベクトル成分を除き、手ぶれによる動きベクトルを算出する手ぶれ算出部と、算出された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正する手ぶれ補正部とを含む。
本発明のさらに別の態様もまた、画像補正処理装置である。この装置は、縦方向と横方向のブロック数が奇数になるように複数のブロックに分割された撮影画像において、撮影画像の中心を含む中央の縦一列のブロックと撮影画像の中心を含む中央の横一列のブロックにおいて、光学ズーム操作中の動きベクトルを検出する動きベクトル検出部と、縦一列のブロックにおいて検出された動きベクトルの横方向の成分を平均化し、横一列のブロックにおいて検出された動きベクトルの縦方向の成分を平均化し、平均化された横方向と縦方向のベクトル成分を手ぶれによる動きベクトルとする手ぶれ算出部と、得られた手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正する手ぶれ補正部とを含む。
本発明のさらに別の態様は、画像補正処理方法である。この方法は、複数のブロックに分割された撮影画像において、光学ズーム操作中の各ブロックの動きベクトルを検出するステップと、ブロック毎に、撮影画像の中心と代表点とを結ぶ直線と傾きが同じで、ベクトル検出点を通る直線を一次関数として算出するステップと、算出された一次関数の傾きが異なる少なくとも二つのブロックを選択し、選択されたブロックの一次関数のグラフの交点を求めることにより、手ぶれによる動きベクトルを算出するステップと、算出された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正するステップとを含む。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、光学ズーム操作時であっても手ぶれ補正を効率的に行うことができる。
25個のブロックに分割された撮影画像において、各ブロックの代表点と動きベクトルを示す図である。 手ぶれ補正をしてフレームメモリから出力画像を切り出す処理を説明する図である。 撮影画像の各ブロックで検出される動きベクトルを説明する図である。 光学ズーム操作中に撮影画像の各ブロックで検出される動きベクトルを説明する図である。 光学ズーム操作中に手ぶれが発生した場合の動きベクトルを説明する図である。 撮影画像の各ブロックの手ぶれによる動きベクトルと光学ズームによる動きベクトルを合成した図である。 撮影画像の各ブロックの番号を示す図である。 図7に示す第5ブロックにおける代表点、ズームベクトル、および手ぶれベクトルを示す図である。 図7に示す第1ブロックにおける代表点、ズームベクトル、および手ぶれベクトルを示す図である。 図8の第5ブロックと図9の第1ブロックのズームベクトル、手ぶれベクトルを合成した図である。 図10で求めた手ぶれベクトルにより、図6の撮影画像の中心から広がる放射線をずらした図である。 撮影画像の各ブロックのズーム基準線を示す図である。 撮影画像のブロック数が異なる場合の各ブロックのズーム基準線を説明する図である。 図13の第2ブロックと第7ブロックを重ね合わせて手ぶれベクトルを求める方法を説明する図である。 傾きが同じズーム基準線をもつ複数のブロックからなるグループにおいて、手ぶれ基準線の定数部を平均化する方法を説明する図である。 図15の8本の一点鎖線のグループから二つのグループを選択する組み合わせを説明する図である。 光学ズーム操作がなされない通常撮影時の撮影画像の各ブロックの代表点と動きベクトルを示す図である。 撮影画像の中心に対して対称の位置にある二つのブロックにおける動きベクトルを示す図である。 本発明の別の実施の形態に係る手ぶれ補正処理方法を説明する図である。 本発明のさらに別の実施の形態に係る手ぶれ補正処理方法を説明する図である。 本発明の実施の形態に係る手ぶれ補正機能を搭載した撮像装置の構成図である。 図21の手ぶれ補正処理ブロックの構成図である。
本発明の実施の形態に係る手ぶれ補正処理方法を図1〜図20を参照して説明し、その後、図21および図22を参照して、手ぶれ補正機能を搭載した撮像装置の構成を説明する。
図1〜3を参照して、一般的な手ぶれ補正処理を説明する。図1は、25個のブロックに分割された撮影画像において、各ブロックの動きベクトルを示す図である。代表点は各ブロックの中心の画素であり、手ぶれによる代表点画素の輝度をもつ画素の動きを検出することで、手ぶれによる動きベクトル(以下、単に「手ぶれベクトル」と呼ぶ)が求まる。方向と大きさは、代表点の画素の輝度に最も近い輝度をもつ画素をブロック内で探索することによってx、yで検出することができる。
図2は、手ぶれ補正をしてフレームメモリから出力画像を切り出す処理を説明する図である。図1の25ブロックで求められた手ぶれベクトルを平均化し、平均化された手ぶれベクトルによって、出力画像をフレームメモリから切り出す中心位置をずらす。図2の左側は、フレームメモリ内に格納された撮影画像である。手ぶれがなければ、撮影画像の中心から出力画像を切り出せばよいが、図1のような手ぶれベクトルが検出された場合は、平均化された手ぶれベクトルが示す動きの方向と量でもって切り出す中心位置をずらし、図2の右側に示すような出力画像を切り出す。これにより手ぶれが補正された画像が出力される。
図3は、撮影画像の各ブロックで検出される動きベクトルを説明する図である。図1では、撮影画像を25個のブロックに分割し、各ブロックの動きベクトルを検出するとしたが、実装上は、図3の右側に示すように、各ブロックをさらにたとえば20個にエリアに分割し、各エリアの中心画素を代表点とし、エリア毎に動きベクトルを求め、20エリアで平均化したものを当該ブロックの動きベクトルとする。ただし、以下では、説明を簡単にするため、各ブロックに一つの代表点があるものとして説明する。
