JP2010161014A - Alkaline storage battery and its manufacturing method - Google Patents

Alkaline storage battery and its manufacturing method Download PDF

Info

Publication number
JP2010161014A
JP2010161014A JP2009003621A JP2009003621A JP2010161014A JP 2010161014 A JP2010161014 A JP 2010161014A JP 2009003621 A JP2009003621 A JP 2009003621A JP 2009003621 A JP2009003621 A JP 2009003621A JP 2010161014 A JP2010161014 A JP 2010161014A
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
storage alloy
ptfe
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009003621A
Other languages
Japanese (ja)
Other versions
JP5456326B2 (en
Inventor
Shuhei Yoshida
周平 吉田
Kazuaki Tamura
和明 田村
Yoshinobu Katayama
吉宣 片山
Atsutoshi Akaho
篤俊 赤穗
Teruhito Nagae
輝人 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009003621A priority Critical patent/JP5456326B2/en
Publication of JP2010161014A publication Critical patent/JP2010161014A/en
Application granted granted Critical
Publication of JP5456326B2 publication Critical patent/JP5456326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline storage battery capable of preventing occurrence of peeling of an active material even if a conductive core of a low porosity is used and capable of obtaining high output characteristics by reducing reactive resistance. <P>SOLUTION: The alkaline storage battery 10 is provided with a hydrogen storing alloy negative electrode 11 having hydrogen storing alloy as a negative electrode active material and a positive electrode 12 having nickel hydroxide as a main positive electrode active material, and an electrode group spirally wound through a separator 13 separating both the electrodes 11, 12, and alkaline electrolyte solution are housed in an outer can 16. Then, The porosity of the conductive core 11a used in the hydrogen storing alloy negative electrode 11 is 15%-25%, and polytetrafluoroethylene (PTFE) is applied on the surface of the hydrogen storing alloy negative electrode 11 by 0.02 mg/cm<SP>2</SP>-0.11 mg/cm<SP>2</SP>, the holding ratio of the electrolyte solution held by the hydrogen storing alloy negative electrode 11 is 23%-29% against the total electrolyte solution volume. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハイブリッド車(HEV:Hybrid Electric Vehicle)や電気自動車(PEV:Pure Electric Vehicle)等の大電流放電を要する用途に適したアルカリ蓄電池に係わり、特に、水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、水酸化ニッケルを主正極活物質とする正極とを備え、これらの両極を隔離するセパレータを介して渦巻状に巻回された電極群と、アルカリ電解液とを外装缶内に収容したアルカリ蓄電池およびその製造方法に関する。   The present invention relates to an alkaline storage battery suitable for an application requiring a large current discharge such as a hybrid vehicle (HEV: Hybrid Electric Vehicle) or an electric vehicle (PEV: Pure Electric Vehicle), and in particular, a hydrogen storage alloy is used as a negative electrode active material. A hydrogen storage alloy negative electrode and a positive electrode having nickel hydroxide as a main positive electrode active material, and an electrode group wound in a spiral shape through a separator separating these two electrodes, and an alkaline electrolyte solution in an outer can The present invention relates to an alkaline storage battery housed in a container and a method for producing the same.

近年、ハイブリッド車(HEV)や電気自動車(PEV)などの車両の電源用途にアルカリ蓄電池、特に、ニッケル−水素蓄電池が用いられるようになった。この種の用途に用いられるアルカリ蓄電池においては、複数の単電池を直列接続して用いられるため小型化が求められている。ここで、アルカリ蓄電池を小型化すると、正・負極間の対向面積が減少するようになるため、常温出力特性および低温出力特性の低下が生じるようになり、小型化と同時に高出力化を達成させる必要がある。   In recent years, alkaline storage batteries, particularly nickel-hydrogen storage batteries, have come to be used for power sources of vehicles such as hybrid vehicles (HEV) and electric vehicles (PEV). The alkaline storage battery used for this type of application is required to be downsized because a plurality of single cells are connected in series. Here, when the alkaline storage battery is downsized, the facing area between the positive and negative electrodes decreases, so that the normal temperature output characteristics and the low temperature output characteristics deteriorate, and at the same time the miniaturization and high output are achieved. There is a need.

小型化の手段としては、円筒型電池の円筒径を小さくする方法と、電池高さを短くする方法とがある。この場合、円筒径を小さくする方法においては、大電流用途で使用する際、集電体での電流密度が過多となって、反応抵抗が生じるようになり、電圧低下などの問題が生じることとなる。このため、特許文献1(特開平11−354150号公報)に示されるような電池高さを短くする方法が望ましいこととなる。
一方、高出力化の手段としては、特許文献2(特開平9−312158号公報)や特許文献3(特開平10−321238号公報)に示されるように、導電性芯体の集電性の向上に着目し、導電性芯体の開孔率を低減させる方法がある。
As means for downsizing, there are a method of reducing the cylindrical diameter of the cylindrical battery and a method of shortening the battery height. In this case, in the method of reducing the diameter of the cylinder, when used in a large current application, the current density in the current collector becomes excessive, reaction resistance occurs, and problems such as voltage drop occur. Become. For this reason, a method of shortening the battery height as shown in Patent Document 1 (Japanese Patent Laid-Open No. 11-354150) is desirable.
On the other hand, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 9-31158) and Patent Document 3 (Japanese Patent Laid-Open No. 10-32238), as means for increasing the output, the current collecting property of the conductive core is described. Focusing on the improvement, there is a method of reducing the aperture ratio of the conductive core.

特開平11−354150号公報JP 11-354150 A 特開平 9−312158号公報Japanese Patent Laid-Open No. 9-312158 特開平10−321238号公報Japanese Patent Laid-Open No. 10-32238

しかしながら、電池高さを短くし、低開孔率の導電性芯体を用いた場合、出力特性の低下および寿命の低下が生じることが分かった。
そこで、出力特性の低下および寿命の低下が生じた電池を解体して調査したころ、渦巻状に巻回された電極群の負極端部(外装缶の底部側)に活物質の剥離が認められた。これは、一般的な活物質の結着力は、共有結合力、水素結合力、静電相互作用力、ファンデルワース力などが作用しており、いずれもクーロン力が基本となっている。このクーロン力はよく知られているように、q1・q2/(4π・ε・r2)で表され、誘電率εに反比例する。ここで、結着点に誘電率が大きい電解液が過多の状態にある場合は、活物質の結着力が弱くなり、活物質剥離が生じることになると考えられる。
However, it has been found that when the battery height is shortened and a conductive core having a low porosity is used, the output characteristics and the life are reduced.
Therefore, when disassembling and investigating a battery with reduced output characteristics and reduced life, peeling of the active material was observed at the negative electrode end (bottom side of the outer can) of the electrode group wound in a spiral shape. It was. This is because the binding force of a general active material is a covalent bond force, a hydrogen bond force, an electrostatic interaction force, a van der Waals force, etc., and all of them are based on Coulomb force. As is well known, this Coulomb force is expressed by q1 · q2 / (4π · ε · r 2 ) and is inversely proportional to the dielectric constant ε. Here, when there is an excessive amount of electrolytic solution having a large dielectric constant at the binding point, it is considered that the binding force of the active material becomes weak and active material peeling occurs.

この場合、負極活物質間の結合強度は開孔部における負極活物質間のクーロン力(特に、静電相互作用)で保たれているため、低開孔率の導電性芯体を用いた負極においては、活物質間強度が低下する傾向となる。また、渦巻状に巻回された電極群を外装缶内に収容し、電解液を注入した際に、電解液は外装缶の内壁を辿って外装缶の底部に移動することとなる。このため、電池高さを短くすることにより、渦巻状に巻回された電極群の負極端部(外装缶の底部側)に電解液が溜まりやすくなって、一時的に電解液の過多の状態が生じることとなる。   In this case, since the bonding strength between the negative electrode active materials is maintained by the Coulomb force (particularly, electrostatic interaction) between the negative electrode active materials in the apertures, the negative electrode using a conductive core having a low porosity In the case, the strength between the active materials tends to decrease. When the spirally wound electrode group is accommodated in the outer can and the electrolyte is injected, the electrolyte follows the inner wall of the outer can and moves to the bottom of the outer can. For this reason, by shortening the battery height, the electrolyte tends to accumulate at the negative electrode end (bottom side of the outer can) of the electrode group wound in a spiral shape, and the electrolyte is temporarily excessive. Will occur.

これらの結果、電池高さを短くし、低開孔率の導電性芯体を用いた場合、外装缶の底部に一時的に電解液の過多部が生じ、負極端部(外装缶の底部側)の活物質間の静電相互作用が極度に弱まり、活物質剥がれが生じ、反応抵抗が増大し、出力低下が生じたと考えられる。更に、一度、活物質剥離が生じると、電解液の過多の状態が加速され、電解液の分配に偏りが生じることとなる。この結果、充放電に伴う不均一反応による発熱が増大し、寿命の低下を来したと考えられる。   As a result, when the battery height is shortened and a conductive core having a low porosity is used, an excessive amount of electrolyte is temporarily generated at the bottom of the outer can, and the negative electrode end (the bottom side of the outer can) ), The electrostatic interaction between the active materials is extremely weakened, the active material is peeled off, the reaction resistance is increased, and the output is decreased. Further, once the active material is peeled off, the excessive state of the electrolytic solution is accelerated, and the distribution of the electrolytic solution is biased. As a result, it is considered that the heat generation due to the heterogeneous reaction accompanying charging / discharging increased, resulting in a decrease in life.

