JP2010165621A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2010165621A
JP2010165621A JP2009008670A JP2009008670A JP2010165621A JP 2010165621 A JP2010165621 A JP 2010165621A JP 2009008670 A JP2009008670 A JP 2009008670A JP 2009008670 A JP2009008670 A JP 2009008670A JP 2010165621 A JP2010165621 A JP 2010165621A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
water circulation
temperature
circulation pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009008670A
Other languages
English (en)
Inventor
Takuboku Tezuka
卓睦 手塚
Yoshiaki Naganuma
良明 長沼
Hiroki Tanaka
浩己 田中
Osamu Yumita
修 弓田
Nobukazu Mizuno
伸和 水野
Koji Fuji
公志 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009008670A priority Critical patent/JP2010165621A/ja
Publication of JP2010165621A publication Critical patent/JP2010165621A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】発電停止時の燃料電池の温度低下を極力抑制させる。
【解決手段】燃料電池2の発電が停止してから発電停止状態のままで所定時間が経過したときに、冷却水循環ポンプ54を駆動させ、駆動開始時に燃料電池2内に収容されていた冷却水が温度センサTの測定可能領域内に到達したときに、冷却水循環ポンプ54を停止させる。また、冷却水循環ポンプ54を停止させたときに温度センサTにより測定された温度で発電停止時の燃料電池の推定温度を補正する。
【選択図】図1

Description

本発明は、燃料電池システムに関する。
燃料電池システムでは、燃料電池や配管等から冷却水中に溶出するイオン等によって冷却水の導電率が上昇し過ぎてしまうと、燃料電池内で短絡が生じ、漏電や電極触媒が劣化する要因になる。したがって、燃料電池システムでは、冷却水循環流路にイオン交換フィルタを設け、冷却水に溶出したイオンを捕捉することで、冷却水の導電率を低減させている。しかしながら、発電停止中は冷却水循環ポンプが停止しているため、イオン交換フィルタに冷却水を循環させることができず、冷却水の導電率を低減させることができない。下記特許文献1では、発電停止中に冷却水の導電率を低減させるために、所定時間経過するたびに二次電池の蓄電電力を利用して冷却水循環ポンプを駆動させている。
特開2007−128811号公報
ところで、燃料電池システムを搭載する燃料電池車両等では、低温時の始動性を向上させるために、始動時に低温であると判定した場合には、例えば運転効率を通常よりも低下させて燃料電池の発熱量を増大させる等の暖機制御を行っている。このような燃料電池システムにおいて、上述した従来技術のように発電停止時に冷却水を循環させてしまうと、低温下で発電を停止した場合には、燃料電池内の温かい冷却水が、外気温で冷却されている冷却水によって冷却されてしまい、燃料電池内の温度が必要以上に低下してしまうことになる。これにより、低温始動時の暖機に必要以上に時間を要してしまい、運転効率も悪化してしまう。
本発明は、上述した従来技術による問題点を解消するためになされたものであり、発電停止時の燃料電池の温度低下を極力抑制させることができる燃料電池システムを提供することを目的とする。
上述した課題を解決するため、本発明に係る燃料電池システムは、反応ガスの供給を受けて当該反応ガスの電気化学反応により電力を発生する燃料電池と、冷却水を燃料電池に循環供給するための冷却水循環流路と、冷却水を前記冷却水循環流路に循環させる冷却水循環ポンプと、前記冷却水循環流路に設けられ、冷却水の温度を測定する温度センサと、前記燃料電池の発電が停止してから発電停止状態のままで所定時間が経過したときに、前記冷却水循環ポンプを駆動させ、当該駆動開始時に前記燃料電池内に収容されていた冷却水が前記温度センサの測定可能領域内に到達したときに、前記冷却水循環ポンプを停止させるポンプ制御部と、を備えることを特徴とする。