図4〜図6を参照して、光学ズーム操作中の手ぶれ補正の課題を説明する。図4は、光学ズーム操作中に撮影画像の各ブロックで検出される動きベクトルを説明する図である。手ぶれがない場合、光学ズームを望遠側に操作すると、各ブロックの動きベクトルは、図4に示すように、撮影画像の中心から放射状に広がる方向に検出される。動きベクトルの大きさは光学ズーム動作の速度によって変化する。
図5は、光学ズーム操作中に手ぶれが発生した場合の動きベクトルを説明する図である。矢印は、図4で示した光学ズームによる動きベクトル(以下、単に「ズームベクトル」と呼ぶ)であり、二重線矢印は、手ぶれベクトルである。撮影画像の中心から放射状に広がるズームベクトルに手ぶれベクトルが加算されて検出される。
図6は、撮影画像の各ブロックの手ぶれによる動きベクトルと光学ズームによる動きベクトルを合成した図である。各ブロックの動きベクトルは、この図に示すような合成ベクトルとして検出される。このように、光学ズーム操作中は手ぶれベクトルだけを分離して検出することができないことが、光学ズーム操作中の手ぶれ補正処理を難しくしている。全ブロックの合成ベクトルを加算平均したとしても、ブロックによって検出された動きベクトルの精度にばらつきがあるため、正しい手ぶれベクトルを求めることはできない。
図7〜図16を参照して、本発明の実施の形態に係る手ぶれ補正処理方法を説明する。
図7は、撮影画像の各ブロックの番号を示す図である。左上隅を第1ブロックとし、左から右、上から下に進むにしたがってブロックの番号を順番に振る。撮影画像の中心には第13ブロックがあり、撮影画像の中心を通る右上がりの対角線上には第5、9、13、17、21のブロックが、左上がりの対角線上には第1、7、13、19、25のブロックがある。
図8は、図7に示す第5ブロックにおける代表点、ズームベクトル、および手ぶれベクトルを示す。代表点は第5ブロックの中心の点である。ズームベクトルは実線矢印で示され、手ぶれベクトルは二重線矢印で示される。ベクトルは、ズームベクトルと手ぶれベクトルが合成された二重丸で示される位置に検出される。
実線矢印で示されるズームベクトルの大きさはズーム速度に依存するため、ズームベクトルの特定は困難である。二重線矢印で示される手ぶれベクトルは、ズームベクトルが特定できないため、直接検出することはできず、不明である。
一点鎖線は撮影画像の中心と第5ブロックの代表点とを結ぶ直線y=xを示す。ズームベクトルはこの一点鎖線上にある。この一点鎖線で示される直線を「ズーム基準線」と呼ぶ。
破線は、一点鎖線で示された直線(ズーム基準線)y=xと傾きが同じで、ベクトル検出点を通る直線である。この破線で示される直線を「手ぶれ基準線」と呼ぶ。手ぶれ基準線y=ax+bの傾きaは、ズーム基準線y=xの傾きと同じであり、a=1である。手ぶれ基準線の切片bは、ベクトル検出点のy座標値13と、ベクトル検出点のx座標値11をズーム基準線の式y=xに代入して得られるy座標値11との差により求めることができ、b=13−11=2である。求めたい手ぶれ成分は、こうして得られた手ぶれ基準線y=x+2上の点として求めることができる。
図9は、図7に示す第1ブロックにおける代表点、ズームベクトル、および手ぶれベクトルを示す。代表点は第1ブロックの中心の点である。図8と同様、ズームベクトルは実線矢印、手ぶれベクトルは二重線矢印で示されており、ベクトル検出点は、ズームベクトルと手ぶれベクトルが合成された二重丸で示される位置に検出される。
図8と同様、一点鎖線は撮影画像の中心と第1ブロックの代表点とを結ぶ直線(ズーム基準線)y=−xを示す。破線は、ズーム基準線y=−xと傾きが同じで、ベクトル検出点を通る直線(手ぶれ基準線)である。手ぶれ基準線y=ax+bの傾きaは、ズーム基準線y=−xの傾きと同じであり、a=−1である。手ぶれ基準線の切片bは、ベクトル検出点のy座標値13と、ベクトル検出点のx座標値−7をズーム基準線の式y=−xに代入して得られるy座標値7との差により求めることができ、b=13−7=6である。求めたい手ぶれ成分は、こうして得られた手ぶれ基準線y=−x+6上の点として求めることができる。
図10は、図8の第5ブロックと図9の第1ブロックのズームベクトル、手ぶれベクトルを合成した図である。手ぶれ成分は、図8の第5ブロックの手ぶれ基準線y=x+2と図9の第1ブロックの手ぶれ基準線y=−x+6の交点として求めることができる。図10において、その交点を二重丸で示す。連立方程式y=x+2、y=−x+6を解くことにより、交点のx座標2、y座標4が求まる。ブロックの中心にある代表点を始点とし、求めた交点を終点とする三重線矢印が、求めたい手ぶれベクトルである。この手ぶれベクトルは、動きベクトルからズームベクトルを差し引いた手ぶれのみによる動きを示すベクトルである。
傾きが異なる手ぶれ基準線をもつ任意の二つのブロックを選択し、選択されたブロックの手ぶれ基準線の交点を求めることにより、手ぶれベクトルを得ることができる。たとえば、第5ブロックの手ぶれ基準線の傾きは1、第16ブロックの手ぶれ基準線の傾きは0.5であり、両ブロックの手ぶれ基準線の傾きは異なるから、これらの二つのブロックを組み合わせて、手ぶれ基準線の交点を求めても同様に手ぶれベクトルを求めることができる。
図11は、図10で求めた手ぶれベクトルにより、図6の撮影画像の中心から広がる放射線をずらした図である。手ぶれによって放射線の中心が二重丸で示される位置にずれる。図11の放射線上に動きベクトルの終点があるかどうかを確認することで、求めた手ぶれベクトルの精度を確認することができる。
傾きの異なる手ぶれ基準線をもつ二つのブロックについて、手ぶれ基準線の交点を求めれば、手ぶれベクトルを得ることができるが、手ぶれベクトルの精度を高めるために、このような二つのブロックの組み合わせの数を増やして手ぶれベクトルを複数求め、平均を取ることが望ましい。