そこで、本発明は上記した問題を解決するためになされたものであって、低開孔率の導電性芯体を用いても、活物質剥がれが生じるのを防止して、反応抵抗を減少させことにより高出力特性が得られるアルカリ蓄電池を提供することを目的とするものである。   Therefore, the present invention has been made to solve the above-described problems, and even if a conductive core having a low porosity is used, the active material is prevented from peeling off, and the reaction resistance is reduced. It aims at providing the alkaline storage battery from which a high output characteristic is acquired by this.

本発明のアルカリ蓄電池は、水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、水酸化ニッケルを主正極活物質とする正極とを備え、これらの両極を隔離するセパレータを介して渦巻状に巻回された電極群と、アルカリ電解液とを外装缶内に収容している。そして、上記目的を達成するため、水素吸蔵合金負極に用いられた導電性芯体の開孔率([芯体の開口部の総面積/負極の長さ×幅]×100)は15%〜25%で、当該水素吸蔵合金負極の表面部にポリテトラフルオロエチレン(PTFE)が0.02mg/cm2〜0.11mg/cm2だけ塗布されおり、電解液総量に対する水素吸蔵合金負極が保持する電解液の保持率が23%〜29%であることを特徴とする。 The alkaline storage battery of the present invention comprises a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a negative electrode active material, and a positive electrode using nickel hydroxide as a main positive electrode active material, and is spirally arranged through a separator that separates both electrodes. The wound electrode group and the alkaline electrolyte are accommodated in an outer can. And in order to achieve the said objective, the porosity of the electroconductive core used for the hydrogen storage alloy negative electrode ([total area of opening of core body / length of negative electrode x width] x 100) is 15% to 25%, the surface portion of the hydrogen storage alloy negative electrode polytetrafluoroethylene (PTFE) is 0.02mg / cm 2 ~0.11mg / cm 2 only has been applied, the hydrogen storage alloy negative electrode for the electrolytic solution total held The retention rate of the electrolytic solution is 23% to 29%.

ここで、導電性芯体の開孔率が25%より大きくなると、従来以上の出力を得ることができないことが明らかになった。また、導電性芯体の開孔率が15%より小さくなると、極板作製工程における圧延時に活物質の剥離が生じることが明らかになった。また、PTFEの塗布量が0.11mg/cm2より多くなると、PTFEが反応抵抗となって、出力低下をもたらし、0.02mg/cm2より少なくなると、出力向上効果が得られないことが明らかになった。 Here, it has been clarified that when the open area ratio of the conductive core is larger than 25%, it is not possible to obtain an output higher than the conventional one. Further, it has been clarified that when the hole area ratio of the conductive core is smaller than 15%, the active material is peeled off during rolling in the electrode plate manufacturing process. In addition, when the amount of PTFE applied is greater than 0.11 mg / cm 2 , PTFE becomes a reaction resistance, resulting in a decrease in output, and when it is less than 0.02 mg / cm 2, it is clear that an output improvement effect cannot be obtained. Became.

このため、本発明の水素吸蔵合金負極に用いる導電性芯体は開孔率が15%〜25%のものを用い、この水素吸蔵合金負極の表面部にPTFEを0.02mg/cm2〜0.11mg/cm2だけ塗布するようにしている。この場合、開孔率が15%〜25%の導電性芯体を用い、表面部にPTFEを0.02mg/cm2〜0.11mg/cm2だけ塗布した時の水素吸蔵合金負極の電解液保持率は電解液総量に対して23〜29%であることが明らかになった。そして、上述のように、導電性芯体の開孔率、PTFEの塗布量および電解液保持率を規定すると、外装缶の底部に電解液の過多部が生じても、外装缶の底部での水素吸蔵合金負極の活物質剥離が回避でき、かつ渦巻状に巻回された水素吸蔵合金負極の内部へも電解液を浸透させることが可能となって、小型化と高出力化を両立させることが可能となった。 Therefore, the conductive core used in the hydrogen storage alloy negative electrode of the present invention has a porosity of 15% to 25%, and PTFE is 0.02 mg / cm 2 to 0 on the surface of the hydrogen storage alloy negative electrode. Only 11 mg / cm 2 is applied. In this case, an electrolytic solution of a hydrogen storage alloy negative electrode when a conductive core having a porosity of 15% to 25% is used and PTFE is applied to the surface portion by 0.02 mg / cm 2 to 0.11 mg / cm 2. It was revealed that the retention rate was 23 to 29% with respect to the total amount of the electrolytic solution. And, as described above, when the porosity of the conductive core, the amount of PTFE applied, and the electrolyte retention rate are defined, even if an excessive portion of the electrolyte is generated at the bottom of the outer can, The active material peeling of the hydrogen storage alloy negative electrode can be avoided, and the electrolyte can be penetrated into the inside of the hydrogen storage alloy negative electrode wound in a spiral shape. Became possible.

この場合、水素吸蔵合金負極の表面部は、水素吸蔵合金負極の総厚みをt1とし、この水素吸蔵合金負極の導電性芯体の厚みをt2としたとき、当該水素吸蔵合金電極の表面より(t1−t2)×0.15までの範囲内である。なお、この時用いる水素吸蔵合金は、希土類、ニッケル、マグネシウムを主元素としたA519型構造相を含む合金が望ましい。これは、A519型構造相を含むことで、触媒効果のある単位結晶格子当たりのニッケル(Ni)比率を増加させることができるため、従来よりも水素吸蔵合金負極の電解液保持率が少ない本発明の範囲において、高出力特性を得ることができるからである。 In this case, when the total thickness of the hydrogen storage alloy negative electrode is t1, and the thickness of the conductive core of the hydrogen storage alloy negative electrode is t2, the surface portion of the hydrogen storage alloy negative electrode is more than the surface of the hydrogen storage alloy electrode ( It is within the range of t1-t2) × 0.15. The hydrogen storage alloy used at this time is preferably an alloy containing an A 5 B 19 type structural phase containing rare earth, nickel and magnesium as main elements. This is because the nickel (Ni) ratio per unit crystal lattice having a catalytic effect can be increased by including the A 5 B 19 type structural phase, so that the electrolyte retention rate of the hydrogen storage alloy negative electrode is higher than the conventional one. This is because high output characteristics can be obtained within a small range of the present invention.

なお、上述のように水素吸蔵合金負極の表面部にPTFEを塗布する製造方法としては、水素吸蔵合金スラリーを導電性芯体に塗着してスラリー塗着極板とするスラリー塗着工程と、スラリー塗着極板を乾燥させて乾燥極板とする乾燥工程と、乾燥極板の表面にポリテトラフルオロエチレン(PTFE)をロール転写で塗布してPTFE塗布極板とするPTFE塗布工程とを備えるようにするのが望ましい。ここで、PTFEを圧延後に塗布すると、PTFE塗布液が導電性芯体まで浸透して、芯体と活物質間の強度を弱らせて活物質剥離を生じさせるようになる。このため、PTFE塗布極板を圧延した後、所定の形状に裁断して水素吸蔵合金負極とする圧延・裁断工程を備えるようにするのが望ましい。   As described above, as a manufacturing method for applying PTFE to the surface portion of the hydrogen storage alloy negative electrode, a slurry application step of applying a hydrogen storage alloy slurry to a conductive core to form a slurry-coated electrode plate; A drying step of drying the slurry-coated electrode plate to form a dried electrode plate, and a PTFE coating step of applying polytetrafluoroethylene (PTFE) to the surface of the dried electrode plate by roll transfer to form a PTFE-coated electrode plate. It is desirable to do so. Here, when PTFE is applied after rolling, the PTFE coating liquid penetrates into the conductive core, weakens the strength between the core and the active material, and causes active material peeling. For this reason, it is desirable to provide a rolling / cutting step of rolling the PTFE-coated electrode plate and then cutting it into a predetermined shape to form a hydrogen storage alloy negative electrode.

その際、ポリテトラフルオロエチレン(PTFE)をアニオン系水溶性増粘剤で分散させて塗布するのがさらに望ましい。これは、本発明においては、水素吸蔵合金負極の表面部に極僅かなPTFE塗布量となるように規定しているため、PTFE塗布液としてはPTFEの希釈液を用いる必要があるからである。これにより、塗布液中にPTFEが均一に分散されるようになって、塗布液中のPTFEの沈降などによる塗布バラツキが抑制されるようになる。   At that time, it is more desirable to apply polytetrafluoroethylene (PTFE) dispersed with an anionic water-soluble thickener. This is because, in the present invention, the surface portion of the hydrogen storage alloy negative electrode is defined to have a very small amount of PTFE applied, and therefore it is necessary to use a diluted PTFE solution as the PTFE coating solution. As a result, PTFE is uniformly dispersed in the coating solution, and variations in coating due to sedimentation of PTFE in the coating solution are suppressed.

本発明においては、低開孔率の導電性芯体を用いるとともに、水素吸蔵合金負極の表面部に所定量のポリテトラフルオロエチレン(PTFE)を付与して水素吸蔵合金負極での電解液保持率を所定量とすることで、活物質剥がれが生じるのを防止して、反応抵抗を減少させることにより高出力特性が得られるようになる。   In the present invention, a conductive core having a low porosity is used, and a predetermined amount of polytetrafluoroethylene (PTFE) is applied to the surface portion of the hydrogen storage alloy negative electrode to hold the electrolyte solution in the hydrogen storage alloy negative electrode. By setting the amount to a predetermined amount, it is possible to prevent the active material from peeling off and to reduce the reaction resistance, thereby obtaining high output characteristics.

