JP2010177599A - 固体撮像装置及びその製造方法 - Google Patents

固体撮像装置及びその製造方法 Download PDF

Info

Publication number
JP2010177599A
JP2010177599A JP2009021007A JP2009021007A JP2010177599A JP 2010177599 A JP2010177599 A JP 2010177599A JP 2009021007 A JP2009021007 A JP 2009021007A JP 2009021007 A JP2009021007 A JP 2009021007A JP 2010177599 A JP2010177599 A JP 2010177599A
Authority
JP
Japan
Prior art keywords
transfer
solid
state imaging
imaging device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009021007A
Other languages
English (en)
Inventor
Ikuo Mizuno
郁夫 水野
Mitsuyoshi Ando
三善 安藤
Noriaki Suzuki
鈴木  教章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009021007A priority Critical patent/JP2010177599A/ja
Priority to US12/691,919 priority patent/US8148755B2/en
Publication of JP2010177599A publication Critical patent/JP2010177599A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • H01L27/14818Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/14843Interline transfer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】感度及びスミア特性の低下を抑制する。
【解決手段】本発明に係る固体撮像装置20は、半導体基板1に行列状に形成され、入射光を信号電荷に変換する複数の受光部11と、列毎に形成され、対応する列に形成された複数の受光部11により変換された信号電荷を列方向に転送するための転送チャネル12と、転送チャネル12上に配置される複数の第1転送電極3a及び複数の第2転送電極3bと、転送チャネル12上であり、かつ列方向に隣接する第1転送電極3a及び第2転送電極3bとの間に形成される絶縁領域4と、受光部11の上方、及び絶縁領域4上に当該絶縁領域4を覆うように形成される反射防止膜6と、行毎に形成され、対応する行に配置された複数の第2転送電極3bと電気的に接続されるシャント配線7bと、転送チャネル12を覆うように形成されるとともに、複数の受光部11の上方に開口部14を有する遮光膜9とを備える。
【選択図】図1B