図12は、撮影画像の各ブロックのズーム基準線を示す図である。符号A〜Hで示される8本の一点鎖線は、各ブロックのズーム基準線である。たとえば、符号Aで示す一点鎖線は、第11〜15のブロックのズーム基準線であり、その傾きは0である。符号Gで示す一点鎖線は、第5、9、13、17、21のブロックのズーム基準線であり、その傾きは1である。
手ぶれベクトルを求めるために、傾きの異なる手ぶれ基準線をもつ二つのブロックを選択するが、これは図12で言えば、8本の一点鎖線A〜Hで示されるズーム基準線の内、傾きの異なる2本のズーム基準線を選ぶことに相当する。たとえば、一点鎖線Gで示されるズーム基準線をもつ第5ブロックと組み合わせることができるのは、傾きの異なる一点鎖線A〜F、Hのいずれかのズーム基準線をもつブロックである。同一の一点鎖線で示されるズーム基準線をもつブロック同士は組み合わせても、ズーム基準線の傾きが同じであるから、交点から手ぶれベクトルを求める方法を取ることはできない。
図13は、撮影画像のブロック数が異なる場合の各ブロックのズーム基準線を説明する図である。撮影画像を16個のブロックに分割する。撮影画像の中心から各ブロックの代表点に伸びる直線を引くと、6本の一点鎖線A〜Fで示されるズーム基準線が得られる。たとえば、一点鎖線Cのズーム基準線をもつ第2ブロックと組み合わせることができるのは、傾きの異なる一点鎖線A、B、D〜Fのいずれかのズーム基準線をもつブロックである。
図14は、図13の第2ブロックと第7ブロックを重ね合わせて手ぶれベクトルを求める方法を説明する図である。第2ブロックの手ぶれ基準線y=−3x+10と、第7ブロックの手ぶれ基準線y=x+2の交点を求めることにより、手ぶれベクトルのx成分2、y成分4が得られる。図14の三重線矢印がこうして得られた手ぶれベクトルである。
図12および図13で説明した傾きが同じズーム基準線をもつブロックは一つのグループにまとめることができる。各グループにおいて、そのグループに属する複数のブロックのそれぞれで求めた手ぶれ基準線の定数部bを平均することにより、手ぶれ基準線の精度を高めることができる。
図15は、傾きが同じズーム基準線をもつ複数のブロックからなるグループにおいて、手ぶれ基準線の定数部を平均化する方法を説明する図である。一点鎖線Aで示される傾き0のズーム基準線をもつ第11、12、13、14、15のブロックにおいて求めた手ぶれ基準線の定数部の平均値bを求めることで、平均化された手ぶれ基準線y=bを得る。
同様に、一点鎖線Bで示される傾き−0.5のズーム基準線をもつ第6、13、20のブロックにおいて求めた手ぶれ基準線の定数部の平均値bを求めることで、平均化された手ぶれ基準線y=−0.5x+bを得る。
一点鎖線Cで示される傾き−1のズーム基準線をもつ第1、7、13、19、25のブロックにおいて求めた手ぶれ基準線の定数部の平均値bを求めることで、平均化された手ぶれ基準線y=−x+bを得る。
一点鎖線Dで示される傾き−2のズーム基準線をもつ第2、13、24のブロックにおいて求めた手ぶれ基準線の定数部の平均値bを求めることで、平均化された手ぶれ基準線y=−2x+bを得る。
一点鎖線Eで示される傾きが無限大のズーム基準線をもつ第3、8、13、18、23のブロックにおいて求めた手ぶれ基準線の定数部の平均値bを求めることで、平均化された手ぶれ基準線x=bを得る。
一点鎖線Fで示される傾き2のズーム基準線をもつ第4、13、22のブロックにおいて求めた手ぶれ基準線の定数部の平均値bを求めることで、平均化された手ぶれ基準線y=2x+bを得る。
一点鎖線Gで示される傾き1のズーム基準線をもつ第5、9、13、17、21のブロックにおいて求めた手ぶれ基準線の定数部の平均値bを求めることで、平均化された手ぶれ基準線y=x+bを得る。
一点鎖線Hで示される傾き0.5のズーム基準線をもつ第10、13、16のブロックにおいて求めた手ぶれ基準線の定数部の平均値bを求めることで、平均化された手ぶれ基準線y=0.5x+bを得る。
なお、各一点鎖線のズーム基準線をもつ複数のブロックのグループにおいて、各ブロックの手ぶれ基準線の定数部を平均化する際、いずれかのブロックの動きベクトルの信頼度が所定の閾値よりも低い場合は、そのブロックは除外して手ぶれ基準線の定数部の平均化を行うようにしてもよい。
このようにして、8本の一点鎖線A〜Gのグループの各々において、平均化された手ぶれ基準線y=ax+bが得られる。これら8個のグループA〜Gから任意の二つのグループを選択し、各グループの平均化された手ぶれ基準線の交点を求めることで、手ぶれベクトルを算出することができる。
図16は、図15の8本の一点鎖線A〜Gのグループから二つのグループを選択する組み合わせを説明する図である。全部で=8!/(2!・6!)=28通りの組み合わせがある。これらのグループの組み合わせのそれぞれにおいて、平均化された手ぶれ基準線の交点を求めて手ぶれベクトルを算出し、最後に、28個の手ぶれベクトルの平均を取ることで、最終的な手ぶれベクトルを算出する。このようにすることで、手ぶれベクトルの検出精度を高めることができる。
以上、図7〜図16を参照して、光学ズーム操作中の動きベクトルからズームベクトルを除去して手ぶれベクトルを求める方法を説明したが、この方法は、光学ズーム操作中に限らず、光学ズーム操作がなされない通常撮影中に適用しても何ら問題はない。
図17は、光学ズーム操作がなされない通常撮影時の撮影画像の各ブロックの動きベクトルを示す図である。光学ズーム操作がないため、動きベクトルにはズームベクトルの成分によるオフセットがないが、その場合でも、図7〜図16で説明した手ぶれベクトルの算出方法を適用してもかまわない。同様に、8本の一点鎖線のグループの各々において手ぶれ基準線の定数部を平均化し、さらに、任意の二つのグループを選択して、平均化された手ぶれ基準線の交点を求めることで、手ぶれベクトルを求めることができる。