本発明のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline storage battery of this invention typically.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.水素吸蔵合金
ランタン(La),ネオジム(Nd),マグネシウム(Mg),ニッケル(Ni),アルミニウム(Al)などの金属元素を所定のモル比となるように混合した後、これらの混合物をアルゴンガス雰囲気の高周波誘導炉に投入して溶解させ、これを冷却させて組成式がLa0.2Nd0.7Mg0.1Ni3.7Al0.1で表されるインゴットを作製し、これを水素吸蔵合金α1とした。
1. Hydrogen storage alloy After mixing metal elements such as lanthanum (La), neodymium (Nd), magnesium (Mg), nickel (Ni), aluminum (Al) so as to have a predetermined molar ratio, these mixtures are mixed with argon gas. This was introduced into a high frequency induction furnace in an atmosphere and melted, and this was cooled to produce an ingot having a composition formula of La 0.2 Nd 0.7 Mg 0.1 Ni 3.7 Al 0.1 , which was designated as a hydrogen storage alloy α1.

ついで、得られた各水素吸蔵合金α1について、DSC(示差走査熱量計)を用いて融点(Tm)を測定した。その後、これらの水素吸蔵合金α1の融点(Tm)よりも30℃だけ低い温度(Ta=Tm−30℃)で所定時間(この場合は10時間)の熱処理を行った。この後、これらの各水素吸蔵合金α1の塊を粗粉砕した後、不活性ガス雰囲気中で機械的に粉砕して、体積累積頻度50%での粒径(D50)が25μmの水素吸蔵合金粉末αを作製した。   Subsequently, about each obtained hydrogen storage alloy (alpha) 1, melting | fusing point (Tm) was measured using DSC (differential scanning calorimeter). Thereafter, heat treatment was performed for a predetermined time (in this case, 10 hours) at a temperature (Ta = Tm−30 ° C.) lower by 30 ° C. than the melting point (Tm) of these hydrogen storage alloys α1. Thereafter, these hydrogen storage alloys α1 are coarsely pulverized and then mechanically pulverized in an inert gas atmosphere to obtain a hydrogen storage alloy powder having a particle size (D50) of 25 μm at a volume cumulative frequency of 50%. α was produced.

ついで、Cu−Kα管をX線源とするX線回折測定装置を用いる粉末X線回折法で水素吸蔵合金粉末αの結晶構造の同定を行った。この場合、スキャンスピード1°/min、管電圧40kV、管電流300mA、スキャンステップ1°、測定角度(2θ)20〜50°でX線回折測定を行った。得られたXRDプロファイルよりJCPDSカードチャートを用いて、各水素吸蔵合金粉末αの結晶構造を同定した。   Next, the crystal structure of the hydrogen storage alloy powder α was identified by a powder X-ray diffraction method using an X-ray diffraction measurement apparatus using a Cu—Kα tube as an X-ray source. In this case, X-ray diffraction measurement was performed at a scan speed of 1 ° / min, a tube voltage of 40 kV, a tube current of 300 mA, a scan step of 1 °, and a measurement angle (2θ) of 20 to 50 °. From the obtained XRD profile, the crystal structure of each hydrogen storage alloy powder α was identified using a JCPDS card chart.

ここで、結晶構造の構成比において、A519型構造はCe5Co19型構造とPr5Co19型構造とSm5Co19型構造とし、A27型構造はCe2Ni7型構造とし、AB5型構造はLaNi5型構造として、JCPDSによる各構造の回折角の強度値と42〜44°の最強強度値との比各強度比を、得られたXRDプロファイルにあてはめて、各構造の構成比率を算出すると、A519型構造は86%で、A27型構造は11%で、AB5型構造は3%であり、A519型構造が主相であることが分かった。 Here, in the composition ratio of the crystal structure, the A 5 B 19 type structure is a Ce 5 Co 19 type structure, a Pr 5 Co 19 type structure and an Sm 5 Co 19 type structure, and the A 2 B 7 type structure is a Ce 2 Ni 7 structure. a mold structure, AB 5 type structure as LaNi 5 type structure, the ratio the intensity ratio of the strongest intensity values of the intensity values and 42 to 44 ° of the diffraction angle of each structure according to JCPDS, by applying the obtained XRD profile When the composition ratio of each structure is calculated, the A 5 B 19 type structure is 86%, the A 2 B 7 type structure is 11%, the AB 5 type structure is 3%, and the A 5 B 19 type structure is mainly used. It turns out to be a phase.

2.水素吸蔵合金負極
上述した水素吸蔵合金粉末αを用いて、以下のようにして水素吸蔵合金負極11をそれぞれ作製した。まず、得られた水素吸蔵合金粉末αを100質量部に対して、0.1質量%のCMC(カルボキシメチルセルロース)と水(あるいは純水)とからなる水溶性結着剤に、熱可塑性エラストマーとしてのスチレンブタジエンラテックス(SBR)と、炭素系導電剤としてのケッチェンブラックとを添加した。この後、これらを混合し、混練して水素吸蔵合金スラリーを作製した。
2. Hydrogen storage alloy negative electrode Using the above-described hydrogen storage alloy powder α, the hydrogen storage alloy negative electrode 11 was produced as follows. First, with respect to 100 parts by mass of the obtained hydrogen storage alloy powder α, a water-soluble binder composed of 0.1% by mass of CMC (carboxymethylcellulose) and water (or pure water) is used as a thermoplastic elastomer. Styrene butadiene latex (SBR) and ketjen black as a carbon-based conductive agent were added. Thereafter, these were mixed and kneaded to prepare a hydrogen storage alloy slurry.

ついで、ニッケルメッキを施した軟鋼材製の多孔性基板(パンチングメタル)からなる負極用導電性芯体11aを用意した。この場合、パンチングメタルの開孔率([芯体の開口部の総面積/負極の長さ×幅]×100)を28%としたものを負極用導電性芯体β1とし、パンチングメタルの開孔率を25%としたものを負極用導電性芯体β2とし、パンチングメタルの開孔率を19%としたものを負極用導電性芯体β3とし、パンチングメタルの開孔率を15%としたものを負極用導電性芯体β4とした。   Next, a negative electrode conductive core 11a made of a nickel-plated soft steel porous substrate (punching metal) was prepared. In this case, the punching metal opening ratio ([total area of opening of core body / length of negative electrode × width] × 100) of 28% was defined as negative electrode conductive core β1, and the punching metal was opened. A negative electrode conductive core β2 having a porosity of 25% and a punching metal opening rate of 19% as a negative electrode conductive core β3, and a punching metal porosity of 15%. This was used as the negative electrode conductive core β4.

この後、これらの負極用導電性芯体11a(β1,β3,β4)に、所定の充填密度(例えば、5.0g/cm3)となるように水素吸蔵合金スラリーを塗着し、乾燥させた後、所定の厚みになるように圧延した。この後、所定の寸法(例えば、40mm×1000mm)になるように切断して、水素吸蔵合金負極11(x1〜x3)をそれぞれ作製した。なお、負極用導電性芯体β1を用いたものを水素吸蔵合金負極x1とし、負極用導電性芯体β3を用いたものを水素吸蔵合金負極x2とし、負極用導電性芯体β4を用いたものを水素吸蔵合金負極x3とした。 Thereafter, a hydrogen storage alloy slurry is applied to the negative electrode conductive cores 11a (β1, β3, β4) so as to have a predetermined packing density (for example, 5.0 g / cm 3 ) and dried. After that, it was rolled to a predetermined thickness. Then, it cut | disconnected so that it might become a predetermined dimension (for example, 40 mm x 1000 mm), and produced the hydrogen storage alloy negative electrode 11 (x1-x3), respectively. The negative electrode conductive core β1 was used as the hydrogen storage alloy negative electrode x1, the negative electrode conductive core β3 was used as the hydrogen storage alloy negative electrode x2, and the negative electrode conductive core β4 was used. This was designated as a hydrogen storage alloy negative electrode x3.

一方、PTFE(ポリテトラフルオロエチレン)エマルジョンをアニオン系水溶性増粘剤としてのCMC(カルボキシメチルセルロース)で分散させて作製したPTFE塗布液(例えば、粘度が120mPasのもの)を調製した。そして、負極用導電性芯体11a(β1,β2,β3,β4)に、所定の充填密度(例えば、5.0g/cm3)となるように水素吸蔵合金スラリーを塗着し、乾燥させた。この後、上述のように調製されたPTFE塗布液をゴム製の溝付きローラを用いて、PTFEの塗布量が0.09mg/cm2となるように塗布した。 Meanwhile, a PTFE coating solution (for example, having a viscosity of 120 mPas) prepared by dispersing PTFE (polytetrafluoroethylene) emulsion with CMC (carboxymethylcellulose) as an anionic water-soluble thickener was prepared. Then, a hydrogen storage alloy slurry was applied to the negative electrode conductive core 11a (β1, β2, β3, β4) so as to have a predetermined filling density (for example, 5.0 g / cm 3 ) and dried. . Thereafter, the PTFE coating solution prepared as described above was applied using a rubber grooved roller so that the PTFE coating amount was 0.09 mg / cm 2 .