この発明によれば、燃料電池の発電停止状態が所定時間継続した場合には、冷却水循環ポンプを駆動させて、駆動開始時に燃料電池内に収容されていた冷却水を温度センサの測定可能領域内に到達させることができるとともに、燃料電池内に収容されていた冷却水が温度センサの測定可能領域内に到達した場合には、冷却水循環ポンプを停止させることができるため、当該測定可能領域内に到達した冷却水の温度を測定することで発電停止状態の燃料電池の温度を精度良く推定することが可能になるとともに、冷却水の循環を最小限に留めることができ、発電停止状態の燃料電池内の温度が必要以上に低下してしまうことを極力抑制することが可能となる。
上記燃料電池システムにおいて、上記温度センサにより測定される温度に基づいて燃料電池の推定温度を算出する推定温度算出部と、前記推定温度算出部によって算出された前記推定温度を、前記ポンプ制御部によって前記冷却水循環ポンプが停止させられた後に前記温度センサによって測定されたポンプ停止時温度で置き換えることで、前記推定温度を補正する推定温度補正部と、をさらに備えることとしてもよい。
これにより、発電停止状態の燃料電池の温度を燃料電池内に収容されていた冷却水の温度を用いて推定することができるため、推定精度を向上させることが可能となる。
上記燃料電池システムにおいて、上記推定温度補正部は、前記推定温度を補正したときの推定温度と前記ポンプ停止時温度との差を用いて、前記燃料電池の推定温度を算出する際に用いる所定係数を補正することとしてもよい。
これにより、発電停止状態の燃料電池の推定温度を算出する際に用いる所定係数を、実測値との間の誤差を用いて補正することができるため、推定温度の算出精度を向上させることが可能となる。
上記燃料電池システムにおいて、上記所定時間は、少なくとも、前記推定温度算出部によって算出される前記推定温度に誤差が生ずるほど冷却水の温度が低下するのに要する時間よりも長い時間であることとしてもよい。
これにより、推定温度に誤差が生ずるほど冷却水の温度が低下した場合にのみ、冷却水循環ポンプを駆動させることができるため、運転効率の低下を抑制させることが可能となる。
上記燃料電池システムにおいて、上記燃料電池内に収容されていた冷却水が前記温度センサの測定可能領域内に到達するために要する前記冷却水循環ポンプのモータの回転数と前記冷却水循環ポンプの駆動時間とを、前記冷却水の温度ごとに対応付けて記憶する記憶部をさらに備え、前記ポンプ制御部は、前記冷却水循環ポンプを駆動させる前に前記温度センサによって測定された温度に対応付けられて前記記憶部に記憶されている前記冷却水循環ポンプのモータの回転数と前記冷却水循環ポンプの駆動時間とに基づいて、前記冷却水循環ポンプを駆動させ、前記冷却水循環ポンプを停止させることとしてもよい。
これにより、燃料電池内に収容されていた冷却水の温度を、効率良くかつ確実に測定することが可能となる。
上記燃料電池システムにおいて、上記ポンプ制御部は、前記冷却水循環ポンプを駆動させた後に前記温度センサにより測定される温度が上昇傾向から下降傾向に移行し始めたときに、前記冷却水循環ポンプを停止させることとしてもよい。
これにより、燃料電池内に収容されていた冷却水の温度を、効率良くかつ確実に測定することが可能となる。
上記燃料電池システムにおいて、上記ポンプ制御部による前記冷却水循環ポンプの停止後であって、かつ前記温度センサによる冷却水の温度測定の終了後に、前記冷却水循環ポンプのモータを逆回転で駆動させ、前記冷却水の温度測定時に前記温度センサの測定可能領域内に到達していた前記冷却水が前記燃料電池内に収容されたときに、前記冷却水循環ポンプを停止させる第2のポンプ制御部をさらに備えることとしてもよい。
これにより、燃料電池内に収容されていた冷却水の温度を測定した後に、当該測定に用いた冷却水を燃料電池内に再収容させることができるため、発電停止状態の燃料電池の温度を精度よく推定することができるうえに、発電停止状態の燃料電池内の温度低下を抑制する効果をさらに向上させることが可能となる。
上記燃料電池システムにおいて、上記ポンプ制御部によって前記冷却水循環ポンプが駆動させられたときの前記冷却水循環ポンプのモータの回転数と前記冷却水循環ポンプの駆動時間とを記憶する第2の記憶部をさらに備え、前記第2のポンプ制御部は、前記第2の記憶部に記憶されている前記冷却水循環ポンプのモータの回転数と前記冷却水循環ポンプの駆動時間とに基づいて、前記冷却水循環ポンプのモータを逆回転で駆動させ、前記冷却水循環ポンプを停止させることとしてもよい。