図17は、そのようにして求めた手ぶれベクトルにもとづいて撮影画像の中心点の移動先を定め、移動後の中心点から放射線状に伸びるズーム基準線を図示したものである。この図からも明らかなように、光学ズーム操作がなされない通常撮影時であっても、本発明の実施の形態に係る手ぶれ補正処理方法を適用することができる。
これにより、光学ズーム操作時であっても、通常撮影時であっても、同じ手ぶれ補正処理で手ぶれに対応することができ、光学ズーム操作時と通常撮影時で処理を切り替える必要がなく、手ぶれ補正処理を実現するハードウエアまたはソフトウエアの構成を単純化することができる。
図18および図19は、本発明の別の実施の形態に係る手ぶれ補正処理方法を説明する図である。
図18は、撮影画像の中心に対して対称の位置にある二つのブロックにおける動きベクトルを示す図である。図7の撮影画像のブロックの配置において、第5と第17のブロックは中心に対して対称の位置にあるため、第5ブロックのズームベクトルと第17ブロックのズームベクトルは大きさが同じで方向は反対である。そのため、第5と第17のブロックで検出された動きベクトルの加算平均を取ると、ズームベクトルの成分はキャンセルされ、手ぶれベクトルの成分だけが残る。
このように、撮影画像の中心に対して対称の位置にある二つのブロックを選択し、選択された二つのブロックで検出された動きベクトルを加算平均することにより、光学ズームによる動き成分を除き、手ぶれベクトルを算出することができる。
図19は、撮影画像の中心に対して対称の位置にある二つのブロックの組み合わせを示す図である。撮影画像のブロック分割数が25である場合、対称の位置にある二つのブロックの組み合わせは、図19に示すように12通りある。これら12通りのブロックの組み合わせのそれぞれについて、動きベクトルを加算平均することで、手ぶれベクトルを算出し、12個の手ぶれベクトルを平均化することで、最終的な手ぶれベクトルを得る。
なお、撮影画像の中心に対して対称の位置にある二つのブロックの対を選択する際、対になる二つのブロックの内、少なくとも一方のブロックにおいて動きベクトルの検出精度が所定の閾値よりも低い場合には、そのブロックの対は選択対象から外すことがより好ましい。ブロック対の片方の動きベクトルの信頼性が高くないとき、ブロック対の二つの動きベクトルの平均を取っても、光学ズーム成分はキャンセルされないため、そのブロック対では手ぶれベクトルが正しく得られないからである。
動きベクトルの検出精度が低下するのは、たとえば、撮影画像に空や壁が写っていたり、格子模様が写っている場合、輝度の同じ画素を探索することで動きベクトルを検出することには限界が生じるからである。そのため、ブロックによっては動きベクトルの信頼性が著しく低いことがある。
動きベクトルを代表点の輝度にもとづいて探索する際、代表点画素の輝度レベルと最も近い輝度レベルをもつ画素とのレベル差が閾値よりも大きい場合、そのブロックの動きベクトル検出点の信頼度が低いと判断するが、撮影画像に空や壁が含まれると一様の輝度レベルになり差が閾値よりも小さくなるため、信頼度が高いと判断されてしまう。そこで、信頼性判断のひとつの方法として、代表点の画素の輝度レベルと最も近い輝度レベルをもつ画素と2番目に近い輝度レベルをもつ画素の輝度レベルの差が所定の閾値よりも小さい場合、そのブロックの動きベクトル検出点の信頼度が低いと判断し、当該代表点が属するブロックは選択対象から除外する。また、被写体が動いたために、あるブロックだけ他のブロックとは異なる動きを示している場合は、そのブロックを選択対象から除外してもよい。
図20は、本発明のさらに別の実施の形態に係る手ぶれ補正処理方法を説明する図である。図20の撮影画像は、縦方向と横方向のブロック数が奇数である。このとき、撮影画像の中心を含む中央の縦一列のブロックにおいて、ズーム成分はY軸方向にのみ存在するため、X軸方向は手ぶれ成分だけが現れる。他方、撮影画像の中心を含む中央の横一列のブロックにおいて、ズーム成分はX軸方向にのみ存在するため、Y軸方向は手ぶれ成分だけが現れる。
撮影画像の中心を含む中央の縦一列のブロックにおいて、光学ズーム操作中の動きベクトルを検出し、動きベクトルのX軸方向の成分を縦一列のブロックの間で平均化する。他方、撮影画像の中心を含む中央の横一列のブロックにおいて、光学ズーム操作中の動きベクトルを検出し、動きベクトルのY軸方向の成分を横一列のブロックの間で平均化する。このようにして得られた平均化されたX軸方向の成分とY軸方向の成分が求めたい手ぶれベクトルである。この方法によれば、撮影画像の中央のブロックだけから光学ズームの影響を受けない手ぶれベクトルを求めることに比べて、撮影画像の中央の縦一列、横一列のブロックを用いる分、手ぶれベクトルの精度は高くなる。
図7〜図20を参照して説明した手ぶれ補正処理方法を実行するための撮像装置を以下、説明する。
図21は、本発明の実施の形態に係る手ぶれ補正機能を搭載した撮像装置100の構成図である。ここで説明する撮像装置100は、一実施例として動画を撮影して磁気テープやハードディスクなどに記録するビデオカメラであるが、別の実施例として静止画を撮影してメモリカードなどに記録するデジタルスチルカメラであってもよい。また、ビデオカメラが静止画を記録再生するモードを備えてもよい。
図21において、実線矢印は映像情報の流れを示し、点線矢印は制御情報の流れを示す。
レンズ10に入射する被写体の像は電荷結合素子(CCD)12に結像する。CCD12から出力される撮影画像は、A/D変換器14によってデジタル信号に変換され、カメラ信号処理LSI30に入力される。