乾燥後、所定の厚みになるように圧延し、所定の寸法(例えば、40mm×1000mm)になるように切断し、水素吸蔵合金負極11(a1〜a4)をそれぞれ作製した。ここで、負極用導電性芯体β1を用いたものを水素吸蔵合金負極a1とし、負極用導電性芯体β2を用いたものを水素吸蔵合金負極a2とし、負極用導電性芯体β3を用いたものを水素吸蔵合金負極a3とし、負極用導電性芯体β4を用いたものを水素吸蔵合金負極a4とした。   After drying, the film was rolled to a predetermined thickness and cut to a predetermined dimension (for example, 40 mm × 1000 mm) to prepare hydrogen storage alloy negative electrodes 11 (a1 to a4). Here, the negative electrode conductive core β1 is used as the hydrogen storage alloy negative electrode a1, the negative electrode conductive core β2 is used as the hydrogen storage alloy negative electrode a2, and the negative electrode conductive core β3 is used. The hydrogen storage alloy negative electrode a3 was used, and the negative electrode conductive core β4 was used as the hydrogen storage alloy negative electrode a4.

この後、これらのPTFEが塗布された水素吸蔵合金負極11(a1〜a4)をそれぞれ断面切断して、これらの切断面のフッ素(F)をエネルギー分散型X線分光器(EDS)にて観察した。その結果、PTFEは水素吸蔵合金負極11(a1〜a4)の表面から(t1−t2)×0.15の範囲内に存在することが明らかになった。この場合、t1は水素吸蔵合金負極11(a1〜a4)の総厚みを表し、t2は負極用導電性芯体11a(β1,β2,β3,β4)の厚みを表している。   Thereafter, the hydrogen storage alloy negative electrode 11 (a1 to a4) coated with these PTFEs is cut in cross section, and the fluorine (F) on these cut surfaces is observed with an energy dispersive X-ray spectrometer (EDS). did. As a result, it became clear that PTFE was present within the range of (t1-t2) × 0.15 from the surface of the hydrogen storage alloy negative electrode 11 (a1 to a4). In this case, t1 represents the total thickness of the hydrogen storage alloy negative electrode 11 (a1 to a4), and t2 represents the thickness of the negative electrode conductive core 11a (β1, β2, β3, β4).

一方、水素吸蔵合金負極x1〜x3および水素吸蔵合金負極a1〜a4の負極用導電性芯体−活物質間の強度を以下のようにして求めた。即ち、これらの各水素吸蔵合金負極11を15cm×5cmの大きさとなるように裁断し、これらを半径2cmのロールに巻き付けた後、巻回端部をテープで固定した。この後、0.5MPaの力をロールに巻き付けた負極上に加えながらロールを5秒間だけ回転させた。そして、このような0.5MPaの力の付与と5秒間だけの回転を1セットとして、芯体から活物質が剥れるまでの回数を求めて、導電性芯体−活物質間の強度とした。そして、水素吸蔵合金負極x1の強度を100とし、他の水素吸蔵合金負極x2〜x3およびa1〜a4の強度をそれとの比とする強度比で求めると、下記の表1に示すような結果となった。

Figure 2010161014
On the other hand, the strength between the negative electrode conductive core and the active material of the hydrogen storage alloy negative electrodes x1 to x3 and the hydrogen storage alloy negative electrodes a1 to a4 was determined as follows. That is, each of these hydrogen storage alloy negative electrodes 11 was cut to a size of 15 cm × 5 cm, wound around a roll having a radius of 2 cm, and then the winding end was fixed with a tape. Thereafter, the roll was rotated for 5 seconds while applying a force of 0.5 MPa on the negative electrode wound around the roll. Then, the number of times until the active material is peeled off from the core body is obtained by setting such a force of 0.5 MPa and rotation for 5 seconds as one set, and the strength between the conductive core body and the active material is obtained. . And when the strength of the hydrogen storage alloy negative electrode x1 is set to 100 and the strength ratio of the other hydrogen storage alloy negative electrodes x2 to x3 and a1 to a4 is determined as a ratio thereof, the results shown in Table 1 below are obtained. became.
Figure 2010161014

上記表1の結果から明らかなように、PTFEが塗布されていない水素吸蔵合金負極x1〜x3においては、水素吸蔵合金負極x2の強度比は79で、水素吸蔵合金負極x3の強度比は62で、芯体開孔率(%)が低下するほど芯体−活物質間の強度比が低下していることが分かる。これに対して、PTFEが0.09mg/cm2となるように塗布された水素吸蔵合金負極a1〜a4においては、負極用導電性芯体の開孔率(%)が15%〜28%の範囲内であれば、導電性芯体−活物質間の強度比はそれほど変わらないことが分かる。これは、PTFEは乾燥・圧延工程を経て繊維化するため、負極用導電性芯体の開孔率の低下に伴う強度低下以上に、活物質間強度を向上させることが可能となって、極板強度を維持できたためと考えられる。 As is clear from the results in Table 1 above, in the hydrogen storage alloy negative electrodes x1 to x3 not coated with PTFE, the strength ratio of the hydrogen storage alloy negative electrode x2 is 79, and the strength ratio of the hydrogen storage alloy negative electrode x3 is 62. It can be seen that the strength ratio between the core and the active material decreases as the core area porosity (%) decreases. On the other hand, in the hydrogen storage alloy negative electrodes a1 to a4 coated so that PTFE is 0.09 mg / cm 2 , the porosity (%) of the negative electrode conductive core is 15% to 28%. If it is in the range, it can be seen that the strength ratio between the conductive core and the active material does not change so much. This is because PTFE is fiberized through a drying / rolling process, so that it is possible to improve the strength between the active materials more than the strength reduction due to the decrease in the porosity of the negative electrode conductive core. This is probably because the plate strength was maintained.

3.ニッケル正極
一方、多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板の細孔内にニッケル塩およびコバルト塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させた。
3. Nickel positive electrode On the other hand, a porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75, and a nickel salt is placed in the pores of the porous nickel sintered substrate. And cobalt salts were retained. Thereafter, the porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極12を作製した。 Next, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled into the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. Filled. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel positive electrode 12 was produced.

4.ニッケル−水素蓄電池
この後、上述のように作製された水素吸蔵合金負極11(x1〜x3)(a1〜a4)とニッケル正極12とを用い、これらの間に、スルフォン化処理された不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金負極11の芯体露出部11cが露出しており、その上部にはニッケル正極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル正極12の芯体露出部12cの上に正極集電体15を溶接して、電極体とした。
4). Nickel-hydrogen storage battery Thereafter, the hydrogen storage alloy negative electrode 11 (x1 to x3) (a1 to a4) and the nickel positive electrode 12 produced as described above are used, and a non-woven fabric that is sulfonated between them is formed. A spiral electrode group was prepared by winding the separator 13 in a spiral shape. The core exposed portion 11c of the hydrogen storage alloy negative electrode 11 is exposed at the lower part of the spiral electrode group thus fabricated, and the core exposed part 12c of the nickel positive electrode 12 is exposed at the upper portion thereof. ing. Next, the negative electrode current collector 14 is welded to the core exposed portion 11c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 12c of the nickel positive electrode 12 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 was welded onto the electrode body to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)16内に収納した後、負極集電体14を外装缶16の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aを正極端子を兼ねるとともに外周部に絶縁ガスケット18が装着された封口体17の底部を構成する封口板17aに溶接した。なお、封口体17には正極キャップ17bが設けられていて、この正極キャップ17b内に所定の圧力になると変形する弁体17cとスプリング17dよりなる圧力弁が配置されている。   Next, after the obtained electrode body is housed in a bottomed cylindrical outer can 16 in which iron is nickel-plated (the outer surface of the bottom surface becomes a negative electrode external terminal) 16, the negative electrode current collector 14 is attached to the outer can 16. Welded to the inner bottom. On the other hand, the current collecting lead portion 15a extending from the positive electrode current collector 15 was welded to a sealing plate 17a constituting the bottom portion of the sealing body 17 which also served as a positive electrode terminal and was fitted with an insulating gasket 18 on the outer peripheral portion. The sealing body 17 is provided with a positive electrode cap 17b, and a pressure valve including a valve body 17c and a spring 17d which are deformed when a predetermined pressure is reached is disposed in the positive electrode cap 17b.

ついで、外装缶16の上部外周部に環状溝部16aを形成した後、電解液を注液し、外装缶16の上部に形成された環状溝部16aの上に封口体17の外周部に装着された絶縁ガスケット18を載置した。この後、外装缶16の開口端縁16bをかしめることにより、ニッケル−水素蓄電池10(X1〜X3)(A1〜A4)を作製した。この場合、外装缶16内に30質量%の水酸化カリウム(KOH)水溶液からなるアルカリ電解液を、電池容量(Ah)当り2.5g(2.5g/Ah)あるいは2.8g(2.8g/Ah)となるように注入して、ニッケル−水素蓄電池10(X1〜X3)(A1〜A4)を作製した。   Next, after forming the annular groove portion 16 a on the upper outer peripheral portion of the outer can 16, the electrolytic solution was injected, and the outer peripheral portion of the sealing body 17 was mounted on the annular groove portion 16 a formed on the upper portion of the outer can 16. An insulating gasket 18 was placed. Then, the nickel-hydrogen storage battery 10 (X1-X3) (A1-A4) was produced by caulking the opening edge 16b of the armored can 16. In this case, an alkaline electrolyte composed of a 30% by mass potassium hydroxide (KOH) aqueous solution in the outer can 16 is 2.5 g (2.5 g / Ah) or 2.8 g (2.8 g) per battery capacity (Ah). / Ah) to produce nickel-hydrogen storage batteries 10 (X1 to X3) (A1 to A4).