これにより、効率良くかつ確実に冷却水を燃料電池内に再収容させることが可能となる。
本発明によれば、発電停止時の燃料電池の温度低下を極力抑制させることができる。
実施形態における燃料電池システムを模式的に示す構成図である。 第1実施形態における冷却水循環ポンプ制御処理の流れを説明するためのフローチャートである。 第2実施形態における冷却水循環ポンプ制御処理の流れを説明するためのフローチャートである。
以下、添付図面を参照して、本発明に係る燃料電池システムの好適な実施形態について説明する。各実施形態では、本発明に係る燃料電池システムを燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして用いた場合について説明する。
[第1実施形態]
まず、図1を参照して、第1実施形態における燃料電池システムの構成について説明する。図1は、第1実施形態における燃料電池システムを模式的に示した構成図である。
同図に示すように、燃料電池システム1は、反応ガスである酸化ガスおよび燃料ガスの供給を受けて電気化学反応により電力を発生する燃料電池2と、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3と、燃料ガスとしての水素を燃料電池2に供給する水素ガス配管系4と、燃料電池2に冷却水を循環供給する冷却系5と、システムの電力を充放電する電力系7と、システム全体を統括制御する制御部6とを有する。
燃料電池2は、例えば、高分子電解質型燃料電池であり、多数の単セルを積層したスタック構造となっている。単セルは、イオン交換膜からなる電解質の一方の面にカソード極(空気極)を有し、他方の面にアノード極(燃料極)を有し、さらにカソード極およびアノード極を両側から挟み込むように一対のセパレータを有する構造となっている。この場合、一方のセパレータの水素ガス流路に水素ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、これらの反応ガスが化学反応することで電力が発生する。
酸化ガス配管系3は、フィルタを介して取り込まれる空気を圧縮し、圧縮した空気を酸化ガスとして送出するコンプレッサ31と、酸化ガスを燃料電池2に供給するための酸化ガス供給流路32と、燃料電池2から排出された酸化オフガスを排出するための酸化オフガス排出流路33とを有する。酸化オフガス排出流路33には、燃料電池2内の酸化ガスの圧力を調整するための背圧弁34が設けられている。
水素ガス配管系4は、高圧の水素ガスを貯留した燃料供給源としての水素タンク40と、水素タンク40の水素ガスを燃料電池2に供給するための燃料供給流路としての水素ガス供給流路41と、燃料電池2から排出された水素オフガスを水素供給流路41に戻すための燃料循環流路としての水素循環流路42とを有する。水素ガス供給流路41には、水素ガスの圧力を予め設定した二次圧に調圧するレギュレータ43が設けられている。水素循環流路42には、水素循環流路42内の水素オフガスを加圧して水素ガス供給流路41側へ送り出す水素ポンプ44が設けられている。
冷却系5は、冷却水を冷却するラジエータ51およびラジエータファン52と、冷却水を燃料電池2およびラジエータ51に循環供給する冷却水循環流路53と、冷却水を冷却水循環流路53に循環させる冷却水循環ポンプ54とを有する。冷却水循環流路53のうち、燃料電池2の出口側には、冷却水の温度を測定する温度センサTが設けられている。なお、温度センサTの位置はこれに限定されない。例えば、冷却水循環流路53のうち、燃料電池2の入口側に設けることとしてもよい。
電力系7は、DC/DCコンバータ71と、二次電池であるバッテリ72(蓄電部)と、トラクションインバータ73と、トラクションモータ74と、図示しない各種の補機インバータとを有する。DC/DCコンバータ71は、直流の電圧変換器であり、バッテリ72から入力された直流電圧を調整してトラクションインバータ73側に出力する機能と、燃料電池2またはトラクションモータ74から入力された直流電圧を調整してバッテリ72に出力する機能と、を有する。