カメラ信号処理LSI30において、色信号処理部16は、A/D変換器14から出力されたデジタル信号を色信号(C)に変換し、Y信号処理部18は、A/D変換器14から出力されたデジタル信号を輝度信号(Y)に変換する。色信号処理部16から出力される色信号は、フィールドメモリ20に記憶される。Y信号処理部18から出力される輝度信号は、ローパスフィルタ(LPF)19にかけられた後、フィールドメモリ20に記憶されるとともに、動きベクトル検出に使用するためにベクトル検出部22に入力される。
ベクトル検出部22は撮影画像の輝度信号にもとづいて手ぶれベクトルを検出し、手ぶれベクトルにもとづいてフィールドメモリ20に撮影画像を切り出す中心位置をずらしてフィールドメモリ20から撮影画像を切り出す指示をフィールドメモリ20に与える。
ここで、ベクトル検出部22は、光学ズーム操作中でも手ぶれベクトルを検出できるように、カメラ制御マイコン40に設けられた手ぶれ補正処理ブロック50と協働して手ぶれベクトルを検出する。ベクトル検出部22は、撮影画像から検出された動きベクトルを手ぶれ補正処理ブロック50に供給し、手ぶれ補正処理ブロック50はベクトル検出部22により検出された動きベクトルから光学ズームによる成分を除去して手ぶれベクトルを算出し、算出した手ぶれベクトルをベクトル検出部22に供給する。
手ぶれによるずれを考慮して、フィールドメモリ20の指定された中心位置から切り出された撮影画像の色信号と輝度信号はマトリクスエンコーダ・デコーダ24に供給される。マトリクスエンコーダ・デコーダ24は、撮影画像を圧縮符号化し、符号化された画像情報をDV信号処理DSP34に与える。また、記録された画像を再生する際は、マトリクスエンコーダ・デコーダ24は、DV信号処理DSP34から供給される符号化された画像情報を復号する。
マトリクスエンコーダ・デコーダ24により処理された撮影画像の色信号と輝度信号はD/A変換器26に供給され、アナログ信号に変換される。Y/C・OSD信号混合部28は、D/A変換器26から出力された輝度信号と色信号、およびオン・スクリーン・ディスプレイ(OSD)回路42から出力されるOSD信号を混合してビデオ出力部32に供給する。ビデオ出力部32は、画面にビデオ信号を表示させる。
操作部44は、ユーザから撮像装置100を操作する命令を受け付け、操作命令をカメラ制御マイコン40に与える。カメラ制御マイコン40は、撮像装置100全体を制御する制御部であり、操作命令にもとづいてレンズ機構を制御したり、ディスプレイの設定を変更したりする。また、カメラ制御マイコン40は、ディスプレイの設定画面を画面に表示させるためにOSD回路42に命令を与え、OSD信号を生成させる。
たとえば、操作部44により光学ズームが指示された場合、カメラ制御マイコン40は、レンズ10のズームを調整する。操作部44により録画の指示がなされた場合、カメラ制御マイコン40はカメラ信号処理LSI30およびデッキ制御マイコン38に動画記録の指示を与える。デッキ制御マイコン38は、磁気テープ48への画像の記録と磁気テープ48からの画像の再生を行うデッキ部を制御する制御部である。
DV信号処理DSP34は、DV規格を前提としてビデオデータをDVフォーマットで処理するが、ビデオフォーマットはこれに限定されるものではない。DV信号処理DSP34は、マトリクスエンコーダ・デコーダ24から与えられた符号化画像データを信号処理し、トラッキング情報や日時情報などの制御データを付加してDVフォーマットに変換し、プレレコーディングアンプ36に与える。プレレコーディングアンプ36は、入力された信号を変調してヘッド46に供給する。ヘッド46に供給された信号は磁気テープ48条にトラックとして順次記録される。
操作部44によって、磁気テープ48に記録された画像の再生指示がなされると、ヘッド46は磁気テープ48から画像データを読み取り、プレレコーディングアンプ36によって増幅されてDV信号処理DSP34に入力される。DV信号処理DSP34は、入力された画像データを信号処理し、マトリクスエンコーダ・デコーダ24に供給するとともに、画像データに付加された各種の制御データをデッキ制御マイコン38に供給する。
図22は、図21の手ぶれ補正処理ブロック50の構成図である。動きベクトル取得部52は、ベクトル検出部22から撮影画像の各ブロックの動きベクトルの情報を受け取る。図5および図6で説明したように、ベクトル検出部22が検出した動きベクトルには、光学ズーム操作が行われていた場合、ズームベクトルの成分が含まれている。
一次関数算出部54は、撮影画像のブロック毎に、撮影画像の中心と代表点とを結ぶ直線(「ズーム基準線」)と傾きが同じで、ベクトル検出点を通る直線(「手ぶれ基準線」)を一次関数として算出する。各ブロックの手ぶれ基準線を示す一次関数の傾きaと切片bの情報は一次関数情報記憶部60に記憶される。一次関数算出部54による処理の具体例は、図8および図9を参照して上述した通りである。
手ぶれ動きベクトル算出部56は、一次関数情報記憶部60を参照し、傾きが異なる手ぶれ基準線をもつ二つのブロックを選択し、選択したブロックの手ぶれ基準線の交点を求めることにより、手ぶれベクトルを算出する。手ぶれ動きベクトル算出部56による処理の具体例は、図10や図14を参照して上述した通りである。
一次関数算出部54は、傾きが同じズーム基準線をもつ複数のブロックを一つのグループにまとめ、各グループに属するブロックの手ぶれ基準線を示す一次関数の定数部bを平均化してもよい。手ぶれ動きベクトル算出部56は、定数部が平均化された手ぶれ基準線の傾きが異なる少なくとも二つのグループを選択し、選択されたグループの手ぶれ基準線の交点を求めることにより、手ぶれベクトルを算出してもよい。この処理方法については、図15および図16を参照して上述した。