ここで、負極x1を用いたものを電池X1とし、負極x2を用いたものを電池X2とし、負極x3を用いたものを電池X3とした。また、負極a1を用いたものを電池A1とし、負極a2を用いたものを電池A2とし、負極a3を用いたものを電池A3とし、負極a4を用いたものを電池A4とした。   Here, the battery using the negative electrode x1 is referred to as a battery X1, the battery using the negative electrode x2 is referred to as the battery X2, and the battery using the negative electrode x3 is referred to as the battery X3. A battery using the negative electrode a1 is referred to as a battery A1, a battery using the negative electrode a2 is referred to as a battery A2, a battery using the negative electrode a3 is referred to as a battery A3, and a battery using the negative electrode a4 is referred to as a battery A4.

5.電池試験
(1)活性化
ついで、上述のようにして作製した電池X1〜X3,A1〜A4を以下のようにして活性化した。この場合、電池作製後、電池電圧が放置時ピーク電圧の60%になるまで放置した後、25℃の温度雰囲気で、1Itの充電々流でSOC(State Of Charge:充電深度)の120%まで充電し、25℃の温度雰囲気で1時間休止する。ついで、70℃の温度雰囲気で24時間放置した後、45℃の温度雰囲気で、1Itの放電々流で電池電圧が0.3Vになるまで放電させるサイクルを2サイクル繰り返して、これらの各電池X1〜X3,A1〜A4を活性化した。
5). Battery Test (1) Activation Next, the batteries X1 to X3 and A1 to A4 produced as described above were activated as follows. In this case, after the battery is manufactured, the battery is left until the battery voltage reaches 60% of the peak voltage when left, and then at a temperature atmosphere of 25 ° C., the current of 1 It is charged to 120% of SOC (State Of Charge). Charge and rest for 1 hour in a 25 ° C. temperature atmosphere. Then, after being left for 24 hours in a temperature atmosphere of 70 ° C., a cycle of discharging in a temperature atmosphere of 45 ° C. with a discharge current of 1 It until the battery voltage reaches 0.3 V was repeated two times, and each of these batteries X1 -X3, A1-A4 were activated.

(2)電解液量比の測定
上述のように活性化した後、これらの各電池X1〜X3,A1〜A4を、水素吸蔵合金負極11、ニッケル正極12、セパレータ13、集電体14,15および外装缶16などの各構成部材に解体した。ついで、解体直後と、真空乾燥後の質量変化量、即ち、各構成部材が保持していた電解液量を測定した。この後、総電解液量(Y)に対する水素吸蔵合金負極11が保持していた電解液量(X)の比、即ち液保持率(X/Y)を求めると、下記の表2に示すような結果となった。
(2) Measurement of electrolyte amount ratio After activation as described above, each of these batteries X1 to X3 and A1 to A4 is replaced with a hydrogen storage alloy negative electrode 11, a nickel positive electrode 12, a separator 13, and current collectors 14 and 15. And it disassembled into each structural member such as the outer can 16. Next, the amount of change in mass immediately after disassembly and after vacuum drying, that is, the amount of electrolyte solution held by each component was measured. Thereafter, when the ratio of the amount of electrolyte (X) retained by the hydrogen storage alloy negative electrode 11 to the total amount of electrolyte (Y), that is, the liquid retention (X / Y), was obtained as shown in Table 2 below. It became a result.

(3)出力特性評価
また、上述のように活性化した後、これらの各電池X1〜X3,A1〜A4を、25℃の温度雰囲気で、1Itの充電電流でSOC(State Of Charge :充電深度)の50%まで充電した後、25℃の温度雰囲気で1時間休止させる。ついで、−10℃の温度雰囲気で、任意の充電レートで20秒間充電させた後、−10℃の温度雰囲気で30分間休止させる。この後、−10℃の温度雰囲気で、任意の放電レートで10秒間放電させた後、25℃の温度雰囲気で30分間休止させる。このような−10℃の温度雰囲気で、任意の充電レートでの20秒間充電、30分の休止、任意の放電レートで10秒間放電、25℃の温度雰囲気での30分の休止を繰り返した。
(3) Output characteristic evaluation Moreover, after activating as mentioned above, each of these batteries X1 to X3 and A1 to A4 is SOC (State Of Charge) at a charging current of 1 It in a temperature atmosphere of 25 ° C. ) To 50%, and then rest for 1 hour in a temperature atmosphere of 25 ° C. Next, the battery is charged at an arbitrary charging rate for 20 seconds in a temperature atmosphere of −10 ° C., and then rested in a temperature atmosphere of −10 ° C. for 30 minutes. Then, after discharging at an arbitrary discharge rate for 10 seconds in a temperature atmosphere of −10 ° C., it is paused for 30 minutes in a temperature atmosphere of 25 ° C. In such a temperature atmosphere of −10 ° C., charging for 20 seconds at an arbitrary charging rate, a pause for 30 minutes, discharging for 10 seconds at an arbitrary discharge rate, and a pause for 30 minutes in a temperature atmosphere at 25 ° C. were repeated.

この場合、任意の充電レートは、0.8It→1.7It→2.5It→3.3It→4.2Itの順で充電電流を増加させ、任意の放電レートは、1.7It→3.3It→5.0It→6.7It→8.3Itの順で放電電流を増加させ、各放電レートで10秒間経過時点での各電池X1〜X3,A1〜A4の電池電圧(V)を各電流毎にそれぞれ測定した。ここで、放電特性(アシスト出力特性)の指標として放電V−Iプロット近似曲線上の0.9V電流を−10℃アシスト出力として求めた。求めた−10℃アシスト出力において、電池X1の−10℃アシスト出力を基準(100)とし、これとの相対比を−10℃アシスト出力比(対電池X1)として算出すると、下記の表2に示すような結果となった。   In this case, an arbitrary charging rate increases charging current in the order of 0.8 It → 1.7 It → 2.5 It → 3.3 It → 4.2 It, and an arbitrary discharging rate is 1.7 It → 3.3 It. → The discharge current is increased in the order of 5.0 It → 6.7 It → 8.3 It, and the battery voltage (V) of each of the batteries X1 to X3 and A1 to A4 at each discharge rate when 10 seconds elapses for each current Each was measured. Here, as an indicator of discharge characteristics (assist output characteristics), 0.9 V current on the discharge VI plot approximate curve was obtained as -10 ° C. assist output. In the calculated -10 ° C assist output, the -10 ° C assist output of the battery X1 is used as a reference (100), and the relative ratio thereof is calculated as the -10 ° C assist output ratio (vs. battery X1). The result was as shown.

(4)酸素濃度(酸化指標)の測定
ついで、酸化指標としての酸素濃度の測定を以下のようにして行った。この場合、上述のように活性化した後、これらの各電池X1〜X3,A1〜A4を解体、分解して負極より活物質を剥離させた。この後、超音波洗浄を施して添加剤などの水素吸蔵合金粉末以外の成分を取り除いた後、真空乾燥して、水素吸蔵合金の酸素濃度を測定した。そして、得られた酸素濃度において、電池X1の酸素濃度を基準(100)とし、これとの相対比を酸化指標(対電池X1)として算出すると、下記の表2に示すような結果となった。

Figure 2010161014
(4) Measurement of oxygen concentration (oxidation index) Next, the oxygen concentration as an oxidation index was measured as follows. In this case, after activation as described above, each of the batteries X1 to X3 and A1 to A4 was disassembled and decomposed to peel the active material from the negative electrode. Thereafter, ultrasonic cleaning was performed to remove components other than the hydrogen storage alloy powder such as additives, and then vacuum drying was performed to measure the oxygen concentration of the hydrogen storage alloy. Then, in the obtained oxygen concentration, when the oxygen concentration of the battery X1 was used as the reference (100) and the relative ratio thereof was calculated as the oxidation index (vs. the battery X1), the results shown in Table 2 below were obtained. .
Figure 2010161014

上記表2の結果から、以下のことが明らかになった。即ち、負極用導電性芯体11aの開孔率が低く、かつPTFEが未塗布の負極x2,x3を用いた電池X2、X3においては、上述したように極板強度(導電性芯体11aと活物質間強度)が低下するとともに、負極での電解液の保持率が増大し、出力低下および酸素濃度(酸化)が増大していることが分かる。これは、電解液を注液した際に活物質の剥離が生じ、この活物質の剥離部が出力低下をもたらし、更に、この剥離部より電解液の過多の状態が該当部で加速され、負極11での電解液の保持率が増大するとともに、酸化が進行(酸素濃度の増大)したと考えられる。   From the results in Table 2 above, the following became clear. That is, in the batteries X2 and X3 using the negative electrodes x2 and x3 having a low porosity of the negative electrode conductive core 11a and not coated with PTFE, as described above, the electrode plate strength (the conductive core 11a and It can be seen that the strength between the active materials is decreased, the retention rate of the electrolytic solution in the negative electrode is increased, and the output reduction and the oxygen concentration (oxidation) are increased. This is because when the electrolytic solution is injected, the active material is peeled off, and the peeled portion of the active material causes a decrease in output. It is considered that the retention rate of the electrolytic solution at 11 increased and the oxidation progressed (the oxygen concentration increased).