Description

本発明は、固体撮像装置及びその製造方法に関し、特に、行列状に配置された受光部と、受光部により変換された信号電荷を転送するための垂直電荷転送部を備える固体撮像装置に関する。
CCD(charge coupled device)型固体撮像装置に代表される固体撮像装置は、デジタルスチルカメラ及びデジタルビデオカメラ等の撮像装置の撮像素子として広く利用されており、その需要は益々増加している。また、近年、テレビのハイビジョン化の進行に伴い、撮像装置がハイビジョン動画に対応することが要求されている。これにより、固体撮像装置に対して、転送周波数の高速化が求められている。
転送周波数の高速化、即ち、高速転送を可能にする技術として、垂直電荷転送部において、シャント配線と転送電極とを、垂直方向に延在する遮光膜を介して接続する技術が知られている(例えば、特許文献1を参照。)。
ただし、特許文献1に示すように垂直方向にシャント配線が配置される場合、シャント配線と接続される複数個の遮光膜の全てに、同時に同レベルの電圧が印加されるわけではない。これにより、隣接する遮光膜に印加される電圧のレベルが異なってしまう。
また、遮光膜は、垂直方向に配列された画素列毎に設けられている。これにより、遮光膜から半導体基板の表層側の界面までの間に印加される電圧のレベルは、隣接する画素列間で異なる。このため、特許文献1に開示された固体撮像装置では、電荷が受光部から垂直電荷転送部に読み出される際に、半導体基板の界面準位に捕獲されて消失する電荷の量も、隣接する画素列間で異なってしまう。
これらにより、従来の固体撮像装置は、出力ムラが発生してしまうという課題を有する。
上記課題を解決するために、水平方向にシャント配線を形成する技術が知られている(例えば、特許文献2参照。)。
以下、特許文献2に開示されている従来の固体撮像装置について、図7A〜図7Cを参照して説明する。
図7Aは、従来の固体撮像装置100の受光部111及び垂直電荷転送部113の平面図である。図7Bは、図7Aに示すY0−Y1面の断面図である。図7Cは、図7Aに示すX0−X1面の断面図である。
従来の固体撮像装置100は、行列状に配置された複数の受光部111と、列毎に設けられた複数の垂直電荷転送部113とを備える。垂直電荷転送部113は、対応する列に配置された複数の受光部111により光電変換された信号電荷を、垂直方向(列方向)に転送したうえで、水平電荷転送部(図示せず)に出力する。なお、図7Aにおいて、垂直方向は横方向であり、水平方向は縦方向である。
この垂直電荷転送部113は、転送チャネル112と、絶縁膜102、105及び108と、複数の第1転送電極103aと、複数の第2転送電極103bと、絶縁領域104と、シャント配線107a及び107bと、遮光膜109と、コンタクト110a及び110bとを備える。
転送チャネル112は、垂直方向に延び、対応する列に配置された複数の受光部111とそれぞれ水平方向に連結される。
複数の第1転送電極103a及び複数の第2転送電極103bは、同一の階層に形成され、転送チャネル112上に配置される。また、一つの受光部111に対して、それぞれ一つの第1転送電極103a及び第2転送電極103bが配置される。また、複数の第1転送電極103a及び複数の第2転送電極103bは、垂直方向に交互に配置される。
絶縁領域104は、転送チャネル112の上方の第1転送電極103aと第2転送電極103bとの間に形成され、第1転送電極103aと第2転送電極103bとを絶縁する。この絶縁領域104の幅は、転送不良を発生させないために、0.05μm〜0.15μm程度である。
シャント配線107a及び107bは、第1転送電極103a及び第2転送電極103bの上方に形成され、複数の第1転送電極103a及び第2転送電極103bと一対一に対応する。シャント配線107aは、コンタクト110aを介して、第1転送電極103aと電気的に接続される。シャント配線107bは、コンタクト110bを介して、第2転送電極103bと電気的に接続される。このシャント配線107a及び107bは、第1転送電極103a及び第2転送電極103bよりも低い抵抗を有する。例えば、シャント配線107a及び107bはタングステン等の金属により構成され、第1転送電極103a及び第2転送電極103bは、ポリシリコンにより構成される。
絶縁膜105は、第1転送電極103a及び第2転送電極103bと、シャント配線107a及び107bとの間に形成される。
絶縁膜108は、シャント配線107a及び107b上に形成される。
遮光膜109は、絶縁膜108上に形成される。また、遮光膜109は、受光部111上に開口部114を有する。
ここで、2μm角程度の画素を構成する場合、水平方向に、受光部111間を通る部分の第1転送電極103aの幅W1は、0.45μm程度である。また、各行に配置されるシャント配線107a及び107bの本数は、1つの受光部111に対して配置された転送電極の数に等しく、本例では2本となる。また、シャント配線107a及び107bの幅W2は、例えば0.12μmであり、シャント配線107aとシャント配線107bとの間隔W3は、例えば0.16μmである。
次に、従来の固体撮像装置100の製造方法について説明する。
まず、図7B及び図7Cに示すように、半導体基板101の表面に、熱酸化法によって絶縁膜102を形成する。続いて、半導体基板101に対して種々のレジストパターンの形成とイオン注入とが行われる。これにより、受光部111、及び転送チャネル112が形成される。
次に、ポリシリコン膜等の導電膜を成膜した後、転送チャネル上の当該導電膜を分離することにより、第1転送電極103a及び第2転送電極103bを形成する。ここで、前述のように、絶縁領域104を0.05μm〜0.15μm程度の幅で形成する必要があるため、一般的には、まず、ハードマスクとして用いる絶縁膜105を、CVD法などを用いて導電膜上に堆積する。
具体的には、全面に絶縁膜105を形成した後、溝の幅が0.15μm〜0.30μm程度のレジストパターンを、フォトリソグラフィー法を用いて絶縁膜105上に形成する。次に、当該レジストパターンを用いて異方性エッチングを行い、絶縁膜105に溝を形成する。次に、形成された溝の側面に0.05μm〜0.10μmの酸化膜をCVD法などに堆積することにより、当該溝の側面にサイドウォールを形成する。これにより、当該溝を所望の幅に細める。
次に、溝を形成した絶縁膜105をハードマスクとして用いて、異方性エッチングを行なうことにより、導電膜を垂直方向に分離する溝が形成される。
次に、転送チャネル112上以外の領域の導電膜に対し、フォトリソグラフィー法を用いたエッチングを行いうことにより、第1転送電極103a及び第2転送電極103bを形成する。
次に、CVD法等を用いた成膜を行うことで、転送チャネル112上の第1転送電極103a及び第2転送電極103b間の分離領域(溝)を埋め込むように、絶縁領域104を形成する。
次に、絶縁膜5を貫通するようにコンタクト110a及び110bを形成する。次に、第1転送電極103a及び第2転送電極103b上を含む半導体基板101の上面全体を被覆する導電膜を成膜する。具体的には、例えば、CVD法又はスパッタリング法等を用いて、タングステン等の金属薄膜を成膜する。
次に、当該金属薄膜に対して、フォトリソグラフィー法を用いた異方性エッチングを行うことにより、シャント配線107a及び107bを形成する。ここで、シャント配線107aとシャント配線107bとの間隔W3を0.16μm程度にするために、当該エッチングを低選択比かつ寸法ロスの小さい条件に設定して行う。
次に、CVD法等を用いた成膜を行うことにより、絶縁膜108を堆積する。次に、絶縁膜108上に遮光性金属膜を堆積した後、フォトリソグラフィー法を用いて当該遮光性金属膜にエッチングを行うことにより、遮光膜109を形成する。
以上の工程により、図7A〜図7Cに示す構造が形成される。
この後、更に必要に応じて、レンズ素子等が形成される(図示せず)。
以上の構成により、従来の固体撮像装置100は、シャント配線107a及び107bと遮光膜109とが電気的に接続されないため、遮光膜109から半導体基板101の表層側の界面までの間に印加されている電圧のレベルは、各画素列間において同一となる。これにより、固体撮像装置100は、出力ムラの発生を低減できる。
特開平4−279059号公報 特開2006−41369号公報
しかしながら、固体撮像装置100では、第1転送電極103aと第2転送電極103bとの間の絶縁領域104は、上述したように、サイドウォール加工したハードマスクを用いて形成されるため、図7Bに示すように、ハードマスク上部が上に開いた形状となる。この状態で、シャント配線107a及び107bを形成するためのエッチングを行うと、絶縁領域104が削れることになる。さらに、このエッチングには、上述したように寸法ロスを抑制した低選択比条件が用いられるために、絶縁領域104が大きく(例えば0.1μm)削り込まれてしまう。
具体的には、図7A及び図7Bに示す領域120a及び120bの絶縁領域104が、図7Bに示すように削りこまれる。これにより、図7Bに示すように、絶縁領域104の上方に形成される遮光膜109と、第1転送電極103a及び第2転送電極103bとの距離が近くなるので、遮光膜109と、第1転送電極103a及び第2転送電極103bとの耐圧が低下することになる。
この耐圧の低下を回避するために、絶縁膜108を厚く(例えば0.2μm)堆積する方法が考えられる。しかしながら、絶縁膜108を厚くすると、遮光膜109と半導体基板101の界面との距離が大きくなる。さらに、絶縁膜108を厚くすると、開口部114幅は絶縁膜108の厚さの2倍小さくなる。これらにより、固体撮像装置100の感度及びスミア特性が低下するという別の課題が生じる。
また、シャント配線107a及び107bを形成するためのエッチングで絶縁領域104を大きく削り込まないように、当該エッチングに用いる選択比を大きくする方法も考えられる。しかしながら、選択比を大きくすることにより、エッチング時の寸法ロスが大きくなる(例えば0.1μm)ために、シャント配線107aとシャント配線107bとの間隔W3が例えば0.36μm程度まで広がってしまう。これにより、開口部114の垂直方向の幅が縮小するので、固体撮像装置100の感度及びスミア特性が低下してしまうという課題が生じる。
本発明は、上記課題を解決するものであり、感度及びスミア特性の低下を抑制できる固体撮像装置、及びその製造方法を提供することを目的とする。
上記目的を達成するために、本発明に係る固体撮像装置は、半導体基板と、前記半導体基板に行列状に形成され、入射光を信号電荷に変換する複数の受光部と、列毎に形成され、対応する列に形成された複数の前記受光部により変換された前記信号電荷を列方向に転送するための転送チャネルと、前記転送チャネル上に列方向に交互に配置されるとともに、同一の層に形成される複数の第1転送電極及び複数の第2転送電極と、前記転送チャネル上であり、かつ列方向に隣接する前記第1転送電極及び前記第2転送電極との間に形成される絶縁領域と、前記受光部の上方に形成され、前記受光部に入射する光の反射を防止するとともに、前記絶縁領域上に当該絶縁領域を覆うように形成される反射防止膜と、前記反射防止膜より上層に、行毎に形成され、対応する行に配置された複数の前記第2転送電極と電気的に接続される第1配線と、前記第1配線より上層に形成され、前記転送チャネルを覆うように形成されるとともに、前記複数の受光部の上方に開口部を有する遮光膜とを備える。
この構成によれば、本発明に係る固体撮像装置では、絶縁領域上に反射防止膜が形成される。これにより、第1配線を形成するためのエッチングの際に、絶縁領域が削り込まれることを防止できる。よって、本発明に係る固体撮像装置は、遮光膜と第1転送電極及び第2転送電極との耐圧を確保するために、遮光膜と第1転送電極及び第2転送電極との間の絶縁膜を厚くする必要がない。これにより、本発明に係る固体撮像装置は、遮光膜と、半導体基板の界面との距離を小さくでき、かつ遮光膜が有する開口部の幅も大きくできる。よって、本発明に係る固体撮像装置は、感度及びスミア特性の低下を抑制できる。
さらに、本発明に係る固体撮像装置では、第1配線を形成するためのエッチングの選択比を小さくした場合でも、当該エッチングにより絶縁領域が削り込まれることを防止できる。よって、寸法ロスを最大限に抑制する条件で当該エッチングを行うことができる。これにより、第1配線の幅を大きくできるので、高速転送を実現できる。
また、前記固体撮像装置は、さらに、前記反射防止膜より上層に、行毎に形成され、対応する行に配置された複数の前記第1転送電極の上方に形成され、対応する行に配置された複数の前記第1転送電極と電気的に接続される第2配線を備え、前記反射防止膜は、前記第1転送電極上かつ前記第2配線下の少なくとも一部の領域に形成されてもよい。
この構成によれば、本発明に係る固体撮像装置は、反射防止膜のパターンを大きくできる。これにより、反射防止膜の製造を容易に高精度で行うことができる。さらに、反射防止膜のパターンが大きくなることにより、平坦化効果も向上できる。
また、前記固体撮像装置は、さらに、前記第2配線のそれぞれと、当該第2配線に対応する行に配置された前記複数の第1転送電極とを電気的に接続する複数のコンタクトを備え、前記反射防止膜は、前記コンタクトが形成される領域を除き、前記複数の第1転送電極を覆うように形成されてもよい。
この構成によれば、本発明に係る固体撮像装置は、反射防止膜のパターンを大きくできる。これにより、反射防止膜の製造を容易に高精度で行うことができる。さらに、反射防止膜のパターンが大きくなることにより、平坦化効果も向上できる。
また、前記受光部の上方に形成された前記反射防止膜は、前記開口部内に形成され、前記受光部の上方に形成された前記反射防止膜の端部は、前記遮光膜下にまで延在しなくてもよい。
この構成によれば、本発明に係る固体撮像装置では、第1転送電極及び第2転送電極の側面において、遮光膜の端部と半導体基板との間に反射防止膜が介在しない。これにより、遮光膜の端部と半導体基板との間の膜厚が薄くなる。これにより、本発明に係る固体撮像装置は、この遮光膜の端部と半導体基板との間から入射する斜め入射光を抑制できる。よって、本発明に係る固体撮像装置は、低スミア化を実現できる。
また、前記絶縁領域上に当該絶縁領域を覆うように形成された前記反射防止膜は、当該絶縁領域に隣接する前記第1転送電極の上方の一部及び前記第2転送電極の上方の一部を覆い、前記第1転送電極上に形成された前記反射防止膜の行方向の端部は当該第1転送電極の側壁まで延在せず、前記第2転送電極上に形成された前記反射防止膜の行方向の端部は当該第2転送電極の側壁まで延在しなくてもよい。
この構成によれば、本発明に係る固体撮像装置では、第1転送電極及び第2転送電極の側壁と、当該側壁を覆う遮光膜との間に反射防止膜が形成されない。よって、本発明に係る固体撮像装置は、開口部の幅を広くできるので、高感度化を実現できる。
また、本発明に係る固体撮像装置の製造方法は、前記反射防止膜は、窒化珪素で構成されてもよい。
これによれば、本発明に係る固体撮像装置では、絶縁領域上に反射防止膜が形成される。これにより、第1配線を形成するためのエッチングの際に、絶縁領域が削り込まれることを防止できる。よって、本発明に係る固体撮像装置は、遮光膜と第1転送電極及び第2転送電極との耐圧を確保するために、遮光膜と第1転送電極及び第2転送電極との間の絶縁膜を厚くする必要がない。これにより、本発明に係る固体撮像装置は、遮光膜と、半導体基板の界面との距離を小さくでき、かつ遮光膜が有する開口部の幅も大きくできる。よって、本発明に係る固体撮像装置の製造方法は、感度及びスミア特性の低下を抑制できる固体撮像装置を製造できる。
さらに、本発明に係る固体撮像装置では、第1配線を形成するためのエッチングの選択比を小さくした場合でも、当該エッチングにより絶縁領域が削り込まれることを防止できる。よって、寸法ロスを最大限に抑制する条件で当該エッチングを行うことができる。これにより、本発明に係る固体撮像装置の製造方法は、第1配線の幅を大きくできるので、高速転送を実現できる固体撮像装置を製造できる。