手ぶれ動きベクトル算出部56は、ズーム基準線の傾きが異なる任意の二つのブロックまたは上述の任意の二つのグループを選択して求めた手ぶれベクトルを手ぶれ動きベクトル記憶部62に記憶する。手ぶれ動きベクトル算出部56は、複数の手ぶれベクトルを平均化して最終的な手ぶれベクトルを求め、手ぶれ動きベクトル記憶部62に記憶する。
手ぶれ補正部58は、手ぶれ動きベクトル記憶部62から最終的な手ぶれベクトルを読み出し、ベクトル検出部22に与える。ベクトル検出部22は、手ぶれ補正部58から与えられた手ぶれベクトルにもとづいて、フィールドメモリ20から撮影画像を切り出すときの中心位置をずらす。
なお、ベクトル検出部22による動きベクトル検出機能は、手ぶれ補正処理ブロック50の動きベクトル取得部52にもたせてもよく、ベクトル検出部22による手ぶれベクトルにもとづく撮影画像のメモリ切り出し機能は、手ぶれ補正処理ブロック50の手ぶれ補正部58にもたせてもよい。
手ぶれ補正処理ブロック50は、光学ズーム操作をしているかどうかに関係なく、動作させてもよい。この方法については図17を参照して上述した。これにより、光学ズーム操作がなされない通常撮影中にも手ぶれ補正処理ブロック50が手ぶれベクトルを求めてベクトル検出部22に供給することができる。実質的には、ベクトル検出部22の機能を手ぶれ補正処理ブロック50にもたせることができるようになり、ズーム操作時と通常撮影時で手ぶれ検出処理を切り替える必要がなくなる。これによって回路構成を簡略化することができ、製品のコストダウンにつながる。
別の手ぶれベクトル算出方法として、図18および図19を参照して上述したものがある。この方法によれば、手ぶれ動きベクトル算出部56は、撮影画像の中心に対して対称の位置にある二つのブロックで検出された二つの動きベクトルの平均を計算することにより、光学ズームによる動き成分をキャンセルし、手ぶれベクトルを求める。
手ぶれ動きベクトル算出部56は、撮影画像の中心に対して対称の位置にある二つのブロックの対を複数選択し、各ブロックの対において二つの動きベクトルの平均を取ることにより、手ぶれベクトルを算出し、最後に、複数のブロックの対について算出された手ぶれベクトルの平均を求め、最終的な手ぶれベクトルとしてもよい。その際、手ぶれ動きベクトル算出部56は、対称の位置にある二つのブロックの内、少なくとも一方のブロックにおいて動きベクトル検出点の信頼度が所定の閾値よりも低い場合には、そのブロックの対は計算対象から外すようにしてもよい。
さらに別の手ぶれベクトル算出方法として、図20を参照して上述したものがある。この方法によれば、動きベクトル取得部52は、撮影画像の縦方向と横方向のブロック数が奇数になるように撮影画像が複数のブロックに分割されている場合、撮影画像の中央の縦一列のブロックと中央の横一列のブロックにおいて検出された動きベクトルを取得する。手ぶれ動きベクトル算出部56は、縦一列のブロックで検出された動きベクトルのX軸方向の成分を平均化し、横一列のブロックにおいて検出された動きベクトルのY軸方向の成分を平均化し、平均化されたベクトルのX軸方向とY軸方向の成分を手ぶれベクトルとする。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
20 フィールドメモリ、 22 ベクトル検出部、 24 マトリクスエンコーダ・デコーダ、 30 カメラ信号処理LSI、 32 ビデオ出力部、 40 カメラ制御マイコン、 44 操作部、 50 手ぶれ補正処理ブロック、 52 動きベクトル取得部、 54 一次関数算出部、 56 手ぶれ動きベクトル算出部、 58 手ぶれ補正部、 60 一次関数情報記憶部、 62 手ぶれ動きベクトル記憶部、 100 撮像装置。

Claims (9)

  1. 複数のブロックに分割された撮影画像において、光学ズーム操作中の各ブロックの動きベクトルを検出する動きベクトル検出部と、
    ブロック毎に、撮影画像の中心と代表点とを結ぶ直線と傾きが同じで、ベクトル検出点を通る直線を一次関数として算出する一次関数算出部と、
    算出された一次関数の傾きが異なる少なくとも二つのブロックを選択し、選択されたブロックの一次関数のグラフの交点を求めることにより、手ぶれによる動きベクトルを算出する手ぶれ算出部と、
    算出された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正する手ぶれ補正部とを含むことを特徴とする画像補正処理装置。
  2. 前記一次関数算出部は、傾きが同じ一次関数をもつ複数のブロックを一つのグループにまとめ、各グループに属する複数のブロックにおいて算出された一次関数の定数部を平均化し、
    前記手ぶれ算出部は、定数部が平均化された一次関数の傾きが異なる少なくとも二つのグループを選択し、選択されたグループの一次関数のグラフの交点を求めることにより、手ぶれによる動きベクトルを算出することを特徴とする請求項1に記載の画像補正処理装置。
  3. 前記動きベクトル検出部、前記一次関数算出部、前記手ぶれ算出部、および前記手ぶれ補正部による各処理が、光学ズーム操作中に限らず、光学ズーム操作がなされない通常撮影中にも行われることにより、通常撮影中の手ぶれ補正も合わせて行われることを特徴とする請求項1または2に記載の画像補正処理装置。
  4. 複数のブロックに分割された撮影画像において、光学ズーム操作中の各ブロックの動きベクトルを検出する動きベクトル検出部と、
    撮影画像の中心に対して対称の位置にある二つのブロックを選択し、選択された二つのブロックで検出された二つの動きベクトルを平均化することにより、光学ズームによる動き成分を除き、手ぶれによる動きベクトルを算出する手ぶれ算出部と、
    算出された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正する手ぶれ補正部とを含むことを特徴とする画像補正処理装置。