一方、負極用導電性芯体11aの開孔率が15〜25%と低くしても、PTFEが塗布された負極11(a2〜a4)を用いた電池A2〜A4においては、負極11(a2〜a4)での電解液の保持率が低下傾向にあって、出力向上(出力特性100%以上)および耐食性向上(酸化指標100%以下)が両立していることが分かる。この場合、負極a1のようにPTFEが塗布されていても、負極用導電性芯体11aの開孔率が28%であると、出力低下が生じていることが分かる。これは、負極用導電性芯体11aの開孔率が28%に上昇すると、負極用導電性芯体11aでの集電性が低下したためと考えられる。このことから、負極用導電性芯体11aの開孔率は15〜25%であるのが望ましいということができる。   On the other hand, in the batteries A2 to A4 using the negative electrode 11 (a2 to a4) coated with PTFE, even if the porosity of the negative electrode conductive core 11a is as low as 15 to 25%, the negative electrode 11 (a2 It can be seen that the retention rate of the electrolytic solution in ~ a4) tends to decrease, and both improvement in output (output characteristics 100% or more) and improvement in corrosion resistance (oxidation index 100% or less) are compatible. In this case, even when PTFE is applied like the negative electrode a1, it can be seen that the output is reduced when the porosity of the negative electrode conductive core 11a is 28%. This is presumably because the current collecting property of the negative electrode conductive core 11a was reduced when the porosity of the negative electrode conductive core 11a was increased to 28%. From this, it can be said that the porosity of the negative electrode conductive core 11a is desirably 15 to 25%.

5.PTFEの塗布箇所および塗布量の検討
ついで、水素吸蔵合金負極11のPTFEの塗布箇所および塗布量について検討した。そこで、負極用導電性芯体β2(パンチングメタルの開孔率を25%としたもの)を用い、これに所定の充填密度(例えば、5.0g/cm3)となるように水素吸蔵合金スラリーを塗着し、乾燥させた後、上述のように調製されたPTFE塗布液をゴム製の溝付きローラを用いて、PTFEの塗布量が0.02mg/cm2、0.11mg/cm2、および0.16mg/cm2となるように塗布した。乾燥後、所定の厚みになるように圧延し、所定の寸法(例えば、40mm×1000mm)になるように切断し、水素吸蔵合金負極11(b,c,d)をそれぞれ作製した。なお、PTFEの塗布量が0.02mg/cm2になるものを負極bとし、PTFEの塗布量が0.11mg/cm2になるものを負極cとし、PTFEの塗布量が0.16mg/cm2になるものを負極dとした。
5). Examination of PTFE Application Location and Application Amount Next, the PTFE application location and application amount of the hydrogen storage alloy negative electrode 11 were examined. Therefore, a negative electrode conductive core β2 (having a punching metal opening rate of 25%) and a hydrogen storage alloy slurry so as to have a predetermined packing density (for example, 5.0 g / cm 3 ). was Nurigi, dried, the PTFE coating solution prepared as above using grooved rollers made of rubber, 0.02 mg / cm 2 is applied amount of PTFE, 0.11 mg / cm 2, And 0.16 mg / cm 2 . After drying, the film was rolled to a predetermined thickness and cut to a predetermined dimension (for example, 40 mm × 1000 mm) to produce hydrogen storage alloy negative electrodes 11 (b, c, d). Incidentally, those coating amount of PTFE is 0.02 mg / cm 2 and a negative electrode b, and that the coating amount of PTFE is 0.11 mg / cm 2 and a negative electrode c, the coating amount of PTFE is 0.16 mg / cm The one that would be 2 was designated as negative electrode d.

一方、負極用導電性芯体β2(パンチングメタルの開孔率を25%としたもの)を用い、これに所定の充填密度(例えば、5.0g/cm3)となるように水素吸蔵合金スラリーを塗着し、乾燥させた後、所定の厚みになるように圧延した。そして、圧延の各負極に、上述のように調製されたPTFE塗布液をゴム製の溝付きローラを用いて、PTFEの塗布量が0.02mg/cm2、0.11mg/cm2、および0.16mg/cm2となるように塗布し、乾燥させた後、所定の寸法(例えば、40mm×1000mm)になるように切断し、水素吸蔵合金負極11(e,f,g)をそれぞれ作製した。なお、PTFEの塗布量が0.02mg/cm2になるものを負極eとし、PTFEの塗布量が0.11mg/cm2になるものを負極fとし、PTFEの塗布量が0.16mg/cm2になるものを負極gとした。 On the other hand, a negative electrode conductive core β2 (having a punching metal hole area ratio of 25%) and a hydrogen storage alloy slurry with a predetermined filling density (for example, 5.0 g / cm 3 ). After being coated and dried, it was rolled to a predetermined thickness. Then, each negative electrode of the rolling, the PTFE coating solution prepared as above using grooved rollers made of rubber, 0.02 mg / cm 2 is applied amount of PTFE, 0.11 mg / cm 2, and 0 .16 mg / cm 2 was applied and dried, and then cut to a predetermined size (for example, 40 mm × 1000 mm) to prepare hydrogen storage alloy negative electrodes 11 (e, f, g), respectively. . Incidentally, those coating amount of PTFE is 0.02 mg / cm 2 and a negative electrode e, those coating amount of PTFE is 0.11 mg / cm 2 and a negative electrode f, the coating amount of PTFE is 0.16 mg / cm The one to be 2 was designated as negative electrode g.

この後、上述と同様にして、これらの水素吸蔵合金負極11(b〜g)をそれぞれ断面切断して、これらの切断面のフッ素(F)をエネルギー分散型X線分光器(EDS)にて観察した。その結果、PTFEは水素吸蔵合金負極11(b〜g)の表面から(t1−t2)×0.15の範囲内に存在することが明らかになった。一方、水素吸蔵合金負極b〜gの負極用導電性芯体11a−活物質間の強度を上述と同様にして求めると、下記の表3に示すような結果となった。この場合も、水素吸蔵合金負極x1の強度を100とし、他の水素吸蔵合金負極b〜gの強度をそれとの比とする強度比で求めると、下記の表3に示すような結果となった。

Figure 2010161014
Thereafter, in the same manner as described above, these hydrogen storage alloy negative electrodes 11 (b to g) were cut in cross-section, and fluorine (F) on these cut surfaces was obtained by an energy dispersive X-ray spectrometer (EDS). Observed. As a result, it became clear that PTFE was present within the range of (t1-t2) × 0.15 from the surface of the hydrogen storage alloy negative electrode 11 (b to g). On the other hand, when the strength between the negative electrode conductive core 11a and the active material of the hydrogen storage alloy negative electrodes b to g was determined in the same manner as described above, the results shown in Table 3 below were obtained. Also in this case, when the strength of the hydrogen storage alloy negative electrode x1 was set to 100 and the strength ratio of the other hydrogen storage alloy negative electrodes b to g was determined as a ratio thereof, the results shown in Table 3 below were obtained. .
Figure 2010161014

上記表3の結果から明らかなように、PTFEが圧延後に塗布された水素吸蔵合金負極e,f,gにおいては、水素吸蔵合金負極eの強度比は61で、水素吸蔵合金負極f,gの強度比は72,71で、負極用導電性芯体11a−活物質間の強度比が低下していることが分かる。これに対して、PTFEが圧延前に塗布された水素吸蔵合金負極b,c,dにおいては、水素吸蔵合金負極bの強度比は115で、水素吸蔵合金負極c,dの強度比は121で、芯体−活物質間の強度比が格段に向上していることが分かる。
これは、PTFEを圧延後に塗布した場合、PTFE塗布液が芯体まで浸透して活物質の剥離を生じさせたためと考えられる。一方、PTFEを圧延前に塗布する場合は、PTFE塗布液が活物質中に吸収され、乾燥した後に圧延されるため、活物質の剥離が生じることがなく、強度低下がもたらされなかったためと考えられる。
As is clear from the results of Table 3 above, in the hydrogen storage alloy negative electrode e, f, g coated with PTFE after rolling, the strength ratio of the hydrogen storage alloy negative electrode e is 61, and the hydrogen storage alloy negative electrode f, g It can be seen that the strength ratio is 72, 71, and the strength ratio between the negative electrode conductive core 11a and the active material is reduced. On the other hand, in the hydrogen storage alloy negative electrodes b, c and d coated with PTFE before rolling, the strength ratio of the hydrogen storage alloy negative electrode b is 115 and the strength ratio of the hydrogen storage alloy negative electrodes c and d is 121. It can be seen that the strength ratio between the core and the active material is remarkably improved.
This is presumably because when PTFE was applied after rolling, the PTFE coating solution penetrated into the core and caused the active material to peel off. On the other hand, when PTFE is applied before rolling, the PTFE coating solution is absorbed in the active material and rolled after drying, so that the active material is not peeled off and the strength is not reduced. Conceivable.

ついで、PTFEを圧延前に塗布して形成した負極b,c,dを用いて、上述と同様に、ニッケル−水素蓄電池B,C,Dをそれぞれ作製した。この場合、負極bを用いたものを電池Bとし、負極cを用いたものを電池Cとし、負極dを用いたものを電池Dとした。また、負極bを用いたものを電池Bとし、負極cを用いたものを電池Cとし、負極dを用いたものを電池Dとした。   Subsequently, nickel-hydrogen storage batteries B, C, and D were respectively produced using negative electrodes b, c, and d formed by applying PTFE before rolling. In this case, the battery B was used as the battery B, the battery C was used as the negative electrode c, and the battery D was used as the negative electrode d. A battery using the negative electrode b was designated as a battery B, a battery using the negative electrode c was designated as a battery C, and a battery using the negative electrode d was designated as a battery D.

ついで、これらの各電池B,C,Dを、上述と同様に活性化した後、上述と同様に各構成部材に解体し、総電解液量(Y)に対する水素吸蔵合金負極11が保持していた電解液量(X)の比、即ち、液保持率(X/Y)を求めると、下記の表4に示すような結果となった。また、活性化後、上述と同様に−10℃アシスト出力として求め、求めた−10℃アシスト出力において、上述した電池X1の−10℃アシスト出力を基準(100)とし、これとの相対比を−10℃アシスト出力比(対電池X1)として算出すると、下記の表4に示すような結果となった。さらに、活性化後、上述と同様に酸素濃度を測定し、上述した電池X1の酸素濃度を基準(100)とし、これとの相対比を酸化指標(対電池X1)として算出すると、下記の表4に示すような結果となった。なお、下記の表4には、上述した電池A2の結果も併せて示している。

Figure 2010161014
Then, after activating each of the batteries B, C, D in the same manner as described above, the batteries B, C, D are disassembled into the constituent members in the same manner as described above, and the hydrogen storage alloy negative electrode 11 with respect to the total electrolyte amount (Y) is held. When the ratio of the electrolyte amount (X), that is, the liquid retention (X / Y) was determined, the results shown in Table 4 below were obtained. In addition, after activation, the -10 ° C assist output was obtained in the same manner as described above, and in the obtained -10 ° C assist output, the -10 ° C assist output of the battery X1 described above was used as the reference (100), and the relative ratio thereof was determined. When calculated as the −10 ° C. assist output ratio (vs. battery X1), the results shown in Table 4 below were obtained. Further, after activation, the oxygen concentration is measured in the same manner as described above, and the oxygen concentration of the battery X1 described above is used as a reference (100) and the relative ratio thereof is calculated as an oxidation index (vs. battery X1). The results shown in 4 were obtained. Table 4 below also shows the results of the battery A2 described above.
Figure 2010161014

上記表4の結果から以下のことが明らかになった。即ち、塗布量が0.16mg/cm2となるようにPTFEが塗布された負極dを用いた電池Dにおいては、出力特性が低下していることが分かる。これは、芯体の開孔率の低下による反応抵抗低下効果よりもPTFE塗布による反応抵抗増大効果が大きいためと考えられる。一方、PTFEの塗布量が0.02〜0.11mg/cm2となるようにPTFEが塗布された負極b,a2,cを用いた電池B,A2,Cにおいては、出力特性が向上していることが分かる。このことから、PTFEの塗布量は0.02〜0.11mg/cm2とするのが望ましいことが分かる。 From the results in Table 4 above, the following became clear. That is, it can be seen that in the battery D using the negative electrode d coated with PTFE so that the coating amount is 0.16 mg / cm 2 , the output characteristics are deteriorated. This is presumably because the effect of increasing the reaction resistance by applying PTFE is larger than the effect of decreasing the reaction resistance by reducing the opening ratio of the core. On the other hand, in the batteries B, A2, and C using the negative electrodes b, a2, and c coated with PTFE so that the coating amount of PTFE is 0.02 to 0.11 mg / cm 2 , the output characteristics are improved. I understand that. From this, it can be seen that the amount of PTFE applied is preferably 0.02 to 0.11 mg / cm 2 .

上述したように、本発明においては、従来の開孔率(28%以上)よりも低開孔率の芯体を用いるとともに、水素吸蔵合金負極の表面にポリテトラフルオロエチレン(PTFE)が0.02〜0.11mg/cm2だけ塗布させることにより、水素吸蔵合金負極での電解液の保持率を従来の範囲よりも低下させた効果を発現させることが可能となった。
この場合、水素吸蔵合金負極での電解液の保持率を低下させると、三相界面(水素吸蔵合金負極と電解液と空間との界面)が減少するため、水素吸蔵合金負極に用いる水素吸蔵合金は、希土類、ニッケル、マグネシウムを主元素とするA519型構造相を含む合金が望ましい。
As described above, in the present invention, a core having a lower porosity than the conventional porosity (28% or more) is used, and polytetrafluoroethylene (PTFE) is added to the surface of the hydrogen storage alloy negative electrode to a value of 0.1. By applying only 02 to 0.11 mg / cm 2, it has become possible to exhibit the effect of lowering the retention rate of the electrolytic solution in the hydrogen storage alloy negative electrode than the conventional range.
In this case, if the retention rate of the electrolyte in the hydrogen storage alloy negative electrode is reduced, the three-phase interface (the interface between the hydrogen storage alloy negative electrode, the electrolyte, and the space) decreases, so the hydrogen storage alloy used in the hydrogen storage alloy negative electrode Is preferably an alloy containing an A 5 B 19 type structural phase mainly composed of rare earth, nickel, and magnesium.

これは、A519型構造はAB2型構造とAB5型構造とが三層を周期として積み重なっており、A27型構造よりも単位結晶格子当たりのニッケル(Ni)の比率を増加させることが可能となる。そして、単位結晶格子当たりのニッケル(Ni)の比率が増加すると、水素分子の吸着および水素原子への解離を促進する活性点を増加させることが可能となって、反応点が減少しても、高出力特性を向上させることが可能となるからである。 This is because the A 5 B 19 type structure has the AB 2 type structure and the AB 5 type structure stacked in a cycle of three layers, and the ratio of nickel (Ni) per unit crystal lattice is higher than that of the A 2 B 7 type structure. It can be increased. And if the ratio of nickel (Ni) per unit crystal lattice increases, it becomes possible to increase the active sites that promote the adsorption of hydrogen molecules and the dissociation into hydrogen atoms, This is because high output characteristics can be improved.

なお、上述した実施形態においては、水素吸蔵合金負極の表面部にポリテトラフルオロエチレン(PTFE)を塗布するようにしたが、ポリテトラフルオロエチレン(PTFE)以外の他のフッ素樹脂、例えば、FEP等を塗布するようにしてもよい。また、上述した実施形態においては、アニオン系水溶性増粘剤としてCMC(カルボキシメチルセルロース)を用いる例について説明したが、CMC(カルボキシメチルセルロース)以外のアニオン系水溶性増粘剤として、ポリカルボン酸とポリアクリル酸系共重合体及びこれらのアンモニウム塩、ビニル系単量体とアクリルアミド系の親水性単量体との共重合体等のアニオン系水溶性高分子等を用いるようにしてもよい。さらに、上述した実施形態においては、炭素系導電剤としてケッチェンブラックを添加する例について説明したが、ケッチェンブラック以外の炭素系導電剤として、活性炭や、カーボンナノチューブなどのカーボンナノ材料等を添加するようにしてもよい。   In the embodiment described above, polytetrafluoroethylene (PTFE) is applied to the surface portion of the hydrogen storage alloy negative electrode. However, other fluororesins other than polytetrafluoroethylene (PTFE), such as FEP, etc. You may make it apply | coat. Moreover, in embodiment mentioned above, although the example using CMC (carboxymethylcellulose) as an anionic water-soluble thickener was demonstrated, as anionic water-soluble thickener other than CMC (carboxymethylcellulose), polycarboxylic acid and Anionic water-soluble polymers such as polyacrylic acid copolymers and their ammonium salts, and copolymers of vinyl monomers and acrylamide hydrophilic monomers may be used. Furthermore, in the above-described embodiment, an example in which ketjen black is added as a carbon-based conductive agent has been described. However, carbon nanomaterials such as activated carbon and carbon nanotubes are added as a carbon-based conductive agent other than ketjen black. You may make it do.

11…水素吸蔵合金負極、11a…負極用導電性芯体、11b…活物質層、11c…芯体露出部、12…ニッケル正極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、15a…正極用リード、16…外装缶、16a…環状溝部、16b…開口端縁、17…封口体、17a…封口板、17b…正極キャップ、17c…弁板、17d…スプリング、18…絶縁ガスケット DESCRIPTION OF SYMBOLS 11 ... Hydrogen storage alloy negative electrode, 11a ... Electroconductive core for negative electrodes, 11b ... Active material layer, 11c ... Core body exposed part, 12 ... Nickel positive electrode, 12c ... Core body exposed part, 13 ... Separator, 14 ... Negative electrode current collection 15, positive electrode current collector, 15 a, positive electrode lead, 16, outer can, 16 a, annular groove, 16 b, opening edge, 17, sealing body, 17 a, sealing plate, 17 b, positive electrode cap, 17 c, valve plate , 17d ... Spring, 18 ... Insulating gasket

Claims (6)

水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、水酸化ニッケルを主正極活物質とする正極とを備え、これらの両極を隔離するセパレータを介して渦巻状に巻回された電極群と、アルカリ電解液とを外装缶内に収容したアルカリ蓄電池であって、
前記水素吸蔵合金負極に用いられた導電性芯体の開孔率は15%〜25%で、当該水素吸蔵合金負極の表面部にポリテトラフルオロエチレン(PTFE)が0.02mg/cm2〜0.11mg/cm2だけ塗布されおり、
電解液総量に対する前記水素吸蔵合金負極が保持する電解液の保持率が23%〜29%であることを特徴とするアルカリ蓄電池。
A hydrogen storage alloy negative electrode using a hydrogen storage alloy as a negative electrode active material, and a positive electrode using nickel hydroxide as a main positive electrode active material, and an electrode group wound in a spiral through a separator that separates both electrodes; An alkaline storage battery containing an alkaline electrolyte in an outer can,
The porosity of the conductive core used for the hydrogen storage alloy negative electrode is 15% to 25%, and polytetrafluoroethylene (PTFE) is 0.02 mg / cm 2 to 0 on the surface of the hydrogen storage alloy negative electrode. Only 11 mg / cm 2 is applied,
An alkaline storage battery, wherein a retention rate of the electrolytic solution held by the hydrogen storage alloy negative electrode with respect to a total amount of the electrolytic solution is 23% to 29%.
前記水素吸蔵合金負極の表面部は、当該水素吸蔵合金負極の厚みをt1とし、当該水素吸蔵合金負極の導電性芯体の厚みをt2としたとき、当該水素吸蔵合金電極の表面より(t1−t2)×0.15までの範囲内であることを特徴とする請求項1に記載のアルカリ蓄電池。   The surface portion of the hydrogen storage alloy negative electrode is (t1−) from the surface of the hydrogen storage alloy electrode when the thickness of the hydrogen storage alloy negative electrode is t1, and the thickness of the conductive core of the hydrogen storage alloy negative electrode is t2. The alkaline storage battery according to claim 1, wherein the alkaline storage battery is within a range of t2) x 0.15. 前記水素吸蔵合金は少なくとも希土類元素とマグネシウムを含む元素からなるA成分と、少なくともニッケルを含む元素からなるB成分とから構成され、かつ合金主相がA519型構造の水素吸蔵合金であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池。 The hydrogen storage alloy is a hydrogen storage alloy composed of an A component composed of an element including at least a rare earth element and magnesium and a B component composed of an element including at least nickel, and the alloy main phase is an A 5 B 19 type structure. The alkaline storage battery according to claim 1 or 2, characterized in that 水素吸蔵合金を負極活物質とする水素吸蔵合金スラリーを導電性芯体に塗着して形成された水素吸蔵合金負極と、水酸化ニッケルを主正極活物質とする正極とを用い、これらの両極を隔離するセパレータを介して渦巻状に巻回して形成した電極群をアルカリ電解液とともに外装缶内に収容して形成するアルカリ蓄電池の製造方法であって、
前記水素吸蔵合金スラリーを導電性芯体に塗着してスラリー塗着極板とするスラリー塗着工程と、
前記スラリー塗着極板を乾燥させて乾燥極板とする乾燥工程と、
前記乾燥極板の表面にポリテトラフルオロエチレン(PTFE)をロール転写で塗布してポリテトラフルオロエチレン塗布極板とするポリテトラフルオロエチレン塗布工程とを備えたことを特徴とするアルカリ蓄電池の製造方法。
Using a hydrogen storage alloy negative electrode formed by applying a hydrogen storage alloy slurry using a hydrogen storage alloy as a negative electrode active material to a conductive core, and a positive electrode using nickel hydroxide as a main positive electrode active material. A method for producing an alkaline storage battery in which an electrode group formed by winding in a spiral shape through a separator that isolates a battery is housed in an outer can together with an alkaline electrolyte,
A slurry application step of applying the hydrogen storage alloy slurry to a conductive core to form a slurry-coated electrode plate;
A drying step of drying the slurry-coated electrode plate to form a dry electrode plate;
A method for producing an alkaline storage battery, comprising: a polytetrafluoroethylene coating step in which polytetrafluoroethylene (PTFE) is coated on a surface of the dry electrode plate by roll transfer to form a polytetrafluoroethylene-coated electrode plate. .
前記ポリテトラフルオロエチレン塗布極板を圧延した後、所定の形状に裁断して水素吸蔵合金負極とする圧延・裁断工程を備えたことを特徴とする請求項4に記載のアルカリ蓄電池の製造方法。   5. The method for producing an alkaline storage battery according to claim 4, further comprising a rolling / cutting step of rolling the polytetrafluoroethylene-coated electrode plate into a predetermined shape to form a hydrogen storage alloy negative electrode. 前記ポリテトラフルオロエチレン(PTFE)をアニオン系水溶性増粘剤で分散させて塗布するようにしたことを特徴とする請求項4または請求項5に記載のアルカリ蓄電池の製造方法。   The method for producing an alkaline storage battery according to claim 4 or 5, wherein the polytetrafluoroethylene (PTFE) is dispersed and applied with an anionic water-soluble thickener.
JP2009003621A 2009-01-09 2009-01-09 Alkaline storage battery and method of manufacturing the same Active JP5456326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003621A JP5456326B2 (en) 2009-01-09 2009-01-09 Alkaline storage battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003621A JP5456326B2 (en) 2009-01-09 2009-01-09 Alkaline storage battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2010161014A true JP2010161014A (en) 2010-07-22
JP5456326B2 JP5456326B2 (en) 2014-03-26

Family

ID=42578036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003621A Active JP5456326B2 (en) 2009-01-09 2009-01-09 Alkaline storage battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP5456326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069510A (en) * 2010-08-27 2012-04-05 Sanyo Electric Co Ltd Cylindrical nickel-hydrogen storage battery
KR20180045232A (en) * 2016-10-25 2018-05-04 주식회사 아트라스비엑스 Active Material for Lead-acid battery
CN110085808A (en) * 2019-04-24 2019-08-02 四川大学 A kind of contactless hydrogen-storage alloy cathode of electrolyte and nickel-metal hydride battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151961A (en) * 1991-11-28 1993-06-18 Sanyo Electric Co Ltd Electrode of hydrogen occluding alloy
JPH05242908A (en) * 1992-02-28 1993-09-21 Sanyo Electric Co Ltd Metal hydride storage battery
JPH06150920A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode for battery and manufacture thereof
JPH0773874A (en) * 1993-06-30 1995-03-17 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and sealed nickel hydrogen storage battery using this electrode
JPH0973896A (en) * 1995-09-06 1997-03-18 Matsushita Electric Ind Co Ltd Hydrogen storage alloy paste electrode
JPH1069904A (en) * 1996-08-29 1998-03-10 Yuasa Corp Hydrogen storage alloy electrode
JP2001273888A (en) * 2000-03-28 2001-10-05 Matsushita Electric Ind Co Ltd Method for manufacturing a plate of an alkaline secondary battery
JP2004327387A (en) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and method for manufacturing negative electrode plate
JP2008300108A (en) * 2007-05-30 2008-12-11 Sanyo Electric Co Ltd Hydrogen absorbing alloy for alkaline storage battery, manufacturing method thereof, and alkaline storage battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151961A (en) * 1991-11-28 1993-06-18 Sanyo Electric Co Ltd Electrode of hydrogen occluding alloy
JPH05242908A (en) * 1992-02-28 1993-09-21 Sanyo Electric Co Ltd Metal hydride storage battery
JPH06150920A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode for battery and manufacture thereof
JPH0773874A (en) * 1993-06-30 1995-03-17 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and sealed nickel hydrogen storage battery using this electrode
JPH0973896A (en) * 1995-09-06 1997-03-18 Matsushita Electric Ind Co Ltd Hydrogen storage alloy paste electrode
JPH1069904A (en) * 1996-08-29 1998-03-10 Yuasa Corp Hydrogen storage alloy electrode
JP2001273888A (en) * 2000-03-28 2001-10-05 Matsushita Electric Ind Co Ltd Method for manufacturing a plate of an alkaline secondary battery
JP2004327387A (en) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and method for manufacturing negative electrode plate
JP2008300108A (en) * 2007-05-30 2008-12-11 Sanyo Electric Co Ltd Hydrogen absorbing alloy for alkaline storage battery, manufacturing method thereof, and alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069510A (en) * 2010-08-27 2012-04-05 Sanyo Electric Co Ltd Cylindrical nickel-hydrogen storage battery
KR20180045232A (en) * 2016-10-25 2018-05-04 주식회사 아트라스비엑스 Active Material for Lead-acid battery
CN110085808A (en) * 2019-04-24 2019-08-02 四川大学 A kind of contactless hydrogen-storage alloy cathode of electrolyte and nickel-metal hydride battery

Also Published As

Publication number Publication date
JP5456326B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5207750B2 (en) Alkaline storage battery
JP5642577B2 (en) Alkaline storage battery and alkaline storage battery system
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2009054514A (en) Hydrogen storage alloy electrode, and alkaline storage battery using the same
JP2017191738A (en) Positive electrode active material particle for nonaqueous electrolyte secondary battery
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP2011233423A (en) Alkaline storage battery
JP5535684B2 (en) Hydrogen storage alloy for alkaline storage battery and hydrogen storage alloy electrode for alkaline storage battery using the same
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP2010080221A (en) Negative electrode material, and negative electrode for battery
JP5456326B2 (en) Alkaline storage battery and method of manufacturing the same
WO2012056710A1 (en) Positive electrode for alkaline storage battery, production method for same, and alkaline storage battery
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP4698291B2 (en) Alkaline storage battery
JP5127369B2 (en) Alkaline storage battery
JP6422017B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP2012238565A (en) Alkaline storage battery
JP4849856B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP6394955B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP5213312B2 (en) Alkaline storage battery
JP5247170B2 (en) Alkaline storage battery
JP2014229593A (en) Alkali storage battery
JP5334498B2 (en) Alkaline storage battery
EP3474353B1 (en) Positive electrode and alkaline secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150