バッテリ72は、バッテリセルが積層されて一定の高電圧を端子電圧とし、図示しないバッテリコンピュータの制御によって余剰電力を充電したり補助的に電力を供給したりすることが可能になっている。トラクションインバータ73は、直流電流を三相交流に変換し、トラクションモータ74に供給する。トラクションモータ74は、例えば三相交流モータであり、燃料電池システム1が搭載される燃料電池車両の主動力源を構成する。補機インバータは、各モータの駆動を制御する電動機制御部であり、直流電流を三相交流に変換して各モータに供給する。
制御部6は、燃料電池車両に設けられた加速操作部材(例えば、アクセル)の操作量を検出し、加速要求値(例えばトラクションモータ74等の電力消費装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。なお、電力消費装置には、トラクションモータ74の他に、例えば、燃料電池2を作動させるために必要な補機装置(例えばコンプレッサ31や水素ポンプ44、冷却水循環ポンプ54、ラジエータファン52のモータ等)、車両の走行に関与する各種装置(変速機、車輪制御装置、操舵装置、懸架装置等)で使用されるアクチュエータ、乗員空間の空調装置(エアコン)、照明、オーディオ等が含まれる。
制御部6は、物理的には、例えば、CPUと、メモリ60と、入出力インターフェースとを有する。メモリ60には、例えば、CPUで処理される制御プログラムや制御データを記憶するROMや、主として制御処理のための各種作業領域として使用されるRAMが含まれる。これらの要素は、互いにバスを介して接続されている。入出力インターフェースには、温度センサT等の各種センサが接続されているとともに、冷却水循環ポンプ54等を駆動させるための各種ドライバが接続されている。
CPUは、ROMに記憶された制御プログラムに従って、入出力インターフェースを介して各種センサでの検出結果を受信し、RAM内の各種データ等を用いて処理することで、後述する冷却水循環ポンプ制御処理等を実行する。また、CPUは、入出力インターフェースを介して各種ドライバに制御信号を出力することにより、燃料電池システム1全体を制御する。
制御部6は、機能的には、ポンプ制御部61と、推定温度算出部62と、推定温度補正部63とを有する。制御部6のメモリ60には、ポンプ制御部61によって参照されるポンプ駆動マップが格納されている。ポンプ駆動マップには、冷却水循環ポンプ54のモータの回転数と冷却水循環ポンプ54の駆動時間とが、冷却水の温度ごとに対応付けて記憶されている。ポンプ駆動マップに記憶されるモータの回転数と駆動時間は、冷却水循環ポンプ54を駆動させることで、燃料電池2のスタック内に収容されていた冷却水が温度センサTの測定可能領域内に到達するまでに要するモータの回転数と駆動時間であり、これらの値は実験等により求められる。
ポンプ制御部61は、燃料電池2の発電が停止してから発電停止状態のままで所定時間が経過したか否かを判定し、所定時間が経過したと判定した場合に、冷却水循環ポンプ54を駆動させる。燃料電池2の発電が停止する場合としては、例えば、イグニッションキーがOFFに設定されたときや、間欠運転(バッテリ運転)に移行したとき等が該当する。冷却水循環ポンプ54は、バッテリ71の蓄電電力を利用して駆動させる。
上記所定時間は、発電停止時の冷却水の温度と外気温との間の温度差が大きいほど、短く設定することが好ましい。これは、温度の低下が大きいほど、推定温度算出部62によって算出される燃料電池2の推定温度の誤差が大きくなるため、所定時間を短くすることで、誤差を小さくすることが可能となるためである。ただし、燃料電池2の推定温度に誤差が生じない場合にまで、冷却水循環ポンプ54を駆動させることとすると、バッテリ71の蓄電電力が低下し、運転効率が低下するため、少なくとも、推定温度算出部62によって算出される燃料電池2の推定温度に誤差が生ずるほど冷却水の温度が低下するのに要する時間よりも長い時間を、上記所定時間として設定することが好ましい。これにより、燃料電池2の推定温度に誤差が生ずるほど冷却水の温度が低下した場合にのみ、冷却水循環ポンプ54を駆動させることができるため、バッテリ71の蓄電電力の低下を抑制することができ、運転効率の低下を防止することが可能となる。
ポンプ制御部61は、冷却水循環ポンプ54を駆動させる際に、温度センサTによって測定されたポンプ駆動前温度を用いてポンプ駆動マップを参照し、ポンプ駆動前温度に対応付けて記憶されているモータの回転数を算出する。ポンプ制御部61は、算出した回転数を冷却水循環ポンプ54のモータの目標回転数として冷却水循環ポンプ54を駆動させる。
ポンプ制御部61は、冷却水循環ポンプ54を駆動させた後に、駆動開始時に燃料電池2のスタック内に収容されていた冷却水が温度センサTの測定可能領域内に到達したか否かを判定し、到達したと判定した場合に、冷却水循環ポンプ54を停止させる。