  5. 前記手ぶれ算出部は、撮影画像の中心に対して対称の位置にある二つのブロックの対を複数選択し、各ブロックの対において二つの動きベクトルを平均化することにより、手ぶれによる動きベクトルを算出し、複数のブロックの対について算出された手ぶれによる動きベクトルを平均化し、
    前記手ぶれ補正部は、平均化された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正することを特徴とする請求項4に記載の画像補正処理装置。
  6. 前記手ぶれ算出部は、撮影画像の中心に対して対称の位置にある二つのブロックの対を複数選択する際、対になる二つのブロックの内、少なくとも一方のブロックにおいて動きベクトル検出点の信頼度が所定の閾値よりも低い場合には、そのブロックの対は選択対象から外すことを特徴とする請求項5に記載の画像補正処理装置。
  7. 縦方向と横方向のブロック数が奇数になるように複数のブロックに分割された撮影画像の中心を含む中央の縦一列のブロックと前記撮影画像の中心を含む中央の横一列のブロックにおいて、光学ズーム操作中の動きベクトルを検出する動きベクトル検出部と、
    縦一列のブロックにおいて検出された動きベクトルの横方向の成分を平均化し、横一列のブロックにおいて検出された動きベクトルの縦方向の成分を平均化し、平均化された横方向と縦方向のベクトル成分を手ぶれによる動きベクトルとする手ぶれ算出部と、
    得られた手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正する手ぶれ補正部とを含むことを特徴とする画像補正処理装置。
  8. 複数のブロックに分割された撮影画像において、光学ズーム操作中の各ブロックの動きベクトルを検出するステップと、
    ブロック毎に、撮影画像の中心と代表点とを結ぶ直線と傾きが同じで、ベクトル検出点を通る直線を一次関数として算出するステップと、
    算出された一次関数の傾きが異なる少なくとも二つのブロックを選択し、選択されたブロックの一次関数のグラフの交点を求めることにより、手ぶれによる動きベクトルを算出するステップと、
    算出された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正するステップとを含むことを特徴とする画像補正処理方法。
  9. 複数のブロックに分割された撮影画像において、光学ズーム操作中の各ブロックの動きベクトルを検出する機能と、
    ブロック毎に、撮影画像の中心と代表点とを結ぶ直線と傾きが同じで、ベクトル検出点を通る直線を一次関数として算出する機能と、
    算出された一次関数の傾きが異なる少なくとも二つのブロックを選択し、選択されたブロックの一次関数のグラフの交点を求めることにより、手ぶれによる動きベクトルを算出する機能と、
    算出された手ぶれによる動きベクトルにもとづいて撮影画像の手ぶれを補正する機能とをコンピュータに実現させることを特徴とするプログラム。
JP2009023023A 2009-02-03 2009-02-03 画像補正処理装置および画像補正処理方法 Expired - Fee Related JP5298899B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009023023A JP5298899B2 (ja) 2009-02-03 2009-02-03 画像補正処理装置および画像補正処理方法
US12/699,051 US8400515B2 (en) 2009-02-03 2010-02-03 Image correction processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023023A JP5298899B2 (ja) 2009-02-03 2009-02-03 画像補正処理装置および画像補正処理方法

Publications (2)

Publication Number Publication Date
JP2010183194A true JP2010183194A (ja) 2010-08-19
JP5298899B2 JP5298899B2 (ja) 2013-09-25

Family

ID=42397358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023023A Expired - Fee Related JP5298899B2 (ja) 2009-02-03 2009-02-03 画像補正処理装置および画像補正処理方法

Country Status (2)

Country Link
US (1) US8400515B2 (ja)
JP (1) JP5298899B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060126A (ja) * 2016-10-07 2018-04-12 キヤノン株式会社 像ぶれ補正装置およびその制御方法、撮像装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609217B2 (en) * 2011-11-02 2017-03-28 Mediatek Inc. Image-based motion sensor and related multi-purpose camera system
US8860825B2 (en) * 2012-09-12 2014-10-14 Google Inc. Methods and systems for removal of rolling shutter effects