また、半導体基板に行列状に形成され、入射光を信号電荷に変換する複数の受光部を形成する第1工程と、列毎に形成され、対応する列に形成された複数の前記受光部により変換された前記信号電荷を列方向に転送するための転送チャネルを形成する第2工程と、前記転送チャネル上に列方向に交互に配置されるとともに、同一の層に形成される複数の第1転送電極及び複数の第2転送電極を形成する第3工程と、前記転送チャネル上であり、かつ列方向に隣接する前記第1転送電極及び前記第2転送電極との間に形成される絶縁領域を形成する第4工程と、前記受光部の上方に形成され、前記受光部に入射する光の反射を防止するとともに、前記絶縁領域上に当該絶縁領域を覆うように形成される反射防止膜を形成する第5工程と、前記反射防止膜より上層に、行毎に形成され、対応する行に配置された複数の前記第2転送電極と電気的に接続される第1配線を形成する第6工程と、前記第1配線及び前記反射防止膜より上層に形成され、前記転送チャネルを覆うように形成されるとともに、前記複数の受光部の上方に開口部を有する遮光膜を形成する第7工程とを含む。
また、前記第6工程では、第1導電膜を形成したのち、当該第1導電膜にエッチングを行うことにより、前記第1配線を形成してもよい。
また、前記第3工程は、第2導電膜を形成する工程と、前記第2導電膜上に絶縁膜を形成する工程と、前記絶縁膜にエッチングを行うことにより、第1絶縁膜パターンを形成する工程と、前記第1絶縁膜パターンの側壁にサイドウォールを形成することにより、前記第1絶縁膜パターンと前記サイドウォールとを含む第2絶縁膜パターンを形成する工程と、前記第2絶縁膜パターンをマスクとして用いて、前記第2導電膜にエッチングを行うことにより、前記第1転送電極と前記第2転送電極とを形成する工程とを含んでもよい。
なお、本発明は、このような固体撮像装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現したり、このような固体撮像装置を備えるデジタルスチルカメラ、又はデジタルビデオカメラとして実現したりできる。
以上より、本発明は、感度及びスミア特性の低下を抑制できる固体撮像装置、及びその製造方法を提供できる。
以下、本発明の実施の形態における固体撮像装置及びその製造方法について、図面を参照しながら説明する。
(実施の形態1)
本発明の実施の形態1に係る固体撮像装置は、転送電極間に形成される絶縁領域上に反射防止膜を形成する。これにより、本発明の実施の形態1に係る固体撮像装置は、シャント配線を形成する際のエッチングにより、絶縁領域が削り込まれることを防止できるので、感度及びスミア特性の低下を抑制できる。
以下、本発明の実施の形態1に係る固体撮像装置20の構造について、図1A〜図1Dを参照しながら説明する。図1A〜図1Dに示す固体撮像装置20は、シャント配線構造を有するCCD型固体撮像装置である。
図1Aは、固体撮像装置20の一部分を拡大して示す平面図であり、具体的には、固体撮像装置20の受光部11及び垂直電荷転送部13の平面図である。図1Bは、図1Aに示すY0−Y1面の断面図である。図1Cは、図1Aに示すX0−X1面の断面図である。図1Dは、図1Aに示すX2−X3面の断面図である。
固体撮像装置20は、半導体基板1と、行列状に配置された複数の受光部11と、列毎に設けられた複数の垂直電荷転送部13とを備える。
半導体基板1は、例えば、n型のシリコン基板である。
複数の受光部11は、半導体基板1に形成され、入射光を信号電荷に光電変換する。
垂直電荷転送部13は、半導体基板1に形成される。また、垂直電荷転送部13は、対応する列に配置された複数の受光部11により光電変換された信号電荷を読み出し、読み出した信号電荷を垂直方向(列方向)に転送したうえで、水平電荷転送部(図示せず)に出力する。なお、図1Aにおいて、垂直方向(列方向)は横方向であり、水平方向(行方向)は縦方向である。
垂直電荷転送部13は、転送チャネル12と、絶縁膜2と、複数の第1転送電極3aと、複数の第2転送電極3bと、絶縁領域4と、絶縁膜5及び8と、シャント配線7a及び7bと、遮光膜9と、コンタクト10a及び10bとを備える。
転送チャネル12は、半導体基板1の表層側に形成されたn型の拡散層である。また、転送チャネル12は、垂直方向に延び、対応する列に配置された複数の受光部11とそれぞれ水平方向に連結される。この転送チャネル12は、対応する列に配置された複数の受光部11により光電変換された信号電荷を読み出し、読み出した信号電荷を垂直方向に転送したうえで、水平電荷転送部(図示せず)に出力するために用いられる。
絶縁膜2は、ゲート絶縁膜であり、転送チャネル12上を含む半導体基板1の表層側の界面を覆うように形成される。例えば、絶縁膜2は、シリコン酸化膜であり、絶縁膜2の厚みは、10〜100nmが好ましく、更に25nm程度がより好ましい。
複数の第1転送電極3a及び複数の第2転送電極3bは、同一の階層に形成される。また、複数の第1転送電極3a及び複数の第2転送電極3bは、転送チャネル12の上方に、絶縁膜2を介して形成される。例えば、第1転送電極3a及び第2転送電極3bは、ポリシリコンにより構成される。また、複数の第1転送電極3a及び複数の第2転送電極3bの膜厚は、0.1〜0.3μmが好ましく、更に0.2μm程度がより好ましい。
また、第1転送電極3a及び第2転送電極3bは、転送チャネル12を横切るように形成される。
また、一つの受光部11に対して、それぞれ一つの第1転送電極3a及び第2転送電極3bが配置される。また、複数の第1転送電極3a及び複数の第2転送電極3bは、垂直方向に沿って転送チャネル12上に交互に配置される。
また、同一の行に配置される複数の第1転送電極3aは、水平方向(行方向)に隣接する垂直電荷転送部13が備える別の第1転送電極3aと水平方向にポリシリコン層で連結される。また、第1転送電極3a同士を接続する部分の配線は、受光部11と重ならないように、垂直方向において隣接する受光部11の間を通るように形成される。例えば、第1転送電極3a同士を接続する部分の配線の幅W1は0.3〜0.5μmが好ましく、更に0.45μm程度がより好ましい。
また、第2転送電極3bは、それぞれが水平方向に分離された状態で配置される。
絶縁領域4は、転送チャネル12上であり、かつ垂直方向に隣接する第1転送電極3aと第2転送電極3bとの間に形成され、当該第1転送電極3aと当該第2転送電極3bとを絶縁する。この絶縁領域4の幅W4は、転送不良を発生させないために、0.05μm〜0.15μm程度である。また、絶縁領域4は、例えば、酸化シリコンで構成される。
絶縁膜5は、第1転送電極3a及び第2転送電極3bの上に形成される。例えば、絶縁膜5は、シリコン酸化膜であり、絶縁膜5の厚さは、0.05〜0.2μmが好ましく、更に0.1μm程度がより好ましい。
反射防止膜6は、受光部11の上方の絶縁膜2上に形成され、受光部11に入射する光の反射を防止する。この反射防止膜6は、絶縁膜2よりも高屈折率を有する材料で構成され、例えば、窒化珪素で構成される。さらに、反射防止膜6は、第1転送電極3aと第2転送電極3bとの間に形成される絶縁領域4上に、当該絶縁領域4を覆うように形成される。また、この反射防止膜6は、垂直方向に隣接する第1転送電極3a上に形成される絶縁膜5と第2転送電極3b上に形成される絶縁膜5と間の溝を埋めるように、当該絶縁膜5上の一部を覆うように形成される。例えば、当該絶縁領域4を覆う反射防止膜6の幅W5(垂直方向の長さ)は、0.1〜0.5μmが好ましく、更に0.3μm程度がより好ましい。また、反射防止膜6の膜厚は、30〜100nmが好ましく、更に50nm程度がより好ましい。
また、図1Cに示すように、受光部11上の反射防止膜6の水平方向の端部から第2転送電極3bの端部までの距離L1は、例えば0.15〜0.30μmの幅に設定される。これにより、遮光膜9と半導体基板1の界面との距離を小さくできるとともに、開口部14の幅を大きくできる。よって、固体撮像装置20は、高感度化及び低スミア化を実現できる。
また、ここでは、受光部11の上方に形成される反射防止膜6と同一工程及び同一材料(窒化珪素)で構成された高屈折率を有する膜(窒化珪素膜)を反射防止膜6と呼ぶ。なお、受光部11上に形成された反射防止膜6以外は、受光部11に入射する光の反射を防止する機能を必ずしも有さない。
シャント配線7a及び7bは、絶縁膜5及び反射防止膜6上に形成される。また、シャント配線7a及び7bは、各列に配置された複数の第1転送電極3a及び第2転送電極3bと一対一に対応し、行方向に延在するように行毎に形成される。シャント配線7aは、コンタクト10aを介して、対応する行に配置された複数の第1転送電極3aと電気的に接続される。シャント配線7bは、コンタクト10bを介して、対応する行に配置された複数の第2転送電極3bと電気的に接続される。このシャント配線7a及び7bは、第1転送電極3a及び第2転送電極3bよりも低い抵抗を有する。例えば、シャント配線7a及び7bはタングステン等の金属により構成される。
また、シャント配線7a及び7bは、第1転送電極3aの上方に形成され、当該第1転送電極3a上を延在する。
また、各行に配置されるシャント配線7a及び7bの本数は、1つの受光部11に対して配置された転送電極の数に等しく、本例では2本となる。また、シャント配線7a及び7bの幅W2は、0.08〜0.15μmが好ましく、更に0.12μm程度がより好ましく、シャント配線7aとシャント配線7bとの間隔W3は、0.10〜0.20μmが好ましく、更に0.16μm程度がより好ましい。また、シャント配線7a及び7bの厚さは、例えば60nm〜120nmである。
絶縁膜8は、シャント配線7a及び7b上に形成される。例えば、絶縁膜8は、シリコン酸化膜である。
遮光膜9は、絶縁膜8上に形成される。また、遮光膜9は、受光部11上に開口部14を有する。また、遮光膜9は、転送チャネル12の上方に当該転送チャネル12を覆うように形成され、入射光が転送チャネル12(垂直電荷転送部13)に入射することを防止する。例えば、遮光膜9はタングステン等の金属で構成される。また、遮光膜9の膜厚は、80〜300nmが好ましく、更に100nm程度がより好ましい。
次に、実施の形態1に係る固体撮像装置20の製造方法について、図2A〜図4Dを用いて説明する。図2A〜図4Dは、図1A〜図1Dに示す固体撮像装置20の製造過程における構造を示す図である。図2A、図3A及び図4Aは固体撮像装置20の製造過程における平面図である。図2Bは、図2Aに示すY0−Y1面の断面図であり、図2Cは、図2Aに示すX0−X1面の断面図である。図3Bは、図3Aに示すY0−Y1面の断面図であり、図3Cは、図3Aに示すX0−X1面の断面図である。図4Bは、図4Aに示すY0−Y1面の断面図であり、図4Cは、図4Aに示すX0−X1面の断面図であり、図4Dは、図4Aに示すX2−X3面の断面図である。
まず、図2A〜図2Cに示すように、熱酸化法によって半導体基板1の表面に絶縁膜2が形成される。続いて、半導体基板1に対して種々のレジストパターンの形成とイオン注入とが行われる。これにより、受光部11及び転送チャネル12が形成される。
次に、絶縁膜2上にポリシリコン膜等の導電膜3cを成膜した後、当該導電膜3cを分離することにより、第1転送電極3a及び第2転送電極3bを形成する工程を実施する。
前述のように、第1転送電極3a及び第2転送電極3bを0.05μm〜0.15μm程度の間隔で形成するために、まず図2B及び2Cに示すように、ハードマスクとして用いる絶縁膜5aを、CVD法などを用いて導電膜3c上に堆積する。
次に、垂直方向に0.15μm〜0.30μm程度の幅を有するレジストパターンを、フォトリソグラフィー法を用いて形成したうえで、当該レジストパターンを用いて異方性エッチングを行うことにより、絶縁膜5aに溝を形成する。これにより、図2A〜図2Cに示す構造が形成される。
次に、図2Dに示すように、0.05μm〜0.10μmの幅の絶縁膜であるサイドウォールを絶縁膜5aの側壁に、CVD法などを用いて形成する。例えば、このサイドウォールは酸化シリコンである。これにより、絶縁膜5aの溝を所望の幅(0.05μm〜0.15μm)に細めることができる。次に、サイドウォールを含む絶縁膜5aをハードマスクとして用いて、導電膜3cに異方性エッチングを行なうことにより、導電膜3cを垂直方向に分離する溝が形成される。
次に、転送チャネル12上以外の領域の導電膜3cに対し、フォトリソグラフィー法を用いたエッチングを行うことにより、第1転送電極3a及び第2転送電極3bを形成する。以上により、図3A〜図3Cに示す構造が形成される。
次に、CVD法等を用いた成膜を行うことによって、転送チャネル12上の第1転送電極3a及び第2転送電極3b間の溝を埋め込む。これにより、絶縁領域4が形成される。
その後、CVD法等を用いて反射防止膜6として全面に窒化珪素膜を成膜した後、フォトリソグラフィー法を用いて当該窒化珪素膜にエッチングを行うことにより、絶縁領域4の上面を覆うように、また受光部11の上面の少なくとも一部を覆うように、反射防止膜6を形成する。
以上の工程により、図4A〜図4Dに示す構造が形成される。
次に、第1転送電極3a上及び第2転送電極3b上の絶縁膜5に、それぞれ絶縁膜5を貫通するコンタクト10a及び10bを形成する。次に、第1転送電極3a及び第2転送電極3bを含む半導体基板1の上面全体を被覆する金属薄膜を成膜する。具体的には、例えば、CVD法又はスパッタリング法等を用いて、タングステン等の金属薄膜を成膜する。
次に、導電膜に対して、フォトリソグラフィー法を用いた異方性エッチングを行うことにより、シャント配線7a及び7bを形成する。
ここで、シャント配線7aとシャント配線7bとの間隔W3を0.16μm程度にするために、シャント配線7a及び7bを形成するためのエッチングを、低選択比で寸法ロスの小さい条件に設定して行う。
本発明の実施の形態1に係る固体撮像装置20では、絶縁領域4の上面に反射防止膜6が延在して、絶縁領域4を保護しているために、低選択比のエッチング条件を選択しても、絶縁領域4を削ることがない。
次に、CVD法等を用いた成膜によって、絶縁膜8を堆積する。次に、絶縁膜8の上に遮光性金属膜を堆積する。次に、当該遮光性金属膜に、フォトリソグラフィー法を用いたエッチングを行うことにより、遮光膜9を形成する。以上の工程により、図1A〜図1Dに示す構造が形成される。
この後、更に必要に応じて、レンズ素子等が形成される(図示せず)。
以上のように、本発明の実施の形態1に係る固体撮像装置20では、絶縁領域4上に反射防止膜6を形成する。これにより、シャント配線7a及び7bを形成するためのエッチングの際に、絶縁領域4が削り込まれることを防止できる。よって、本発明の実施の形態1に係る固体撮像装置20は、遮光膜9と第1転送電極3a及び第2転送電極3bとの耐圧を確保するために、絶縁膜8を厚く(例えば0.2μm)する必要がなく、例えば、絶縁膜8の膜厚を0.1μm程度にできる。これにより、本発明の実施の形態1に係る固体撮像装置20は、遮光膜9と、半導体基板1の界面との距離を小さくでき、かつ開口部14の幅も大きくできる。よって、本発明の実施の形態1に係る固体撮像装置20は、高感度化及び低スミア化を実現できる。
また、本発明の実施の形態1に係る固体撮像装置20では、シャント配線7a及び7bを形成するためのエッチングの選択比を小さくした場合でも、当該エッチングにより絶縁領域4が削り込まれることを防止できる。よって、寸法ロスを最大限に抑制する条件で当該エッチングを行うことができる。これにより、シャント配線7a及び7bの幅を大きくできるので、固体撮像装置20は、高速転送を実現できる。
また、固体撮像装置20では、絶縁領域4上に反射防止膜6を形成することにより、平坦性を向上できる。
(実施の形態2)
本発明の実施の形態2に係る固体撮像装置21は、実施の形態1に係る固体撮像装置20の変形例であり、実施の形態1に係る固体撮像装置20に比べて、広い領域に反射防止膜6が形成される。
以下、本発明の実施の形態2に係る固体撮像装置21について図5A及び図5Bを参照して説明する。
図5Aは、固体撮像装置21の一部分を拡大して示す平面図であり、具体的には、固体撮像装置21の受光部11及び垂直電荷転送部13の平面図である。図5Bは、図5Aに示すY0−Y1面の断面図である。また、図5Aに示すX0−X1面及びX2−X3面の断面図は、図1C及び図1Dと同様である。
また、実施の形態1と同様の構成については、説明を省略し、以下では、実施の形態1との相違点のみを説明する。
図5A及び図5Bに示すように、反射防止膜6は、シャント配線7a下にも形成される。また、反射防止膜6は、第1転送電極3aの上方のシャント配線7b下にも形成される。また、反射防止膜6は、コンタクト10aが形成される領域を除き、複数の第1転送電極3aを覆うように形成される。
以上の構成により、本発明の実施の形態2に係る固体撮像装置21は、実施の形態1に係る固体撮像装置20と同様に、シャント配線7a及び7bを形成するためのエッチングの際に、絶縁領域4が削り込まれることを防止できる。これにより、本発明の実施の形態2に係る固体撮像装置21は、実施の形態1に係る固体撮像装置20と同様に、高感度化、低スミア化及び高速転送を実現できる。
さらに、本発明の実施の形態2に係る固体撮像装置21は、実施の形態1に係る固体撮像装置20に比べ、反射防止膜6のパターンが大きくなるので、反射防止膜6の製造を容易に高精度で行うことができる。さらに、反射防止膜6のパターンが大きくなることにより、平坦化効果も向上できる。
なお、固体撮像装置21の製造方法は実施の形態1と同様であるため、説明を省略する。
(実施の形態3)
本発明の実施の形態3に係る固体撮像装置22は、実施の形態1に係る固体撮像装置20の変形例であり、実施の形態1に係る固体撮像装置20に比べて、狭い領域に反射防止膜6が形成される。
以下、本発明の実施の形態3に係る固体撮像装置22について図6A〜図6Cを参照して説明する。
図6Aは、固体撮像装置22の一部分を拡大して示す平面図であり、具体的には、固体撮像装置22の受光部11及び垂直電荷転送部13の平面図である。図6Bは、図6Aに示すY0−Y1面の断面図である。図6Cは、図6Aに示すX2−X3面の断面図である。また、図6Aに示すX0−X1面の断面図は、図1Cと同様である。
なお、実施の形態1と同様の構成については、説明を省略し、実施の形態1との相違点のみを説明する。
図6A〜図6Cに示すように、反射防止膜6は、絶縁領域4上に当該絶縁領域4を覆うように形成される。さらに、反射防止膜6は、受光部11の上方の一部に形成され、その他の領域には、形成されない。
具体的には、受光部11の上方に形成された反射防止膜6は、開口部14内に形成される。また、図6Cに示すように、受光部11の上方に形成された反射防止膜6の端部は、遮光膜9下にまで延在しない。つまり、受光部11の上方に形成された反射防止膜6と、絶縁領域4上に形成された反射防止膜6とは分離される。
また、図6Cに示すように、第2転送電極3bの上方のうち、絶縁領域4に垂直方向に隣接する領域に形成された反射防止膜6の水平方向の端部は、第2転送電極3bの側壁まで延在しない。同様に、第1転送電極3aの上方のうち、絶縁領域4に垂直方向に隣接する領域に形成された反射防止膜6の水平方向の端部は、第1転送電極3aの側壁まで延在しない(図示せず)。なお、この絶縁領域4に垂直方向に隣接する、第1転送電極3a側の領域における水平方向の断面図は、図6Cと同様である。
以上の構成により、本発明の実施の形態3に係る固体撮像装置22は、実施の形態1に係る固体撮像装置20と同様に、シャント配線7a及び7bを形成するためのエッチングの際に、絶縁領域4が削り込まれることを防止できる。これにより、本発明の実施の形態3に係る固体撮像装置22は、実施の形態1に係る固体撮像装置20と同様に、高感度化、低スミア化及び高速転送を実現できる。
さらに、本発明の実施の形態3に係る固体撮像装置22では、第1転送電極3a及び第2転送電極3bの側面において、遮光膜9の端部と半導体基板1との間に反射防止膜6が介在しない。これにより、遮光膜9の端部と半導体基板1との間の膜厚が薄くなる。具体的には、図1Dに示すように、実施の形態1に係る固体撮像装置20では、第2転送電極3bの側面において、遮光膜9の端部の下に、反射防止膜6が形成される。よって、この場合の遮光膜9の端部と半導体基板1との間の膜厚W6は、絶縁膜2と反射防止膜6の膜厚の和となる。一方、実施の形態3に係る固体撮像装置22では、図6Cに示すように、遮光膜9の端部の下に、反射防止膜6が形成されないので、遮光膜9の端部と半導体基板1との間の膜厚W7を小さくできる。
ここで、遮光膜9の端部と半導体基板1との間の膜厚が大きい場合、そこから入射する斜め入射光により、スミアが悪化する問題がある。本発明の実施の形態3に係る固体撮像装置22では、この遮光膜9の端部と半導体基板1との間の膜厚W7とを小さくすることにより、そこから入射する斜め入射光が抑制される。これにより、本発明の実施の形態3に係る固体撮像装置22は、低スミア化を実現できる。
さらに、図1Dに示すように、実施の形態1に係る固体撮像装置20では、第2転送電極3bの側壁と、当該側壁を覆う遮光膜9との間にも反射防止膜6が形成されている。これにより、開口部14の水平方向の幅L2が狭くなってしまう。一方、実施の形態3に係る固体撮像装置22では、図6Cに示すように、第2転送電極3bの側壁と、当該側壁を覆う遮光膜9との間に反射防止膜6が形成されない。よって、実施の形態3に係る固体撮像装置22は、実施の形態1に係る固体撮像装置20に比べて開口部14の水平方向の幅L3を広くできる。これにより、本発明の実施の形態3に係る固体撮像装置22は、高感度化を実現できる。
なお、固体撮像装置22の製造方法は実施の形態1と同様であるため、説明を省略する。
また、本発明は、以上に記載した実施の形態1〜3の説明に限定されず、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
例えば、上記実施の形態1〜3で挙げた数値及び材料等は一例であり、本発明は、これらに限定されるものではない。
また、上記図において、各構成要素の角部及び辺を直線的に記載しているが、製造上の理由により、角部及び辺が丸みをおびたものも本発明に含まれる。
本発明は、固体撮像装置に適用でき、例えば、デジタルスチルカメラ及びデジタルビデオカメラに適用できる。
本発明の実施の形態1に係る固体撮像装置の平面図である。 本発明の実施の形態1に係る固体撮像装置のY方向の断面図である。 本発明の実施の形態1に係る固体撮像装置のX方向の断面図である。 本発明の実施の形態1に係る固体撮像装置のX方向の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程における平面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程におけるY方向の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程におけるX方向の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程におけるY方向の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程における平面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程におけるY方向の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程におけるX方向の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程における平面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程におけるY方向の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程におけるX方向の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程におけるX方向の断面図である。 本発明の実施の形態2に係る固体撮像装置の平面図である。 本発明の実施の形態2に係る固体撮像装置のY方向の断面図である。 本発明の実施の形態3に係る固体撮像装置の平面図である。 本発明の実施の形態3に係る固体撮像装置のY方向の断面図である。 本発明の実施の形態3に係る固体撮像装置のX方向の断面図である。 従来の固体撮像装置の平面図である。 従来の固体撮像装置のY方向の断面図である。 従来の固体撮像装置のX方向の断面図である。
1、101 基板
2、102 絶縁膜
3a、103a 第1転送電極
3b、103b 第2転送電極
3c 導電膜
4、104 絶縁領域
5、5a、105 絶縁膜
6 反射防止膜
7a、7b、107a、107b シャント配線
8、108 絶縁膜
9、109 遮光膜
10a、10b、110a、110b コンタクト
11、111 受光部
12、112 転送チャネル
13、113 垂直電荷転送部
14、114 開口部
20、21、22、100 固体撮像装置

Claims (9)

  1. 半導体基板と、
    前記半導体基板に行列状に形成され、入射光を信号電荷に変換する複数の受光部と、
    列毎に形成され、対応する列に形成された複数の前記受光部により変換された前記信号電荷を列方向に転送するための転送チャネルと、
    前記転送チャネル上に列方向に交互に配置されるとともに、同一の層に形成される複数の第1転送電極及び複数の第2転送電極と、
    前記転送チャネル上であり、かつ列方向に隣接する前記第1転送電極及び前記第2転送電極との間に形成される絶縁領域と、
    前記受光部の上方に形成され、前記受光部に入射する光の反射を防止するとともに、前記絶縁領域上に当該絶縁領域を覆うように形成される反射防止膜と、
    前記反射防止膜より上層に、行毎に形成され、対応する行に配置された複数の前記第2転送電極と電気的に接続される第1配線と、
    前記第1配線より上層に形成され、前記転送チャネルを覆うように形成されるとともに、前記複数の受光部の上方に開口部を有する遮光膜とを備える
    固体撮像装置。
  2. 前記固体撮像装置は、さらに、
    前記反射防止膜より上層に、行毎に形成され、対応する行に配置された複数の前記第1転送電極の上方に形成され、対応する行に配置された複数の前記第1転送電極と電気的に接続される第2配線を備え、
    前記反射防止膜は、前記第1転送電極上かつ前記第2配線下の少なくとも一部の領域に形成される
    請求項1記載の固体撮像装置。
  3. 前記固体撮像装置は、さらに、
    前記第2配線のそれぞれと、当該第2配線に対応する行に配置された前記複数の第1転送電極とを電気的に接続する複数のコンタクトを備え、
    前記反射防止膜は、前記コンタクトが形成される領域を除き、前記複数の第1転送電極を覆うように形成される
    請求項2記載の固体撮像装置。
  4. 前記受光部の上方に形成された前記反射防止膜は、前記開口部内に形成され、
    前記受光部の上方に形成された前記反射防止膜の端部は、前記遮光膜下にまで延在しない
    請求項1記載の固体撮像装置。
  5. 前記絶縁領域上に当該絶縁領域を覆うように形成された前記反射防止膜は、当該絶縁領域に隣接する前記第1転送電極の上方の一部及び前記第2転送電極の上方の一部を覆い、
    前記第1転送電極上に形成された前記反射防止膜の行方向の端部は当該第1転送電極の側壁まで延在せず、
    前記第2転送電極上に形成された前記反射防止膜の行方向の端部は当該第2転送電極の側壁まで延在しない
    請求項1又は4記載の固体撮像装置。
  6. 前記反射防止膜は、窒化珪素で構成される
    請求項1〜5のいずれか1項に記載の固体撮像装置。
  7. 半導体基板に行列状に形成され、入射光を信号電荷に変換する複数の受光部を形成する第1工程と、
    列毎に形成され、対応する列に形成された複数の前記受光部により変換された前記信号電荷を列方向に転送するための転送チャネルを形成する第2工程と、
    前記転送チャネル上に列方向に交互に配置されるとともに、同一の層に形成される複数の第1転送電極及び複数の第2転送電極を形成する第3工程と、
    前記転送チャネル上であり、かつ列方向に隣接する前記第1転送電極及び前記第2転送電極との間に形成される絶縁領域を形成する第4工程と、
    前記受光部の上方に形成され、前記受光部に入射する光の反射を防止するとともに、前記絶縁領域上に当該絶縁領域を覆うように形成される反射防止膜を形成する第5工程と、
    前記反射防止膜より上層に、行毎に形成され、対応する行に配置された複数の前記第2転送電極と電気的に接続される第1配線を形成する第6工程と、
    前記第1配線及び前記反射防止膜より上層に形成され、前記転送チャネルを覆うように形成されるとともに、前記複数の受光部の上方に開口部を有する遮光膜を形成する第7工程とを含む
    固体撮像装置の製造方法。
  8. 前記第6工程では、第1導電膜を形成したのち、当該第1導電膜にエッチングを行うことにより、前記第1配線を形成する
    請求項7記載の固体撮像装置の製造方法。
  9. 前記第3工程は、
    第2導電膜を形成する工程と、
    前記第2導電膜上に絶縁膜を形成する工程と、
    前記絶縁膜にエッチングを行うことにより、第1絶縁膜パターンを形成する工程と、
    前記第1絶縁膜パターンの側壁にサイドウォールを形成することにより、前記第1絶縁膜パターンと前記サイドウォールとを含む第2絶縁膜パターンを形成する工程と、
    前記第2絶縁膜パターンをマスクとして用いて、前記第2導電膜にエッチングを行うことにより、前記第1転送電極と前記第2転送電極とを形成する工程とを含む
    請求項7又は8記載の固体撮像装置の製造方法。
JP2009021007A 2009-01-30 2009-01-30 固体撮像装置及びその製造方法 Pending JP2010177599A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009021007A JP2010177599A (ja) 2009-01-30 2009-01-30 固体撮像装置及びその製造方法
US12/691,919 US8148755B2 (en) 2009-01-30 2010-01-22 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021007A JP2010177599A (ja) 2009-01-30 2009-01-30 固体撮像装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2010177599A true JP2010177599A (ja) 2010-08-12

Family

ID=42396969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021007A Pending JP2010177599A (ja) 2009-01-30 2009-01-30 固体撮像装置及びその製造方法

Country Status (2)

Country Link
US (1) US8148755B2 (ja)
JP (1) JP2010177599A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548213B2 (en) 2014-02-25 2017-01-17 International Business Machines Corporation Dielectric isolated fin with improved fin profile

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495503B1 (en) * 1991-01-17 1997-03-26 Sony Corporation CCD imager
JP3160915B2 (ja) 1991-01-17 2001-04-25 ソニー株式会社 Ccd撮像素子
JP3204216B2 (ja) * 1998-06-24 2001-09-04 日本電気株式会社 固体撮像装置およびその製造方法
JP2000196060A (ja) * 1998-12-24 2000-07-14 Nec Corp 固体撮像装置およびその製造方法
JP4159306B2 (ja) * 2002-04-23 2008-10-01 富士フイルム株式会社 固体撮像素子およびその製造方法
JP2004200321A (ja) * 2002-12-17 2004-07-15 Fuji Film Microdevices Co Ltd 固体撮像素子およびその製造方法
JP4279059B2 (ja) 2003-06-12 2009-06-17 株式会社リコー 光走査装置および画像形成装置
JP2006013460A (ja) * 2004-05-21 2006-01-12 Fuji Film Microdevices Co Ltd 固体撮像素子の製造方法および固体撮像素子
JP4711645B2 (ja) * 2004-06-25 2011-06-29 富士フイルム株式会社 固体撮像素子およびその製造方法
JP4725049B2 (ja) * 2004-07-29 2011-07-13 ソニー株式会社 固体撮像装置およびその製造方法
JP2006179592A (ja) * 2004-12-21 2006-07-06 Fuji Film Microdevices Co Ltd 固体撮像素子形成用基板、これを用いた固体撮像素子およびその製造方法
JP4843951B2 (ja) * 2005-01-27 2011-12-21 ソニー株式会社 固体撮像装置の製造方法、固体撮像装置およびカメラ
US7298955B2 (en) * 2005-03-30 2007-11-20 Fujifilm Corporation Solid-state image pickup element and method of producing the same
JP4456040B2 (ja) * 2005-06-17 2010-04-28 パナソニック株式会社 固体撮像素子
JP2007048893A (ja) * 2005-08-09 2007-02-22 Fujifilm Corp 固体撮像素子およびその製造方法
JP2007080941A (ja) * 2005-09-12 2007-03-29 Fujifilm Corp 固体撮像素子およびその製造方法
JP5037922B2 (ja) * 2006-12-08 2012-10-03 パナソニック株式会社 固体撮像装置
US7701024B2 (en) * 2006-12-13 2010-04-20 Panasonic Corporation Solid-state imaging device, manufactoring method thereof and camera
JP2009021379A (ja) * 2007-07-11 2009-01-29 Panasonic Corp 固体撮像装置およびそれを備えたカメラ、固体撮像装置の製造方法
US7812380B2 (en) * 2007-10-03 2010-10-12 Panasonic Corporation Solid-state imaging device and manufacturing method of the same
JP2009252973A (ja) * 2008-04-04 2009-10-29 Panasonic Corp 固体撮像素子およびその製造方法
JP2011151139A (ja) * 2010-01-20 2011-08-04 Panasonic Corp 固体撮像素子の製造方法および固体撮像素子

Also Published As

Publication number Publication date
US20100193844A1 (en) 2010-08-05
US8148755B2 (en) 2012-04-03

Similar Documents

Publication Publication Date Title
US10068939B2 (en) Solid-state imaging device, manufacturing method thereof, and camera with arranged pixel combinations alternatively
US10418397B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP4117672B2 (ja) 固体撮像素子及び固体撮像装置、並びにこれらの製造方法
US9171799B2 (en) Photoelectric conversion apparatus, image pickup system, and manufacturing method therefor
JP2009021415A (ja) 固体撮像装置およびその製造方法
JP2012182426A (ja) 固体撮像装置、固体撮像装置を用いた撮像システム及び固体撮像装置の製造方法
WO2013018280A1 (ja) 固体撮像装置とその製造方法
KR101133901B1 (ko) 고체 촬상 장치의 제조 방법, 고체 촬상 장치 및 카메라
JP5296406B2 (ja) 固体撮像装置及びその製造方法
JP2010182789A (ja) 固体撮像素子、撮像装置、固体撮像素子の製造方法
US10304895B2 (en) Method for manufacturing solid-state image pickup apparatus, solid-state image pickup apparatus, and image pickup system including the same
JP2011082386A (ja) 固体撮像素子及びその製造方法並びに撮像装置
JP5885721B2 (ja) 固体撮像装置の製造方法
US8247847B2 (en) Solid-state imaging device and manufacturing method therefor
KR100228037B1 (ko) 고체촬상소자 및 그 제조방법
JP2008147378A (ja) 固体撮像装置
JP2010177599A (ja) 固体撮像装置及びその製造方法
JP2006344914A (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2010098113A (ja) Ccd型固体撮像装置およびその製造方法
JP2008027980A (ja) 固体撮像装置及びその製造方法
JP2005277404A (ja) 固体撮像素子及び固体撮像素子の製造方法
WO2011155182A1 (ja) 固体撮像素子
JP2010109155A (ja) 固体撮像装置およびその製造方法
US20070034893A1 (en) Solid-state image pickup device and manufacturing method of the same
JP2010182790A (ja) 固体撮像素子、撮像装置、固体撮像素子の製造方法