燃料電池2のスタック内に収容されていた冷却水が温度センサTの測定可能領域内に到達したか否かは、例えば、以下のように判定することができる。
ポンプ制御部61は、冷却水循環ポンプ54を駆動させる際に、温度センサTによって測定されたポンプ駆動前温度を用いてポンプ駆動マップを参照し、ポンプ駆動前温度に対応付けて記憶されている駆動時間を算出する。ポンプ制御部61は、冷却水循環ポンプ54の駆動を開始してから経過した時間が、算出した駆動時間に到達したか否かを判定し、到達したと判定したときに、燃料電池2のスタック内に収容されていた冷却水が温度センサTの測定可能領域内に到達したと判定する。これにより、燃料電池2内に収容されていた冷却水の温度を、効率良くかつ確実に測定することが可能となる。
なお、燃料電池2のスタック内に収容されていた冷却水が温度センサTの測定可能領域内に到達したか否かは、以下のように判定することもできる。ポンプ制御部61は、冷却水循環ポンプ54を駆動させた後に温度センサTによって測定される温度が上昇傾向から下降傾向に移行し始めたか否かを判定し、上昇傾向から下降傾向に移行し始めたと判定した場合に、燃料電池2のスタック内に収容されていた冷却水が温度センサTの測定可能領域内に到達したと判定する。これにより、燃料電池2内に収容されていた冷却水の温度を、効率良くかつ確実に測定することが可能となる。
推定温度算出部62は、燃料電池2が発電停止状態である間に、温度センサTによって測定される温度に基づいて燃料電池2の推定温度を算出する。具体的には、まず、推定温度算出部62は、発電停止時に温度センサTによって測定された冷却水の温度と、現時点の外気温と、燃料電池2の温度を推定する際に用いられる推定温度算出係数とを用いて、次回の推定温度算出時までにおける燃料電池2の推定温度を算出する。推定温度算出係数としては、例えば、燃料電池2のスタックの放熱係数や、冷却水の伝熱係数等が該当する。続いて、次回の推定温度算出時になると、推定温度算出部62は、温度センサTによって測定された現時点の冷却水の温度と、現時点の外気温と、推定温度算出係数とに加え、前回算出した推定温度を用いて燃料電池2の推定温度を算出する。そして、この推定温度を算出する処理を、発電停止状態が継続している間、所定間隔ごとに繰り返し実行する。
ここで、燃料電池2の推定温度は、例えば、燃料電池2の発電が開始されるときに、暖機処理を実行するか否かを判定する際の判定基準に用いることができる。この場合には、燃料電池2の推定温度が、暖機処理が必要となる温度に含まれる場合、つまり暖機処理が必要となる温度の上限値以下である場合に、暖機処理を実行する。暖機処理としては、例えば、運転効率を通常よりも低下させて燃料電池の発熱量を増大させる低効率運転や、冷却水循環流路53にヒータを設けてヒータで冷却水を温める処理等が該当する。
推定温度補正部63は、ポンプ制御部61によって冷却水循環ポンプ54が駆動させられてから停止させられたときに温度センサTによって測定されたポンプ停止時温度を取得する。推定温度補正部63は、推定温度算出部62によって算出された推定温度をポンプ停止時温度に置き換えることで、燃料電池2の推定温度を補正する。これにより、発電停止状態の燃料電池2の温度を燃料電池2内に収容されていた冷却水の温度を用いて推定することができるため、推定精度を向上させることが可能となる。
推定温度補正部63は、燃料電池2の推定温度を補正したときの推定温度と、ポンプ停止時温度との差を用いて、上記推定温度算出係数を補正する。これにより、発電停止状態の燃料電池の推定温度を算出する際に用いる推定温度算出係数を、実測値との間の誤差を用いて補正することができるため、推定温度の算出精度を向上させることが可能となる。
次に、図2に示すフローチャートを参照して、第1実施形態における燃料電池システムで実行される冷却水循環ポンプ制御処理の流れについて説明する。なお、冷却水循環ポンプ制御処理は、燃料電池が発電停止状態である間に実行される処理である。
最初に、制御部6は、発電を停止してから所定時間が経過したか否かを判定する(ステップS101)。この判定がNOである場合(ステップS101;NO)には、ステップS101の判定を繰り返す。
一方、上記ステップS101の判定で発電を停止してから所定時間が経過したと判定された場合(ステップS101;YES)に、ポンプ制御部61は、冷却水循環ポンプ54を駆動させる(ステップS102)。
続いて、ポンプ制御部61は、冷却水循環ポンプ54の駆動開始時に燃料電池2のスタック内に収容されていた冷却水が、温度センサTの測定可能領域に到達したか否かを判定する(ステップS103)。この判定がNOである場合(ステップS103;NO)には、ステップS103の判定を繰り返す。
一方、上記ステップS103の判定でスタック内に収容されていた冷却水が温度センサTの測定可能領域に到達したと判定された場合(ステップS103;YES)に、ポンプ制御部61は、冷却水循環ポンプ54を停止させる(ステップS104)。制御部6は、温度センサTに冷却水の温度を測定させる(ステップS105)。
続いて、推定温度補正部63は、推定温度算出部62によって算出された推定温度を、上記ステップS105で測定された温度に置き換えることで、推定温度を補正する(ステップS106)。
上述してきたように、第1実施形態における燃料電池システム1によれば、燃料電池2の発電停止状態が所定時間継続した場合には、冷却水循環ポンプ54を駆動させて、駆動開始時に燃料電池2内に収容されていた冷却水を温度センサTの測定可能領域内に到達させることができる。これにより、温度センサTの測定可能領域内に到達した冷却水の温度を測定することで発電停止状態の燃料電池2の温度を精度良く推定することが可能になる。
また、冷却水循環ポンプ54を駆動させた後に、燃料電池2内に収容されていた冷却水が温度センサTの測定可能領域内に到達した場合には、冷却水循環ポンプ54を直ちに停止させることができる。これにより、冷却水の循環を最小限に留めることができ、発電停止状態の燃料電池2内の温度が必要以上に低下してしまうことを極力抑制することが可能となる。
[第2実施形態]
本発明の第2実施形態について説明する。第2実施形態における燃料電池システムが、上述した第1実施形態における燃料電池システムと相違する点は、制御部6に新たな機能が追加されている点である。それ以外の構成については、第1実施形態における燃料電池システムの各構成と同様であるため、各構成要素には同一の符合を付しその説明は省略するとともに、以下においては、主に第1実施形態との相違点について説明する。
制御部6は、ポンプ制御部61によって冷却水循環ポンプ54が駆動させられてから停止させられるまでの間に要した冷却水循環ポンプ54のモータの回転数と駆動時間とをメモリ60に一時的に記憶させる。
ポンプ制御部61(第2のポンプ制御部)は、冷却水循環ポンプ54を駆動させてから停止させた後であって、かつ、温度センサTによって上記ポンプ停止時温度が測定された後に、冷却水循環ポンプ54のモータを逆回転で駆動させる。冷却水循環ポンプ54は、バッテリ72の蓄電電力を利用して逆回転駆動させる。
ポンプ制御部61は、冷却水循環ポンプ54を逆回転駆動させる際に、メモリ60に一時的に記憶されたモータの回転数を、冷却水循環ポンプ54のモータの目標逆回転数として冷却水循環ポンプ54を逆回転駆動させる。
ポンプ制御部61は、冷却水循環ポンプ54を逆回転駆動させた後に、逆回転駆動開始時に温度センサTの測定可能領域内に到達していた冷却水が燃料電池2のスタック内に収容されたか否かを判定し、収容されたと判定した場合に、冷却水循環ポンプ54を停止させる。
温度センサTの測定可能領域内に到達していた冷却水が燃料電池2のスタック内に収容されたか否かは、例えば、以下のように判定することができる。
ポンプ制御部61は、冷却水循環ポンプ54の逆回転駆動を開始してから経過した時間が、メモリ60に一時的に記憶された駆動時間に到達したか否かを判定し、到達したと判定したときに、温度センサTの測定可能領域内に到達していた冷却水が燃料電池2のスタック内に収容されたと判定する。これにより、効率良くかつ確実に冷却水を燃料電池2内に再収容させることが可能となる。
次に、図3に示すフローチャートを参照して、第2実施形態における燃料電池システムで実行される冷却水循環ポンプ制御処理の流れについて説明する。なお、図3に示すステップS201〜S206の各処理は、第1実施形態において詳述したステップS101〜S106の各処理(図2参照)と、それぞれ同一であるので、第1実施形態とは異なるステップS207〜S209の処理について説明する。
まず、ステップS206において推定温度補正部63が、推定温度算出部62によって算出された推定温度を補正した後に、ポンプ制御部61は、冷却水循環ポンプ54を逆回転駆動させる(ステップS207)。
続いて、ポンプ制御部61は、冷却水循環ポンプ54の逆回転駆動開始時に温度センサTの測定可能領域内に到達していた冷却水が、燃料電池2のスタック内に再収容されたか否かを判定する(ステップS208)。この判定がNOである場合(ステップS208;NO)には、ステップS208の判定を繰り返す。
一方、上記ステップS208の判定で温度センサTの測定可能領域内に到達していた冷却水が燃料電池2のスタック内に再収容されたと判定された場合(ステップS208;YES)に、ポンプ制御部61は、冷却水循環ポンプ54を停止させる(ステップS209)。
上述してきたように、第2実施形態の燃料電池システム1によれば、上述した第1実施形態の燃料電池システム1と同様の効果を奏するとともに、さらに、燃料電池2内に収容されていた冷却水の温度を測定した後に、この測定に用いた冷却水を燃料電池2内に再収容させることができるため、発電停止状態の燃料電池内の冷却水の温度低下を抑制する効果をさらに向上させることが可能となる。
なお、上述した各実施形態においては、冷却水循環ポンプ制御処理における冷却水循環ポンプ54の駆動/停止処理を、発電を停止してから所定時間経過した後にのみ行っているが、発電を停止してから所定時間経過した後に、所定間隔ごとに複数回実行することとしてもよい。これにより、燃料電池2の推定温度の算出精度をさらに向上させることが可能となる。
また、上述した実施形態においては、本発明に係る燃料電池システムを燃料電池車両に搭載した場合について説明しているが、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)にも本発明に係る燃料電池システムを適用することができる。また、本発明に係る燃料電池システムを、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用することもできる。
1…燃料電池システム、2…燃料電池、3…酸化ガス配管系、4…水素ガス配管系、5…冷却系、6…制御部、7…電力系、51…ラジエータ、52…ラジエータファン、53…冷却水循環流路、54…冷却水循環ポンプ、60…メモリ、61…ポンプ制御部、62…推定温度算出部、63…推定温度補正部、72…バッテリ、T…温度センサ。

Claims (8)

  1. 反応ガスの供給を受けて当該反応ガスの電気化学反応により電力を発生する燃料電池と、
    冷却水を燃料電池に循環供給するための冷却水循環流路と、
    冷却水を前記冷却水循環流路に循環させる冷却水循環ポンプと、
    前記冷却水循環流路に設けられ、冷却水の温度を測定する温度センサと、
    前記燃料電池の発電が停止してから発電停止状態のままで所定時間が経過したときに、前記冷却水循環ポンプを駆動させ、当該駆動開始時に前記燃料電池内に収容されていた冷却水が前記温度センサの測定可能領域内に到達したときに、前記冷却水循環ポンプを停止させるポンプ制御部と、
    を備えることを特徴とする燃料電池システム。
  2. 前記温度センサにより測定される温度に基づいて燃料電池の推定温度を算出する推定温度算出部と、
    前記推定温度算出部によって算出された前記推定温度を、前記ポンプ制御部によって前記冷却水循環ポンプが停止させられた後に前記温度センサによって測定されたポンプ停止時温度で置き換えることで、前記推定温度を補正する推定温度補正部と、
    をさらに備えることを特徴とする請求項1記載の燃料電池システム。
  3. 前記推定温度補正部は、前記推定温度を補正したときの推定温度と前記ポンプ停止時温度との差を用いて、前記燃料電池の推定温度を算出する際に用いる所定係数を補正することを特徴とする請求項2記載の燃料電池システム。
  4. 前記所定時間は、少なくとも、前記推定温度算出部によって算出される前記推定温度に誤差が生ずるほど冷却水の温度が低下するのに要する時間よりも長い時間であることを特徴とする請求項2または3記載の燃料電池システム。
  5. 前記燃料電池内に収容されていた冷却水が前記温度センサの測定可能領域内に到達するために要する前記冷却水循環ポンプのモータの回転数と前記冷却水循環ポンプの駆動時間とを、前記冷却水の温度ごとに対応付けて記憶する記憶部をさらに備え、
    前記ポンプ制御部は、前記冷却水循環ポンプを駆動させる前に前記温度センサによって測定された温度に対応付けられて前記記憶部に記憶されている前記冷却水循環ポンプのモータの回転数と前記冷却水循環ポンプの駆動時間とに基づいて、前記冷却水循環ポンプを駆動させ、前記冷却水循環ポンプを停止させることを特徴とする請求項1〜4のいずれか1項に記載の燃料電池システム。
  6. 前記ポンプ制御部は、前記冷却水循環ポンプを駆動させた後に前記温度センサにより測定される温度が上昇傾向から下降傾向に移行し始めたときに、前記冷却水循環ポンプを停止させることを特徴とする請求項1〜4のいずれか1項に記載の燃料電池システム。
  7. 前記ポンプ制御部による前記冷却水循環ポンプの停止後であって、かつ前記温度センサによる冷却水の温度測定の終了後に、前記冷却水循環ポンプのモータを逆回転で駆動させ、前記冷却水の温度測定時に前記温度センサの測定可能領域内に到達していた前記冷却水が前記燃料電池内に収容されたときに、前記冷却水循環ポンプを停止させる第2のポンプ制御部をさらに備えることを特徴とする請求項1〜6のいずれか1項に記載の燃料電池システム。
  8. 前記ポンプ制御部によって前記冷却水循環ポンプが駆動させられたときの前記冷却水循環ポンプのモータの回転数と前記冷却水循環ポンプの駆動時間とを記憶する第2の記憶部をさらに備え、
    前記第2のポンプ制御部は、前記第2の記憶部に記憶されている前記冷却水循環ポンプのモータの回転数と前記冷却水循環ポンプの駆動時間とに基づいて、前記冷却水循環ポンプのモータを逆回転で駆動させ、前記冷却水循環ポンプを停止させることを特徴とする請求項7記載の燃料電池システム。
JP2009008670A 2009-01-19 2009-01-19 燃料電池システム Pending JP2010165621A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008670A JP2010165621A (ja) 2009-01-19 2009-01-19 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008670A JP2010165621A (ja) 2009-01-19 2009-01-19 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2010165621A true JP2010165621A (ja) 2010-07-29

Family

ID=42581631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008670A Pending JP2010165621A (ja) 2009-01-19 2009-01-19 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2010165621A (ja)

Similar Documents

Publication Publication Date Title
JP4743455B2 (ja) 燃料電池システム
JP5120594B2 (ja) 燃料電池システム及びその運転方法
JP5273244B2 (ja) 燃料電池システム
JP5083587B2 (ja) 燃料電池システム及びその温度調整方法
KR101046559B1 (ko) 연료전지시스템, 그 제어방법 및 이동체
EP3057165B1 (en) Fuel cell system and method for controlling fuel cell system
JP4543337B2 (ja) 燃料電池システム
JP6299683B2 (ja) 燃料電池システム
JP4893745B2 (ja) 燃料電池システム
US20160141674A1 (en) Fuel cell system and method of recoverying cell voltage thereof
JP2007042493A (ja) 電圧制御システム及び移動体
CA2676874C (en) Fuel cell system with scavenging and impedance measurement control
JP5083603B2 (ja) 燃料電池システム
JP5407577B2 (ja) 燃料電池システム
JP5397831B2 (ja) 燃料電池システム
JP3698101B2 (ja) 燃料改質型燃料電池システムの制御装置
JP2010146750A (ja) 燃料電池システム
JP2010165621A (ja) 燃料電池システム
KR101804774B1 (ko) 연료전지 차량과 그 제어방법
WO2013150619A1 (ja) 燃料電池システム
JP2006244962A (ja) 燃料電池システム
JP2005071939A (ja) 燃料電池システムの制御装置
JP2007179791A (ja) 燃料電池システム
JP2010113980A (ja) 燃料電池システム
JP2019096400A (ja) 燃料電池システム