KR20210101078A (ko) * 2020-02-07 2021-08-18 삼성전자주식회사 전자 장치 및 전자 장치의 영상 처리 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411482A (ja) * 1990-04-28 1992-01-16 Sony Corp 動きベクトル検出装置
JP2005244780A (ja) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd 撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3381095B2 (ja) 1994-03-25 2003-02-24 ソニー株式会社 画像揺れ検出装置
JPH09212648A (ja) * 1996-01-31 1997-08-15 Toshiba Corp 動画像処理方法
JP3785576B2 (ja) * 2002-04-24 2006-06-14 株式会社モリタ製作所 被写体ブレ補正手段、これを用いた医療用x線撮影装置
JP4655957B2 (ja) 2006-02-20 2011-03-23 ソニー株式会社 撮像画像の歪み補正方法、撮像画像の歪み補正装置、撮像方法および撮像装置
JP2008160274A (ja) 2006-12-21 2008-07-10 Fujifilm Corp 移動ベクトル検出方法及びその装置並びにそのプログラム、電子的手振れ補正方法及びその装置並びにそのプログラム、撮像装置
JP4212109B2 (ja) * 2007-03-20 2009-01-21 パナソニック株式会社 撮影装置および撮影方法
KR101392732B1 (ko) * 2007-08-20 2014-05-08 삼성전자주식회사 손떨림에 의한 움직임 추정 장치 및 방법, 그를 이용한영상 촬상 장치
JP5045320B2 (ja) * 2007-09-05 2012-10-10 ソニー株式会社 画像処理装置、および画像処理方法、並びにコンピュータ・プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411482A (ja) * 1990-04-28 1992-01-16 Sony Corp 動きベクトル検出装置
JP2005244780A (ja) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd 撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060126A (ja) * 2016-10-07 2018-04-12 キヤノン株式会社 像ぶれ補正装置およびその制御方法、撮像装置

Also Published As

Publication number Publication date
JP5298899B2 (ja) 2013-09-25
US8400515B2 (en) 2013-03-19
US20100194898A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
US7742690B2 (en) Imaging apparatus and method for processing imaging results
US8068138B2 (en) Image pickup apparatus for reducing fixed pattern noise
JP4695972B2 (ja) 画像処理装置、撮像装置および画像処理方法
JP5574423B2 (ja) 撮像装置、表示制御方法及びプログラム
JP5419647B2 (ja) 像振れ補正装置およびそれを備えた撮像装置、像振れ補正装置の制御方法
JP5321540B2 (ja) 画像補正処理装置、画像補正処理方法、及び画像補正処理プログラム
US20110298888A1 (en) Image capturing apparatus and image capturing method
JP2004336106A (ja) 画像処理装置、画像処理方法ならびに撮像装置
JP2010273245A (ja) 撮像装置と振れ補正方法
JP2006295626A (ja) 魚眼像処理装置及びその方法並びに魚眼像撮像装置
JP2009152698A (ja) 撮像装置及びその制御方法及びプログラム
WO2016207990A1 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラムおよび記憶媒体
JP2015033108A (ja) 画像処理装置、画像処理方法およびプログラム
JP5298899B2 (ja) 画像補正処理装置および画像補正処理方法
JP6433155B2 (ja) ブレ補正装置、ブレ補正方法およびプログラム、並びに撮像装置
JP2011050044A (ja) 撮像装置
WO2012147337A1 (ja) フリッカ検出装置、フリッカ検出方法およびフリッカ検出プログラム
JP5300413B2 (ja) 動きベクトル検出装置及び動きベクトル検出方法及び撮像装置及びプログラム
JP2007049266A (ja) 画像撮像装置
JP2008205915A (ja) 撮像装置、撮像方法、及びプログラム
JP2005012423A (ja) 撮像装置及び信号処理装置
JP2010219933A (ja) 撮像装置
JP2011135537A (ja) 撮像装置及び撮像装置の制御方法
JP2011155420A (ja) 手ぶれ補正装置、撮像処理方法及びプログラム
JP5455485B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees